©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DHANPAT RAI \& CO PHYSICS

(HINGLISH)

LAWS OF MOTION : FRICTION

Example

1. Give the magnitude and direction of the
force acting on a stone of mass 0.1 kg (a) just
after it is dropped from the window of a stationary train
(b) just after it is dropped from the window of
a train running at a constant velocity of $36 \mathrm{~km} / \mathrm{hr}$
(c) just after it is dropped from the window of a train accelerating with $1 m s^{-2}$
(d) lying on the floor of a train which is accelerating with $1 m s^{-2}$ the stone being at rest relative to the train .

Neglect the resistance of air throughout .

Watch Video Solution

2. A pebble of mass 0.05 kg is thrown vertically
upwards Give the magnitude and direction of net force on the pebble (a) during its upward motion (b) during its downward motion (c) at the highest point where it is momentarily rest

Do your answers change if the pebble were thrown at an angle of say 45° horizontal direction Ignore air resistance .

- Watch Video Solution

3. An army vehicle of mass 1000 kg is moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ and is acted upon by a forward force of 1000 N due to the engine and a retarding force of 500 N due to friction. What will be its velocity after 10 s

D Watch Video Solution

4. A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially with a
speed of $15 \mathrm{~ms}^{-1}$ How long does the body take to stop ?

D Watch Video Solution

5. A constant force acting on a body of mass

3 kg changes its speed from $2 m s^{-1}$ to
$3.5 \mathrm{~ms}^{-1}$ in 25 s . The direction of motion of
the body remains unchanged . Calculte magnitutude and direction of the force.
6. A bullet of mass 40 g moving with a speed of
$90 \mathrm{~ms}^{-1}$ enters a heavy wooden block and is
stopped after a direction of 60 cm . The average resistive force exered by the block on the bullet is

- Watch Video Solution

7. A force of 72 dyne is inclined to the horizontal at an angle of 60°. Find the acceleration in a mass of 9 g , which moves in a horizontal direction.
8. A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N Give the magnitude and direction of the acceleration of the body.

- Watch Video Solution

9. The driver of a three wheeler moving with a speed of $36 \mathrm{~km} / \mathrm{h}$ sees a child standing in the
middle of the road and brings his vehicle to rest in 4 s just in time to save the child What is the average retarding force on the vehicle ? The mass of three wheeler is 400 kg and mass of the driver is 65 kg .

D Watch Video Solution

10. A car starts from rest and accelerates uniformly with $2 \mathrm{~ms}^{-2}$. At $\mathrm{t}=10 \mathrm{~s}$, a stone is dropped out of the window 1 m high of the car. What are the (i) velocity, and
acceleration of the stone at $t=10.1 \mathrm{~s}$?
(Neglect air resistance). Take $g=9.8 m s^{-2}$.

D Watch Video Solution

11. A body of mass 0.40 kg moving initially with a constant speed of $10 \mathrm{~m} / \mathrm{s}$ to the north
is subjected to a constant force of 8.0 N directed towards the south for 30 s Take the instant the force is applied to be $t=0$, and the position of the particle at that time to be x
$=0$, predict its position at
$t=-5 s, 25 s, 100 s ?$

D Watch Video Solution

12. A stream of water flowing horizontal with a speed of $15 \mathrm{~ms}^{-1}$ gushes out of tube of cross sectional area $10^{-2} m^{2}$ and hits at a vertical
wall nearby. What is the force exerted by the impact of water, assuming that water rebounds with the same speed.
13. A balloon has a mass of 10 gram in air. The air escapes from the balloon at a unifrom rate with a velocity of $5 \mathrm{~cm} / \mathrm{s}$ and the balloon shrinks completely in 2.5 s . Calculate the average force acting on the balloon.

D Watch Video Solution

14. A body of mass m moves along X-axis such
that its position co-ordiante at any instant t is
$\mathrm{x}=a t^{4}-b t^{3}+c t$, where a, b and c are
constants. What is the force acting on the particle at any instant t ?

D Watch Video Solution

15. A ball of mass 0.1 kg is thrown against a wall. It strikes the wall normally with a velocity of $30 \mathrm{~ms}^{-1}$ and rebounds with a velocity of $20 \mathrm{~ms}^{-1}$. Calculate the impulse of the force exerted by the wall.

D Watch Video Solution

16. A cricket ball of mass 150 g moving with a
velocity of $15 \mathrm{~ms}^{-1}$ is brought to rest by a player in 0.05 s . Calculate the impulse and the average force exerted by the player.

D Watch Video Solution

17. A hammer weighing 1 kg moving with the speed of $10 \mathrm{~ms}^{-1}$ strikes the head of a nail driving it 10 cm into a wall. Neglecting the mass of the nail, calculate (i) the acceleration
during impact (ii) the time interval of the impact and (iii) the impulse.

D Watch Video Solution

18. Two billiard balls each of mass 0.05 kg moving in opposite directions with speed $6 m s^{-1}$ collide and rebound with the same
speed What is the impulse imparted to each ball due to the other?
19. A glass ball whose mass is 10 g falls from a height of 40 m and rebounds to a height of 10 m . Find the impulse and the average force between the glass ball and the floor if the time during which they are in contact is 0.1 s .

D Watch Video Solution

20. While lauching a rocket of mass $2 \times 10^{4} \mathrm{~kg}$
a force of $5 \times 10^{5} N$ is applied for $20 s$

Calculate the velocity attained by the rocket at the end of 20 s .
21. A machine gun fires a bullet of mass 40 g with a velocity $1200 \mathrm{~ms}^{-1}$. The man holding it can exert a maximum force of 144 N on the gun. How many bullets can be fire per second at the most?
22. A ball moving with a momentum of
$5 \mathrm{kgms}^{-1}$ strikes against a wall at an angle of
45° and is reflected at the same angle

Calculate the impulse .

- Watch Video Solution

23. A batsman deflects a ball by an angle of
45° without changing its initial speed which is equal to $54 k m H^{-1}$ What is the impulse
imparted to the ball ? Mass of the ball is 0.05 kg

D Watch Video Solution

24. Fig. shows the position-time graph of a particle of mass 4 kg . What is the (i) force acting on the particle for
$t<0, t<4 s, 0<t<4 s ?$ (ii) impulse at $\mathrm{t}=0$
and $t=4 \mathrm{~s}$? Assume that the motion is one dimensional.
25. Figure shows the position-time graph of a particle of mass 0.04 kg . Suggest a suitable physical context for this motion. What is the time between two consecutive impulses received by the particle? What is the magnitude of each impluse?

26. The initial speed of a body of mass $2 k g$ is
$5 m s^{-1}$ A force acts for 4 seconds in the direction of motion of the body. The force time graph is shown in Calculate impulse of the force and also find the speed of the body .

D Watch Video Solution

27. Ten one-rupee coins are put on top each other on a table. Each coin has a mass m. The rection of the $6^{\text {th }}$ coin (counted from the bottom) on the $7^{\text {th }}$ coin is

D Watch Video Solution

28. An elevator weighs 4000 kg When the upward tension in the supporting cable is
$48000 N$ what is the upward acceleration?

Starting from rest, how far does it rise in 3 seconds ?

- Watch Video Solution

29. A man of mass 70 kg stands on a weighing machine in a lift, which is moving (a) upwards with a unifrom speed of $10 \mathrm{~ms}^{-1}$
downwards with a unifrom acceleration of $5 m s^{-2}$
(c) upwards with a unifrom acceleration of $5 m s^{-2}$ What would be th readings on the scale in each case?
(d) What would be the reading if the lift
machanism failed and it hurtled down freely under gravity?

D Watch Video Solution

30. A block of mass 25 kg is raised by a 50 kg man in two different ways as shown in fig.
what is the action on the floor by the man in
the two cases? If the floor yields to a normal
force of 700 N , which mode should the man adopt to lift the block without the floor
yielding?

D Watch Video Solution

31. A monkey of mass 40 kg climbs on a rope which can withstand a maximum tesion of 600

N In which of the following cases will the rope break ? The monkey
(a) climbs up with an acceleration of $6 m s^{-2}$
(b) climbs down with an acceleration of $4 m s^{-2}$
(c) climbs up with a unifrom speed of $5 m s^{-1}$
(d) falls down the rope nearly freely under gravity Ignore the mass of the rope .

- Watch Video Solution

32. A helicopter of mass 2000 kg rises with a vertical acceleration of $15 m s^{-2}$. The total mass of the crew and passengers is 500 kg .

Give the magnitude and direction of the (g $=10 m s^{-2}$)
(a) Force on the floor of the helicopter by the crew and passengers.
(b) action of the rotor of the helicopter on the surrounding air.
(c) force on the helicopter dur to the surrounding air.

Watch Video Solution

33. A lift of mass 2000 kg is supported by thick steel ropes . If maximum upward acceleration of the lift be $1.2 \mathrm{~m} / \mathrm{s}^{2}$, and the breaking stress for the ropes be
$2.8 \times 10^{8} \mathrm{Nm}^{-2}$
what should be the minimum diameter of rope ?
34. A shell of mass 200 g is fired by a gun of mass 100 kg . If the muzzle speed of the shell is $80 \mathrm{~ms}^{-1}$, then the rcoil speed of the gun is

D Watch Video Solution

35. A 30 kg shell is flying at $48 \mathrm{~ms}^{-1}$. When it explodes, its one part of 18 kg stops, while the remaining part flies on. Find the velocity of the later.
36. A nucleus is at rest in the laboratory frame of reference Show that if it distintegrates into two smaller nuclei the products must be emitted in opposite directions.

- Watch Video Solution

37. A neutron having a mass of
$1.67 \times 10^{-27} \mathrm{~kg}$ and moving at $10^{8} \mathrm{~m} / \mathrm{s}$ collides with a deuteron at rest and sticks to
it. If the mass of the deuteron is
$3.33 \times 10^{-27} \mathrm{~kg}$ then the speed of the combination is

D Watch Video Solution

38. A car of mass 1000 kg travelling at $32 \mathrm{~ms}^{-1}$
dashes into the rear of a truck of mass 8000
kg , moving in the same direction with a velocity of $4 m s^{-1}$ After the collision the car bounces with a velocity of $8 m s^{-1}$ What is the velocity of the truck after the impact?
39. A hunter has a machine gun that can fire

50 g bullets with a velocity of $150 \mathrm{~m} / \mathrm{s}$. A 60 kg tiger springs at him with a velocity of $10 \mathrm{~ms}^{-1}$ How many bullets must the hunter
fire per secoud into the tiger in order to stop him in his track.

- Watch Video Solution

40. A machine gun has a mass of 10 kg . It fires

30 gram bullets at the rate of 6 bullets per
second with a speed of $400 \mathrm{~m} / \mathrm{s}$. What force must be to the gun to keep it in position ?

D Watch Video Solution

41. A body of mass $1 k g$, initially at rest, explodes and breaks into three fragments of masses in the ratio $1: 1: 3$. The two pieces of equal mass fly off perpendicular to each other with a speed of $30 \mathrm{~m} / \mathrm{s}$ each. What is the velocity of the heavier fragment?
42. A rocket with a lift off mass 20000 kg is blasted upwards with a net initial acceleration of $5 \mathrm{~ms}^{-2}$ Calculate the initial thrust (force) of the blast.

- Watch Video Solution

43. Fuel is consumed at the rats of $100 \mathrm{~kg} / \mathrm{s}$ in
a rocket The exhaust gases are ejected at a speed of $4.5 \times 10^{4} \mathrm{~ms}^{-1}$ w.r.t the rocket What is the thrust experienced by the rocket Also
calculate velocity of the rocket at the instant when its mass is reduced to $\mathrm{m} / 10$ of rocket .

D Watch Video Solution

44. A rocket of initial mass 6000 kg ejects mass at a constant rate of $16 \mathrm{~kg} / \mathrm{s}$ with constant relative speed of $11 m / s$ What is the acceleration of the rocket one mnute after blast?

D Watch Video Solution

45. The mass of a rocket is 500 kg and the relative velocity of the gases ejecting from it is
$250 \mathrm{~m} / \mathrm{s}$ with respect to the rocket. The rate of burning of the fuel in order to give the rocket an initial acceleration $20 \mathrm{~m} / \mathrm{s}^{2}$ in the vertically upward direction $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$, will be -

- Watch Video Solution

46. A rocket is set for vertical firing If the exhaust speed is $1200 \mathrm{~ms}^{-1}$, how much gas must be ejected per second to supply the
thrust needed (i) to overcome the weight of rocket (ii) to give to the rocket an initial vertical upward acceleration of $29.6 \mathrm{~m} / \mathrm{s}^{2}$

Given mass of rocket $=6000 \mathrm{~kg}$.

- Watch Video Solution

47. If the maximum possible exhaust velocity of a rocket be $2 k m / s$ calculate the ratio m_{0} / m for it to acquire a veocity of $11.2 \mathrm{~km} / \mathrm{s}$ after starting from rest .
48. A rocket motor consumes 100 kg of fuel
per second, exhausting it with a speed of $5 \times 10^{3} \mathrm{~ms}^{-1}$. (i) What force is exerted on the rocket ? (ii) What will be the velocity of the rocket at the instant its mass is reduced
$(1 / 20)$ th of its initial mass, its initial velocity
being zero. Neglect gravity.

D Watch Video Solution

49. A rocket is going upward with acceleration motion. A man string in it feels his weight increased 5 time his own weight. If the mass of the rocket including that of the man is $1.0 \times 10^{4} \mathrm{~kg}$, how much force is being applied by rocket engine? $\left(\right.$ Takeg $\left.=10 \mathrm{~ms}^{-2}\right)$.

- Watch Video Solution

50. A balloon with mass m is descending down
with an acceleration a (where $a<g$). How
much mass should be removed from it so that
it starts moving up with an acceleration a?

D Watch Video Solution

51. A mass of 6 kg is suspended by a rope of length 2 m from the ceilling A force of 50 N in the horizontal direction is applied at the mid point P of the rope as shown. What is the angle the rope makes with the vertical in equilibrium ? (Take $=10 \mathrm{~ms}^{-2}$). Neglect mass of the rope.

Watch Video Solution

52. Determine the tension T_{1} and T_{2} in the strings shown in Fig.

- Watch Video Solution

53. A train is moving along a horizontal track.

A pendulum suspended from the roof makes
an angle of 4° with the vertical . If
$g=10 \mathrm{~m} / \mathrm{s}^{2}$, what is the acceleration of the

train?

D Watch Video Solution

54. A ball of mass 1 kg hangs in equilibrium
from two strings $O A$ and $O B$ as show in figure. What are the tensions in strings $O A$ and $O B ?\left(\right.$ Takeg $\left.=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

D Watch Video Solution

55. A body of mass m is suspended by two strings making angles α and β with the horizontal. Find the tensions in the strings.

D Watch Video Solution

56. A horizontal uniform rope of length L, resting on a frictionless horizontal surface, is pulled at one end by force F. What is the tension in the rope at a distance I from the end where the force is applied?
57. A pull of 15 N is applied to a rope attached to a block of mass 7 kg lying on a smooth horizontal surface. The mass of the rope is 0.5 kg. What is the force exerted by the block on the rope?

- Watch Video Solution

58. A horizontal force of 500 N pulls two masses 10 kg and 20 kg (lying on a frictionless
table) connected by a light string. What is the tension in the string ? Does the answer depend on which mass end the pull is applied?

D Watch Video Solution

59. Two blocks of masses m_{1} and m_{2} in contact lie on a horizontal smooth surface as
shown in The blocks are pushed by a force F If
the two blocks are always in contact what is
the force at their common interface

60. As shown in Fig. three blocks connected together lie on a horizontal frictionless table and pulled to the right with a force $\mathrm{F}=50 \mathrm{~N}$. If $m_{1}=5 k g, m_{2}=10 \mathrm{~kg}$ and $m_{3}=15 \mathrm{~kg}$, find the tensions T_{1} and T_{2}.

- Watch Video Solution

61. Two masses M and m are connected at the two ends of an inextensible string. The string passes over a smooth frictionless pulley. Calculate the acceleration of the masses and the tension in the string. Given $M>m$.

- Watch Video Solution

62. Two masses 7 kg and 12 kg are connected at
the two ends of a light inetensible string that goes over a frictionless pulley. Find the
acceleration of the masses and the tension in the string when the masses are released.

- Watch Video Solution

63. Two bodies of masses 11 kg and 11.5 kg are
connected by a long light string passing over a smooth pulley Calculate velocity and height ascended/descended by each body at the end of $4 s$.
64. The masses $m_{1} m_{2}$ and m_{3} of the three bodies shown in fig. Are 5,2 and 3 kg respectively Calculate the valuse of tension $T_{1} T_{2}$ and T_{3} when (i) the whole system is going upward with an acceleration of $2 m / s^{2}$ (ii) the
whole system is stationary $\left(g=9.8 m / s^{2}\right)$.

- Watch Video Solution

65. A body m_{1} of mass 10 kg is placed on a smooth horizontal table It is connected to a string which passes over a frictionless pulley and carries at the other end , a body m_{2} of mass 5 kg

What acceleration will be produced in the bodies
when the nail fixed on the table is removed ?
what will be the tension in the string during the
motion of the bodies? What when the bodies
stop ? ($\mathrm{g}=9.8 \mathrm{~N}$? kg).
66. A block of mass 100 kg is set into motion on a
frictionless horizontal surface with the help of a
frictionless pulley and rope system shown in
What horizontal force should be applied on the rope to produce an acceleration of $0.1 \mathrm{~m} / \mathrm{s}^{2}$

Block

67. In terms of masses m_{1}, m_{2} and g , find the acceleration of both the blocks shown in Fig.

Neglect all friction and masses of the pulley.

D Watch Video Solution

68. Two particles each of mass m are connected by a light string of length $2 L$ as shown in the figure. A constant force F is applied continuoulsly at the mid - point of the string at right - angle to intial position of the string.

Find the acceleration of each particle and the
acceleration of approach between the particles
when separation between them is $2 x$

D Watch Video Solution

69. Two blocks of masses 50 kg and 30 kg connected by a massless string pass over a light frictionless pulley and rest on two smooth
planes inclined at angles 30° and 60° resp.
With horizontal .Determine the accelertion in the two blocks and tension in the string $g=10 m / s^{2}$.

D Watch Video Solution

70. A block of mass $2 k g$ is kept on the floor. The coefficient of static friction is 0.4 . If a force F of
$2.5 N$ is applied on the block as shown in the
figure, the frictional force between the block and
the floor will be.

D Watch Video Solution

71. A block of weight 20 N is placed on a horizontal table and a tension T is applied on
the block. Tension can be increased to 8 N before the block begins to slide. A force of 4 N keeps the block moving at constant speed, once
it has been set in motion. Find the coefficients of static friction and kinetic friction].

- Watch Video Solution

72. A force of 49 N is just sufficient to pull a block of wood weighing 10 kg on a rough horizontal surface. Calculate the coefficient of friction and angle of friction.
73. A cubical block rests on an inclined plance of $\mu=\frac{1}{\sqrt{3}}$. Determine the angle at which the block just slides down the incline .

- Watch Video Solution

74. A body rolled on ice with a velocity of $8 \mathrm{~ms}^{-1}$ comes to rest after travelling a distance of 4 m .

Calculate the coefficient of friction .
75. A mass of 4 kg rest on a horizontal plane .

The plane is gradually inclined until an angle
$0=15^{\circ}$ with the horizontal and the mass just begins to slide. What is the coefficient of static friction between the block and the surface?

- Watch Video Solution

76. The coefficient of friction between the ground and the wheels of a car between the ground and the wheels of acar moving on a horizontal road is 0.5 If the car starts from rest,
what is the minimum distance in which it can acquire a speed of $72 \mathrm{~km} / \mathrm{h}$? take $g=10 \mathrm{~ms}^{-2}$.

D Watch Video Solution

77. A horizontal force of 1.2 kg is applied on a 1.5 kg block, which rests on a horizontal surface

If the coefficient of friction is 0.3 find the acceleration produced in the block.

D Watch Video Solution

78. A bullet of mass 0.01 kg is fired horizontal into a 4 kg wooden block block at rest, on a horizontal surface. The coefficient of kinetic friction between the block and bullet is 0.25 the combination moves 20 m before coming to rest .

With what speed did the bullet strike the block?
79. Figure shown a man standing stationary with respect to a horizontal converyor belt that is accelerationg with $1 \mathrm{~m} / \mathrm{s}^{-2}$. What is the net force on the man?!f the coefficient of ststic friction between the man's shoes and the belt is
0.2 upto what maximum acceleration of the belt can the man continue to be stationary relative to
the belt?

Mass
of
the
man
$=65 k g\left(g=9.8 m / s^{2}\right)$

- Watch Video Solution

80. A block of mass 15 kg is placed on a long trolly. The coefficient of friction between the block and trolly is 0.18 The trolly accelerates from rest at $0.5 \mathrm{~m} / \mathrm{s}^{2}$ for 20 seconds and then moves
with a unifrom velocity Discuss the motion of the
block as viewed by (i) a stationary observer on
the ground (ii) an observer moving with the trolly.

- Watch Video Solution

81. The rear side of a truck is open and a box of

40 kg mass is placed 5 m from the open end The coefficient of friction between the box and the
surface below it is 0.15 On a straight road the
truck starts from rest and accelerates with
$2 \mathrm{~m} / \mathrm{s}^{2}$ At what distance from the starting point does the box fall off the truck ? Ignore the size of the box.

- Watch Video Solution

82. What is the acceleration of the block and
trolley system shown in if the coefficient of kinetic friction between the trolley and the surface is 0.04 ? What is the tension in the string ? Take $g=10 \mathrm{~ms}^{-2}$ Neglect the mass of
the string

D Watch Video Solution

83. A block A of mass 4 kg is placed on another
block B of mass 5 kg , and the block B rests on a smooth horizontal table. For sliding block A on

B , a horizontal force of 12 N is required to be applied on A How much maximum force can be applied on B so that both A and B move togrther
? Also find out acceleration produced by this force .

D Watch Video Solution

84. Two bodies A and B of mass 5 kg and 10 kg
contact with each other rest on a table against a
rigid The coefficient of friction between the bodies and the table is 0.05 A force of 200 N is
applied horizontal on A What are (a) the reaction
of thee wall (b) the the action, reaction forces
between A \& B ? What happens when the wall is
removed ? Does the answer to (b) Change , when
the bodies are in motion ? Ignore differnce between μ_{s} and μ_{k}

- Watch Video Solution

85. A 50 metric ton train has to run at $72 \mathrm{kmh}^{-1}$
. If the track is level and total resistance is $\frac{1}{80}$ th the weight of the train, find the power of the engine.

- Watch Video Solution

86. An engine of 100 H.P draws a train of mass

200 metric ton with a velocity of $36 \mathrm{~km} / \mathrm{h}$. Find the coefficient of friction .
87. A box of mass 4 kg is placed on a wooden
plank of length 1.5 m which is lying on the
ground. The plank is lifted from one end along its length so that it becomes inclined. It is noted
that when the vertical height of the top end of
the plank from the ground becomes 0.5 m , the box begins to slide. Find the coefficient of friction between the box and the plank.

Watch Video Solution

88. A mass of 200 kg is placed on a rough inclined plane of angle 30°. If coefficient of limiting friction is $1 / \sqrt{3}$, find the least forces in newton, acting parallel to the plane (i) to keep
the mass from sliding down (ii) to move the mass up the plane.

- Watch Video Solution

89. A box of mass $4 k g$ rests upon an inclined
plane This inclination is gradually incresed till
the box starts sliding down the plane. At this stage slope of the plane is 1 in 3 Find coefficient of friction between the box and the plane What force applied to the box parallel to the plane will just make the box move up the plane?

D Watch Video Solution

90. A block of metal of mass 50 gram placed over an inclined plane at an angle of 15° slides down without acceleration. If the inclination is
increased by 15°, what would be the acceleration of the block ?

D Watch Video Solution

91. A block is gently placed at the top of an inclined plane 6.4 m long. Find the time taken by
the block to slide down to the bottom of the plane. The plane makes an angle 30° with the horizontal Coefficient of friction between the block and the plane is 0.2 Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
92. When an automobile moving with a speed of
$36 \mathrm{~km} / \mathrm{h}$ reaches an upward inclined road of angle 30°, its engine is switched off. If the coefficient of friction is 0.1 , how much distance will the automobile move before coming to rest ? Take $g=10 \mathrm{~ms}^{-2}$.

- Watch Video Solution

93. Starting from rest , a body slides down at 45°
inclined plane in twice the time it takes to slide
down the same distance in the absence of
friction. The coefficient of friction between the body and the inclined plane is

- Watch Video Solution

94. A block of mass 2 kg rests on an inclined
plane which makes an angle of 30° with the
horizontal. The coefficient of friction between
the block and the surfcae is $\sqrt{3 / 2}$. (i) What
force should be applied on the block so that it moves down without any acceleration ? (ii) What
force should be applied on the block so that it moves up without any acceleration ?

Calculate the ratio of the powers in the above two cases if the block moves with uniform speed in both the cases.

- Watch Video Solution

95. Find the force required to move a train of 2000 quintals up an incline of 1 in 50 , with an acceleration of $2 m s^{-2}$, the force of friction being 0.5 newton per quintal.

Watch Video Solution

96. An engine of weight 6.5 metric ton is going up an inclined plane of 5 in 13 at the rate of $9 \mathrm{~km} / \mathrm{h}$. If the coefficient of friction is $\frac{1}{120}$. Calculate the power of the engine. Take $g=9.8 m / s^{2}$

- Watch Video Solution

97. A body starts rolling down an inclined plane,
the top half is rough . Find the ratio of the force
of friction and weight of the body if the body is
brought to rest just when it reaches the bottom
, the angle of the plane being 30°.

- Watch Video Solution

98. A body of mass m is released from the top of
a rough inclined plane of length I and height h if
f is the force of friction prove that the body will
reach the bottom with a velocity
$v=\sqrt{\frac{2}{m}(m g h-f l)}$.
99. Calculate the height upto which an insect can crawl up a fixed bowl in the form of a hemisphere of radius r. Given coefficient of friction is $1 / \sqrt{3}$.

D Watch Video Solution

100. Two blocks of mass 2 kg and 5 kg are connected by an ideal string passing over a pulley. The block of mass 2 kg is free to slide on a surface inclined at an angle of 30° with the
horizontal whereas 5 kg block hangs freely. Find the acceleration of the system and the tension in the string. Given $\mu=0.30$.

D Watch Video Solution

101. A truck tows a trailor of mass 1200 kg at a speed of $10 \mathrm{~m} / \mathrm{s}$ on a level road The tension in
the coupling is 1000 N
(i) What is power expended on the trailor?
(ii) Find tension in the coupling when the truck accends a road having an inclination of 1 in 6

Assume that the frictional resistance of the incline is same as that on the level road.

D Watch Video Solution

102. A $4 m$ long ladder weighing 25 kg rests with its upper end against a smooth wall and lower end on rough ground. What should be the minimum coefficient of friction between the ground and the ladder for it to be inclined at 60° with the horizontal without slipping? $\left(\right.$ Takeg $\left.=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

Watch Video Solution

Problems

1. A block of metal weighing 2 kg is resting on a frictionless plane . It is struck by a jet of releasing water at the rate of $1 \mathrm{kgs}^{-1}$ and at a speed of $5 \mathrm{~ms}^{-1}$ Calculate the intial acceleration of the blocks .

- Watch Video Solution

2. A satellite in a force - free space sweeps stationary interplanetary dust at a rate $d M / d t=\alpha v$, where M is the mass, v is the velocity of the satellite and α is a constant. What is the deacceleration of the satellite?

D Watch Video Solution

3. Two bodies A and B each of mass m are fixed together by a massless spring. A force F acts on
the mass B as shown in fig . 3 (a)18. At the instant
shown, the body A has an acceleration a What is the acceleration of B ?

- Watch Video Solution

4. An elevator and its load wiegh a total of 1600
lb. Find the tension T in the supporting cable when the elevator, originally moving downwards at $20 \mathrm{ft} / \mathrm{s}$ is brought to rest with constant acceleration in a distance of 50 ft .
5. Two blocks of mass 2.9 kg and 1.9 kg are suspended from a rigid support S by two inextensible wires each of length 1 meter, see fig.

The upper wire has negligible mass and the lower wire has a uniform mass of $0.2 \mathrm{~kg} / \mathrm{m}$. The whole system of blocks wires and support have an upward acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$. Acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

6. A uniform rope of mass m per unit length, hangs vertically from a support so that the lower end just touches the table top shown in figure. If it is released, show that at the time a length y of
the rope has fallen, the force on the table is equivalent to the weight of the length $3 y$ of the
rope.

- Watch Video Solution

7. A dise of mass 10 g is kept floating horizontally
by throwing 10 marbles per secound against it from below. If mass of each marble is 5 g

Calculate the velocity with which marbles are striking the disc. Assume that marbles strike the disc. Normally and rebound downwards with the same speed.

- Watch Video Solution

8. What is the tension in a rod of length length L and mass M at a distance y from F_{1} when the rod is acted on by two unequal force F_{1} and
$F_{2}\left(<F_{1}\right)$ as shown in.

D Watch Video Solution

9. An explosion blows a rock into three pieces

Two pieces whose masses are 200 kg and 100 kg
go off at 90° to eachother with a velocity of
$8 m / s$ and $12 m / s$ respectively If the third piece
flies off with a velocity of $25 \mathrm{~m} / \mathrm{s}$ then calculate
the mass of this piece and indicate the direction
of flight of this piece in a diagram.

- Watch Video Solution

10. A $20 g$ bullet pierces through a plate of mass
$M_{1}=1 \mathrm{~kg}$ and then comes to rest inside a
second plate of mass $M_{2}=2.98 \mathrm{~kg}$ as shown in

Fig. It is found that the two plates, initially at rest, now move with equal velocities. Find the percentage loss in the initial velocity of the bullet when it is between M_{1} and M_{2}. Neglect any loss of material of the plates due to the action of bullet.

11. A piece of wood of mass 0.03 kg is dropped from the top of a building 100 m high. At the same time, a bullet of mass 0.02 kg is fired vertically upward with a velocity of $100 \mathrm{~m} / \mathrm{s}$ from the ground the bullet gets embedded in the wooded piece after striking. find the height to which the combination rises above the building before it starts falling take $g=10 \mathrm{~m} / \mathrm{s}^{2}$
12. A block of mass 0.1 is held against a wall applying a horizontal force of 5 N on block. If the coefficient of friction between the block and the wall is 0.5 , the magnitude of the frictional force acting on the block is:

- Watch Video Solution

13. A body of mass 2 kg is being dragged with uniform velocity of $2 \mathrm{~m} / \mathrm{s}$ on a rough horizontal plane. The coefficient of friction between the body and the surface is 0.20 . The amount of heat
generated in 5 sec is
. (4.2joule $/ c a l$ and $\left.g=9.8 m / s^{2}\right)$

- Watch Video Solution

14. An aeroplane requires for take off a speed of $80 \mathrm{~km} / \mathrm{h}$ the run on the ground being 100 m The mass of aeroplane is $10^{4} \mathrm{~kg}$ and coefficient of friction between aeroplane and ground is 0.2

What is the maximum force required by the engine of the plane for take off ?

Watch Video Solution

15. Aparticle of mass 1 g executes an oscillatory motion on the concave surface of a spherical dish of radius $2 m$ placed on a horizontal plane,

Figure . If the motion of the particle begins from a point on the dis at a height of 1 cm . from the horizontal plane and coefficient of friction is 0.01
, fing the total distance covered by the particle
before coming to rest.

- Watch Video Solution

16. A 100 metric ton engine is moving up a slope of gradient 5° at a speed of 100 metre / hour.

The coefficient of friction between the engine and the rails is 0.1. If engine has an efficiency of
4% for converting heat into work, find the amount of coal the engine has to burn in one hour. Burning of 1 kg coal yields 50000J.

D Watch Video Solution

17. A particle of mass m rests on a horizontal
floor with which it has a coefficient of static
friction μ. It is desired to make the body move by applying the minimum possible force F. Find the
magnitude of F and the direction in which it has to be applied.

D Watch Video Solution

Self Practice

1. A force acts for 10 s on a body of mass 10 kg after which the force ceases and the body describes 50 m in the next 5 s . Find the magnitude of the force.
2. A truck starts from rest and rolls down a hill with a constant acceleration. It travels a distance of 400 m in 20 s . Find its acceleration. Find the force acting on it if its mass is 7 metric tonnes (Hint. 1 metric tonne=1000kg)

- Watch Video Solution

3. A force of $5 N$ gives a mass m_{1}, an acceleration
of $8 \mathrm{~m} / \mathrm{s}^{2}$, and a mass m_{2}, an acceleration of
$24 m / s^{2}$. What acceleration would it give if both the masses are tied together?

D Watch Video Solution

4. A body of mass 1 kg is acted upon by a force of

4000 dyne. As a result, the velocity of the body
changes from $30 \mathrm{cms}^{-1}$ to $20 \mathrm{cms}^{-1}$ in passing through a certain distance. Find the distance.
5. A motor car of mass 20 quintal moving with
velocity of $60 \mathrm{kmh}^{-1}$, by the application of brakes, is brought to rest in a distance of 3 km .

Find the average force of resistance in newton.

- Watch Video Solution

6. In an X - ray machine an electron is
subjected to a force of $10^{-23} N$ In how much
time will the electron a distance of $0.1 m$? Take
mass of electron $=10^{-30} \mathrm{~kg}$.
7. A stone of mass 5 kg falls from the top of a cliff
$50 m$ high and buries $1 m$ deep in sand. Find the average resistance offered by the sand and the time it takes to penetrate .

D Watch Video Solution

8. A bus starts from rest accelerating unifromly
with $4 m s^{-2}$. At $t=10 s$,a stone is dropped
from the window of the bus 2 m high. If
$g=10 \mathrm{~m} / \mathrm{s}^{2}$, what are the magnitude of velocity and acceleration of the stone at $10.2 \mathrm{~s} ?$

- Watch Video Solution

9. A motor car running at the rate of $7 m s^{1}$ can
be stooped by applying brakes in 10 m Show that
total resistance to the motion when brakes are on is one fourth of the weight of the car .
10. A force of $50 N$ is inclined to the vertical at an angle of 30° Find the acceleration it produes in a body of mass $2 k g$ which moves in the horizontal direction .

D Watch Video Solution

11. A sooterist moving with a speed of $36 \mathrm{kmh}^{-1}$
sees a child standing in the middle of the road.
He applies the brakes and brings the scooter to rest in 5 s just in time to save child. Calculate the
average retarding force on the vehicle, if mass of the vehicle and driver is 300 kg .

D Watch Video Solution

12. A ship of mass $3 \times 10^{7} \mathrm{~kg}$ initially at rest, is
pulled by a force of $5 \times 10^{5} N$ through a distance of 3 m . Assuming that the resistance due to water is negligible, the speed of the ship is

- Watch Video Solution

13. A body of mass 5 kg is acted upon by two perpendicular forces of 4 N and 3 N . What is the magnitude and direction of acceleration ?

- Watch Video Solution

14. Forces of $5 \sqrt{2}$ and $6 \sqrt{2} N$ are acting on a body of mass 1000 kg at an angle of 60° to each other. Find the acceleration, distance covered and the velocity of the mass after 10 s .
15. A bullet of mass 50 g moving with a speed of $500 \mathrm{~ms}^{-1}$ is brought to rest in 0.01 s Find the impulse and the average force .

- Watch Video Solution

16. A cricket ball of mass 150 kg is moving with a
velocity of $12 \mathrm{~m} / \mathrm{s}$ and is hit by a bat so that ball
is turned back with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The force of the blow acts for 0.01 s on the ball . Find the average force exerted by the bat on the ball.
17. A hammer weighing 3 kg moving with a velocity of $10 \mathrm{~ms}^{-1}$ strikes against the head fo a spike and drives it into a block of wood. If the hammer comes to rest in 0.025 s , find (i) the impulse and (ii) the average force on the head of the spike.
18. A rubber ball of mass 50 g falls from a height of 100 cm and rebounds to a height of 50 cm Find the impulse and average force between the ball and the ground, if time of contact is 0.1 s .

D Watch Video Solution

19. Two billiard balls each of mass 0.05 kg moving in opposite directions with speed $6 \mathrm{~ms}^{-1}$ collide and rebound with the same
speed What is the impulse imparted to each ball due to the other?

D Watch Video Solution

20. A machine gun has a mass of 20 kg It fires 30 g bullets at the rate of 400 bullets/s with a sped of
$400 m / s$ What force must be applied on the gun to keep it in position ?
21. A ball of mass 20 gram hits a wall at an angle of 45° with a velocity of $15 \mathrm{~m} / \mathrm{s}$ If ball rebounds at 90° to the direction of incidence, calculate the impulse received by the ball.

- Watch Video Solution

22. Two identical billiard balls striks a rigid wall
with the same speed but at different angles, and
get reflected without any change in speed, as
shown in Fig. What is (i) the direction of the
force on the wall due to each ball ? (ii) the ratio of the magnitudes of impulses imparted to the balls by the wall?

D Watch Video Solution

23. A force acting on a body of mass 2 kg varies
with time as shown in fig. 20 find impulse of the
force and final velocity of the body.

(D) Watch Video Solution
24. Fig. shows an estimated force-time graph for a base ball struck by a bat. From this curve,

determine

(i) impulse delivered to the ball
(ii) force exerted on the ball
(iii) the maximum force on the ball.

D Watch Video Solution

25. An elevator weighing 5000 kg is moving upward and tension in the supporting cable is 5000 N . Find upward acceleration . Starting from rest, how far does it rise in 10 secound ?
26. A body of 100 kg stands on a spring weighing machine inside a lift. The lift starts to ascend with acceleration of $2.2 m s^{-2}$. What is the reading of the machine inside a lift. The lift starts to ascend with acceleration of $2.2 m s^{-2}$. What is the reading of the machine?

- Watch Video Solution

27. A woman weighing 50 kgf stands on a weighing machine placed in lift. What will be the
reading of the machine, when the lift is (i)
moving upwards with a uniform velocity of $5 m s^{-1}$ and (ii) moving downwards with a uniform acceleration of $1 \mathrm{~ms}^{-2}$? Take $\mathrm{g}=10$ $m s^{-2}$.

- Watch Video Solution

28. A 75 kg man stands in a lift. What force does
the floor does the floor exert on him when the elevator starts moving upwards with an acceleration of $2.0 \mathrm{~ms}^{-2}$.? Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$.

Watch Video Solution

29. Find the appared weight of a man weighing

49 kg on earth, when he is standing in a lift which is (i) rising with an acceleration of $1.2 m / s^{2}$ (ii) going down with same acceleration
(iii) falling freely under gravity (iv) going up or down with unifrom velocity. Take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. \}
30. A body of mass 15 kg is hung by a spring balance in a lift. What would be the reading of the balance when (i) the lift is ascending with an acceleration of $2 m s^{-2}$ (ii) descending with the same acceleration (iii) descending with a constant velocity of $2 m s^{-1}$? Take $g=10 \mathrm{~ms}^{-2}$.

D Watch Video Solution

31. A mass of 10 kg is suspended from a string,
the other end of which is held in hand Find the
tension in string when the hand is moved up
with a uniform acceleration of $2 m s^{-1}$. Given $g=10 m s^{-1}$.

D Watch Video Solution

32. The strings of a parachute can bear a maximum tension of 72 kg wt . By what minimum
acceleration can a person of 90 kg descend by means of this parachute?

- Watch Video Solution

33. A 70 kg man in sea is being lifted by a helicopter with the help of a rope, which can bear a maximum tension of 100 kg wt. With what maximum acceleration the helicopter should rise so that the rope does not break ? Take $g=9.8 m / s^{2}$.

Watch Video Solution

34. An elevator and its load weigh a total of

800 kg Find the tension T in the supporting cable when the elevator originally moving
downwards at $20 \mathrm{~m} / \mathrm{s}$ is brought to rest with constant retardation in a distnce of 50 m .

D Watch Video Solution

35. A lift of mass 400 kg is hung by a wire.

Calculate the tension in the wire when the lift is
(i) at rest (ii) moving upwards with a constant
velocity of $1 \mathrm{~ms}^{-1}$ (iii) moving upwards with an
acceleration of $2 m s^{-2}$ and (iv) moving downwards with an acceleration of $2 m s^{-2}$.
36. A 30 g bullet leaves a rifle with a velocity of $300 \mathrm{~ms}^{-1}$ and the rifle recoils with a velocity of $0.60 \mathrm{~ms}^{-1}$. Find the mass of the rifle.

D Watch Video Solution

37. A 40 kg shell is flying at a speed of $72 \mathrm{~km} / \mathrm{h}$ It explodes into two pieces One piece of mass 15 kg just stops. What is the speed of the other?
38. A gun weighing 10 kg fires a bullet of 30 g with a velocity of $330 \mathrm{~ms}^{-1}$. With what velocity does the gun recoil? What is the combined momentum of the gun and bullet before firing and after firing?

D Watch Video Solution

39. A bullet of mass 4 g is fired with a velocity of
$600 \mathrm{~ms}^{-1}$ into a block of metal weighing
9.996 kg . The block is free to move. Calculate the
common velocity of the bullet and block after the impact.

- Watch Video Solution

40. A bullet of mass $7 g$ is fired into block weighing 7 kg , which is free to move. Calculate initial velocity of bullet if the velocity of the block with the bullet inside is $0.7 \mathrm{~m} / \mathrm{s}$.
41. A truck of mass $2 \times 10^{4} \mathrm{~kg}$ travelling at $0.5 \mathrm{~ms}^{-1}$ collides with another truck of half its mass moving in the opposite direction with a velocity of $0.4 m s^{-1}$. If the trucks couple automatically on collision, calculate the common velocity with which they move.

- Watch Video Solution

42. A neutron of mass $1.67 \times 10^{27} \mathrm{~kg}$ moving with a speed of $3 \times 10^{6} \mathrm{~ms}^{-1}$ collides with a
deutron of mass $3.34 \times 10^{-27} \mathrm{~kg}$ which is at rest. After collision, the neutron sticks to the deutron and forms a triton. What is the speed of the triton?

D Watch Video Solution

43. A bomb at rest explodes into three fragments
of equal massses Two fragments fly off at right
angles to each other with velocities of $9 \mathrm{~m} / \mathrm{s}$
and $12 / s$ Calculate the speed of the third
fragment.
44. A man weighing 60 kg runs along the rails with a velocity of $18 \mathrm{~km} / \mathrm{h}$ and jumps into a car of mass 10 quintal standing on the rails.

Calculate the velocity with which the car will start travelling on the rails .

D Watch Video Solution

45. A machine gun of mass 10 kg fires 20 g bullets at the rate of 10 bullets per second with a
speed of $500 \mathrm{~ms}^{-1}$. What force is required to hold the gun in position ?

D Watch Video Solution

46. A rocket with a lift mass of $10,000 \mathrm{~kg}$ is
blasted upwards with an acceleration of $10 m s^{-2}$
. Calculate the initial thrust of the blast

D Watch Video Solution
47. Fuel is consumend at the rate of 50 g per second in a rocket. The exhaust gases are rejected at the rate of $5 \times 10^{5} \mathrm{cms}^{-1}$. What is the thrust experienced by the rocket?

D Watch Video Solution

48. Calculate the ratio m_{0} / m for a rocket to
attain the escape velocity of $11.2 k m s^{-1}$ after
starting from rest, when maximum exhaust velocity of gases is $1.6 \mathrm{~km} / \mathrm{s}$.
49. In the first second of its flight a rocket ejects $\frac{1}{60}$ of its mass with a reative velocity $2073 \mathrm{~ms}^{-1}$ What is the initial acceleration of the rocket ? .

D Watch Video Solution

50. A rocket motor consumes 100 kg of fuel per
second exhausting it with a speed of
$6 \times 10^{3} \mathrm{~ms}^{-1}$ What thrust is exerted on the rocket ? What will be the velocity of the rocket at
the instant its mass is reduced to $(1 / 40)$ of its
initial mass ? Take initial velocity of rocket as zero . Neglect gravity .

- Watch Video Solution

51. A rocket fired from the earth's surface ejects
1% of its mass at a speed of $2000 \mathrm{~ms}^{-1}$ in the
first second. Find the average acceleration of the rocket in the first second.

- Watch Video Solution

52. If an ion engine with an exhaust velocity of $10^{8} \mathrm{~ms}^{-1}$ could be constructed, what percentage of the initial mass would have to be fuel if the engine were to be used to power a rocket that could attain the escape velocity of $11.2 \mathrm{kms}^{-1}$? Neglect gravity and air resistance.

- View Text Solution

53. A ballon of mass m is rising up with an acceleration a show that the fraction og weight of balloon that must be detached in order to
double its acceleration, assuming the upthrust of air to remain the same

54. A mass of 10 kg is suspended vertically by a rope of length 2 m from a ceiling. A force of 60 N is applied at the middle point of the rope in the horizontal direction, as shown in Fig. Calculate the angle the rope makes with the vertical.

Neglect the mass of the rope and take $g=10 m s^{-2}$.

55. A body of weight 200 N is suspended with the
help of strings as show in Find the tensions in the strings

- Watch Video Solution

56. A car moving on a level rosd. A pendulum suspended from the ceiling makes an angle of 10° with the vertical. Find the acceleration of the car. Take $g=10 \mathrm{~ms}^{-2}$.

- Watch Video Solution

57. A mass of 20 kg is suspended by a rope of length 2 m from a ceiling. A force of 173.2 N in the horizontal direction is applied at the midpoint of the rope as shown in Fig. What is
the angle the rope makes with the horizontal in
equilibrium ? Take $g=10 \mathrm{~ms}^{-2}$. Neglect mass of
the rope.

- Watch Video Solution

58. A force of 9 N pulls a block of 4 kg through a rope of mass 0.5 kg . The block is resting on a smooth surface. What is the force of reaction exerted by the block on the rope?

- Watch Video Solution

59. Two masses m_{1} and m_{2} are connected by a massless string as shown in Fig. Find the value of tension in the string if a force of 200 N is applied
on (i) m_{1} and m_{2}.

- Watch Video Solution

60. Two bodies whose masses are $m_{1}=50 \mathrm{~kg}$
and $m_{2}=150 \mathrm{~kg}$ are tied by a light string and are placed on a frictionless horizontal surface

When m_{1} is pulled by force F an acceleration of
$5 \mathrm{~ms}^{-2}$ is produced in both the bodies Calculate
the value of F What is the tension in the string 1

- Watch Video Solution

61. As shown in Fig. three masses $m, 3 m$ and 5 m connected together lie on a frictionless horizontal surface and pulled to the left by a force F . The tension T_{1} in the first string is 24 N .

Find (i) acceleration of the system, (ii) tension in the second string, and (iii) force F .

62. Three identical blocks, each having a mass M,
are pushed by a force F on a frictionless table as
shown in (figure) What is the acceleration of the blocks? What is net force on block A ? What force does A apply on B ? What force does B apply on
C ? show action reaction pairs on the contact surface of the blocks.

- Watch Video Solution

63. Four blocks of the same mass m connected
by cords are pulled by a force F on a smooth
horizontal surface as shown in Determine the tensions T_{1}, T_{2} and T_{3} in the cords.

D Watch Video Solution

64. A shown in Fig. two blocks are placed in contact on a smooth table. A horizontal force of

6 N is applied on 20 kg block. (i) With what force does the block press the 10 kg block? (ii) If the same force is applied on 10 kg block, with what
force will the 20 kg block press the 10 kg block ?

- Watch Video Solution

65. In Fig. find the acceleration a of the system and the tesnions T_{1} and T_{2} in the strings.

Assume that the table and the pulleys are frictionless and the strings are massless. Take $\mathrm{g}=$
$9.8 m s^{2}$

- Watch Video Solution

66. Two bodies of masses $4 k g$ and $3 k g$ respectively are connected by a light string passing over a smooth frictionless pulley Calculate the acceleration of the masses and tension in the string .
67. In the Atwood's machine the system starts
from rest. What is the speed and distance moved

by each mass at $t=3 s$?

D View Text Solution
68. Three equal weights of mass m each are hanging on a string passing over a fixed pulley as shown in fig. The tensions in the string connecting weights A to B and B to C will
respectively
be

69. In the arrangement shown in show that tension in the string between masses m_{2} and m_{3} is $T=\frac{2 m_{1} m_{3} g}{m_{1}+m_{2}+m_{3}}$

Watch Video Solution
70. A block of mass 1 kg lies on a horizontal
surface in a truck. The coefficient of static friction between the block and the surface is 0.6.

If the acceleration of the truck is $5 m / s^{2}$, the
frictional force acting on the block is. newtons.

D Watch Video Solution
71. A horizontal force of 490 N is required to slide a sledge weighing 600 kg f over a flat surface. Calculate the coefficient of friction.

D Watch Video Solution
72. A body weighing 20 kg just slides down a rough inclined plane that rises 5 m in every 13 m . What is the coefficient of friction?

- Watch Video Solution

73. A body is rolling on the ground with a velocity of $1 \mathrm{~ms}^{-1}$. After travelling a distance of

5 m , it comes to rest. Find the coefficient of friction. Take $g=10 \mathrm{~ms}^{-2}$.
74. A scooter weighs 120 kg f. Brakes are applied
so that wheels stop rolling and start skidding.
Find the force of friction if the coefficient of friction is 0.4 .

D Watch Video Solution

75. An automobile is moving on a horizontal road with a speed v If the coefficient of friction between the tyres and the road is μ show that
the shortest distance in which the automobile can be stooped is $v^{2} / 2 \mu g$.

D Watch Video Solution

76. Find the distance travelled by a body before coming rest, if it is moving with a speed of $10 \mathrm{~ms}^{-1}$ and the coefficient of friction between the ground and the body is 0.4 .
77. A motor car running at the rate of $7 m s^{1}$ can be stooped by applying brakes in 10 m Show that total resistance to the motion when brakes are on is one fourth of the weight of the car .

- Watch Video Solution

78. Find the power of an engine which can maintain speed of $50 \mathrm{~ms}^{-1}$ for a train of mass $3 \times 10^{5} \mathrm{~kg}$ on a rough line. The coefficient of friction is 0.05 . Take $g=10 \mathrm{~ms}^{-2}$
79. A train weighing 1000 quintals is running on
a level road with a unifrom speed of $72 \mathrm{~km} / \mathrm{h}$ If the frictional resistance amounts to 50 g wt. per quintal find power in watt, take $g=9.8 m s^{2}$.

D Watch Video Solution

80. An automobile of mass m starts from rest and accelerates at a maximum rate possible without slipping on a road with $\mu_{s}=0.5$. If only
the rear wheels are driven and half the weight of
the automobile is supported on these wheels,
how much time is required to reach a speed of $100 \mathrm{kmh}^{-1}$.

- Watch Video Solution

81. A suitcase is gently dropped on a conveyor
belt moving at $3 m s^{-1}$ if the coefficient of friction between the belt and suitcase is 0.5 how far will the suitcase move on the belt before coming to rest ?

Watch Video Solution

82. A truck moving at $72 k m h^{-1}$ carries a steel girder which rests on its wooden floor. What is the minimum time in which the truck can come to stop without the girder moving forward ?

Coefficient of static friction between steel and wood is 0.5 .

- Watch Video Solution

83. A bullet of mass 10 gram is fired horizontally
into a 5 kg wooden block at rest on a horizontal
surface The coefficient of kinetic friction between
the block and the surface is 0.1 Calculate the speed of the bullet striking the block if the combination moves 20 m before coming rest .

- Watch Video Solution

84. In the masses of A and B are 10 kg and 5 kg .

Calculate the minimum mass of C which may
stop A from slipping Coefficient of static friction
between block A and table is 0.2

D Watch Video Solution
85. A block of mass 2 kg rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.7 . The frictional force on the block is

D Watch Video Solution

86. A block of mass 10 kg is sliding on a surface inclined at 30° with horizontal. If coefficient of friction between the block and the surface is 0.5 ,
find acceleration produced in the block. Take $g=9.8 m /^{2}$.

- Watch Video Solution

87. Find the force required to move a train of mass $10^{5} \mathrm{~kg}$ up an incline of 1 in 50 with an acceleration of $2 m s^{-2}$. Coefficient of friction between the train and rails is 0.005 . Take $g=10^{2}$.
88. A block slides down an incline of angle 30° with an acceleration of $g / 4$ Find the coefficient of kinetic friction .

D Watch Video Solution

89. A body just slides a rough plane inclined at an angle of 30° with the horizontal. Calculate the acceleration with which the body will slide down when the inclination in the plane is changed to 45°. Take $g=9.8 m s^{-2}$
90. A 10 kg block slides without acceleration down a rough inclined plane making an angle of 20° with the horizontal. Calculate the acceleration when the inclination of the plane is increased to 30° and the work done over a distance of 1.2 m . Take $g=9.8 \mathrm{~ms}^{-2}$.

- Watch Video Solution

91. Calculate the power of an engine which can pull a train of mass 25000 quintal up an incline of 1 in 100 at the rate of $10.8 \mathrm{~km} / \mathrm{h}$ Resistance due to friction is $2 \mathrm{~N} /$ quintal.

D Watch Video Solution

92. A railway engine weighing 40 metic ton is
travelling along a level track at a speed of
$54 \mathrm{kmH}^{-1}$ What additional power is required to
maintain the same speed up an incline of 1 in 49
Take $g=9.8 m / s^{2}$ and $u=0.1$.

D Watch Video Solution

93. A metal block of mass 0.5 kg is placed on a
plane inclined to the horizontal at an angle of
30°. If the coefficient of friction is 0.2 , what force
must be applied (i) to just prevent the block from sliding down the inclined plane (ii) to just move the block up the inclined plane and (iii) to
move it up the inclined plane with an acceleration of $20 \mathrm{cms}^{-2}$?

D Watch Video Solution

94. A block A of mass 14 kg moves alongg an inclined plance that makes an angle of 30° with
the horizontal . This block is connected to another block B of mass 14 kg by a taut massless string that runs around a massless frictionless pulley. The block B moves down with constant
velocity . Calculate force of friction and coefficient of kinetic friction .

D Watch Video Solution

95. A wooden block of mass 100 kg rests on a flat
wooden floor, the coefficient of friction between
the two being 0.4 . The block by a rope making an
angle of 30° with the horizontal. What is the minimum tension along the rope that just makes
the rope sliding?

