©゙ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DHANPAT RAI \& CO PHYSICS

(HINGLISH)

System of particles \& rotational Motion

EXAMPLE

1. What is meant by a particle, a system and internal and external Force?

- Watch Video Solution

2. What do you meant by centre of mass of a system? How does its differ from centre of gravity?

- Watch Video Solution

3. Obtain an expression for the position vector of centre of mass of a two particle system.

- Watch Video Solution

4. Write an expression for the position vector of the centre of mass of n-particle system. Also write the equations of motion which govern the motion of the centre of mass

D Watch Video Solution

5. Show that in the absence of any external force, the velocity of the centre of mass remains constant.
6. Show that the total linear momentum of a system of particles is conserved in the absence of any external force. Also show that total linear momentum of the system is equal to the product of the total mass of the system and the velocity of its centre of mass.

- Watch Video Solution

7. Find the centre of gravity of a triangular lamina, each side of which measures $9 \sqrt{3} \mathrm{~cm}$
8. Three masses 3,4 and 5 kg are located at the corners of an equilateral triangle of side 1 m . Locate to centre of mass of the system.

(D) Watch Video Solution

9. Two particle of masses 100 g and 300 g at a given
time
have positions
$2 \hat{i}+5 \hat{j}+13 \hat{k}$ and $-6 \hat{i}+4 \hat{j}-2 \hat{k} \mathrm{~m}$
respectively
and
velocities
$10 \hat{i}-7 \hat{j}-3 \hat{k}$ and $7 \hat{i}-9 \hat{j}+6 \hat{k} \mathrm{~ms}^{-1}$
respectively. Determine the instantaneous position
and velocity of CM.

- Watch Video Solution

10. If three point masses m_{1}, m_{2} and m_{3} are situated at the vertices of an equilateral triangle of side a, then what will be the co-ordinates of the centre of mass of this system?

- Watch Video Solution

11. Find the position of centre of mass of the T shaped plate from O, in Fig.

- Watch Video Solution

12. Find the centre of mass of a uniform L shaped

Iamina (a thin flat plate) with dimension as shown
in Fig. The mass of the lamina is 3 kg .

- Watch Video Solution

13. A uniform circular plate of uniform thickness has a diameter of 56 cm . A circular portion of diameter 42 cm is removed from the edge of the plate. Find the position of the centre of mass of the remaining portion.
14. A square of side $4 m$ having uniform thickness is divided into four equal squares as shown in Fig. If one of the squares is cut off, find

the position of centre of mass of the remaining portion from the centre O.

15. Show that the centre of mass of uniform rod of

 mass M and length L lies at the middle point of the rod.
D Watch Video Solution

16. Determine the position of the centre of mass of
a hemisphere of radius R.

- Watch Video Solution

17. Determine the coordinate of the centre of mass
of a right circular solid cone of base radius R and height h .

D Watch Video Solution

18. What is a rigit body? Give Examples.

- Watch Video Solution

19. On what factors does the position of cm of a rigid body depend ?

- Watch Video Solution

20. What do you mean by rotational motion of a rigid body?

D Watch Video Solution

21. On the application of a constant torque, a wheel is turned from rest through 400 radians in 10 s . The angular acceleration is :

22. ANGULAR ACCELERATION

- Watch Video Solution

23. The angular speed of a motor wheel is increased from 120 rpm to 3120 rpm in 16 seconds.

The angular acceleration of the motor wheel is

- Watch Video Solution

24. A constant torque is acting on a wheel. If starting from rest, the wheel makes n rotations in
t seconds, show that the angular
acceleration is given by $\alpha=\frac{4 \pi n}{t^{2}} \mathrm{rads}^{-2}$.

- Watch Video Solution

25. The radius of a wheel of car is $0.4 m$. The car is accelerated from rest by an angular acceleration of $1.5 \mathrm{rad} / \mathrm{s}^{2}$ for 20 s . How much distance will the wheel cover in this time and what will be its linear velocity?
26. The turning effect of the applied force does NOT depend upon

D Watch Video Solution

27. Find the term of an A.B is p and its common difference is q. Find its 10^{\wedge} th trem

- Watch Video Solution

28. State and explain the principle of moments of rotational equilibrium. Define mechanical
advantage.

- Watch Video Solution

29. What is a couple ? What effect does it have on a body?

- Watch Video Solution

30. Obtain an expression for work done by a gas in an isothermal expansion.
31. Explain how torque can be expressed as a vector product of two vectors. How is the direction of torque determined?

- Watch Video Solution

32. Define the term angular momentum. Give its units and dimensions.
33. The relation between the torque τ and angular momentum L of a body of moment of inertia I rotating with angular velocity ω is

D Watch Video Solution

34. Prove that the angular momentum of a particle is equal to twice the product of its mass and areal velocity.
35. Prove that the rate of change of total angular momentum of a system of particles is equal to the total torque acting on the system.

D Watch Video Solution

36. (i) Find the torque of a force $7 \hat{i}+3 \hat{j}-5 \hat{k}$ about the origin. The force acts on a particle whose position vector is $\hat{i}-\hat{j}+\hat{k}$.
(ii) Show that moment of a couple does not depend on the point about which you take the moments.
37. A metal bar 70 cm long and 4.00 kg in mass is supported on two knife edges placed 10 cm from each end. A 6.00 kg weight is suspended at 30 cm from one end. Find the reactions at the knife edges. Assume the bar to be of uniform crosssection and homogeneous.

- Watch Video Solution

38. A particle of mass m is released from rest from point P at $x=x_{0}$ on X -axis from origin O and
falls vertically along y-axis as shown in Fig. What is the magnitude of the torque acting on the particle at time t, when it is at the point $Q w . r . t . O$?

39. A particle of mass m is released from rest from point P at $x=x_{0}$ on X -axis from origin O and falls vertically along y-axis as shown in Fig. What is the magnitude of the torque acting on the particle at time t, when it is at the point $Q w . r . t . O$?

40. An electron of mass $9 \times 10^{-31} \mathrm{~kg}$ revolves in a circle of radius $0.53 \AA$ around the nucleus of hydrogen with a velocity of $2.2 \times 10^{6} \mathrm{~ms}^{-1}$. Show that its angular momentum is equal to $h / 2 \pi$, where h is Plank's constant of value $6.6 \times 10^{-34} \mathrm{Js}$

- Watch Video Solution

41. Show that angular momentum of a satellite of mass M_{s} revolving around earth of mass M_{e} in an
orbit of radius r is $\sqrt{G M_{s}^{2} M_{e} r}$.

D Watch Video Solution

42. Define a rigid body. What is meant by the term equilibrium?

- Watch Video Solution

43. Distinguish between stable, unstable and neutral equilibria of a body.
44. Moment of inertia of a body depends upon

- Watch Video Solution

45. What are the factors on which moment of inertia of a body depend?

- Watch Video Solution

46. Mention some practical applications which make use of the property of moment of inertia
47. A body is rotating with uniform angular velocity w about an axis. Establish the formula for its kinetic energy of rotation. Define moment of inertia of the body with respect to the axis of rotation on this basis

D Watch Video Solution

48. The radius of gyration of a body depends upon
49. State and prove theorem of perpendicular axes.

D Watch Video Solution

50. State and prove theorem of parallel axes.

D Watch Video Solution

51. Derive an expression for moment of inertia of a thin circular ring about an axis passing through its centre and perpendicular to the plane of the ring.
52. What is the moment of inertia of a uniform circular ring about its diameters ?

- Watch Video Solution

53. Derive an expression for moment of inertia of a thin circular ring about an axis passing through its centre and perpendicular to the plane of the ring.
54. What is the moment of inertia of a uniform circular ring about its diameters ?

D Watch Video Solution

55. The moment of inertia of a copper disc, rotating about an axis passing through its centre and perpendicular to its plane
56. Calculate the moment of inertia of a disc about its any diameter ?

D Watch Video Solution

57. Derive an expression for moment of inertia of a thin circular ring about an axis passing through its centre and perpendicular to the plane of the ring.
58. State the expression for the moment of inertia of a thin uniform disc about an axis perpendicular to its plane and through its centre. Hence deduce the expression for its moment of inertia about a tangential axis perpendicular to its plane.

D Watch Video Solution

59. Derive an expression for moment of inertia of a thin circular ring about an axis passing through its centre and perpendicular to the plane of the ring.
60. Derive an expression for moment of inertia of a thin circular ring about an axis passing through its centre and perpendicular to the plane of the ring.

- Watch Video Solution

61. Moment of inertia of a hollow cylinder of mass
M and radius R, about the axis of cylinder is

- Watch Video Solution

62. State the expression for the moment of inertia of a solid cylinder of uniform cross section about an axis through its centre and perpendicular to its length.

D Watch Video Solution

63. State the expression for the moment of inertia of a solid cylinder of uniform cross section about an axis through its centre and perpendicular to its length.
64. What is moment of inertia of a solid sphere about its diameter ?

D Watch Video Solution

65. A wheel of mass 8 kg and radius of gyration 25
cm is rotating at 300 rpm . What is its moment of inertia?
66. Three point masses m_{1}, m_{2} and m_{3} are located at the vertices of an equilateral triangle of side α.

What is the moment of inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?

D Watch Video Solution

67. Three balls of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg are arranged at the corners of an equilateral triangle of side 1 m . What will be the moment of inertia of
the system and perpendicular to the plane of the triangle.

- Watch Video Solution

68. Four particles of masses
$4 k g, 2 k g, 3 k g$ and $5 k g$ are respectively located at the four corners A, B, C, D of a square of side $1 m$. Calculate the moment of inertia of the system about
(i) the axis passing through point of intersection of the diagonals and perpendicular to the plane of the square. (ii) side $A B$ (ii) diagonal $B D$.
$4 k g, 2 k g, 3 k g$ and 5 kg are respectively located at the four corners A, B, C, D of a square of side $1 m$. Calculate the moment of inertia of the system about
(i) the axis passing through point of intersection of the diagonals and perpendicular to the plane of the square. (ii) side $A B$ (ii) diagonal $B D$.

- Watch Video Solution

70. Four particles of masses
$4 k g, 2 k g, 3 k g$ and $5 k g$ are respectively located at
the four corners A, B, C, D of a square of side $1 m$. Calculate the moment of inertia of the system about
(i) the axis passing through point of intersection of the diagonals and perpendicular to the plane of the square. (ii) side $A B$ (ii) diagonal $B D$.

- Watch Video Solution

71. Calculate the moment of inertia of a cylinder of
length $1.5 m$, radius $0.05 m$ and density $8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ about the axis of the cylinder.
72. Calculate the moment of inertia of the earth about its diameter, taking it to be a sphere of 10^{25} kg and diameter 12800 km .

- Watch Video Solution

73. Four spheres of diameter 2a and mass M are placed with their centres on the four corners of a square of side b. Then moment of inertia of the system about an axis about one of the sides of the square is :-
74. Two point masses of 2 kg and 10 kg are connected by a weightless rod of length 1.2 m .

Calculate the $M . I$. of the system about axis pasing through the centre of mass and perpendicular to this system.

D Watch Video Solution

75. Find the moment of inertia of a rectangular bar magnet about an axis passing through its centre and parallel to its thickness. Mass of magnet is

100 g , its length is 12 cm , breadth is 3 cm and thickness is 2 cm .

- Watch Video Solution

76. Calculate the ration of radii of gyration of circular ring and a disc of the same radius about the axis passing through their centres and perpendicular to their planes.
77. Find the radius of gyration of a hollow uniform sphere of radius R about its tangent.

- Watch Video Solution

78. Find the radius of gyration and moment of inertia of a rod of mass 100 g and length 1 m about an axis passing through its centre and perpendicular to its length.
79. A wheel is rotating at a speed of 1000 rpm and its $K E i s 10^{6} \mathrm{~J}$. What is moment of inertia of the wheel about its axis of rotation ?

D Watch Video Solution

80. Calculate the $K E$ of rotation of a circular disc of mass 1 kg and radius 0.2 m rotating about an axis passing through its centre and perpendicular to its plane. The disc is making $30 / \pi$ rotations per minute.
81. An energy of $484 J$ is spent in increasing the speed of a flywheel from 60 rpm to 360 rpm . Calculate moment of inertia of flywheel.

- Watch Video Solution

82. Calculate rotational K. E. of earth about its
own axis, taking it to be a sphere of mass
$6 \times 10^{24} \mathrm{~kg}$ and radius 6400 km .

- Watch Video Solution

83. A metre stick is held vertically with one end on the floor and is then allowed to fall. Find the speed of the other end when it hits the floor, assuming that the end of the floor does not slip .

Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
$[\sqrt{30} m / s]$

- Watch Video Solution

84. A uniform circular disc of mass m is set rolling on a smooth horizontal table with a uniform linear velocity v. Find the total K.E. of the disc.
85. A solid sphere is rolling on a frictionless plane surface about the axis of symmetry. Find the rotational energy of the sphere. Also, find the ratio of rotational $K . E$. to total energy.

(D) Watch Video Solution

86. A wheel of mass 5 kg and radius 0.40 m is rolling on a road without sliding with angular velocity $10 \mathrm{rads}^{-1}$. The moment of ineria of the wheel about the axis of rotation is $0.65 \mathrm{kgm}^{2}$. The
percentage of kinetic energy of rotate in the total kinetic energy of the wheel is.

D Watch Video Solution

87. A solid cylinder rolls down an inclined plane. Its mass is $2 k g$ and radius 0.1 m . It the height of the inclined plane is $4 m$, what is its rotational $K . E$. when it reaches foot of the plane ? Assume that the surfaces are smooth. Take $M . I$. of solid cylinder about its axis $=m r^{2} / 2$.
88. A bucket of mass 8 kg is supported by a light rope wound around a solid wooden cylinder of mass 12 kg and radius 20 cm , free to rotate about its axis. A man holding the free end of the rope with the bucket and the cylinder at rest initially,
lets go the bucket freely downward in a well 50 m
deep. Neglecting friction, obtain the speed of bucket and angular speed of the cylinder just before the bucket enters water. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

- Watch Video Solution

89. Relate torque with angular acceleration

- Watch Video Solution

90. Establish a relation between angular momentum and moment of inertia of a rigid body.

D Watch Video Solution

91. A torque of $2.0 \times 10^{-4} \mathrm{Nm}$ is applied to produce an angular acceleration of $4 \mathrm{rad} \mathrm{s}^{-2}$ in a rotating body. What is the moment of inertia of the body?
92. A car moves on a road with a speed of $54 k m h^{-1}$. The radius of its wheels is 0.35 m . What is the average negative torque transmitted by its brakes to the wheels if the car is brought to rest in $15 s$? Moment of inertia of the wheels about the axis of rotation is $3 \mathrm{kgm}^{2}$.

D Watch Video Solution

93. A flywheel of mass 25 kg has a radius of 0.2 m .

What force should be applied tangentially to the
rim of the flywheel so that it acquires an angular acceleration of $2 \mathrm{rad} \mathrm{s}^{-2}$?

- Watch Video Solution

94. A torque of 10 Nm is applied to a flywheel of mass 10 kg and radius of gyration 50 cm . What is the resulting angular acceleration ?

D Watch Video Solution

95. A grindstone has moment of inertia of $6 \mathrm{kgm}^{2}$.

A constant torque is applied and the grindstone is
found to have a speed of $150 \mathrm{rpm}, 10$ second after satrting from rest. Calculate the torque.

D Watch Video Solution

96. A flywheel of mass 25 kg has a radius of 0.2 m . It is making 240 r.p.m. what is the torque necessary to bring it to rest in 20 s ? If the torque is due to a force applied tangentially on the rim of the flywheel, what is the magnitude of the force?
97. A cord is wound around the circumference of a wheel of diameter 0.3 m . The axis of the wheel is horizontal. A mass of 0.5 kg is attached at the end of the cord and it is allowed to fall from rest. If the weight falls 1.5 m in 4 s , what is the angular acceleration of the wheel ? Also find out the moment of inertia of the wheel.

D Watch Video Solution

98. A cord of negligible mass is wound round the
rim of a flywheel of mass 20 kg and radius 20 cm . A
steady pull of 25 N is applied on the cord as shown
in Fig. The flywheel is mounted on a horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of the wheel.
(b) Find the work done by the pull, when $2 m$ of the cord is unwound.
(c) Find also the kinetic energy of the wheel at this
point. Assume that the wheel stars from rest.
(d) Compare answers to parts (b)and (c).

D Watch Video Solution

99. A cord of negligible mass is wound round the rim of a flywheel of mass 20 kg and radius 20 cm . A
steady pull of 25 N is applied on the cord as shown in Fig. The flywheel is mounted on a horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of the wheel.
(b) Find the work done by the pull, when $2 m$ of the cord is unwound.
(c) Find also the kinetic energy of the wheel at this point. Assume that the wheel stars from rest.
(d) Compare answers to parts (b)and (c).
A. 25 N
B.
C.
D.

- Watch Video Solution

100. A cord of negligible mass is wound round the rim of a flywheel of mass 20 kg and radius 20 cm . A steady pull of 25 N is applied on the cord as shown in Fig. The flywheel is mounted on a horizontal axle
with frictionless bearings.

(a) Compute the angular acceleration of the wheel.
(b) Find the work done by the pull, when $2 m$ of the cord is unwound.
(c) Find also the kinetic energy of the wheel at this
point. Assume that the wheel stars from rest.
(d) Compare answers to parts (b)and (c).

D Watch Video Solution

101. How much tangential force would be needed to stop the earth in one year, if it were rotating with angular velocity of $7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$? Given the moment of inertia of the earth $=9.3 \times 10^{37} \mathrm{~kg} \mathrm{~m}^{2}$ and radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$.
102. The angular momentum of a body is 31.4 Js and its rate of revolution is 10 cycles per second.

Calculate the moment of inertia of the body about the axis of rotation.

D Watch Video Solution

103. A 40 kg flywheel in the from of a uniform circular disc of $1 m$ radius is making 120 rpm .

Calculate the angular momentum.

- Watch Video Solution

104. A ring of diameter 0.4 m and of mass 10 kg is rotating about its axis at the rate 2100 rpm . Find
(i) moment of inertia (ii) angular momentum

D Watch Video Solution

105. A ring of diameter 0.4 m and of mass 10 kg is rotating about its axis at the rate of 2100 rpm .

Calculate moment of inertia, angular momentum and rotational $K E$ of the ring.
106. A ring of diameter 0.4 m and of mass 10 kg is rotating about its axis at the rate of 2100 rpm .

Calculate moment of inertia, angular momentum and rotational $K E$ of the ring.

D Watch Video Solution

107. Calculate the angular momentum of the earth rotating about its own axis. Mass of the earth $=5.98 \times 10^{27} \mathrm{~kg}$, mean radius of the earth $=6.37 \times 10^{6} m, M . I$ of the earth $=\frac{2}{5} M R^{2}$.
108. A cylinder of mass 5 kg and radius 30 cm and
free to rotate about its axis receives an angular impulse of $3 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$ initially, followed by a similar impulse after every 4 second. What is the angular speed of the cylinder $30 s$ after the initial impulse ? The cylinder is at rest initially.

- Watch Video Solution

109. State the law of conservation of angular momentum.
110. A small block is rotating in a horizontal circle at the end of a thread which passes down through a hole at the centre of table top. If the system is rotating at 2.5 rps in a circle of 30 cm radius, what will be the speed of rotation when the thread is pulled inwards to decrease the radius to 10 cm ? Neglect friction.

- Watch Video Solution

111. A star of mass twice the solar mass and radius
$10^{6} \mathrm{~km}$ rotates about its axis with an angular
speed of $10^{-6} \operatorname{rad} s^{-1}$. What is the angular speed of the star when it collapses (due to inward gravitational) force) to a radius of $10^{4} \mathrm{~km}$?

- Watch Video Solution

112. If the earth were to suddenly contract to half of its present radius (without any external torque on it), by what duration would the day be decreased ? Assume earth to be perfect solid sphere of radius $\frac{2}{5} M R^{2}$.

- Watch Video Solution

113. What will be the duration of the day, if earth suddenly shrinks to $1 / 64$ of its original volume, mass remaining the same?

- Watch Video Solution

114. The maximum and minimum distances of a
comet from the sun are
$1.4 \times 10^{12} \mathrm{~m}$ and $7 \times 10^{10} \mathrm{~m}$. If is velocity nearest to the sun is $6 \times 10^{4} \mathrm{~ms}^{-1}$, what is the velocity in
the fartest position ? Assume that path of the comet in both the instantaneous positions is circular.

- Watch Video Solution

115. A horizontal disc rotating about a vertical axis
passing through its centre makes 180 rpm . A small piece of wax of mass 10 g falls vertically on the disc and adheres to it at a distance of 8 cm from its axis. If the frequency is thus reduced to 150 rpm ,
calculate the moment of inertia of the disc.
116. Kinetic energy of a body rolling without slipping is

D Watch Video Solution

117. A cylinder of mass 5 kg and radius 30 cm is rolling down an inclined plane at an angle of 45° with the horizontal. Calculate (i) force of friction
(ii) acceleration of cylinder (iii) minimum value of coeff. of static friction so that cylinder does not slip while rolling down the plane.
118. A cylinder of mass 5 kg and radius 30 cm is rolling down an inclined plane at an angle of 45° with the horizontal. Calculate (i) force of friction
(ii) acceleration of cylinder (iii) minimum value of coeff. of static friction so that cylinder does not slip while rolling down the plane.

D Watch Video Solution

119. A cylinder of mass 5 kg and radius 30 cm is rolling down an inclined place at an angle of 45°

- Watch Video Solution

120. Three bodies, a ring, a soild cylinder and a soild sphere roll down the same inclined plane without slipping. They start from rest. The radii of the bodies are identical. Which of the bodies reaches the ground with maximum velocity?

121. A solid cylinder of radius 4 cm and mass 250 g

 rolls down an inclined plane (1 in 10). Calculate the acceleration and the total energy of the cylinder after 5 s .
D Watch Video Solution

122. A solid cylinder of mass 8 kg and radius 50 cm
is rolling down a plane inclined at an angle of 30°
with the horizontal. force of friction on the cylinder is?
123. A cylinder of mass 10 kg is rolling perfectly on a plane of inclination 30°. Find the force of friction between the cylinder and the surface of inclined plane.

D Watch Video Solution

124. A cylinder of mass 5 kg and radius 30 cm is rolling down an inclined place at an angle of 45° with the horizontal. Calculate (i) force of friction
125. A solid cylinder of mass 8 kg and radius 50 cm is rolling down a plane inclined at an angle of 30° with the horizontal. The minimum value of coefficient of friction so that cylinder does not slip while rolling down the plane.

- Watch Video Solution

126. A sphere starting from rest rolls for 5.3 s
without slipping along a plane which is 1 m in
length. The upper end of the plane is 1 cm higher
than the lower end. Find the accelerationi due to gravity.

- Watch Video Solution

127. A rope is wound round a hollow cylinder of mass M and radius R. If the rope is pulled with a force F newton, then the angular acceleration of the cylinder will be

- Watch Video Solution

128. An object of mass m is tied to a light string wound around a pulley that has a moment of inertia I and radius R. The wheel bearing is
fricrtionless and the string does not slip on the run. Find the tension in the string and the acceleration of the object.

- Watch Video Solution

129. A body of mass 5 kg is attached to a weightless string wound round a cylinder of mass 8 kg and radius 0.3 m . The body is allowed to fall.

Calculate tension in the string
130. A body of mass $5 k g$ is attached to a weightless string wound round a cylinder of mass 8 kg and radius 0.3 m . The body is allowed to fall.

Calculate (i) tension in the string, (ii) acceleration with which the body falls and (iii) angular acceleration of the cylinder.

D Watch Video Solution

131. A body of mass 5 kg is attached to a weightless
string wound round a cylinder of mass 8 kg and radius 0.3 m . The body is allowed to fall. Calculate tension in the string
132. What is the advantage of concept of centre of mass ?

- Watch Video Solution

133. The centre of mass of a body

- Watch Video Solution

134. Does centre of mass of a rigid body lie always on the body?

D Watch Video Solution

135. Is centre of mass of reality ?

- Watch Video Solution

136. Two particles of masses m_{1} and m_{2} move with velocities v_{1} and v_{2} towards eachother on a
smooth horizontal surface. What is the velocity of their centre of mass ?

D Watch Video Solution

137. Name the physical quantity that corresponds to the moment of force. On what factors does it depend?

- Watch Video Solution

138. A body is in rotational motion. Is it necessary that a torque be acting on it ?
139. Why are doors provided with handles near the outer edges, far away from the hinges ?

- Watch Video Solution

140. Why do we perfect to use a when with a long arm?
141. Why in hand driven grinding machine, handle is put near the circumference of the stone or wheel ?

D Watch Video Solution

142. It is difficult to open or close the door by pushing/pulling it at the hinges. Why ?
143. Why are doors provided with handles near the outer edges, far away from the hinges?

D Watch Video Solution

144. In Regnault's apparatus for measuring specific heat capacity of a solid, there is an inlet and an outlet in the steam chamber. The inlet is near the top and the outlet is near the bottom .Why is it better than the opposite choice where the inlet is near bottom and the outlet is near the top ?

145. Why is it easier to open a tap with two fingers

 than with one finger?
D Watch Video Solution

146. A faulty balance with unequal arms has its
beam horizontal. Are the weights of the two pans
equal ?

- Watch Video Solution

147. Can the couple acting on a rigid body produce translatory motion ?

D Watch Video Solution

148. A labourer standing near the top of an old wooden step ladder feels unstable. Why ?

- Watch Video Solution

149. Which physical quantities are expressed by the following :
(i) rate of change of angular momentum
(ii) moment of linear momentum ?

D Watch Video Solution

150. define the rate of change of angular

momentum

- Watch Video Solution

151. The moment of linear momentum is called

152. If no external torque acts on a body, will its angular velocity remain conserved?

D Watch Video Solution

153. When a labourer cuts down a tree, he makes a cut on the side facing the direction in which he wants it to fall. Why ?

D Watch Video Solution

154. What is angular impulse?

- Watch Video Solution

155. Which component of linear momentum does not contribute to angular momentum ?

- Watch Video Solution

156. A particle revolves uniformly along a circular path, on a smooth horizontal table, by means of a string connected to it. Does its angular momentum change, if the string is suddenly cut ?
157. Is a body in circular motion in equillibrium ?

D Watch Video Solution

158. When will a magnet in an external magnetic field be in unstable equilibrium?

D Watch Video Solution

159. Can combination reaction be an oxidation reaction ? If yes, give an example.
160. The probability of selecting a rotten apple randomly from a heap of 900 apples is $0 \cdot 18$. What is the number of rotten apples in the heap?

- Watch Video Solution

161. Why does a ray of light while passing through a prism, bend towards its base?

162. Some heavy boxes are to be loaded along with

 some empty boxes on a cart. Which boxes should be put on the cart first and why?
D Watch Video Solution

163. Standing is not allowed in a double decker bus. Why ?
164. Why we cannot rise from a chair without bending a little forward ?

D Watch Video Solution

165. A system is in stable equilibrium. What can we say about its potential energy?

- Watch Video Solution

166. Why is moment of inertia called rotational inertia?

- Watch Video Solution

167. Explain the physical significance of moment of inertia and radius of gyration.

- Watch Video Solution

168. Does the moment of inertia of a body change with the speed of rotation ?
169. Does the moment of inertia of a body change with the speed of rotation ?

D Watch Video Solution

170. About which axis would the moment of inertia

 of a body be minimum ?
- Watch Video Solution

171. Can mass of a body be taken concentrated at its centre of mass for the purpose of calculating
its rotational inertia?

- Watch Video Solution

172. About what axis would a uniform cube have its minimum moment of inertia?

- Watch Video Solution

173. The radius of gyration depends on

- Watch Video Solution

174. Is radius of gyration of a body constant quantity ?

D Watch Video Solution

175. Two lenses of same mass and same radius are given. One is convex and other is concave. Which one will have greater moment of inertia, when rotating about an axis perpendicular to the plane and passing through the centre?
176. A solid disc is recast into a thin walled cylinder of same radus. Which will have larger moment of inertia?

D Watch Video Solution

177. Two solid spheres of the same mass are made of metals of different densities. Which of them has
a larger moment of inertia about a diameter ?

- Watch Video Solution

178. What is the advantage of a flywheel?

(-) Watch Video Solution

179. Why spokes are provided in a bicycle wheel ?

- Watch Video Solution

180. if the radii of two spheres are in the ratio $2: 3$,
then the ratio of their respective volumes is

D Watch Video Solution
181. Why it is more difficult to revolve a stone by
tying it to a longer string than by tying it to a shorter string ?

- Watch Video Solution

182. Two satellites of equal masses, which can be considered as particles are orbiting the earth at different heights. Will their moment of inertia be same or different?
183. What is the advantage of a flywheel ?

(D) Watch Video Solution

184. A meter stick, half of which is wood and the other half steel, is pivoted at the wooden end and same force isapplied to the steel end. Next, it is pivoted at the steel end and the same force is applied at the wooden end. Does one getthesame angular acceleration in eachcase ? Explain

- Watch Video Solution

185. Is angular momentum of a system always conserved ?

D Watch Video Solution

186. A flywheel is revolving with a constant angular
velocity. A chip of its rim breaks and flies away. How is its angular velocity affected?
187. Explain how is a cat able to land on its feet after a fall taking advantage of the principle of conservation of angular momentum ?

(D) Watch Video Solution

188. Why there two propellers in a helicopter?

- Watch Video Solution

189. Explain why the speed of a whirl wind in a tornado is alarmingly high ?

- Watch Video Solution

190. If the radius of earth contracts $1 / n$ of its present day value, the length of the day will be approximately

- Watch Video Solution

191. Two boys of the same weight sit at the opposite ends of a diameter of a rotating circular table. What happens to the speed of rotation if they move nearer to axis of rotation?
192. A thin wheel can stay upright on its rim for a considerable length of time when rolled with a considerable velocity, while it falls from its upright position at the slightest disturbance, when stationary. Explain.

D Watch Video Solution

193. A person is standing on a rotating table with metal spheres in his hands. If he withdraws his
hands to his chest, then the effect on his angular velocity will be.

D Watch Video Solution

194. A circular table rotates about a vertical axis
with a constant angular speed ω. A circular pan rests on the turn table (with the centre coinciding with centre of table) and rotates with the table.

The bottom of the pan is covered with a uniform small thick layer of ice placed at centre of pan. The ice starts melting. The angular speed of the turn table.
195. Many great rivers flow toward the equator. The sediments that they carry, increases the time of rotation of the earth about its own axis.

The angular momentum of the earth about its rotation axis is conserved.

- Watch Video Solution

196. The moments of inertia of two rotating bodies

A and B are I_{A} and $I_{B} \cdot\left(I_{A}>I_{B}\right)$ and their
angular momenta are equal. Which one has greater K. E. ?

- Watch Video Solution

197. If angular momentum is conserved in a system whose moment of inertia is decreased will its rotational kinetic energy be conserved?

- Watch Video Solution

198. How does an ice-skater, a ballet dancer or an acrobat take advantage of the principle of
conservation of angular momentum ?

- Watch Video Solution

199. A spinning ballet dancer changes the shape of her body by spreading her arms.

- Watch Video Solution

200. If earth were to shrink suddenly, what would happen to the length of the day?

- Watch Video Solution

201. A body A of mass M while falling wertically downwards under gravity brakes into two parts, a body B of mass $\frac{1}{3} M$ and a body C of mass $\frac{2}{3} M$. The center of mass of bodies B and C taken together shifts compared to that of body A towards

D Watch Video Solution

202. Two identical particles move towards each other with velocity 2 v and v respectively. The velocity of centre of mass is
203. A particle moves in a circular path with decreasing speed. What happens to its angular momentum?

- Watch Video Solution

204. A particle performing uniform circular motion has angular momentum L . What will be the new angular momentum, if its angular frequencey is doubled and its kinetic energy halved?
205. The angular velocity of earth around the sun increases when it comes closer to the sun. Why?

- Watch Video Solution

206. Why are not able to rotate a wheel by pulling or pushing along its radius?

D Watch Video Solution

207. Two solid spheres of the same mass are made of metals of different densities. Which of them has
a larger moment of inertia about a diameter ?

(D) Watch Video Solution

208. A planet revolves round a massive star in a highly elliptical orbit. Is its angular momentum constant over the entire orbit ?
209. If no external torque acts on a body, will its angular velocity remain conserved?

D Watch Video Solution

210. Assertion : Newton's third law of motion is
applicable only when bodies are in motion.
Reason : Newton's third law applies to all types of forces, e.g. gravitational, electric or magnetic forces etc.
211. If only an external force can change the momentum of the centre of mass of an object, how can be internal force of an engine accelerate a car?

D Watch Video Solution

212. Two men stand facing each other on two boats floating on still water at a distance apart. A rope is held at its ends by both. The two boats are found to meet always at the same point, whether each man pulls separately or both pull together,
why ? Will the time taken be different in the two cases ? Neglect friction.

- Watch Video Solution

213. Prove that the centre of mass of two particle divides the line joining the particles in the inverse ratio of their masses.

- Watch Video Solution

214. Two balls of mass m each are placed at the two vertices of an equilateral triangle. Another ball
of mass $2 m$ is placed at the third vertex of the triangle. Locate the centre of mass of the system.

D Watch Video Solution

215. What is the difference between centre of mass and centre of gravity?

- Watch Video Solution

216. There are some passengers inside a stationary railway compartment. The track is frictionless. The centre of mass of the compartment itself (without
the passengers) is C_{1}, while the centre of mass of the 'compartment plus passengers' system is C_{2}. If the passengers move about inside the compartment along the track.

- Watch Video Solution

217. Will the position of CM of the compartment change?

- Watch Video Solution

218. Show that moment of a couple does not depend on the point about which you take the moments.

- Watch Video Solution

219. Show that the angular momentum about any
point of a single particle moving with constant velocity remains constant throughout the motion. Is there any external torque on the particle ?
220. A rod of weight w is supported by two parallel knife edges A and B and is in equilibrium in a horizontal position. The knives are at a distance d from each other. The centre of mass of the rod is at a distance x from A.

- Watch Video Solution

221. Torque and work are both equal to force time
distance. How do they differ?

- Watch Video Solution

222. When is a rigid body said to be in equilibrium
? State the necessary conditions for a body to be in equilibrium.

D Watch Video Solution
223. The moment of inertia of a body does not depend on
224. How will you distinguish between a hard boiled egg and a raw egg by spinning each on a table top?

D Watch Video Solution

225. Two circular discs A and B of equal masses
and thicknesses. But are made of metals with densities d_{A} and $d_{B}\left(d_{A}>d_{B}\right)$. If their moments of inertia about an axis passing through the centre and normal to the circular faces be I_{A} and I_{B}, then.
226. Which one is easier to turn - a log or a bench of equal weight and length ? The two have the same coefficient of friction with the ground.

Explain.

- Watch Video Solution

227. The Moment of inertia of a disc about an axis passing through its centre and perpendicular to
its plane is $1 / 2 M R^{2}$. Derive the values of moment
of inertia of the disc about its diameter and about an axis tangential to the disc lying on its plane?

- Watch Video Solution

228. What is the moment of inertia of a rod of mass M, length 1 about an axis perpendicular to it through one end ? Given the moment of inertia about the centre of mass is $\frac{1}{12} M l^{2}$.

D Watch Video Solution

229. What is the moment of inertia of a ring about a tangent to the circle of the ring ?

D Watch Video Solution

230. The moment of inertia of a uniform circular disc of radius R and mass M about an axis passing from the edge of the disc and normal to the disc is.
231. The moment of inertia of a uniform circular disc about a tangent in its own plane is $\frac{5}{4} M R^{2}$, where M is mass and R is the radius of the disc.

Find its moment of inertia about an axis through its centre and perpendicular to its plane.

D Watch Video Solution

232. Using expressisions for power and kinetic energy of rotational motion, derive the relation
$\tau=I \alpha$, where letters have their usual meaning.
233. If all the ice on the polar caps of the earth melts, due to global warming then the duration of the day will be

D Watch Video Solution

234. Two identical cylinders 'run a race' starting
from rest at the top of an inclined plane, one
slides without rolling and other rolls without
slipping. Assuming that no mechanical energy is
dissipated in heat, which one will win?
235. A uniform circular disc of radius R is rolling on
a horizontal surface. Determine the tangential
velocity : at the upper most point

- Watch Video Solution

236. A uniform circular disc of radius R is rolling on
a horizontal surface. Determine the tangential
velocity : the centre of mass

- Watch Video Solution

237. A uniform circular disc of radius r is placed on a rough horizontal surface and given a linear velocity v_{0} and angular velocity ω_{0} as shown. The disc comes to rest after moving some distance to the right. It follows that

- Watch Video Solution

238. An isolated particle of mass m is moving in a
horizontal plane ($x-y$), along the x-axis at a certain
height above the ground. It suddenly explodes into two fragments of masses $m / 4$ and $3 m / 4$. At instant later, the smaller fragment is at $y=+5 \mathrm{~cm}$. What is the position of larger fragment at this instant?

D Watch Video Solution

239. A small sphere of radius R is held against the inner surface of α larger sphere of radius 6R. The masses of large and small spheres are 4 M and M ,
respectively. This arrangement is placed on a horizontal table. There is no friction between any surfaces of contact. The small sphere is now released. find the co-ordinations of the centre of the larger sphere when the smaller sphere reaches the other extreme position.

D Watch Video Solution

240. A boat of 90 kg is floating in still water. A boy of mass 30 kg walks from the stern to the bow. The
length of the boat is 3 m . Calculate the distance through which the boat will move.

D Watch Video Solution

241. A particle describes a horizontal circle on the
smooth surface of an inverted cone. The height of the plane of the circle aove the vertex is 9.8 cm .

Find the speed of the particle. Take $g=9.8 m s^{-2}$.
242. Point masses m_{1} and m_{2} are placed at the ends of a rigid rod of length L and negligible mass.

The rod is to be set rotating about an axis perpendicular to its length. Locate a point on the rod through which the axis of rotation should pass in order that the work required to set the rod rotating with angular velocity ω_{0} is minimum.

D Watch Video Solution

243. A uniform bar of length 6 a and mass 8 m lies
on a smooth horizontal table. Two point-masses m
and 2 m moving in the same horizontal plane with
speeds 2 v and v respectively strike the bar as shown in Fig, and stick to the bar after collision.

D Watch Video Solution

244. A carpet of mass M is rolled along its length so as to from a cylinder of radius R and is kept on
a rough floor. When a negligibly small push is
given to the cylindrical carpet, it stars unrolling itself without sliding on the floor. Calculate horizontal velocity of cylindrical part of the carpet when its radius reduces to $R / 2$.

- Watch Video Solution

245. Consider a body, shown in figure, consisting of
two identical balls, each of mass M connected by a
light rigid rod. If an impulse $J=M V$ is imparted to
the body at one of its ends what would be it
angular velocity?

L

D Watch Video Solution

246. A cubical block of side L rests on a rough horizonta surface with coefficient of friction μ. A horizontal force F is applied on the block as shown. If the coefficient of friction is sufficiently high so that the block does not slide before
toppling, the minimum force required to topple the block is

- Watch Video Solution

247. One quarter sector is cut from a uniform disc of radius R. This sector has mass M. It is made to rotate about a line perpendicular to its plane and passing through the centre of the original disc.

What is its moment of inertia about the axis of rotation?

- Watch Video Solution

248. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with centre at O as shown. The moment of inertia of
the loop about the axis $X X^{\prime}$ is :

- Watch Video Solution

249. A long horizontal rod has a bead which can
slide along its length and initially placed at a
distance L from one end A of the rod. The rod is
set in angular motion about A with constant angular acceleration α. if the coefficient of friction between the rod and the bead is μ, and gravity is neglected, then the time after which the bead starts slipping is

- Watch Video Solution

250. Initial angular velocity of a circular disc of mass M is ω_{1}. Then two small spheres of mass m are attached gently to two diametrically opposite points on the edge of the disc. What is the final angular velocity of the disc-

D Watch Video Solution

251. A ' T ' shaped object with dimensions shown in the figure, is lying on a smooth floor. A force \vec{F}, is applied at the point P parallel to $A B$, such that
the object has only the translational motion
without rotation. Find the location of P with respect C .

- Watch Video Solution

252. Find the coordination of the centre of mass of a uniform semicircular wire of radius R and mass M.
253. Given the location of the centre of mass of a
(i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie on the body ?

- Watch Video Solution

254. Given the location of the centre of mass of a
(i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie on the body ?

- Watch Video Solution

255. Given the location of the centre of mass of a
(i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie on the body?

- Watch Video Solution

256. Given the location of the centre of mass of a
(i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each
of uniform mass density. Does the centre of mass of a body necessarily lie on the body?

D Watch Video Solution

257. In the $H C I$ molecule, the separation between the nuclei of the two atoms is about $1.27 \AA\left(1 \AA=10^{-10} m\right)$. Find the approximate location of the c.m of the molecule, given that a chlorine atom is about 35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is concentrated in its nucleus?
258. A child is sitting at one end of a long trolley moving with a uniform speed v on a smooth horizontal track. If the child starts running towards the other end of the trolley with a speed u (w.r.t. trolley), the speed of the centre of mass of the system will.

- Watch Video Solution

259. Show that the area of the triangle contained between the vectors J and \$ is one haifOfthe
magnitude of $\vec{a} \times \vec{b}$.

Fig. 7.97

- Watch Video Solution

260. Show that $\vec{a} \cdot(\vec{b} \times \vec{c})$ is equal in magnitude to the volume of the parallelopiped formed on the three vectiors, \vec{a}, \vec{b} and \vec{c}.
261. Find the components along the x, y, z axes of the angular momentum \vec{L} of a particle, whose position vector is \vec{r} with components x, y, z and momentum is \vec{p} with components p_{x}, p_{y} and p_{z}. Show that if the particle moves only in the $x-y$ plane, the angular momentum has only a zcomponent.
262. Two particles each of mass m and speed v, travel in opposite direction along parallel lines separated by a distance d. Show that the vector angular momentum of this system of particles is the same about any point taken as origin.

- Watch Video Solution

263. A non-uniform bar of weight W is suspended at rest by two strings of negligible weight as shown in Fig. The angles made by the strings with the vertical are 36.9° and 53.1° respectively. The bar is $2 m$ long. Calculate the distance d of the
centre of gravity of the bar from its left end.

D Watch Video Solution

264. A car weighs 1800 kg . The distance between its
front and back axles is 1.8 m . Its centre of gravity is
$1.05 m$ behind the front axle. Determine the force
exerted by the level ground on each front wheel and each back wheel.

- Watch Video Solution

265. (a) Find the moment of inertia of a sphere about a tangent to the sphere, given the moment of inertia of the sphere about any of its diameters to be $2 M R^{2} / 5$, where M is the mass of the sphere and R is the radius of the sphere.
(b) Given the moment of inertia of a disc of mass
M and radius R about any of its diameters to be $\frac{1}{4} M R^{2}$, find the moment of inertia about an axis
normal to the disc passing through a point on its edge.

- Watch Video Solution

266. (a) Find the moment of inertia of a sphere about a tangent to the sphere, given the moment of inertia of the sphere about any of its diameters to be $2 M R^{2} / 5$, where M is the mass of the sphere and R is the radius of the sphere.
(b) Given the moment of inertia of a disc of mass
M and radius R about any of its diameters to be $\frac{1}{4} M R^{2}$, find the moment of inertia about an axis
normal to the disc passing through a point on its edge.

D Watch Video Solution

267. Torques of equal magnitude are applied to hollow cylinder and a solid sphere, both having the same mass and same radius. The cylinder is free to rotate about its standard axis of symmetry, and
the sphere is free to rotate about an axis passing through its centre. which of the two will acquire a greater angular speed after a given time ?
268. A solid cylinder of mass 20 kg rotates about its axis with angular speed $100 \mathrm{~s}^{-1}$. The radius of the cylinder is $0.25 m$. What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of angular momentum of the cylinder about its axis?

- Watch Video Solution

269. A child stands at the centre of turntable with his two arms out stretched. The turntable is set rotating with an angular speed of 40 rpm . How
much is the angular speed of the child if he folds
his back and thereby reduces his moment of inertia to $\frac{2}{3}$ times the initial value? Assume that the turntable rotates without friction

- Watch Video Solution

270. A child stands at the centre of turntable with his two arms out stretched. The turntable is set rotating with an angular speed of 40 rpm . How much is the angular speed of the child if he folds his back and thereby reduces his moment of
inertia to $\frac{2}{3}$ times the initial value? Assume that the turntable rotates without friction

D Watch Video Solution

271. A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radius 40 cm .

What is angular acceleration of the cylinder if the rope is pulled with a force of $30 N$? What is the linear acceleration of the rope? Assume that there is no slipping.
272. To maintain a rotor at a uniform angular speed of $200 \mathrm{rad} \mathrm{s}^{-1}$, an engine needs to transmit a torque of 180 Nm . What is the power of the engine required ?

(Watch Video Solution

273. A metre stick is balanced on a knife edge at its
centre. When two coins, each of mass 5 g are put one on top of the other at the 12.0 cm mark, the
stick is found to be balanced at 45.0 cm . What is the mass of the metre stick?
274. A solid wooden sphere rolls down two different inclined planes of the same height but of different inclinations. (a) Will it reach the bottom with same speed in each case?
(b) Will it take longer to roll down one inclined plane than other ? Explain.

D Watch Video Solution

275. A solid sphere rolls down two different inclined planes of the same height but of different
inclinations

- Watch Video Solution

276. A solid sphere rolls down two different inclined planes of the same height but of different inclinations

D Watch Video Solution

277. A hoop of radius 2 m , weight 100 kg . It rolls
along horizontal floor so that its center of mass
has a speed of $20 c \frac{m}{s}$. How much work has to be done to stop it?

- Watch Video Solution

278. The oxygen molecule has a mass of
$5.30 \times 10^{-26} \mathrm{~kg}$ and a moment of inertia of $1.94 \times 10^{-46} \mathrm{kgm}^{2}$ about an axis through its centre perpendicular to the line joining the two atoms. Suppose the mean speed of such a molecule in a gas is $500 \mathrm{~m} / \mathrm{s}$ and that its kinetic energy of rotation is two thirds of its kinetic
energy of translation. Find the average angular velocity of the molecule.

D Watch Video Solution

279. A sphere rolls up an inclined plane whose inclination is 30°. At the bottom of the inclined plane, the center of mass of the sphere has a translational speed of $5 m s^{-1}$ (a) How far does the sphere travel up the plane? (b) How long does it take to return to the bottom?
280. A sphere rolls up an inclined plane whose inclination is 30°. At the bottom of the inclined plane, the center of mass of the sphere has a translational speed of $5 m s^{-1}$ (a) How far does the sphere travel up the plane? (b) How long does it take to return to the bottom?

- Watch Video Solution

281. (i) Explain why friction is necessary to make the disc to roll in the direction indicated. (ii) Give the direction of frictional force at B, and the sense of frictional torque, before perfect rolling begins.
(iii) What is the force of friction after perfect rolling begins?

- Watch Video Solution

282. (i) Explain why friction is necessary to make the disc to roll in the direction indicated. (ii) Give the direction of frictional force at B, and the sense
of frictional torque, before perfect rolling begins.
(iii) What is the force of friction after perfect rolling begins?

D Watch Video Solution

283. A solid disc and a ring, both of radius 10 cm are placed on a horizontal table simultaneously,
with initial angular speed equal to $10 \pi r a d / s$.
Which of the two will start to roll earlier ? The coefficient of kinetic friction is $\mu_{k}=0.2$.

- Watch Video Solution

284. A solid cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination 30°. The coefficient of static friction, $\mu_{s}=0.25$ (i) Find the force of friction acting on the cylinder. (ii) What is the work done against friction during rolling ?
285. A solid cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination 30°.

The coefficient of static friction, $\mu_{s}=0.25$ (i) Find the force of friction acting on the cylinder.

What is the work done against friction during rolling ?

- Watch Video Solution

286. A solid cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination 30°. The coefficient of static friction, $\mu_{s}=0.25$ (i) Find
the force of friction acting on the cylinder. (ii)

What is the work done against friction during rolling ?

- Watch Video Solution

287. Read each statement below carefully and state
with reasons, if it is true ot false. (a) During rolling
the force of friction acts in the same direction as
the direction of motion of $\mathrm{c} . \mathrm{m}$ of the body. (b) The instantaneous speed of the point of contact during rolling is zero. (c) The instantaneous acceleration of the point of contact during rolling
is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling motion).

- Watch Video Solution

288. Read each statement below carefully and
state with reasons, if it is true ot false. (a) During rolling the force of friction acts in the same direction as the direction of motion of c.m of the body. (b) The instantaneous speed of the point of contact during rolling is zero. (c) The
instantaneous acceleration of the point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling motion).

- Watch Video Solution

289. Read each statement below carefully and
state with reasons, if it is true ot false. (a) During rolling the force of friction acts in the same direction as the direction of motion of c.m of the body. (b) The instantaneous speed of the point of
contact during rolling is zero. (c) The instantaneous acceleration of the point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling motion).

- Watch Video Solution

290. Read each statement below carefully and
state with reasons, if it is true ot false. (a) During rolling the force of friction acts in the same direction as the direction of motion of c.m of the
body. (b) The instantaneous speed of the point of contact during rolling is zero. (c) The instantaneous acceleration of the point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling motion).

- Watch Video Solution

291. Read each statement below carefully, and state, with reasons, if it is true or false : A wheel
moving down a perfectly frictionless inclined plane will undergo slipping (not rolling) motion

D Watch Video Solution

EXERCISE

1. Two bodies of masses 1 kg and 2 kg are located
at (1,2) and ($-1,3$), respectively. Calculate the coordinates of center of mass.
2. The distance between the centres of carbon and oxygen atoms in the carbon monoxide molecule is $1.130 \AA$. Locate the centre of mass of the molecule relative to the carbon atom .

D Watch Video Solution

3. Three blocks of uniform thickness and masses m, m and $2 m$ are placed at the corners of a triangle having co-ordinates
$(2.5,1.5),(3.5,1.5)$ and $(3,3)$ respectively. Find the co-ordinates of the centre of mass of the system.

- Watch Video Solution

4. Find the centre of mass of three particle at the vertices of an equilateral triangle. The masses of the particle are $100 g, 150 g$, and $200 g$ respectively.

Each side of the equilateral triangle is $0.5 m$ along.

- Watch Video Solution

5. A gridstone has a constant acceleration of 4 rad
s^{-1}. Starting from rest, calculate the angular speed of the grindstone 2.5 s later.

Watch Video Solution

6. The speed of a motor increases from 600 rpm to

1200 rpm in 20 s . What is the angular acceleration and how many revolution does it make during this time ?

D Watch Video Solution

7. On the application of a constant torque, a wheel
is turned from rest through an angle of 200 rad in 8s. Calculate its angular acceleration.
8. The motor of an engine is erotating about its axis with an angular velocity of $100 \mathrm{rev} /$ minute. It comes to rest in 15 s , after being switched off. Assumgn cnstant angular decelertion, calculate the number of revolutions made by it before coming to rest.

- Watch Video Solution

9. A car is moving at a speed of $72 \mathrm{kmh}^{-1}$. The diameter of its wheel is 0.50 m . If the wheels are
stopped in 20 rotations by applying brakes, calculate the angular retardation produced by the brakes.

- Watch Video Solution

10. A wheel starting from rest via rotating with a constant angular velocity of $3 \mathrm{rad} s^{-1}$. What is its angular acceleration after 4 s ?
11. Determine the angular momentum of a car of mass 1500 kg moving in a circuit truck of radius 50 m with a speed of $40 \mathrm{~ms}^{-1}$.

- Watch Video Solution

12. Mass of an electron is $9.0 \times 10^{-31} \mathrm{~kg}$. It revolves around the nucleus of an atom in a circular orbit of radius $4.0 \AA$ with a speed of
$6.0 \times 10^{6} \mathrm{~ms}^{-1}$. Calculate the angular momentum of the electron.
13. Find the moment fo inertia of the hydrogen molecules about an axis passing through its centre of mass and perpendicular to the internuclear axis. Given mass of H -atom $=1.7 \times 10^{-27} \mathrm{~kg}, \quad$ interatomic \quad distance $=4 \times 10^{-10} m$

- Watch Video Solution

14. Three particles each of mass 100 g are placed at the vertices of an equilateral triangle of side length 10 cm . Find the moment of inertia of the
system about an axis passing through the centroid of the triangle and perpendicular to its plane.

D Watch Video Solution

15. Four point masses of 20 g each are placed at the corners of a square $A B C D$ of side 5 cm , as
shown in Fig. 8.48. find the moment of inertia of the system (i) about an axis coinciding with the side $B C$ and (ii) about an axis through A and
perpendicular to the plane of the square.

D Watch Video Solution

16. The point masses of $0.3 \mathrm{~kg}, 0.2 \mathrm{~kg}$ and 0.1 kg are placed at the corner of a right angles $\triangle A B C$, as shown in Fig. 8.49. find the moment of inertia of the system (i) about an axis through A and perpendicular to the plane of the diagram and about an axis along $B C$.
17. Three particles of masses $0.50 \mathrm{~kg}, 1.0 \mathrm{~kg}$ and 1.5 kg are placed at the corners of a right angle triangle, as shown in fig. Locate the centre of mass of the system.

- Watch Video Solution

18. Three particles, each of mass m are situated at
the vertices of an equilateral triangle $A B C$ of side L
figure. Find thee moment of inertia of the system
about the line $A X$ perpendicular to $A B$ in the plane of $A B C$

19. Four particles each of mass m are kept at the four corners of a square of edge a. Find the moment of inertia of the system about an axis perpendicular to the plane of the system and passing through the centre of the square.

D Watch Video Solution

20. What is the moment of inertia of a ring of mass

2 kg and radius 50 cm about an axis passing through its centre and perpendicular to its plane?

Also find the moment of inertia about a parallel axis through its edge.

- Watch Video Solution

21. Calculate the moment of inertia of uniform circular disc of mass 500 g , radius 10 cm about : diameter of the disc

D Watch Video Solution

22. Calculate the moment of inertia of uniform circular disc of mass 500 g , radius 10 cm about : the axis tangent to the disc and parallel to its diameter
23. Calculate the moment of inertia of uniform circular disc of mass 500 g , radius 10 cm about :
the axis through the centre of the disc and perpendicular to its plane

D Watch Video Solution

24. Calculate the moment of inertia of a circular disc of radius 10 cm , thickness 5 mm and uniform density $8 \mathrm{gcm}^{-3}$, about a transverse axis through the centre of the disc.

(D) Watch Video Solution

25. The radius of a sphere is 5 cm . Calculate the radius of gyration about (i) its diameter and (ii) about any tangent.

- Watch Video Solution

26. The radius of a sphere is 5 cm . Calculate the radius of gyration about any tangent.
27. Calculate the radius of gyration of a cylindrical rod of mass M and length L about an axis of rotation perpendicular to its length and passing through its centre.

- Watch Video Solution

28. Two masses of 3 kg and 5 kg are placed at 20 cm
and 70 cm marks respectively on a light wooden meter scale. The M.I. of the system about an axis passign through 100 cm mark and perpendicular to
the meter scale is

- Watch Video Solution

29. Calculate the moment of inertia of a rod of mass 2 kg and length 0.5 m in each of the following cases, as shown in Fig. 8.52.

(ii)
30. A body of mass 2 kg is revolving in a horizontal circle of radius 2 m at the rate of 2 revolutions per second. Determine (i) moment of inertia of the body and (ii) the rotational kinetic energy of the body.

D Watch Video Solution

31. A body of mass 2 kg is revolving in a horizontal circle of radius 2 m at the rate of 2 revolutions per second. Determine (i) moment of inertia of the
body and (ii) the rotational kinetic energy of the body.

- Watch Video Solution

32. A flywheel of mass 500 kg and diameter 1 m makes 500 rpm . Assuming the mass to be concentrated along the rim, calculate (i) angular velocity (ii) moment of inertia and (ii) rotational K.E. of the flywheel.
33. A flywheel of mass 500 kg and diameter 1 m makes 500 rpm . Assuming the mass to be concentrated along the rim, calculate (i) angular velocity (ii) moment of inertia and (ii) rotational K.E. of the flywheel.

- Watch Video Solution

34. A flywheel of mass 500 kg and diameter 1 m makes 500 rpm . Assuming the mass to be concentrated along the rim, calculate (i) angular
velocity (ii) moment of inertia and (ii) rotational
K.E. of the flywheel.

- Watch Video Solution

35. A thin hollow cylinder open at both ends and weighing $5 k g$ (i) slides with a speed of $5 \mathrm{~m} / \mathrm{s}$ without rotating and (ii) rolls with the same speed without slipping. Compare the $K E$ of the cylinder in the two cases.

- Watch Video Solution

36. A thin hollow cylinder open at both ends and weighing 5 kg (i) slides with a speed of $5 \mathrm{~m} / \mathrm{s}$
without rotating and (ii) rolls with the same speed without slipping. Compare the $K E$ of the cylinder in the two cases.

- Watch Video Solution

37. A thin metal hoop of radius $0.25 m$ and mass

2 kg stars from rest and rolls down an inclined
plane. If its linear velocity on reaching the foot of
the plane is $2 m / s$, what is its rotational $K E$ at that instant?
38. The earth has a mass of $6 \times 10^{24} \mathrm{~kg}$ and a radius of $6.4 \times 10^{6} \mathrm{~m}$. Calculate the amount of work that must be done to slow down its rotation so that duration of day becomes 30 hrs instead of 24 hours.

Moment of inertia of earth $=\frac{2}{5} M R^{2}$.

- Watch Video Solution

39. A disc of mass 1 kg and radius 10 cm is rotating about its axis with an anuglar velocity of $2 \mathrm{rad} / \mathrm{s}$.

The linear momentum of the disc,
40. The moment of inertia of a body is $2.5 \mathrm{kgm}^{2}$.

Calculate the torque required to produce an angular acceleration of $18 \mathrm{rads}^{-2}$ in the body.

D Watch Video Solution

41. A cylinder of length 20 cm and radius 10 cm is rotating about its central axis at an angular speed of $100 \mathrm{rad} / \mathrm{s}$. What tangential force will stop the cylinder at a unifrom rate is $10 s$? Given moment of
inertia of the cylinder about its axis of rotation is $0.8 \mathrm{kgm}^{2}$.

D Watch Video Solution

42. A flywheel of moment of inertia $10^{7} \mathrm{gcm}^{2}$ is rotating at a speed of 120 rotations per minute.

Find the constant breaking torque required to stop the wheel in 5 rotations.

- Watch Video Solution

43. If a constant torque of 500 Nm turns a wheel of moment of inertia $100 \mathrm{kgm}^{2}$ about an axis through its centre, find the gain in angular velocity in 2 s .

- Watch Video Solution

44. A sphere of mass 2 kg and radius 5 cm is rotating at the rate of 300 rpm . Calculate the torque required to stop it in 6.28 it in 6.28 revolution. Moment of inertia of the sphere about any diameter $=\frac{2}{5} M R^{2}$
45. A body of mass 1.0 kg is rotating on a circular path of diameter 2.0 m at the rate of 10 rotations in 31.4 s . angular momentum of the body is?

D Watch Video Solution

46. A circular disc of mass 2 kg and radius 0.1 m is rotating at an angular speed of $2 \mathrm{rad} / \mathrm{s}$, about an axis passing through its centre and perpendicular to its plane. What is its rotational kinetic energy?
47. A wheel, initially at rest, rotates for $2 s$ under angular acceleration of $3 \mathrm{rads}^{-2}$. Find (i) angular velocity acquired in $2 s$.
(ii) angular displacement in $2 s$.
(ii) torque acting on the wheel if its moment of inertia is $12 \mathrm{kgm}^{2}$.

- Watch Video Solution

48. A wheel, initially at rest, rotates for $2 s$ under angular acceleration of $3 \mathrm{rads}^{-2}$. Find (i) angular velocity acquired in $2 s$.
(ii) angular displacement in $2 s$.
(ii) torque acting on the wheel if its moment of inertia is $12 \mathrm{kgm}^{2}$.

- Watch Video Solution

49. A wheel, initially at rest, rotates for $2 s$ under angular acceleration of $3 \mathrm{rads}^{-2}$. Find (i) angular velocity acquired in $2 s$.
(ii) angular displacement in $2 s$.
(ii) torque acting on the wheel if its moment of inertia is $12 \mathrm{kgm}^{2}$.
50. An ice skater spins with arms outstretched at 1.9 rps. Her moment of inertia at this instant is 1.33
$\mathrm{kg} m^{2}$. She pulls in her arms to increase her rate of spin. If the moment of inertia is $0.48 \mathrm{~kg} \mathrm{~m}{ }^{2}$ after she pulls in her arms, what is her new rate of rotation ?

D Watch Video Solution

51. If 2 kg mass is rotating on a circular path of radius 0.8 m with angular velocity of $44 \mathrm{rad} / \mathrm{sec}$. If radius of the parth becomes 1 m , then what will be the value of angular velocity?

- Watch Video Solution

52. A ball tied to a string takes us to complete revolution along a horizontal circle. If, by pulling the cord, the radius of the circle is reduceed to half of the previous value, then how much time the ball will take in one revolution?

- Watch Video Solution

53. The sun rotates round itself once in 27 days.

What will be period of revolution if the sun were
to expand to twice its present radius? Assume the sun to be a sphere of uniform density.

- Watch Video Solution

54. If the earth suddenly contracts by one-fourth of its present radius, by how much would the day be shortened?

- Watch Video Solution

55. Prove that for an earth satellite, the ratio of its
velocity at apogee (when farthest from the earth)
to its velocity at perigee (when nearest to the earth) is the inverse ratio of its distances from apogee and perigee.

- Watch Video Solution

56. A uniform disc rotating freely about a vertical axis makes 90 rpm . A small piece of wax of mass m gram falls vertically on the disc and sticks to it at a distance rcm from the axis. If number of rotations per minute reduces to 60 , find the moment of inertia of the disc.
57. The separation between C and O atoms in $C O$ is
1.2 A. The distance of carbon atom from the centre of mass is
A. $0.3 \AA$
B. $0.7{ }^{\circ}$
C. $0.5{ }^{\circ}$
D. $0.9 \stackrel{\circ}{A}$
58. Three masses of $2 \mathrm{~kg}, 4 \mathrm{~kg}$ and 4 kg are placed at the three points $(1,0,0),(1,1,0)$ and $(0,1,0)$ respectively. The position vector of its centre of massis
A. $\frac{3}{5} \hat{i}+\frac{4}{5} \hat{j}$
B. $(3 \hat{i}+\hat{j})$
C. $\frac{2}{5} g a t i+\frac{4}{5} \hat{j}$
D. $\frac{1}{5} \hat{i}+\frac{3}{5} \hat{j}$
59. Four particles of mass $2 \mathrm{~kg}, 3 \mathrm{~kg}, 4 \mathrm{~kg}$ and 8 kg are situated at the comers of a square of side length 2 m . The centre of mass may be given as
A. $\left(\frac{30}{18}, \frac{28}{18}\right)$
B. [Math Processing Error]
C. $\left(\frac{14}{17}, \frac{24}{17}\right)$
D. $\left(\frac{34}{18}, \frac{34}{18}\right)$
60. The centre of mass of a solid cone along the
line form the center of the base to the vertex is at
A. one-fourth of the height
B. one-third of the height
C. one-fifth of the height
D.) none of the above
61. The reduce mass of two particles having masses m and 2 m is
A. 2 m
B. 3 m
C. $2 m / 3$
D. ml 2
62. Consider a sytem of two particles having masses m_{1} and m_{2}. If the particle of mass m_{1} is pushed towards the centre of mass of particles through a distance d, by what distance would the particle of mass m_{2} move so as to keep the mass centre of particles at the original position?

$$
\begin{aligned}
& \text { A. } \frac{m_{1}}{m_{1}+m_{2}} d \\
& \text { B. } \frac{m_{1}}{m_{2}} d \\
& \text { C. d } \\
& \text { D. } \frac{m_{2}}{m_{1}} d
\end{aligned}
$$

63. Two bodies of masses 2 kg and 4 kg are moving with velocities $2 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ respectively along same direction. Then the velocity of their centre of mass will be
A. $5.3 m / s$
B. $7.3 \mathrm{~m} / \mathrm{s}$
C. $6.4 m / s$
D. $8.1 \mathrm{~m} / \mathrm{s}$
64. In a bicycle the radius of rear wheel is twice the radius of front wheel. If v_{F} and v_{r} are the speeds of top most points of front and rear wheels respectively, then :
A. $v_{r}=2 v_{f}$
B. $v_{f}=2 v_{r}$
C. $v_{f}=2 v_{r}$
D. $v_{f}=v_{r}$

Answer: $v_{f}>v_{r}$
65. Two particles A and B initially at rest, move towards each other by mutual force of attraction.

At the instant when the speed of A is n and the speed of B is $3 n$, the speed of the centre of mass of the system is
A. 3 v
B. 2 v
C. 1.5 v
D. zero

- Watch Video Solution

66. 2 bodies of different masses of 2 kg and 4 kg are moving with velocities $20 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / / \mathrm{s}$ towards each other due to mutual gravitational attraction. What is the velocity of their centre of mass?
A. $5 m / s$
B. $6 m / s$
C. $8 m / s$
D. zero

- Watch Video Solution

67. Two racing cars of masses m and $4 m$ are moving in circles of radii r and $2 r$ respectively. If their speeds are such that each makes a complete circle in the same time, then the ratio of the angular speeds of the first to the second car is A. 1: 1
B. $r_{1}: r_{2}$
C. $m_{1}: m_{2}$
D. $m_{1} m_{2}: r_{1} r_{2}$

- Watch Video Solution

68. Two wheels having radii in the ratio $1: 3$ are connected by a common belt. If the smaller wheel is accelerated from rest at a rate $1.5 \mathrm{rads}^{2}$ for 10 s ,
find the angular velocity of bigger wheel
A. $5 r a d s^{-1}$
B. $15 \mathrm{rads}^{-1}$
C. $45 \mathrm{rads} \mathrm{s}^{-1}$

D. none of these

- Watch Video Solution

69. A disc, initially at rest, starts rotating about its
own axis/ with a constant angular acceleration of $0 * 2 \mathrm{rad} / \mathrm{s} 2$. The time taken by the disc to rotate by 10 rad (in seconds) is
A. 7.07
B. 10
C. 14.14
D. 100

- Watch Video Solution

70. A car is moving at a speed of $72 \mathrm{~km} / \mathrm{h}$. The diameter of its wheels is 0.5 m . If the wheels are stopped in 20 rotations by applying brakes, calcualte the angular retardation produced by the brakes.
A. $-25.5 \mathrm{rad} / \mathrm{s}^{2}$
B. $-33.5 \mathrm{rad} / \mathrm{s}^{2}$

C. $-29.5 \mathrm{rad} / \mathrm{s} 2$

D. $-45.5 \mathrm{rad} / \mathrm{s}^{2}$

D Watch Video Solution

71. The motor of an engine is rotating about its axis with an angular velcoity of 100 rev min^{-1}. It comes to rest in 15 s , after being switched off.

Assuming constant angualar decelearation. What are the numbers of revolutions made by it befor coming to rest ?
A. 12.5
B. 40
C. 32.6
D. 15.6

- Watch Video Solution

72. Angular acceleration α of a body is given by the relation $a=4 a t^{3}-3 b t^{2}$. If initial angular velocity of the body is ω_{0}, then its velocity at time t will be
A. $(o 0+a t 4-b t 3$
B. od0 + 4at4-4bt3
C. coQ $+12 « f 2-6 b t$
D. ft) Q -at $4+b t 3$

D Watch Video Solution

73. The front wheel on an ancient bicycle has radius 0.5 m . It moves with angular velocity given by the function $\omega(t)=2+4 t^{2}$, where t is in seconds. About how far does the bicycle move between $\mathrm{t}=2$ and $\mathrm{t}=3$ seconds ?
A. 36 m
B. 27 m
C. 21 m
D. 14 m

D Watch Video Solution

74. A ring of radius R is first rotated with an angular velocity ω and then carefully placed on a rough horizontal surface. The coefficient of friction
between the surface and the ring is μ. Time after which its angular speed is reduced to half is
A. $\frac{2 \omega R}{\mu g}$
B. $\frac{\omega_{0} R}{2 \mu g}$
C. $\frac{\omega_{0} \mu R}{2 g}$
D. $\frac{\omega_{0} g}{2 \mu R}$

- Watch Video Solution

75. Which one is a vector quantity?
A. energy
B. torque
C. both of these
D. none of these

- Watch Video Solution

76. If force vector is along X -axis and radius vector is along Y-axis then the direction of torque is
A. $\vec{r} \times \vec{F}$
B. $\vec{r} \cdot \vec{F}$
C. $|\vec{r}||\vec{F}|$
D. none of these

- Watch Video Solution

77. Find the torque of a force
$\vec{F}=-3 \hat{i}+\hat{j}+5 \hat{k}$ acting at the point $\vec{r}=7 \hat{i}+3 \hat{j}+\hat{k}$
A. $14 \hat{i}-38 \hat{j}+16 \hat{k}$
B. $4 \hat{i}+4 \hat{j}+6 \hat{k}$

C. $-14 \hat{i}+38 \hat{j}-16 \hat{k}$

D. $21 \hat{i}+3 \hat{j}+5 \hat{k}$

D Watch Video Solution

78. If force acts on a body, whose line of action does not pass through its centre of gravity, then the body will experience
A. angular acceleration
B. linear acceleration
C. angular acceleration and linear acceleration

D. none of these

- Watch Video Solution

79. Can the couple acting on a rigid body produce translatory motion ?
A. purely rotational motion
B. purely linear motion
C. purely rotational motion and linear motion
D. neither nor

- Watch Video Solution

80. In order to balance a see-saw of total length
10.0 m , two kids weighing 20 kg and 40 kg are sitting at an end and at a distance x from the fulcrum at the centre, respectively The value x (in cm) is
A. 125
B. 250
C. 450
D. 350

- Watch Video Solution

81. a uniform beam, of length L and mass $m=1.8$
kg , is at rest on two scales. A uniform block, with mass $M=2.7 \mathrm{~kg}$, is at rest on the beam, with its center a distance $L / 4$ from the beam's left end. What do the scales read?
A. 16 N
B. 27 N
C. 29 N

D. 45 N

- Watch Video Solution

82. An automobile engine develops 100 kW when rotating at a speed of $1800 \mathrm{rev} / \mathrm{min}$. What torque does it deliver?
A. 350 Nm
B. 531 Nm
C. 440 Nm
D. 628 Nm

- Watch Video Solution

83. Angular momentum is
A. moment of momentum
B. product of mass and angular velocity
C. product of M.I. and velocity
D. moment of angular motion

84. Which is a vector quantity

A. angular momentum
B. work
C. potential energy
D. electric current

- Watch Video Solution

85. Dimensions of angular momentum are
A. $\left[M L T^{-2}\right]$
B. $\left[M L 2 T^{-1}\right]$
C. $\left[M L 2 T^{-2}\right]$
D. $\left[M L 2^{T}\right]$

- Watch Video Solution

86. Joule-second is the unit of
A. momentum
B. angular momentum
C. work
D. pressure

D Watch Video Solution

87. Under a constant torque, the angular momentum of a body changes from A to 4 A in 4 sec The torque on the body will be
A. $\frac{3}{4} \mathrm{~A}$
B. $\frac{1}{4} \mathrm{~A}$
C. $\frac{4}{3} \mathrm{~A}$

D. 4 A

- Watch Video Solution

88. A particle of mass m is rotating in a plane in circular path of radius r. Its angular momentum is
L. The centripetal force acting on the particle is
A. $L^{2} / m r$
B. L^{m} / r
C. L^{2} / m^{3}
D. L^{2} / m^{r}

- Watch Video Solution

89. A stationary uniform rod of mass 'm', length 'l'
leans against a smooth vertical wall making an angle θ with horizontal floor. Find the normal force
\& frictional force that is exerted by the floor on
A. $F_{N}(L / 2)$
B. $F_{N} . L \cos \theta$
C. $F_{N} l \sin \theta$
D. $F_{N}(L / 2) \cos \theta$
90. The torque $\vec{\tau}$ on a body about a given point is found to be equal to $\vec{A} \times \vec{L}$ where \vec{A} is a constant vector and \vec{L} is the angular momentum of the body about the point. From this its follows that -
A. $d \vec{L}$ is perpendicular to \vec{L} at all instants of time
B. the component of \vec{L} in the direction of \vec{A} does not change with time
C. the magnitude of L does not change with time
D. all the above

D Watch Video Solution

91. If a particle of mass m is moving with constant velocity v parallel to x-axis in $x-y$ plane as shown in fig. Its angular moment with respect to origin at any time t will be

$$
\text { A. }-m v b \hat{k}
$$

B. zero
C. $\frac{m v b}{2} \hat{k}$
D. $m v b \cos \theta \hat{k}$

- Watch Video Solution

92. Analogue of mass in rotational motion is.
A. moment of inertia
B. angular momentum
C. gyration

D. none of the above

- Watch Video Solution

93. Moment of inertia of body depends upon
A. axis of rotation
B. torque applied
C. angular speed
D. angular momentum
94. Moment of inertia of a body does not depend on
A. mass of object
B. mass distribution
C. angular velocity
D. axis of rotation
95. One circular ring and one circular disc, both are having the same mass and radius. The ratio of their moments of inertia about the axes passing through their centres and perpendicular to their planes, will be
A. 1: 1
B. 2: 1
C. $1: 2$
D. $4: 1$
96. Moment of inertia of a thin circular plate of mass M, radius R about an axis passing through its diameter is I. The moment of inertia of a circular ring of mass M, radius R about an axis perpendicular to its plane and passing through its centre is
A. $1: n^{2}$
B. 1: n
C. $1: 2 n$
D. $n^{2}: 1$
97. Two rings of radius R and $n R$ made of same material have the ratio of moment of inertia about an axis passing through center is $1: 8$. The value of n is
A. 2
B. $2 \sqrt{2}$
C. 4
D. $\frac{1}{2}$
98. The moment of inertia of a thin circular disc of mass M and radius R about any diameter is
A. $\frac{M R^{2}}{4}$
B. $M R^{2}$
C. $\frac{M R^{2}}{2}$
D. $2 M R^{2}$
99. Moment of inertia of a thin circular plate of mass M, radius R about an axis passing through its diameter is I. The moment of inertia of a circular ring of mass M, radius R about an axis perpendicular to its plane and passing through its centre is
A. $I / 2$
B. 21
C. $I / 4$
D. 41
100. The moment of inertia of a circular loop of radius R , at a distance of $R / 2$ around a rotating axis parallel to horizontal diameter of loop is
A. $M R^{2}$
B. $\frac{1}{2} M R^{2}$
C. $2 M R^{2}$
D. $\frac{3}{4} M R^{2}$

101. The moment of inertia of a ring about one of

its diameters is I.What willbe its moment of inertia about a tangent parallel to the diameter ?
A. 41
B. 21
C. $\frac{3}{2} I$
D. 31
102. Moment of inertia of a ring of mass M and radius R about an axis passing through the centre and perpendicular to the plane is I. What is the moment of inertia about its diameter ?
A. I
B. $I / 2$
C. $I / \sqrt{2}$
D. $I+M R^{2}$
103. A solid sphere and a hollow sphere are identical in mass and radius. The ratio of their moment of inertia about diameter is :
A. solid sphere
B. solid cylinder
C. solid sphere and solid cylinder
D. equal both
104. Moment of inertia of a disc about an axis which is tangent and parallel to its plane is I. Then the moment of inertia of disc about a tangent, but perpendicular to its plane will be
A. $\frac{6}{5} I$
B. $\frac{3}{4} I$
C. $\frac{3}{2} I$
D. $\frac{5}{4} I$
105. A sphere of mass 10 kg and radius 0.5 m rotates about a tangent. The moment of inertia of the solid sphere about tangent is
A. $5 \mathrm{kgm}^{2}$
B. $2.7 \mathrm{kgm}^{2}$
C. $3.5 \mathrm{kgm}^{2}$
D. $4.5 \mathrm{kgm}^{2}$

- Watch Video Solution

106. From a circular disc of radius R and $9 M$, a small disc of mass M and radius $\frac{R}{3}$ is removed concentrically .The moment of inertia of the remaining disc about and axis perpendicular to the plane of the disc and passing through its centre is
A. $\frac{40}{9} M R^{2}$
B. $M R^{2}$
C. $4 M R^{2}$
D. $\frac{4}{9} M R^{2}$
107. Let I_{1} and I_{2} be the moments of inertia of two bodies of identical geometrical shapek, the first made of aluminium and the second of iron.
A. $I_{1}>I_{2}$
B. $I_{1}=I_{2}$
C. $4 M R^{2}$
D. $\frac{4}{9} M R^{2}$

108. Two identical concentric rings each of mass m

 and radius R are placed perpendicularly. What is the moment of inertia of the system about the axis of one of the rings ?A. $\frac{1}{2} M R^{2}$
B. $M R^{2}$
C. $\frac{3}{2} M R^{2}$
D. $2 M R^{2}$
109. Find the ratio of the radii of gyration of a circular disc and a circular ring of the same radii about a tangential axis in their planes.
A. 1:2
B. $\sqrt{5}: \sqrt{6}$
C. 2:3
D. 2: 1

110. The radius of gyration of a disc of mass 100 g

 and radius 5 cm about an axis passing through its centre of gravity and perpendicular to the plane isA. 1.52 cm
B. 3.54 cm
C. 2.51 cm
D. 6.54 cm

111. A flywheel is attached to an engine to

A. increase its speed
B. decrease its speed
C. help in overcoming the dead point
D. decrease its energy

D Watch Video Solution

112. The angular momentum of a body with mass
(m) moment of inertia (I) and angular velocity
$(\omega) \mathrm{rad} / s$ is equal to
A. $\frac{I}{\omega}$
B. $I \omega^{2}$
C. $I \omega$
D. none of these

- Watch Video Solution

113. Moment of inertia of a body is 1 kg m 2 . If the body makes 2 revolutions per second, when its angular momentum is
A. $2 \pi J s$
B. $4 \pi J s$
C. $\pi / 2 J s$
D. $\pi J s$

(D) Watch Video Solution

114. A constant torque of $31.4 N-m$ id exterted on a pivoted wheel. If the angular acceleration of the wheel is $4 \pi \mathrm{rad} / \mathrm{s}^{2}$, then the moment of inertia will be.
A. $2.5 \mathrm{kgm}^{2}$
B. $4.5 \mathrm{kgm}^{2}$
C. $3.5 \mathrm{kgm}^{2}$
D. $5.5 \mathrm{kgm}^{2}$

D Watch Video Solution

115. A particle performs uniform circular motion with an angular momentum L.If the frequency of particle's motion is doubled and its kinetic energy halved, the angular momentum becomes
A. 2 L
B. 4 L
C. $\frac{L}{2}$
D. $\frac{L}{4}$

(Watch Video Solution

116. Two bodies have their moments of inertia I and $2 I$ respectively about their axis of rotation. If their kinetic energies of rotation are equal, their angular momenta will be in the ratio.
A. $1: 2$
B. $\sqrt{:} 1$
C. 2:1
D. 1: $\sqrt{2}$

- Watch Video Solution

117. The angular momentum of a system of particles is conserved
A. when no external force acts upon the system
B. when no external torque acts upon the

system

C. when no external impulse acts upon the system
D. when axis of rotation remains same

D Watch Video Solution

118. The motion of planets in the solar system is an exmaple of the conservation of
A. conservation of kinetic energy
B. conservation of linear momentum
C. conservation of angular momentum
D. none of the above

- Watch Video Solution

119. A diver in a swimming pool bends his head before diving, because it
A. increases his linear velocity
B. decreases his angular velocity
C. increases his moment of inertia
D. decreases his moment of inertia

D Watch Video Solution

120. If a person standing on a rotating disc stretches out his hands, the angular speed will
A. increase
B. decrease

C. remain same

D. none of these

D Watch Video Solution

121. A dancer is rotating on smooth horizontal
floor with an angular momentum L The dancer
folds her hands so that her moment of inertia decreases by 25%. The new angular momentum is

$$
\begin{aligned}
& \text { A. } \frac{3 L}{4} \\
& \text { B. } \frac{L}{4}
\end{aligned}
$$

C. $\frac{L}{2}$
D. L

D Watch Video Solution

122. A round disc of moment of inertia I_{2} about its axis perpendicular to its plane and passing through its centre is placed over another disc of moment of inertia I_{1} rotating with an angular velocity ω about the same axis. The final angular velocity of the combination of discs is.
A. $\frac{I_{2} \omega}{h+h}$
B. ω
C. $\frac{I_{1} \omega}{I_{1}+I_{2}}$
D. $\frac{\left(I_{1}+I_{2}\right) \omega}{I_{1}}$

- Watch Video Solution

123. A uniform disc of mass M and radius R is rotating in a horizontal plane about an axis perpendicular to its plane with an angular velocity ω. Another disc of mass $M / 3$ and radius $R / 2$ is
placed gently on the first disc coaxial. Then final angular velocity of the system is
A. $\frac{\omega}{5}$
B. $\frac{2 \omega}{5}$
C. $\frac{3 \omega}{2}$
D. $\frac{2 \omega}{3}$

- Watch Video Solution

124. A thin circular ring of mass m and radius R is rotating about its axis with a constant angular
velocity ω. Two objects each of mass M are attached gently to the opposite ends of a diameter of the ring. The ring now rotates with an angular velocity $\omega^{\prime}=$
A. $\frac{2 \omega M}{(M-2 m)}$
B. $\frac{(M-2 m)(M)}{}$
C. $\frac{\omega M}{(M+2 m)}$
D. $\frac{2 \omega M}{M-2 m}$

- Watch Video Solution

125. A loop of mass M and radius R is rolling on a
smooth horizontal surface with speed 'v'. It's total
kinetic energy is
A. $m v^{2}$
B. $\frac{3}{4} m v^{2}$
C. $\frac{1}{4} m v^{2}$
D. $\frac{1}{4} m v^{2}$

126. A sphere of moment of inertia ' I ' and mass 'm'

rolls down on an inclined plane without slipping its K.E. of rolling is
A. $\frac{1}{2} I \omega^{2}$
B. $\frac{1}{2} m v^{2}$
C. $I \omega+m v$
D. $\frac{I}{\omega}^{2}+\frac{1}{2} m v^{2}$
127. A disc is rolling without slipping. The ratio of
its rotational kinetic energy and translational kinetic energy would be -
A. $\frac{2}{7}$
B. $\frac{2}{5}$
C. 1
D. $\frac{1}{2}$
128. A solid sphere is rolling without slipping on a
horizontal plane. The ratio of its rotational kinetic energy and translational kinetic energy is
A. $\frac{7}{10} m v^{2}$
B. $\frac{3}{4} m v^{2}$
C. $\frac{1}{2} m v^{2}$
D. $\frac{1}{4} m v 2$
129. A disc is rolling on the inclined plane. What is the ratio of its rotational KE to the total KE ?
A. $1: 3$
B. 3: 1
C. 1:2
D. 2:1

- Watch Video Solution

130. A disc of mass 4.8 kg and radius 1 m is rolling

 on a horizontal surface without sliding with angular velocity of 600 rotations $/ \mathrm{min}$. What is the total kinetic energy of the disc ?A. 360 J
B. $1440 \pi^{2} J$
C. $4000 \pi^{2} J$
D. $600 \pi^{2} J$
131. A liquid is kept in a cylindrical jar, which is rotated about the cylindrical axis. The liquid rises at its sides. The radius of the jar is r and speed of rotation is ω the difference in height at the centre and the sides of the jar is
A. $\frac{r^{2} \omega^{2}}{\frac{g}{r^{2} g^{2}}}$
B. $\frac{r^{2} \omega^{2}}{\frac{g}{r^{2} g^{g}}}$
C. $\frac{g}{r^{2} g^{2}}$
D. $\frac{2 g}{r^{2} \omega^{2}}$
132. A sphere rolls down an inclined plane of inclination θ. What is the acceleration as the sphere reaches bottom?

5
A. $\frac{5}{7} g \sin \theta$
B. $\frac{3}{5} g \sin \theta$
C. $\frac{2}{7} g \sin \theta$
D. $\frac{2}{5} g \sin \theta$
133. An inclined plane makes an angle 30° with the horizontal. A solid sphere rolling down this inclined plane from rest without slipping has a linear acceleration equal to

> A. $\frac{58}{14}$
> B. $\frac{2 g}{3}$
> C. $\frac{g}{3}$
> D. $5 \frac{g}{7}$
134. The acceleration of a solid cylinder rolling down an smooth inclined plane of inclination 30° is
A. $g / 2$
B. $2 g / 2$
C. $g / 3$
D. $g / 4$
135. A cylinder is rolling down on a inclined plane of inclination 60°. What is iths acceleration?
A. $g / \sqrt{3}$
B. $g \sqrt{3}$
C. $\sqrt{\frac{2}{3} g}$
D. none of these
136. A solid cylinder is rolling without slipping on a
plane having inclination θ and the coefficient of
static friction μ_{s}. The relation between θ and μ_{s} is
A. $\tan \theta>3 \mu_{s}$
B. $\tan \theta \geq 3 \mu_{s}$
C. $\tan \theta<3 \mu_{s}^{2}$
D. none of these
137. During rolling without slipping, what is the velocity of the point in contact with the surface.
A. ωr
B. $>\omega r$
C. $<\omega r$
D. zero
138. The centre of a wheel rolling on a plaen surface moves with a speed v_{0}. A particle on the rim of the wheel at the same level as the centre will be moving at speed
A. zero
B. v_{0}
C. $\sqrt{2} v_{0}$
D. $2 v_{0}$
139. If a body moves through a distance greater than $2 \pi R$ in one full rotation. Then,
A. $v_{c} m>R \omega$
B. $v_{c} m<R \omega$
C. $v_{c} m \geq=R \omega$
D. $v_{c} m \leq=R \omega$

- Watch Video Solution

140. Centre of mass of a body is a point where its whole \qquad acts whereasits centre of gravity is a point where its whole \qquad acts

- Watch Video Solution

141. The position vector of the centre of mass of a system of particles is the ______ of the position vectors of the particles, each particle making a contribution proportional to its
142. Two particles of masses m_{1} and m_{2} move with velocities v_{1} and v_{2} towards eachother on a smooth horizontal surface. What is the velocity of their centre of mass ?

D Watch Video Solution

143. Locate the centre of mass of uniform triangular lamina and a uniform cone.
144. Show that the centre of mass of uniform rod of mass M and length L lies at the middle point of the rod.

- Watch Video Solution

145. Show that the centre of mass of uniform rod of mass M and length L lies at the middle point of the rod.
146. Total linear momentum of a system of particles is equal toof the system and velocity of

D Watch Video Solution

147. Study of moving bodies under the action of forces
148. Name the rotational analogue of force. What are its units?

D Watch Video Solution

149. The dimensional formula of torque is

- Watch Video Solution

150. Square of the resultant of two forces of equal magnitude is equal to three times the product of their magnitude. The angle between them is

- Watch Video Solution

151. A : For a body to be in rotational equilibrium the net torque acting on the body about any point is zero.

R : For net torque to be zero, net force should also be zero.

- Watch Video Solution

152. Moment of couple is called
153. If is the force acting on a particle having position vector and be the torque of this force about the origin, then-

D Watch Video Solution

154. Assertion : Torque is due to transverse componet is not perpendicular to radial component. Reason: This is because transverse component is not perpendicular to radial component.

155. TORQUE

- Watch Video Solution

156. TORQUE

- Watch Video Solution

157. Angular momentum of a particle is the moment of \qquad of the particle about the axis rotation.

- Watch Video Solution

158. Angular momentum of a particle about the origin O is equal to the vector product of its

vector and

\qquad vector.

D Watch Video Solution

159. A body is moving in a circular path with a constant speed. It has .
160. Write SI unit of angular momentum:

- Watch Video Solution

161. The rate of change of angular momentum is
called

- Watch Video Solution

162. Which physical quantity is conserved when a planet revolves around the sun ?
163. The units of angular momentum are

D Watch Video Solution

164. Angular momentum of a body is the product of.

- Watch Video Solution

165. A rigid body will be in equilibrium if both the
\qquad of the body remain constant with

- Watch Video Solution

166. For a rigid body in equilibrium, linear acceleration of its centre of mass is \qquad and the angular acceleration of the body is \qquad

D Watch Video Solution

167. In a conservative field at stable equilibrium potential energy is:
168. is the rotational analogue of mass in linear motion.

- Watch Video Solution

169. For translatory motion, $\mathrm{F}=\mathrm{ma}$. Its rotational analogue is \qquad

- Watch Video Solution

170. For translatory motion, $p=m v$. Its rotational analogue is \qquad

- Watch Video Solution

171. Moment of inertia of rigid body is equal to ____ the rotational kinetic energy of the body rotating with unit angular velocity about the given axis.
172. Radius of gyration of a body amount an axis of rotation is equal to the \qquad distance of its particles from the axis of rotation

- Watch Video Solution

173. Two identical particles move towards each other with velocity 2 v and v respectively. The velocity of centre of mass is
174. A particle performing uniform circular motion gas angular momentum L. If its angular frequency is double and its kinetic energy halved, then the new angular momentum is :

- Watch Video Solution

175. The moment of inertia of a disc about an axis
through its centre and perpendicular to its plane is $\frac{1}{2} M R^{2}$. Its moment of inertia about any diameter will be \qquad
176. A circular ring and circular disc of same radius have equal moments of inertia about axes through their centres and perpendicular to their planes. The ratio of their masses is

- Watch Video Solution

177. A ballet-dancer stretches her hands out for
slowing down. This is based on principle of conservation of

- Watch Video Solution

178. A tangential force F is applied on a disc of radius R, due to which it deflects through an angle
θ from its initial position. The work done by this force would be

- Watch Video Solution

179. A solid cylinder of mass M and radius R rolls down an inclined plane of height h without slipping. The speed of its centre when it reaches the bottom is.
180. The centre of mass of a body should necessarily lie within the body.

- Watch Video Solution

181. Statement-1 : The centre of mass of a system of
n particles is the weighted average of the position
vector of the n particles making up the system
. Statement-2 : The position of the centre of mass
of a system is independent of coordinate system
182. A boat is likely to capsize if the persons in the boat stand up

- Watch Video Solution

183. If no external torque acts on a body, will its angular velocity remain conserved ?

- Watch Video Solution

184. The centre of mass of a body changesits position with translatory as well as rotatory

- Watch Video Solution

185. A planet revolves around the sun under the effect of its gravitational force. The torque acting on the planet due to the gravitational force is zero

- Watch Video Solution

186. Statement-1 : To unscrew a rusted nut, we
need a wrench with longer arm.
Statement-2 : $\vec{\tau}=\vec{r} \times \vec{F}$.

D Watch Video Solution

187. Is angular momentum of a system always conserved ?

- Watch Video Solution

188. Two satellites of equal masses, which can be considered as particles are orbiting the earth at different heights. Will their moment of inertia be same or different?
189. Statement-1: Two particles of mass 1 kg and 3
kg move towards each other under their mutual
force of attraction. No other force acts on them.

When the relative velocity of approach of the two particles is $2 m / s$, their centre of mass has a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. When the relative velocity of approach becomes $3 m / s$ the velocity of the centre of mass is $0.75 \mathrm{~m} / \mathrm{s}$.

Statement-2: The total kinetic energy as seen from ground is $\frac{1}{2} \mu v_{r e l}^{2}+\frac{1}{2} m v_{c}^{2}$ and in absence of external force, total energy remains conserved.
190. A thin uniform circular disc of mass M and radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with an angular velocity ω. Another disc of same dimensions but of mass $\frac{1}{4} M$ is placed gently on the first disc co-axially. The angular velocity of the system is

D Watch Video Solution

191. When a solid sphere and a hollow sphere of same mass and size roll down an inclined plane
without slipping, the solid sphere reaches the bottom of the incline earlier than the hollow sphere.

- Watch Video Solution

192. MATCH TYPE QUESTIONS

Shape of body		Location of centre of mass	
(a)	Long thin rod	(p)	Geometrical centre
(b)	Circular ring	(q)	Centroid
(c)	Triangular lamina	(r)	Middle point of the body

193. MATCH TYPE QUESTIONS

	Shape of body	Location of centre of mass	
(a)	Cubical block	(p)	Geometrical centre
(b)	Hollow sphere	(q)	Middle point of the axis
(c)	Cylinder	(r)	Point of intersection of diagonals

D Watch Video Solution

194. MATCH TYPE QUESTIONS

(a) Torque	(p)	Moment of linear moment
(b) angular amomentum	(q)	Moment of force (r)
Rate of change of angular momentum		

195. MATCH TYPE QUESTIONS

| (a)MI. of a disc about any
 diameter | (p) | $\frac{3}{2} M R^{2}$ |
| :--- | :--- | :--- | :--- |
| (b)MA.I. of a disc about a tangent
 in its plane | (q) | $\frac{1}{4} M R^{2}$ |
| (c)M.I. of disc about a tangent
 perpendicular to its plane | (r) | $\frac{5}{4} M R^{2}$ |

- Watch Video Solution

196. MATCH TYPE QUESTIONS

(a) Bob of a pendulum at the mean position
(b) A spherical ball placed on smooth table
(c) A cone placed inverted on a table
(p) Unstable equilibrium
(q) Neutral equilibrium
(r) Stable equilibrium

197. MATCH TYPE QUESTIONS

	Physical Quantity	Dimensions	
(a)	Torque	(p) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$	
(b)	Angular momentum	$(q)\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$	
(c)	Power	(r)	

- Watch Video Solution

198. MATCH TYPE QUESTIONS

(a) Theorem of parallel axes
(b) Theorem of perpendicular axes
(p) $I_{z}^{2}=I_{x}^{2}+I_{y}^{2}$
(q) $I_{z}=I_{x}+I_{y}$
(r) $I=I_{C M}+M d^{2}$
199. The centre of mass of a system of particles is at the origin. It follows that

- Watch Video Solution

200. On what factors does the position of cm of a rigid body depend ?

D Watch Video Solution
201. Find the centre of mass of a uniform triangula lamina.

D Watch Video Solution

202. Distance of the centre of mass of a solid uniform cone from its vertex is z_{0}. If the radius of
its base is R and its height is h then z_{0} is equal to:
203. What is nature of motion of cm of an isolated
system?

D Watch Video Solution

204. Where does the centre of mass of a two particle system lie, if one particle ismore massive than the other?

205. Can the centre of mass of a body be at a point

 outside the body?
D Watch Video Solution

206. Where does the centre of mass of a uniform rectangular lamina lie?

- Watch Video Solution

207. Write an expression for the centre of mass
of\& two partide system

- Watch Video Solution

208. Write an expression for the velocity of the centre of mass of a system of particles.

- Watch Video Solution

209. What is a rigid body?

- Watch Video Solution

210. Name the rotational analogue of force. What

 are its units ?
- Watch Video Solution

211. Is torque a scalar or vector ? If it is a vector, what rule is used to determine its direction?

- Watch Video Solution

212. The dimensional formula of torque is
213. If 'muscle times speed equals power', then what is the ratio of the SI unit and the CGS unit of muscle?

- Watch Video Solution

214. Under what condition, the three vectors
cannot giv zero resultant (ii) can give zero resultant?
215. When a steady toqrue or couple acts on a body, the body

D Watch Video Solution

216. Write the dimensional formula of angular momentum. Is it scale or vector?

- Watch Video Solution

217. Write SI unit of angular momentum:
218. What is the ratio of the SI unit to the CGS unit of angular momentum ?

D Watch Video Solution

219. Name the physical quantity whose dimensions are same as that of angular momentum ?

D Watch Video Solution

220. Which physical quantity is conserved when a
planet revolves around the sun ?

- Watch Video Solution

221. A planet revolves around the sun under the effect of gravitational force exerted by the sun.

Why is the torque on the planet due to the gravitational force zero ?

- Watch Video Solution

222. A boat is likely to capsize if the persons in the boat stand up. Why ?
223. What is angular velocity of earth spinning around its own axis ?

- Watch Video Solution

224. Is the angular speed of rotation of hour hand of a watch greater or smaller than the angular speed of earth's rotation about its axis ?
225. Name the rotational analogue of linear acceleration.

D Watch Video Solution

226. Is moment of inertia a scalar or a vector?

- Watch Video Solution

227. Calculate the moment of inertia of a rod of mass M, and length I about an axis perpendicular to it passing through one of its ends.

- Watch Video Solution

228. What is moment of inertia of a solid sphere about its diameter ?

(Watch Video Solution

229. What is the moment of inertia of a hollow sphere about an axis passing through its centre ?
230. Radius of gyration of a uniform solid sphere about its diamter is

- Watch Video Solution

231. A circular ring and circular disc of same radius
have equal moments of inertia about axes through
their centres and perpendicular to their planes.
The ratio of their masses is

- Watch Video Solution

232. Where does the centre of mass of a uniform rectangular lamina lie?

- Watch Video Solution

233. What are the factors on which moment of inertia of a body depend?

- Watch Video Solution

234. Which physical quantity is represented by the product of the moment of inertia and the angular
velocity?

- Watch Video Solution

235. The term moment of momentum is called

- Watch Video Solution

236. What are the factors on which moment of inertia of a body depend ?

237. Define mechanical advantage of a lever.

D Watch Video Solution

238. Unit of moment of inertia in MKS system

D Watch Video Solution

239. Mass remaining constant, if the earth suddenly contracts to one third of its present radius, the length of the day would be shorted by
240. What are the differences between internal and external sources of recruitment?

D Watch Video Solution

241. Define centre of gravity.

- Watch Video Solution

242. The centre of mass of a system of particle is at the origin the number of particle to the left

- Watch Video Solution

243. Give an expression for the velocity and acceleration of the centre of mass of a system of particles.

- Watch Video Solution

244. Assertion : If there is no external torque on a body about its centre of mass, then the velocity of the centre of mass remains constant.

Reason : The linear momentum of an isolated system remains constant.

- Watch Video Solution

245. Statement-1 : Total linear momentum of system in centre of mass frame is zero only when there is no net external force.

Statement-2 : Total linear momentum of system is conserved in absence of net external force.

- Watch Video Solution

246. What will be the total linear momentum of a system of particles in a rotatory motion?
247. A double star is a system of two stars of masses m and $2 m$, rotating about their centre of mass only under their mutual gravitational attraction. If r is the separation between these two stars then their time period of rotation about their centre of mass will be proportional to

- Watch Video Solution

248. Centre of mass of the earth-moon system lies
249. On what factors does the position of cm of a rigid body depend ?

D Watch Video Solution
250. Define moment of force or torque.

- Watch Video Solution

251. State the principle of moments.
252. Angular momentum is

D Watch Video Solution

253. The relation between the torque τ and angular momentum L of a body of moment of inertia I rotating with angular velocity ω is
254. Starting from the definition of angular momentum in terms of position vector and linear momentum vectors. S.T. the time derivative of angular momentum is equal to the torque acting on the particle.

D Watch Video Solution

255. The radius of gyration of a body depends
upon

D Watch Video Solution

256. On what factors does the radius of gyration of a body depend ?

D Watch Video Solution

257. State theorem of parallel axes and therom of perpendi cular axes about moment of inertia.

D Watch Video Solution

258. State and prove theorem of perpendicular axes.
259. State Kepler's 2nd law of planetary motion.

D Watch Video Solution

260. What is the moment of inertia of a rod of mass M and length L about an axis perpendicular to it through one end ? Given the moment of inertia about the centre of mass is- $\frac{1}{12} M L 2$
261. Establish the relation between moment of inertia and torque on a rigid body

D Watch Video Solution

262. Establish a relation between angular momentum and moment of inertia of a rigid body.

D Watch Video Solution

263. Law of conservation of angular momentum
264. By the theorem of parallel axes:

- Watch Video Solution

265. What is the moment of inertia of a ring about a tangent to the circle of the ring ?

- Watch Video Solution

266. Law of conservation of angular momentum
267. State perpendicular axis theorem for calculation of moment of inertia using appropriate diagram. Also calculate moment of inertia about a diameter if that of an axis perpendicular to the plane of a disc and passing through its centre is given by $M R^{2}$.

- Watch Video Solution

268. How moment of inertia of a circular disc around its axis will be affected by increasing its
mass without changing its radius ? Justify your answers.

- Watch Video Solution

269. Two rings of radii R and $n R$ made from the
same wire of same linear mass density and having
the ratio of moments of inertia about an axis
through centre equal to $1: 8$. Find the value of n
270. What is a couple? What effect does it have on
a body ? Show that moment of couple is same irrespective of the point of rotation of the body.

D Watch Video Solution

271. Derive an expression for the work done by a torque. Hence write the expression for the power delivered by a torque.
272. What is torque ? Give its unit. Show that it is equal to the product of force and the perpendicular distance of its line of action from the axis of rotation.

D Watch Video Solution

273. Explain that torque is only due to transverse component of force. Radial component as nothing to do with torque.
274. Define angular momentum. Prove that angular momentum of a particle is equal to twice the product of its mass and areal velocity

D Watch Video Solution

275. Establish a relation between angular momentum and moment of inertia of a rigid body.

D Watch Video Solution

276. Show that the moment of inertia of a body
about the given axis of rotation is equal to twice
the kinetic energy of rotation of the body rotating with unit angular velocity

- Watch Video Solution

277. Obtain an expression for kinetic energy of rotation of a body. Hence define moment of inertia of the body. Explain its physical significance.

- Watch Video Solution

278. Derive an expression for moment of inertia of
a thin circular ring about an axis passing through
its centre and perpendicular to the plane of the ring.

D Watch Video Solution

279. Moment of inertia of a hollow cylinder of mass
M and radius R, about the axis of cylinder is

D Watch Video Solution

280. Thye angular momentum and the moment of
inertia are respectively
281. Derive an expression for moment of inertia of
a thin circular ring about an axis passing through
its centre and perpendicular to the plane of the ring.

D Watch Video Solution

282. Acceleration of a solid cylinder rolling without slipping down an incline of inclination θ is

D Watch Video Solution

283. The centre of mass of two particles system lies

- Watch Video Solution

284. Define and explain the term acceleration .

Derive the velocity-time relation of a body moving under constant acceleration.

D Watch Video Solution

285. Define and explain the term acceleration.

Derive the velocity-time relation of a body moving
under constant acceleration.

D Watch Video Solution

286. What do you understand by areal velocity of a planet ? State kepler's second law of planetary motion.what does it imply?

D Watch Video Solution

287. S.T. the time rate of the total angular momentum of a system of particles about a point
is equal to the sum of the external torques acting on the system taken about the same point.

D Watch Video Solution

288. When a rigid body is in motion, few particles
of the body remain at rest at all times. What kind of motion is the rigid body having?

- Watch Video Solution

289. Derive an expression for moment of inertia of
a thin circular ring about an axis passing through
its centre and perpendicular to the plane of the ring.

D Watch Video Solution

290. Derive an expression for moment of inertia of
a thin circular ring about an axis passing through its centre and perpendicular to the plane of the ring.
291. Derive an expression for moment of inertia of
a thin circular ring about an axis passing through its centre and perpendicular to the plane of the ring.

- Watch Video Solution

292. The moment of inertia of a Thin rod about and axis passing through the centre and perpendicular to the length is \qquad .
293. State the expression for the moment of inertia of a solid cylinder of uniform cross section about an axis through its centre and perpendicular to its length.

- Watch Video Solution

294. Derive an expression for moment of inertia of
a thin circular ring about an axis passing through
its centre and perpendicular to the plane of the ring.

295. What is moment of inertia of a solid sphere

 about its diameter ?
D Watch Video Solution

296. Acceleration of a solid cylinder rolling without slipping down an incline of inclination θ is

- Watch Video Solution

297. A lightstring is wound round a cylinder and
carries a mass tied to it at the free end. When the
mass is released, calculate the tension in the string. Show that the acceleration of the mass is less than g .

- Watch Video Solution

298. Moment of inertia of disc about the tangent parallel to plane is I. The moment of inertia of disc about tangent and perpendicular to its plane is
299. Moment of inertia of a disc about an axis passing through its centre and perpendicular to
its plane is $\frac{1}{2} M R^{2}$. Determine the moment of inertia of this disc about its diameter and about a tangent perpendicular to its plane.

D Watch Video Solution

300. Look at the drawing given in the figure which
has been drawn with ink of uniform line-thickness.

The mass of ink used to draw each of the two inner
circles, and each of the two line segments is m.
The mass of the ink used to draw the outer circle is
$6 m$.

The coordinates of the centres of the different parts are: outer circle $(0,0)$, left inner circle $(-a, a)$, right inner circle (a, a), vertical line $(0,0)$ and horizontal line $(0,-a)$. The y coordinate of the centre of mass of the ink in this
drawing is

A. $\frac{a}{10}$
B. $\frac{a}{8}$
C. $\frac{a}{12}$
D. $\frac{a}{3}$

- Watch Video Solution

301. Two particles A and B initially at rest, move towards each other by mutual force of attraction.

At the instant when the speed of A is n and the speed of B is $3 n$, the speed of the centre of mass of the system is
A. 3 v
B. v
C. 1.5 v
D. zero

- Watch Video Solution

302. Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives a velocity of $14 m / s$ to the heavier block in the direction of the lighter block. The velocity of the centre of mass is
A. $30 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $5 \mathrm{~m} / \mathrm{s}$

D Watch Video Solution

303. An isolated particle of mass m is moving in horizontal planexy along the x-axis, at a certain height above the ground. It suddenly explodes into two fragment of masses $m / 4$ and $3 m / 4$. An instant later, the smaller fragment is at $y=+15$ cm . The larger fragment at this instant is at
A. $y=-5 \mathrm{~cm}$
B. $y=+20 \mathrm{~cm}$
C. $y=+5 \mathrm{~cm}$
D. $y=-20 \mathrm{~cm}$

- Watch Video Solution

304. A smooth sphere A is moving on a frictionless
horizontal plane with angular speed ω and centre of mass velocity v. It collides elastically and head on with an identical sphere B at rest. Neglect
friction everywhere. After the collision, their angular speeds are ω_{A} and ω_{B} respectively. Then
A. $\omega_{A}<\omega_{B}$
B. $\omega_{A}=\omega_{B}$
C. $\omega_{A}=\omega$
D. $\omega_{B}=\omega$

- Watch Video Solution

305. A mass m is moving with a constant velocity
along a line parallel to the x-axis, away from the
origin. Its angular momentum with respect to the origin.
A. is zero
B. remains constant
C. goes on increasing
D. goes on decreasing

- Watch Video Solution

306. A particle of mass m is projected with a velocity v making an angle of 45° with the
horizontal. The magnitude of the angular momentum of the projectile abut the point of projection when the particle is at its maximum height h is.
A. zero
B. $\frac{m v^{3}}{\sqrt{2} g}$
$4 \sqrt{2} g$
C. $\frac{m v^{2}}{\sqrt{2} g}$
D. $\left(m \sqrt{2 g h^{3}}\right)$
307. A particle undergoes uniform circular motion.

About which point on the plane of the circle, will the angular momentum of the particle remain conserved?
A. centre of the circle
B. on the circumference of the circle
C. inside the circle
D. outside the circle
308. A particle is confined to rotate in a circular path decreasing linear speed, then which of the following is correct?
A. \vec{L} (angular momentum) is conserved about the centre
B. only direction of angular momentum \vec{L} is conserved
C. it spirals towards the centre
D. its acceleration is towards the centre
309. A cubical block of side L rests on a rough horizonta surface with coefficient of friction μ. A horizontal force F is applied on the block as shown. If the coefficient of friction is sufficiently high so that the block does not slide before toppling, the minimum force required to topple the block is

A. infinitesimal
B. $\mathrm{mg} / 4$
C. $\mathrm{mg} / 2$
D. $m g(1-n)$

- Watch Video Solution

310. A piece of wire is bent in the shape of a parabola $y=k x^{2}$ (y-axis vertical) with a bead of mass m on $i t$. The bead can slide on the wire without friction. It stays at the lowest point of the
parabola when the wire is at rest. The wire is now accelerated parallel to the x-axis with a constant acceleration a. The distance of the new equilibrium position of the bead, where the bead can stay at rest with respect to the wire, from the y-axis is:
A. $\frac{a}{g k}$
B. $\frac{a}{2 g k}$
C. $\frac{2 a}{g k}$
D. $\frac{a}{4 g k}$

- Watch Video Solution

311. A thin uniform rod, pivoted at O, is rotating in the horizontal plane with constatn angular speed
ω, as shown in the figure. At time $\mathrm{t}=0$, a small insect starts from O and moves with constant sped v , with respect to the rod towards the other end. It reaches the end of the rod at $t=T$ and stops. The angular speed of the system remains ω throughout. The magnitude of the torque $(|\vec{\pi}|)$ about O , as a function of time is best represented
by which plot?

A.

B.

C.

D.

D Watch Video Solution

312. A uniform wooden stick of mass 1.6 kg and
length I rests in an inclined mannar on a smooth,
vertical wall of height $h(<l)$ such that a small portion of the stick extends beyond the wall. The reaction force of th wall on the stick is perpendicular to the stick. The stick makes an angle of 30° with the wall and the bottom of the stick is on a rough floor. The reaction of the wall on the stick is equal in magnitude to the reaction of the floor on the stick. The ratio h / l and the friectional force f at the bottom of the stick are $\left(g=10 m s^{2}\right)$

$$
\begin{aligned}
& \text { A. } \frac{h}{l}=\frac{\sqrt{3}}{16} f=\frac{16 \sqrt{3}}{3} N \\
& \text { B. } \frac{h}{l}=\frac{3}{16} f=\frac{16 \sqrt{3}}{3} N \\
& \text { C. } \frac{h}{l}=\frac{3 \sqrt{3}}{16} f=\frac{8 \sqrt{3}}{3} N
\end{aligned}
$$

D. $\frac{h}{l}=\frac{3 \sqrt{3}}{16} f=\frac{16 \sqrt{3}}{3} N$

- Watch Video Solution

313. Consider regular polygons with number of
sides $\mathrm{n}=3,4,5 \ldots .$. as shown in the figure, The
center of mass of all the polygons is at height h
from the ground. They roll on a horizontal surface
about the leading vertex without slipping and
sliding as depicted, The maximum increase in height of the locus of the center of mass for each
polygton is Δ. Then Δ depends on n and h as

A. $\Delta=h \sin \left(\frac{2 \pi}{n}\right)$
B. $\Delta=h \tan ^{2}\left(\frac{\pi}{2 n}\right)$
C. $\Delta=h \sin ^{2}\left(\frac{\pi}{n}\right)$
D. $\Delta=h\left(\frac{1}{\cos (\pi / n)}-1\right)$

D Watch Video Solution
314. The position vector \vec{r} of a particle of mass m is given by the following equation
$\vec{r}(t)=\alpha t^{3} \hat{i}+\beta^{2} \hat{j}$,
where $\alpha=10 / 3 m s^{-3}, \beta=5 m s^{-2}$ and $\mathrm{m}=0.1 \mathrm{~kg}$.
At $t=1 \mathrm{~s}$, which of the following statement (s) is
(are) true about the particle?
A. The velocity v isgivenby $\mathrm{v}=(10 /+10 \mathrm{j}) \mathrm{ms} " 1$.
B. The angular momentum L with respect to
the $\cdot-\mathrm{gt}$ A origin is given by $\mathrm{L}=\sim(5 / 3) \mathrm{k}$ Nms
C. The force f - is given by $\mathrm{T}=(/+2 \mathrm{j}) \mathrm{N}$
D. The torque x with respect to the origin is given by $x^{*}(20 / 3) k$ Nm

- Watch Video Solution

315. A ball hits the floor and rebounds after an inelastic collision. In this case
A. the momentum of theball just after the collision is the same as that just before the collision
B. the mechanical energy of the ball remains the same inthe collision
C.) the total momentum of theball and theearthis conserved
D. tine total energy of the ball and the earth is conserved.

- Watch Video Solution

316. A shell is fired from a cannon with a velocity $v(m / s e c$.$) at an angle \theta$ with the horizontal
direction. At the highest point in its path it explodes into two pieces of equal mass. One of the pieces retraces its path to the cannon and the speed (in $m / s e c$.) of the other piece immediately after the explosion is
A. $3 v \cos \theta$
B. $2 v \cos \theta$
C. $\frac{3}{2} v \cos \theta$
D. $\sqrt{\frac{3}{2}} v \cos \theta$
317. A uniform bar of length 6 a and mass 8 m lies on a smooth horizontal table. Two point-masses m and 2 m moving in the same horizontal plane with speeds 2 v and v respectively strike the bar as shown in Fig, and stick to the bar after collision.

A. $v_{C}=0$
B. $\omega=\frac{3 v}{5 a}$
C. $\omega=\frac{v}{5 a}$
D. $E=\frac{3 m v^{2}}{5}$

- Watch Video Solution

318. Two blocks A and H. each of mass m, are connected by a massless spring of natural length I
. and spring constant K. The blocks are initially resting in a smooth horizontal floor with the spring at its natural length, as shown in Fig. A
third identical block C, also of mass m, moves on
the floor with a speed v along the line joining A
and B. and collides elastically with A. Then

A. the kinetic energy of the A B system, at maxi mum compression of the spring, is zero.
B. the kinetic energy of the A-B system, at maxi mum compression of the spring, is tnv2 /4
C. the maximum compression of the spring is
vMm/.k)
D. the maximum compression of the spring is
$\mathrm{vj}(\mathrm{m} / 2 \mathrm{k})$.

D Watch Video Solution

319. A tube of length L is filled completely with an incompressible liquid of mass M and closed at both ends. The tube is then roted in a horizontal plane about one of its ends with a uniform angular
velocity ω The force exerted by the liquid at the other end is
A. $\frac{M \omega^{2} L}{2}$
B. $\left(M \omega^{2} L\right)$
C. $\frac{M \omega^{2} L}{4}$
D. $\frac{M \omega^{2} L^{2}}{2}$

- Watch Video Solution

320. The moment of inertia of a thin square plate

ABCD of uniform thickness about an axis passing
through its center and perpendicular to its plane will

A. $I_{1}+I_{2}$
B. $I_{3}+I_{4}$
C. $I_{1}+I_{3}$
D. $I_{1}+I_{2}+I_{3}+I_{4}$

D Watch Video Solution

321. Let I be the moment of interia of a uniform square plate about an axis $A B$ that passses through its centre and is parallel to two its sides.
$C D$ is a line in the plane of the plate that passes
through the centre of the plate and makes an angle θ with $A B$. The moment of inertia of the plate about the axis $C D$ is then equal toA. I
B.
C. $I \sin ^{2} \theta$
D. $I \cos ^{2} \theta$

Answer: $I \frac{\cos ^{2} \theta}{2}$

D Watch Video Solution

322. A solid cylinder is rolling down a rough inclined plane of inclination θ. Then
A. the friction force is dissipative
B. the friction force is necessarily changing
C. the friction force will aid rotation but hinder translation.
D. the friction force is reduced if 0 is reduced

D Watch Video Solution

323. If the resultant of all the external forces acting on a system of particles is zero, then from an inertial frame, one can surely say that
A. linear momentum of the system does not change in time
B. kinetic energy of the system does not

change in time

C. angular momentum of the system does not change in time
D. potential energy of the system does not change in time

- Watch Video Solution

324. A point mass of 1 kg collides elastically with a stationary point mass of 5 kg . After their collision,
the 1 kg mass reverses its direction and moves with
a speed of $2 m s^{-1}$. Which of the following statements (s) is (are) correct for the system of these two masses?
A. Total momentum of the system is $3 \mathrm{~kg} \mathrm{~m} s^{-1}$
B. Momentum of 5 kg mass after collision is 4 $\mathrm{kg} m s^{-1}$
C. Kinetic energy of the centre of mass is 0.75 J
D. Total kinetic energy of the system is 4 J
325. A thin ring of mass 2 kg and radius 0.5 m is rolling without on a horizontal plane with velocity $1 \mathrm{~m} / \mathrm{s}$. A small ball of mass 0.1 kg , moving with velocity $20 \mathrm{~m} / \mathrm{s}$ in the opposite direction hits the ring at a height of 0.75 m and goes vertically up with velocity $10 \mathrm{~m} / \mathrm{s}$. Immediately after the collision

A. the ring has pure rotation about itsstationary CM
B. the ring comes to a complete stop
C. friction between the ring and the ground is to the left
D. there is no friction between the ring and the ground.
326. The figure shows a system consisting of (i) a
ring the outer radius 3 R rolling clockwise without
slipping on a horizontal surface with angular speed ω and (ii) an inner disc of radius 2 R rotating
anti clockwise with angular speed $\omega / 2$. The ring and disc are separted. The point P on the inner
disc is at a distance R from the origin, where OP makes an angle of 30° with the horizontal. Then with respect to the horizontal surface,
A. The point O has a linear velocity 3 Ron
B. The point P has a linear velocity

$$
\frac{11}{4} R \omega \hat{I}+\frac{\sqrt{3}}{2} R \omega \hat{k}
$$

C. The point P has a linear velocity

$$
\frac{13}{4} R \omega \hat{I}+\frac{\sqrt{3}}{4} R \omega \hat{k}
$$

D. The point P has a linear velocity (3-

sqrt3/4)RomegahatI+1/4Romegahatk

D Watch Video Solution

327. Two solid cylinders P and Q of same mass and same radius start rolling down a fixed inclined plane from the same height at the same time. Cylinder P has most of its mass concentrated near
its surface, while Q has most its mass concentrated near the axis. Which statement(s) is (are) correct?
A. Both cylinders P and Q reach the ground at the same time.
B. Cylinder P has larger linear acceleration than
cylinder Q.
C. Both cylinders reach the ground with same
translational kinetic energy
D. Cylinder Q reaches the ground with larger angular speed.

- Watch Video Solution

328. A block of mass M has a circular cut with a frictionless surface as shown. The block rests on the horizontal frictionless surface of a fixed table. Initially the right edge of the block is at $x=0$, in a co-ordinate system fixed to the table. A point mass
m is released from rest at the topmost point of the path as shown and it slides down. When the mass loses contact with the block, its position is x and the velocity is v. At that instant, which of the
following options is/are correct?

A. The velocity of the point mass mis:

$$
v=\sqrt{2 g \frac{R}{1+\frac{m}{M}}}
$$

B. The x component of displacement of the centre $m R$ of mass of the block M is $\frac{m R}{M+m}$
C. The position of the point mass is :

$$
x=-\sqrt{2} \frac{m R}{M+m}
$$

D. The velocity of the block M is $V=\frac{m}{M} \sqrt{g R}$

- Watch Video Solution

329. A rigid uniform bar $A B$ of length ? is slipping
from its vertical position on a frictionless floor (as
shown in the figure). At some instant of time, the
angle made by the bar with the vertical is θ.
Which of the following statements about its
motion is/are correct?

A. The trajectory of the point A is a parabola
B. Instantaneous torque about the point in contact with the floor is proportional to sin 0
C. The midpoint of the bar will fall vertically
D. When the bar makes ah lallffibj |o. mlnj
vertical, the displacement of its midpoint
from the initial position is proportional to (1
~ cosO)

D Watch Video Solution

330. A wheel of radius R and mass M is placed at the bottom of a fixed step of height R as shown in the figure. A constant force is continuously applied on the surface of the wheel so that it just clims the
step without slipping. Consider the torque τ about an axis normal to the plane of the paper passing through the point Q . Which of the following options is/are correct?

A. U the force is applied normal to the oircum
ference at point P, then r is zero
B. If the force is applied tangentially at point Sgtj then x ? y 0 but tl »e w heel never climbs the step
C. If the force is applied at point P tangentially, then t decreases continuously as the wheel climbs
D. If the force is applied normal to the circunv
ference al point X, then r is constant
331. The potential energy of a particle of mass ? at a distance ? from a fixed point ? is given by
$V(r)=k r^{2} / 2$, where ? is a positive constant of appropriate dimensions. This particle is moving in
a circular orbit of radius? about the point ?. If ? is
the speed of the particle and ? is the magnitude of
its angular momentum about ?, which of the
following statements is (are) true?

$$
\begin{aligned}
& \text { A. } V=\sqrt{\frac{k}{2 m}} R \\
& \text { B. } V=\sqrt{\frac{k}{m}} R \\
& \text { C. } L=\sqrt{m k} R^{2} \\
& \text { D. } L=\sqrt{\frac{m k}{2}} R^{2}
\end{aligned}
$$

D Watch Video Solution

332. Consider a body of mass 1.0 at rest at the origin at time $t=0$. A force $\vec{F}=(\alpha t \hat{l}+\beta \widehat{J})$ is applied on the body, where $\alpha=1.0 \mathrm{Ns}^{-1}$ and $\beta=1.0 \mathrm{~N}$. The torque acting on the body about the origin at time $t=1.0 s$ is $\vec{\tau}$. Which of the following statements is (are) true?
A.) $|\mathrm{T}|=-\mathrm{Nm}$
B. The torque T^{*} is in the direction of the unit A
vector +k
C. The velocity of the body at $t=l s$ is

$$
\vec{v}=\frac{1}{2}(\hat{i}+2 \hat{j}) m s^{-1}
$$

D. The magnitude of displacement of the body

at $£=\mathrm{Is}$ is $1 / 6 \mathrm{~m}$

D Watch Video Solution

333. Satement-1: if there is no external torque on a body about its centre of mass, then the velocity of
the center of mass remains constant.

Statement-2: The linear momentum of an isolated system remains constant.
A. statements -1 and 2 are true and statement- 2
is a correct explanation for statement-1.
B. statements-land 2 are true and statement-2
is not a correct explanation for statement-1.
C. statement- 1 is true, statement- 2 is false.
D. statement- 1 is false, statement- 2 is true
334. Satement-1: two cylinder one hollow (metal)
and the other side (wood) with the same mass and identical dimensions are simultaneously allowed to roll wihtout slipping down an inclined plane
from the same height. The hollow cylinder will reach the bottom of the inclined plane first.

Statement-2: By the principle of conservation of energy, the total kinetic energies of both the cylinder are identical when they reach the bottom of the incline.
A. statements -1 and 2 are true and statement- 2 is a correct explanation for statement-1.
B. statements-1and 2 are true and statement-2
is not a correct explanation for statement-1.
C. statement- 1 is true, statement- 2 is false.
D. statement- 1 is false, statement- 2 is true

D Watch Video Solution

335. The equations $x^{2}+5 x^{2}+p x+q=0$ and
$x^{\wedge} 3+7 x a+p x+r=0$ have two roots in common. If
the third root of each equation is xt and xa respectively then the ordered pair ($\mathrm{x} 1, \mathrm{x} 2$) is
A. 2
B. 44228
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

D Watch Video Solution

336. Two discs A and B are mounted coaxiallay on a vertical axle. The discs have moments of inertia I and 2 I respectively about the common axis. Disc A is imparted an initial angular velocity 2ω using the
entire potential energy of a spring compressed by a distance x_{1} Disc B is imparted an angular velocity ω by a spring having the same spring constant and compressed by a distance x_{2} Both the discs rotate in the clockwise direction.

When disc B is brought in contact with disc A, they acquire a common angular velocity in time t. The average frictional torque on one disc by the other during this period is

> A. $\frac{2 I \omega}{3 t}$
> B. $\frac{9 I \omega}{2 t}$
> C. $\frac{9 I \omega}{4 t}$
D. $\frac{3 I \omega}{2 t}$

- Watch Video Solution

337. Two discs A and B are mounted coaxially on a vertical axle. The discs have moments of inertia I and 21 respectively about the common axis. Disc A is imparted an initial angular velocity 2ω using the entire potential energy of a spring compressed by
a distance x_{1}. Disc B is im parted an angular velocity ω by a spring having the same spring constant and compressed by a distance x_{2}. Both
the discs rotate in the clockwise direction.The loss
of kinetic energy during the above proces is
A. $\frac{I \omega^{2}}{2}$
B. $\frac{I \omega^{2}}{3}$
C. $\frac{I \omega^{2}}{4}$
D. $\frac{I \omega^{2}}{6}$

D Watch Video Solution

338. A uniform thin cylindrical disk of mass M and radius R is attaached to two identical massless
springs of spring constatn k which are fixed to the
wall as shown in the figure. The springs are attached to the axle of the disk symmetrically on either side at a distance d from its centre. The axle is massless and both the springs and the axle are in horizontal plane. the unstretched length of each spring is L. The disk is initially at its equilibrium position with its centre of mass (CM) at a distance

L from the wall. The disk rolls without slipping with velocity $\vec{V}_{0}=\operatorname{vac} V_{0} \hat{i}$. The coefficinet of friction is μ.

The centre of mass of the disk undergoes simple harmonic motion with angular frequency ω equal to -
A. $\sqrt{\frac{k}{M}}$
B. $\sqrt{2 \frac{k}{M}}$
C. $\sqrt{2 \frac{k}{3} M}$
D. $\sqrt{4 \frac{k}{3} M}$

- Watch Video Solution

339. A uniform thin cylindrical disk of mass M and radius R is attaached to two identical massless springs of spring constatn k which are fixed to the wall as shown in the figure. The springs are attached to the axle of the disk symmetrically on either side at a distance d from its centre. The axle is massless and both the springs and the axle are in horizontal plane. the unstretched length of each spring is L. The disk is initially at its equilibrium position with its centre of mass (CM) at a distance

L from the wall. The disk rolls without slipping with velocity $\vec{V}_{0}=\operatorname{vac} V_{0} \hat{i}$. The coefficinet of friction is μ.

The maximum value of V_{0} for whic the disk will roll without slipping is-
A. $\mu g \sqrt{\frac{M}{k}}$
B. $\mu g \sqrt{\frac{M}{2} k}$
C. $\mu g \sqrt{3 \frac{M}{k}}$

D. $\mu g \sqrt{5 \frac{M}{2} k}$

D Watch Video Solution

340. The general motion of a rigid body can be considered to be a combination of (i) a motion of its centre of mass about an axis, and (ii) its motion about an instantaneous exis passing through the centre of mass. These axes need not be stationary.

Consider, for example, a thin uniform disc welded
(rigidly fixed) horizontally at its rim to a massless,
stick as shown in the figure. When the disc-stick
system is rotated about the origin on a horizontal
frictionless plane with angular speed ω the motion at any instant can be taken as a combination of (i) a rotation of the disc through an instantaneous
vertical axis passing through its centre of mass (as
is seen from the changed orientation of points P and Q). Both these motions have the same angular speed ω in this case

Now consider two similar system as shown in the
figure: Case (a) the disc with its face vertical and parallel to $x-z$ plane, Case (b) the disc with its face making an angle of 45° with $x-y$ plane and its horizontal diameter parallel to x-axis. In both the cases, the disc is welded at point P, and the systems are rotated with constant angular speed ω about the z-axis.

Which of the following statements regarding the
angular speed about the instantaneous axis
(passing through the centre of mass) is correct?
A. It is v2iO) for both the cases
B. It is o) for case ,and for case
C.) It is (ofor case , and for case (/)
D. It is o) for both the cases

- Watch Video Solution

341. The general motion of a rigid body can be considered to be a combination of (i) a motion of
its centre of mass about an axis, and (ii) its motion about an instantaneous exis passing through the centre of mass. These axes need not be stationary.

Consider, for example, a thin uniform disc welded
(rigidly fixed) horizontally at its rim to a massless,
stick as shown in the figure. When the disc-stick
system is rotated about the origin on a horizontal
frictionless plane with angular speed ω the motion at any instant can be taken as a combination of (i)
a rotation of the disc through an instantaneous
vertical axis passing through its centre of mass (as
is seen from the changed orientation of points P
and Q). Both these motions have the same angular
speed ω in this case

Now consider two similar system as shown in the
figure: Case (a) the disc with its face vertical and parallel to $x-z$ plane, Case (b) the disc with its face making an angle of 45° with $x-y$ plane and its horizontal diameter parallel to x-axis. In both the cases, the disc is welded at point P , and the systems are rotated with constant angular speed ω about the z -axis.

Which of the following statements regarding the angular speed about the instantaneous axis (passing through the centre of mass) is correct?
A. It is vertical for poth the cases (rr) ap
B.) It is vertical for case (/?) ,and is at 45° lo the
$x-z$ plane and lies in the plane of the disc for
C. ft is horizontal for case ,and is at $45 \mathrm{j}^{*}$ lo the x -
z plane and is normal to the plane of the disc
for case (t).
D. It is vertical for case \{a plane and is normal to case gt

- Watch Video Solution

342. Two blocks A and B, each of mass m, are connected by a spring of force constant K. Initially,
the spring is in its natural length. A horizontal
constant force F starts acting on block A at time $t=0$ and at time t, the extension in the spring is seen to be l. What is the displacement of the block

A in time t ?

A. $\frac{R}{4}\left(e^{2 \omega t}+e^{-2 \omega t}\right)$
B. $\frac{R}{4}\left(e^{\omega t}+e^{-\omega t}\right)$
C. $\frac{R}{2} \cos 2 \omega t$
D. $\frac{R}{2} \cos \omega t$
343. A frame of reference that is accelerated with respect to an inertial frame of reference is called a non-inertial frame of reference. A coordinate
system fixed on a circular disc rotating about a fixed axis with a constant angular velocity ω is an example of non=inertial frame of reference. The relationship between the force $\vec{F}_{\text {rot }}$ experienced by a particle of mass m moving on the rotating disc and the force \vec{F}_{\in} experienced by the particle in an inertial frame of reference is
$\vec{F}_{r o t}=\vec{F}_{i n}+2 m\left(\vec{v}_{r o t} \times \vec{\omega}\right)+m(\vec{\omega} \times \vec{r}) \times \vec{\omega}$
where $\vec{v}_{r o t}$ is the velocity of the particle in the rotating frame of reference and \vec{r} is the position vector of the particle with respect to the centre of the disc.

Now consider a smooth slot along a diameter fo a disc of radius R rotating counter-clockwise with a constant angular speed ω about its vertical axis through its center. We assign a coordinate system with the origin at the center of the disc, the x -axis along the slot, the y-axis perpendicular to the slot and the z -axis along the rotation axis $(\vec{\omega}=\omega \hat{k})$. A small block of mass m is gently placed in the slot at $\vec{r}(R / 2) \hat{i}$ at $t=0$ and is constrained to move only along the slot.

The net reaction of the disc on the block is
A. $-m \omega^{2} R \cos \omega \hat{t}-m g \hat{k}$
B. $\frac{1}{2} m \omega\left(e^{2} \omega t-e^{-2 \omega t} \hat{j}+m g \hat{k}\right.$
C. $m \omega^{2} R \sin \omega t \hat{j}-m g \hat{k}$
D. $\frac{1}{2} m \omega^{2} R\left(e^{w t}\right) j-m g \hat{k}$

- Watch Video Solution

344. One twirls a circular ring (of mass and radius)
near the tip of one's finger as shown in Figure 1. In
the process the finger never loses contact with the inner rim of the ring. The finger traces out the surface of a cone, shown by the dotted line. The radius of the path traced out by the point where
the ring and the finger is in contact is ?. The finger rotates with an angular velocity 2_{0}. The rotating ring rolls without slipping on the outside of a smaller circle described by the point where the
ring and the finger is in contact (Figure 2). The coefficient of friction between the ring and the finger is μ and the acceleration due to gravity is g .

Figure 1

Figure 2

The minimum vlaue of ω_{0} below which the ring will drop down is
A. $\frac{\sqrt{2 g}}{\mu(R-r)}$
B. $\sqrt{\frac{g}{\mu(R-r)}}$
C. $\sqrt{\frac{3 g}{2 \mu(R-r)}}$
D. $\sqrt{\frac{g}{2 \mu(R-r)}}$

- Watch Video Solution

345. A ring of mass 1 kg and radius 1 m is moving with a velocity of $1 m / s$ by rolling on a frictionless inclined plane. The total kinetic energy of the ring is
A. $\frac{3}{2} M \omega_{0}^{2}(R-r)^{2}$
B. $\frac{1}{2} M \omega_{0}^{2}(R-r)^{2}$
C. $M \omega_{0}^{2}(R-r)^{2}$
D. $M \omega_{0}^{2} R^{2}$

- Watch Video Solution

346. Four solid sphereas each of diameter $\sqrt{5} \mathrm{~cm}$ and mass 0.5 kg are placed with their centres at the corners of a square of side 4 cm . The moment of inertia of the system about the diagonal of the square is $N \times 10^{-4} \mathrm{~kg}-\mathrm{m}^{2}$, the N is -
347. A binary star consists of two stars
$A\left(\right.$ mass $\left.2.2 M_{s}\right)$ and $\mathrm{B}\left(\right.$ mass $\left.11 M_{s}\right)$ where M_{s} is the mass of the sun, they are separted by distane d and are rotating about their center of mass,
which is stationary. The ratio of the total angular momentum of the binary to the angular momentum of star B about the centre of mass is

D Watch Video Solution

348. A uniform circular disc of mass 50 kg and radius 0.4 m is rotating with an angular velocity of $10 \mathrm{rads}^{-1}$ about its own axis, which is vertical. Two
uniform circular rings, each of mass 6.25 kg and radius 0.2 m , are gently placed symmetrically on the disc in such a manner that they are touching each other along the axis of the disc and are horizontal. Assume that the friction is large enough such that the rings are at rest relative to the disc and the system rotates about the original axis. The new angular velocity $\left(\in r e d s^{-1}\right)$ of the system is

- Watch Video Solution

349. A lamina is made by removing a small disc of
diameter 2 R from a bigger disc of uniform mass
density and radius 2 R , as shown in the figure. The moment of inertia of this lamina about axes passing though O and P is I_{O} and I_{P} respectively. Both these axes are perpendiucalr to the plane of the lamina. The ratio $\frac{I_{P}}{I_{O}}$ ot the nearest integer is

350. A horizontal circular platform of radius 0.5 m and mass axis. Two massless spring toy-guns, each carrying a steel ball of mass 0.05 kg are attached to the platform at a distance 0.25 m from the centre on its either sides along its diameter (see
figure). Each gun simultaneously fires the balls horizontally and perpendicular to the diameter in opposite directions. After leaving the platform, the
balls have horizontal speed of $9 \mathrm{~ms}^{-1}$ with respect
to the ground. The rotational speed of the platform in rads ${ }^{-1}$ after the balls lease the
platform is

D Watch Video Solution

351. The densitis of two solid spheres A and B of the same radii R very with radial distance $\operatorname{rasp}_{A}(r)=k\left(\frac{r}{R}\right)$ and $p_{B}(r)=k\left(\frac{r}{(R)^{5}}\right.$,
respectively, where k is a constant. The moments
of inertia of the inividual spheres about axes
passing throgh their centres are I_{A} and I_{B} respectively. if $\frac{I_{B}}{I_{A}}=\frac{n}{10}$, the value of n is

- Watch Video Solution

352. In the List-I below, four different paths of a particle are given as functions of time. In these functions, and are positive constants of appropriate dimensions and. In each case, the force acting on the particle is either zero or conservative. In List-II, five physical quantities of the particle are mentioned: is the linear
momentum, is the angular momentum about the origin, is the kinetic energy, is the potential energy and is the total energy. Match each path in List-I with those quantities in List-II, which are conserved for that path.

LIST-I
LIST-II
$\begin{array}{ll}\text { P. } \vec{r}(t)=\alpha t \hat{\imath}+\beta t \hat{\jmath} & \text { 1. } \vec{p} \\ \text { Q. } \vec{r}(t)=\alpha \cos \omega t \hat{\imath}+\beta \sin \omega t \hat{\jmath} & \text { 2. } \vec{L} \\ \text { R. } \vec{r}(t)=\alpha(\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath}) & \text { 3. } K \\ \text { S. } \vec{r}(t)=\alpha t \hat{\imath}+\frac{\beta}{2} t^{2} \hat{\jmath} & \text { 4. } U \\ & \text { 5. } E\end{array}$
A. $\mathrm{p}-1,2,3,4,5, \mathrm{Q}-2,5, \mathrm{R}-2,3,4,5, \mathrm{~s}-5$
B. $\mathrm{p}-1,2,3,4,5, \mathrm{Q}-3,5, \mathrm{R}-2,3,4,5, \mathrm{~S}-2,5$
C. $\mathrm{p}-2,3,4,5, \mathrm{Q}-5, \mathrm{R}-1, \mathrm{~S}-2,5$
D. $\mathrm{p}-1,2,3,5, \mathrm{Q}-2,5, \mathrm{R}-2,3,4,5, \mathrm{~S}-2,5$

- Watch Video Solution

353. A ring and a disc are initially at rest, side by
side, at the top of an inclined plane which makes
an angle 60° with the horizontal. They start to roll
without slipping at the same instant of time along
the shortest path. If the time difference between their reaching the ground is $(2-\sqrt{3}) / \sqrt{10 s} 2-3$ / 10s, then the height of the top of the inclined plane, in metres, is \qquad . Take $g=10 \mathrm{~ms}^{-2}$
