©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DHANPAT RAI \& CO PHYSICS

(HINGLISH)

PROJECTILE MOTION

Example Solution

1. A passenger arriving in a new town wishes
to go from the station to a hotel located

10 km away on a straight road from the station. A dishonest cabman takes him along a circuitous path 23 km long and reaches the hotel in 28 minutes. What is (a) the average speed of the taxi, (b) the magnitude of average velocity ? Are the two equal ?

D Watch Video Solution

2. A cyclist travels from centre O of a circular park of radius 1 km and reaches point P . After cycling along $1 / 4$ th of the circumference
along PQ , he returns to the centre of the park along QO. If the total time taken is 10 minutes, calculate (i) net displacement (ii) average velocity and (ii) average speed of the cyclist.

- Watch Video Solution

3. On an open ground, a motorist follows a track that turns to his left by an angle of 60° after every 500 m . Starting from a given turn, specify the displacement of the motorist at the third, sixth and eighth turn. Compare the
magnitude of the displacement with total path length covered by the motorist in each case.

D Watch Video Solution

4. An aircraft is flying at a height of 3400 m
above the ground. If the angle subtended at a ground observation point by the aircraft positions 10 s apart is 30°, what is the speed of the aircraft ?
5. A projectile is fired horizontally with a velocity of $98 \mathrm{~ms}^{-1}$ from the top of a hill 490 m high. Find (i) the time taken to reach the ground (ii) the distance of the target from the hill and (iii) the velocity with which the projectile hits the ground.

- Watch Video Solution

6. A body is thrown horizontally from the top of a tower and strikes the ground after three
seconds at an angle of 45° with the horizontal. Find the height of the tower and the speed with which the body was projected. (Take $g=9.8 m / s^{2}$)

D Watch Video Solution

7. A bomb is dropped from an aeroplane when
it is directly above a target at a height of 1000 m . The aeroplane is moving horizontally with a speed of $500 \mathrm{kmh}^{-1}$. By how much distance will the bomb miss the target ?

Watch Video Solution

8. Two tall buildings face each other and are at a distance of 180 m from each other. With what velocity must a ball be thrown horizontally from a window 55 m above the ground in one building, so that it enters a window 10.9 m above the ground in the second building ?
9. A body is projected horizontally from the top of a cliff with a velocity of $9.8 m s^{-1}$. What time elapes before horizontal and vertical velocities become equal ? Take $g=9.8 m s^{-2}$.

- Watch Video Solution

10. Two paper screens A and B are separated
by a distance of 100 m . A bullet pierces A and
B. The hole in B is 10 cm below the hole in A.

If the bullet is travelling horizontally at the
time of hitting the screen A, calculate the velocity of the bullet when it hits the screen A.

Neglect resistance of paper and air.

- Watch Video Solution

11. A marksman wishes to hit a target just in
the same level as the line of sight. How high
from the target he should aim, if the distance of the target is 1600 m and the muzzle velocity of the gun is $800 \mathrm{~ms}^{-1}$? Take $g=9.8 m s^{-2}$.
12. A body is projected with a velocity of $30 \mathrm{~ms}^{-1}$ at an angle of 30° with the vertical.

Find the maximum height, time of flight and the horizontal range.

D Watch Video Solution

13. A cricketer can throw a ball to a maximum
horizontal distance of 100 m . How high above
the ground can the cricketer throw the same ball ?

- Watch Video Solution

14. The ceiling of a long hall is 25 m high. What
is the maximum horizontal distance that a ball thrown with a speed of $40 \mathrm{~ms}^{-1}$ can go without hitting the ceiling of the hall ?

- Watch Video Solution

15. A bullet fired at an angle of 30° with the horizontal hits the ground 3 km away. By
adjusting the angle of projection, can one hope to hit a target 5 km away ? Assume the muzzle speed to be fixed and neglect air resistance.

- Watch Video Solution

16. A projectile has a range of 50 m and reaches a maximum height of 10 m . Calculate the angle at which the projectile is fired.

D Watch Video Solution

17. Find the angle of projection for which the horizontal range and the maximum height are equal.

- Watch Video Solution

18. Prove that the maximum horizontal range
is four times the maximum height attained by
the projectile, when fired at an inclination so as to have maximum horizontal range.
19. Show that a given gun will shoot three times as high when elevated at an angle of 60° as when fired at angle of 30° but will carry the same distance on a horizontal plane.

D Watch Video Solution

20. A ball is thrown at angle θ and another ball
is thrown at an angle $\left(90^{\circ}-\theta\right)$ with the horizontal direction from the same point with velocity $39.2 \mathrm{~ms}^{-1}$. The second ball reaches 50
m higher than the first ball. Find their individual heights. Take $g=9.8 m s^{-2}$.

D Watch Video Solution

21. If R is the horizontal range for θ inclination and h is the maximum height reached by the projectile, Then maximum range is

D Watch Video Solution

22. For given value of u, there are two angles
of projection for which the horizontal range is
the same. Show that the sum of the maximum heights for these two angles is independent of the angle of projection.

D Watch Video Solution

23. Show that there are two values of time for which is projectile is at the same height. Also
show that the sum of these two times is equal to the time of flight.

D Watch Video Solution

24. A ball is kicked at an angle of 30° with the vertical. If the horizontal component of its
velocity is $19.6 m s^{-1}$, find the maximum
height and horizontal range.

D Watch Video Solution
25. A fighter plane flying horizontally at an altitude of 1.5 km with speed $720 \mathrm{kmh}^{-1}$
passes directly over head an anticraft gun.
At what angle from the vertical should the gun
be fired from the shell with muzzle speed $600 \mathrm{~ms}^{-1}$ to hit plane.

At what minimum altitude should the pilot fly
the plane to avoid being hit ? (Take $\mathrm{g}=10$ $m s^{-2}$).
26. At what angle should a body be projected with a velocity $24 m s^{-1}$. Just to pass over the obstacle 16 m high at a horizontal distance of 32 m ? Take $g=10 \mathrm{~ms}^{-2}$.

- Watch Video Solution

27. A target is fixed on the top of a pole 13 metre high. A person standing at a distance of

50 metre form the pole is capable of projecting a stone with a velocity $10 \sqrt{g} m s^{-1}$. If he wants to strike the target in shortest
possible time, at what angle should he project the stone?

D Watch Video Solution

28. Two persons simultaneously aim and fire their guns at a bird sitting on a tree. The first person fires his shot with a speed of $100 \mathrm{~m} / \mathrm{s}$ at an angle of projection of 30°. The second person is ahead of the first by a distance of 50 m and fire his shot with a speed of $80 \mathrm{~m} / \mathrm{s}$. how must he aim his gun so that both the
shots hit the bird simultaneously. Calculate the distance of the foot of the tree from two persons and the height of the tree. With what velocities and when do the two shots hit the bird.

D Watch Video Solution

29. What is the angular velocity of a second hand and minute hand of a clock?

D Watch Video Solution

30. Calculate the angular speed of flywheel making 420 revolutions per minute.

- Watch Video Solution

31. A circular wheel of 0.50 m radius is moving
with a speed of $10 m s^{-1}$. Find the angular speed.

D Watch Video Solution
32. A stone tied to the end of a string 80 cm
long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolutions in 25 seconds, what is the magnitude and direction of acceleration of the stone?

D Watch Video Solution

33. An aircraft executes a horizontal loop of radius 1 km with a steady speed of $900 \mathrm{kmh}^{-1}$.

Compare its centripetal acceleration with the acceleration due to gravity.

D Watch Video Solution

34. An insect trapped in a circular groove of radius 12 cm moves along the groove steadily and completes 7 revolutions in 100 s . (i) What is the angular speed and the linear speed of the motion ? (ii) Is the acceleration vector a constant vector ? What is its magnitude ?
35. The radius of the earth's orbit around the
sun is $1.5 \times 10^{11} \mathrm{~m}$. Calculate the angular and linear velocity of the earth. Through how much angle does the earth revolve in 2 days?

D Watch Video Solution

36. A cyclist is riding with a speed of $27 \mathrm{kmh}^{-1}$
. As he approaches a circular turn on the road
of radius 80 m , he applies brakes and reduces
his speed at the constant rate $0.5 m s^{-2}$. What
is the magnitude and direction of the net acceleration of the cyclist on the circular turn ?

D Watch Video Solution

37. A particle moves in a circle of radius 4.0 cm
clockwise at constant speed of $2 m s^{-1}$. If \widehat{x}
and \hat{y} are unit acceleration vectors along X axis and Y-axis respectively (in $c m s^{-2}$), find
the acceleration of the particle at the instant
half way between P and Q. Refer to Fig.5.14 (a).

(a)

(b)

D Watch Video Solution

Problen Solution

1. A particle of mass 100 g is fired with a velocity of $20 \mathrm{~ms}^{-1}$ making an angle of 30° with horizontal. When it rises to the point of
its highest point, find the change in its

momentum.

D Watch Video Solution

2. A body of mass m is projected with velocity v at an angle of 45° with the horizontal. Find
the change in its momentum at the end of flight.
3. The height y and the distance x along the horizontal plane of projectile on a certain planet (with no atmosphere on it) are given by $\mathrm{y}=\left(8 t-5 t^{2}\right)$ metre and $\mathrm{x}=6 \mathrm{t}$ metre, where time t is in seconds. Find the initial velocity with which the projectile is projected.

- Watch Video Solution

4. Show that the motion of one projectile as seen from another projectile will always be a
straight line motion.

- Watch Video Solution

5. A particle is projected horizontal with a speed u from the top of plane inclined at an angle θ with the horizontal. How far from the point of projection will the particle strike the plane?
6. A helicopter on a flood relief mission flying horizontally with a speed u at a altitude h, has to drop a food packet for a victim standing on the ground. At what distance from the victim should the food packet be dropped?

D Watch Video Solution

7. A ball is thrown from ground level so as to
just clear a wall 4 m high at a distance of 4 m
and falls at a distance of 14 m from the wall.

Find the magnitude and direction of the initial velocity.

D Watch Video Solution

8. A ball rolls off the top of a staircase with a horizontal velocity $u m / s$. If the steps are h meter high and b meter wide, the ball will hit the edge of the nth steps, if:
9. A particle is projected over a traingle from one end of a horizontal base and grazing the vertex falls on the other end of the base. If α and β be the base angles and θ the angle of projection, prove that $\tan \theta=\tan \alpha+\tan \beta$.

D Watch Video Solution

10. A particle is projected with velocity $2 \sqrt{g h}$
so that it just clears two walls of equal height
h which are at a distance 2 h from each other.

Show that the time of passing between the walls is $2 \sqrt{h / g}$.

D Watch Video Solution

11. A shell is fired from a gun from the bottom of a hill along its slope. The slope of the hill is $\alpha=30^{\circ}$, and the angle of the barrel to the horizontal $\beta=60^{\circ}$. The initial velocity u of the shell is $21 \mathrm{~ms}^{-1}$. Find the distance from the gun to the point at which the shell falls.
12. If the horizontal range of a projectile be a and the maximum height attained by it is b, then prove that the velocity of projection is

D Watch Video Solution

13. The velocity of a projectile when it is at the greatest height is $(\sqrt{2 / 5})$ times its velocity when it is at half of its greatest height. Determine its angle of projection.
14. Particles P and Q of masses $20 g$ and $40 g$, respectively, are projected from positions A and B on the ground. The initial velocities of
P and Q make angles of 45° and 135°, respectively with the horizontal as shown in the fig. Each particle has an initial speed of $49 \mathrm{~m} / \mathrm{s}$. The separation $A B$ is 245 m . Both particles travel in the same vertical plane and undergo a collision. After the collision P retraces its path. The separation of Q from its
initial position when it hits the ground is

D Watch Video Solution

15. Two towers $A B$ and $C D$ are situated a distance d apart as: shown in Fig. 1E. 139 (a). AB is 20 m high and $C D$ is 30 m high from the ground. An object of mass mis thrown from the top of $A B$ horizontally with a velocity of 10 m / s towards $C D$.

Simultaneously another object of mass $2 m$ is
thrown from the top of $C D$ at an angle of 60°
to the horizontal towards $A B$ with the same magnitude of initial velocity as that of the first' objects. The two objects move in the same vertical plane, collide in mid-air and stick to each other.

Calculate the distance d between the towers.

- Watch Video Solution

16. A bullet of mass M is fired with a velocity
$50 \mathrm{~m} / \mathrm{s}$ at an angle with the horizontal. At the highest point of its trajectory, it collides head-
on with a bob of mass $3 M$ suspended by a massless string of length $10 / 3$ metres and gets embeded in the bob. After the collision, the string moves through an angle of 120°.

Find
(i) the angle θ,
(ii) the vertical and horizontal coordinates of the initial position of the bob with respect to the point of firing of the bullet. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$
17. Two guns situated at the top of a hill of
height $10 m$ fire one shot each with the same speed $5 \sqrt{3} m / s$ at some interval of time. One gun fires horizontal and the other fores upwards at an angle of 60° with the horizontal. Two shots collide in air at a poit P.

Find (i) time-interval between the firing and (ii)
coordinates of the point P. Take the origin of
coordinates system at the foot of the hill right
below the muzzle and trajectorise in the $x-y$
plane.

Watch Video Solution

Problem For Self Practice

1. A cyclist moves along a circular path of radius 70 m . If he completes one round in 11 s , calculate (i) total length of path,
magnitude of the displacement, (iii) average
speed, and (iv) magnitude of average velocity.
2. A body is moving with a uniform velocity of $10 \mathrm{~ms}^{-1}$ on a circular path of diameter 2.0 m.

Calculate (i) the difference between the magnitude of the displacement of the body and the distance covered in half a round and
(ii) the magnitude of the change in velocity of the body in half a round.

- Watch Video Solution

3. A plane is flying horizontal at a height of 1000 m with a velocity of $100 \mathrm{~ms}^{-1}$ when a bomb is released from it. Find (i) the time taken by it to reach the ground (ii) the velocity with which the bomb hits the target and (iii) the distance of the target.

- Watch Video Solution

4. From the top of a building 19.6 m high, a ball is projected horizontal. After how long
does it strike the ground ? If the line joining the point of projection to the point where it hits the ground makes an angle of 45° with the horizontal, what is the initial velocity of the ball ?

D Watch Video Solution

5. A body is thrown horizontal from the top of
a tower and strikes the ground after two
seconds at angle of 45° with the horizontal.

Find the height of the tower and the speed
with which the body was thrown. Take $g=9.8 m s^{-2}$.

D Watch Video Solution

6. Two tall buildings are situated 200 m apart.

With what speed must a ball be thrown
horizontally from the window 540 m above the
ground in one building, so that it will enter a window 50 m above the ground in the other?

D Watch Video Solution

7. A stone is dropped from the window of a bus moving at $60 \mathrm{kmh}^{-1}$. If the window is 1.96 m high, find the distance along the track, which the stone moves before striking the ground.

- Watch Video Solution

8. An aeroplane is flying in a horizontal direction with a velocity $600 \mathrm{~km} / \mathrm{h}$ at a height of 1960 m . When it is vertically above the point

A on the ground, a body is dropped from it.

The body strikes the ground at point B. Calculate the distance $A B$.

D Watch Video Solution

9. A mailbag is to be dropped into a post office
from an aeroplane flying horizontally with a velocity of $270 \mathrm{kmh}^{-1}$ at a height of 176.4 m above the ground. How far must the aeroplane be from the post office at the time of dropping the bag so that it directly falls into the post office?
10. In between two hills of heights 100 m and 92 m respectively. There is a valley of breadth

16 m . If a vehicle jumps from the first hill to the second, what must be its minimum horizontal velocity so that it may not fall into the valley ?

Take $g=9 \mathrm{~ms}^{-2}$

- View Text Solution

11. A ball is projected horizontally from a tower
with a velocity of $4 m s^{-1}$. Find the velocity of the ball after 0.7 s . Take $g=10 \mathrm{~ms}^{-2}$.

D View Text Solution

12. A shell is fired at an angle of 30° to the
horizontal with a velocity of $392 m s^{-1}$. Find
the time of flight, horizontal range and maximum height attained.
13. A football player kicks a ball at an angle of
37° to the horizontal with an initial speed of
$15 m s^{-1}$. Assuming that the ball travels in a vertical plane, calculate (i) the time at which the ball reaches the highest point (ii) the maximum height reached (iii) the horizontal range of the projectile and (iv) the time for which the ball is in air.

- Watch Video Solution

14. A body is projected with a velocity of $20 \mathrm{~ms}^{-1}$ in a direction making an angle of 60° with the horizontal. Determine its (i) position after 0.5 s and (ii) the velocity after 0.5 s .

D Watch Video Solution

15. The maximum vertical height of a projectile
is 10 m . If the magnitude of the initial velocity
is $28 m s^{-1}$, what is the direction of the initial
velocity. ? Take $g=9.8 m s^{-2}$.
16. A bullet fired from a gun with a velocity of $140 \mathrm{~ms}^{-1}$ strikes the ground at the same level as the gun at a distance of 1 km . Find the angle of inclination with the horizontal at which the bullet is fixed. Take $g=9.8 m s^{-2}$.

D Watch Video Solution

17. A bullet is fired at an angle of 15° with the horizontal and hits the ground 6 km away. Is it
possible to hit a target 10 km away by adjusting the angle of projection assuming the initial speed to be the same?

D View Text Solution

18. A cricketer can throw a ball to maximum
horizontal distance of 160 m . Calculate the maximum vertical height to which he can throw the ball. Given $g=10 m s^{-2}$.

D Watch Video Solution

19. Find the minimum velocity for which the horizontal range of a projectile is 39.2 m .

- View Text Solution

20. A bullet fired from a rifle attains a maximum height of 5 m and crosses a range of

200 m . Find the angle of projection.

- View Text Solution

21. A shot is fired at a distance of 78.4 m from
the foot of a pole 39.2 m high so that it just
passes over it. Find the magnitude and the direction of the velocity of the shot.

D View Text Solution

22. A ball is thrown upwards with a velcoity of $80 \mathrm{~m} / \mathrm{s}$ at an angle of 30° to the horizontal. Find its velcituy after one second.
23. A football is kicked with speed $20 \mathrm{~ms}^{-1}$ at a projection angle of 45° from the ground. A receiver on the goal line 20 m away in the direction of the kick runs the same instant to meet the ball. What must be his speed, if he has to catch the ball before it hits the ground ? Take $g=10 m s^{-2}$.

- Watch Video Solution

24. A bullet fired at an angle of 60° with the vertical hits the ground at a distance of 2 km .

Calculate the distance at which the bullet will hit the ground when fired at an angle of 45°, assuming the speed to be the same.

D View Text Solution

25. A person observes a bird on a tree 39.6 m high and at a distance of 59.2 m . With what
velocity the person should throw an arrow at an angle of 45° so that it may hit the bird ?

D Watch Video Solution

26. A bomb is fired from a cannon with a velocity of $1000 \mathrm{~ms}^{-1}$ making an angle of 30°
with the horizontal $\left(g=9.8 m s^{-2}\right)$, (i) What
is the time taken by the bomb to reach the highest point? (ii) What is the total time of its motion ? (iii) With what speed the bomb will hit the ground and what will be its direction of
motion while hitting ? (iv) What is the maximum height attained by the bomb ? (v) At what distance from the cannon the bomb will hit the ground?

- Watch Video Solution

27. A ball is thrown from the top of a tower with an initial velocity of $10 \mathrm{~m} / / \mathrm{s}$ at an angle of 30° above the horizontal. It hits the ground at a distance of 17.3 m from the base of the
tower. The height of the tower $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$ will be

- Watch Video Solution

28. The horizontal range is same whether the angle of projection is α or β, where $\alpha+\beta=$

D Watch Video Solution

29. A body is projected with a veocity of
$40 \mathrm{~ms}^{-1}$. After $2 s$ it fcrosses a vertical pole of
height $20.4 m$ Find the angle of projection and horizontal range of projectile. $\left(g=9.8 \mathrm{~ms}^{\wedge}(-2)^{\prime}\right.$.

D Watch Video Solution

30. For the top of a tower $156.8 m$ high, a projectile is thrown up with a velcity of $39.2 m s^{-1}$, makingan angle $30 \%(\circ)$ with borizontal direction. Find the distance from
the foot of tower wher it strikes the ground and the time taken byit do so.

D Watch Video Solution

31. Two particles are thrown from the same point with the same velocity of $49 \mathrm{~ms}^{-1}$. First is projected making angle θ with the horizontal and second at an angle $\left(90^{\circ}-\theta\right)$. The second particle is found to rise 22.5 m higher than the first. Find the height to which each particle will rise.
32. A boy wants to throw a letter wrapped over a stone to his friend across the street 40 m wide. The boy's window is 10 m below the friend's window. How should he throw the ball ?

D View Text Solution

33. Find the angle of projection for a projectile motion whose rang R is (n) times the
maximum height H.

- Watch Video Solution

34. A body A of mass m is thrown with velocity
v at an angle of 30° to the horizontal and another body B of the same mass is thrown
with velocity v at an angle of 60° to the horizontal, find the ratio of the horizontal range and maximum height of A and B.

D Watch Video Solution

35. The greatest height to which a boy can throw a stone is (h). What will be the greatest distance on horizontal surface upto which the boy can throw the stone with the same speed ? Neglect the air friction.

- Watch Video Solution

36. A ball of mass (m) is thrown vertically up.

Another ball of mass $2 m$ is thrown at angle
θ with the vertical. Both of them stay in air for
the same period of time. What is the ratio of the height attained by two balls.

D Watch Video Solution

37. As shown in Fig. 5.29, a body is projected with velocity u_{1} from the point A . At the same
time another body is projected vertically upwards with velocity u_{2} from the point B. What should be the value of u_{1} / u_{2} for both
the bodies to collide?

- View Text Solution

38. The kinetic energy of a projectile at the highest point of its path is found to be $3 / 4^{\text {th }}$ of its initial kinetic energy. If the body is
projected from the ground, the angle of projection is

D Watch Video Solution

39. A projectile is projected in the upward direction making an angle of 60° with the horizontal direction with a velocity of $147 \mathrm{~ms}^{-1}$. After what time will its inclination with the horizontal be 45° ?

D View Text Solution
40. Which is greater, the angular velocity of the hour hand of a watch or angular velocity of earth around its own axis?

- Watch Video Solution

41. A 500 kg car takes a round turn of radius

50 m with a velocity of $36 \mathrm{~km} / \mathrm{hr}$. The centripetal force is
42. A body of mass 10 kg revolves in a circle of diameter 0.40 m, making 1000 revolutions per minute. Calculate its linear velocity and centripetal acceleration.

D View Text Solution

43. The seocnd-hand of a watch is 3.0 cm long.

Calculate the linear speed of its top.
44. Calculate the centripetal acceleation of a point on the equator of earth due to the rotatin of earth about its wn axis. Radius of earth $=6400 \mathrm{~km}$.

- Watch Video Solution

45. Assuming that the moon completes one
revolution in a circular orbit around the earth in 27.3 days, calculate the acceleration of the
moon towards the earth. The radius of the circular orbit can be taken as $3.85 \times 10^{5} \mathrm{~km}$.

D View Text Solution

46. What is the angular velocity of a geostationary satellite if unit of time is an hour and that of angle is a degree?

D View Text Solution

47. The wheel of an automobile is rotating with 4 rotations per second. Find its angular velcoity. If the radius of the fly wheel, is 50 cm , find the linear velcotiy of a point on its cicrumfernce.

D Watch Video Solution

48. The angular velocity of a particle moving in
a circle of radius 50 cm is increased in 5 min
from 100 revolutions per minute to 400
revolutions per minute. Find the tangential acceleration of the particle.

D Watch Video Solution

49. Calculate the linear acceleration of a particle of a particle moving in a circle of radius 0.4 m at the instant when its angular velocity is $2 \mathrm{rad} s^{-1}$ and its angular acceleration is $5 \mathrm{rad} s^{-2}$.

D View Text Solution
50. A threaded rod with 12 turns $/ \mathrm{cm}$ and diameter 1.18 cm is mounted horizontally. A bar with a threaded hole to match the rod is screwed onto the rod. The bar spins at $216 \mathrm{rev} / \mathrm{min}$. How long will it take for the bar to move 1.50 cm along the rod ?

