© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DHANPAT RAI \& CO PHYSICS (HINGLISH)

VECTORS

Type A

1. $A B C D E$ is a pentagon prove that $\operatorname{vec}(A B+$
(vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0`

- Watch Video Solution

2. $A B C D$ is a parallelogram Fig. 2 (c).64. AC and (BD) are its
diagonals. Show that
(a) $\overrightarrow{A C}+\overrightarrow{B D}=2 \overrightarrow{B C}$
(b) $\overrightarrow{A C}-\overrightarrow{B D}=2 \overrightarrow{A B}$

- Watch Video Solution

Example

1. A boy travels 10 m due north and then 7 m due east. Find the displacement of the boy.

- Watch Video Solution

2. A particle has a displacement of 12 m towards east and 5 m towards the north and then 6 m vertically upward. Find the magnitude of the sum of these displacements.

D Watch Video Solution

3. Find the resultant of two forces, one 6 N due east and other 8 N due north.
4. Two vectors, both equal in magnitude, have their resultant equal in magnitude of the either. Find the angle between the two vectors.

D Watch Video Solution

5. Two forces equal to P and $2 P$ newton act on a particle. If the first be doubled and the second be increased by 20 newton, the direction of the resultant is unaltered. Find the value of P.

(Watch Video Solution

6. The resultant vector of \vec{P} and \vec{Q} is \vec{R}. On reversing the direction of \vec{Q}, the resultant vector becomes \vec{S}. Show that : $R^{2}+S^{2}=2\left(P^{2}+Q^{2}\right)$

- Watch Video Solution

7. Calculate the angle between a 2 N force and a 3 N force so that their resultant is 4 N .

D Watch Video Solution

8. The greatest and the least resultant of two force acting at a point are 29 N and 5 N respectively. If each force is increased
by 3 N , find the resultant of two new forces acting at right angle of each other.

- Watch Video Solution

9. The sum of the magnitudes of two forces acting at a point is 18 and the magnitude of their resultant is 12 . If the resultant is at 90° with the force of smaller magnitude, What are the magnitudes of forces?

- Watch Video Solution

10. Establish the following inequalities geometrically or otherwise,
(a) $|\vec{A}+\vec{B}| \leq|\vec{A}|+|\vec{B}|$,
(b) $|\vec{A}+\vec{B}| \geq||\vec{A}|-|\vec{B}|$
(C) $|\vec{A}-\vec{B}| \leq|\vec{A}|+|\vec{B}|$
(d) $|\vec{A}-\vec{B}| \geq||\vec{A}|-|\vec{B}||$

When does the equality sign above apply ?

- Watch Video Solution

11. Establish the following vector in equalities:
(i) $|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$
(ii) $|\vec{a}-\vec{b}| \geq|\vec{a}|-|\vec{b}|$

What does the equality sign apply ?
12. Rain is falling vertically with a speed of $30 \mathrm{~ms}^{-1}$. A woman rides a bicycle with a speed of $10 \mathrm{~ms}^{-1}$ in the North to South direction. What is the direction in which she should hold her umbrella ?

D Watch Video Solution

13. A man can swim with a speed of $4 k \mathrm{kh}^{-1}$ in still water. He crosses a river 1 km wise that flows steadly at $3 \mathrm{kmh}^{-1}$. If he makes his strokes normal to the river current, how far down the river does he go when he reaches the other bank?

D Watch Video Solution

14. A river 800 m wide flows at the rate of $5 \mathrm{kmh}^{-1}$. A swimmer who can swim at $10 \mathrm{kmh}^{-1}$ in still water, wishes to cross the river straight. (i) Along what direction must be strike ? (ii) What should be his resultant velocity ? (iii) How much time he would take?

- Watch Video Solution

15. A boat man can row with a speed of $10 \mathrm{kmh}^{-1}$ in still water. If the river flows steadily at $5 \mathrm{~km} / \mathrm{h}$, in which direction should the boatman row in order to reach a point on the other bank directly opposite to the point from where he stared ? The width of the river is 2 km .

- Watch Video Solution

16. Rain is falling vertically with a speed of $30 \mathrm{~ms}^{-1}$. A woman rides a bicycle with a speed of $10 \mathrm{~ms}^{-1}$ in the North to South direction. What is the direction in which she should hold her umbrella ?

D Watch Video Solution

17. To a person moving eastwards with a velocity of
$4.8 \mathrm{kmh}^{-1}$, rain appears to fall vertically downwards with a
speed of $6.4 \mathrm{kmh}^{-1}$. Find the actual speed and direction of the rain.

- Watch Video Solution

18. A ship is steaming towards east at a speed of $12 \mathrm{~ms}-1$. A woman runs across the deck at a speed of $5 \mathrm{~ms}-1$ in the direction at right angles to the direction of motion of the ship i.e. towards north. What is the velocity of the woman relative to sea ?

- Watch Video Solution

19. In a harbour, wind is blowing at the speed of $72 \mathrm{~km} / \mathrm{h}$ and the flag on the mast of a boat anchored in the harbour flutters along the N -Edirection. If the boat starts moving at a speed of $51 \mathrm{~km} / \mathrm{h}$ to the North, what is the direction of flag on the mast of the bat ?

- Watch Video Solution

20. To a man walking due east at the rate of $2 k m h^{-1}$, rain appears to fall vertically. When he increases his speed to $4 \mathrm{kmh}^{-1}$, its appears to meet him at an angle of 45°. Find the real direction and speed of rain.

- Watch Video Solution

21. Find unit vector parallel to the resultant of the vectors $\vec{A}=\hat{i}+4 \hat{j}+2 \hat{k}$ and $\vec{B}=3 \hat{i}-5 \hat{j}+\hat{k}$.

(D) Watch Video Solution

22. A vector \vec{X}, when added to the resultant of the vectors
$\vec{A}=3 \hat{i}-5 \hat{j}+7 \hat{k}$ and $\vec{B}=2 \hat{i}+4 \hat{j}-3 \hat{k}$ gives a unit
vector along Y-axis. Find the vector \vec{X}.

- Watch Video Solution

23. Two forces $\vec{F}_{1}=3 \hat{i}+4 \hat{j}$ and $\vec{F}_{2}=3 \hat{j}+4 \hat{k}$ are acting simultaneously at a point. What is the magnitude of the resultant force ?

D Watch Video Solution

24. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=7 \hat{I}+24 \hat{j}$, find a vector having the same magnitude as \vec{B} and parallel to \vec{A}.
25. A boat is moving with a velocity $(3 \hat{i}+\hat{j})$ with respect to
ground. The water in the river is moving with a velocity $-3 \hat{i}-4 \hat{j}$ with respect to ground. What is the relative velocity of boat with respect to river?

D Watch Video Solution

26. A bird moves with velocity $20 \mathrm{~m} / \mathrm{s}$ in a direction making an angle of 60° with the eastern line and 60° with the vertical upward. Represent the velocity vector in rectangular form.

D Watch Video Solution

27. A force is inclined at 50° to the horizontal. If its rectangular component in the horizontal direction be

50N,find the magnitude of theforce and its vertical component.

(Watch Video Solution

28. An aeroplane takes off at angle of 30° to the horizontal.

If the component of its velocity along the horizontal is $250 \mathrm{kmh}^{-1}$, what is the actual velocity ? Find also the vertical component of the velocity.

- Watch Video Solution

29. A man rows a boat with a speed of $18 \mathrm{~km} / \mathrm{hr}$ in northwest
direction. The shoeline makes an angle of 15° south of west.

Obtain the component of the velocity of the boat along the shoreline:

- Watch Video Solution

30. Two billiard balls are rolling on a flat table. One has the velocity components $v_{x}=1 m s^{-1}, v_{y}=\sqrt{3} m s^{-1}$ and the other has components $v_{x}^{\prime}=2 m s^{-1}$ and $v_{y}^{\prime}=2 m s^{-1}$. If both the balls start moving from the same point, what is the angle between their paths ?

(Watch Video Solution

31. Four persons $\mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}$ are initially at the four corners of a square of side d. Each person now moves with a uniform
speed v in such a way that K always moves directly towards L,
L directly towards M, M directly towards N, and N directly towards K. The four persons will meet at a time.

D Watch Video Solution

32. Calculate the resultant of the following forces acting at a point, making use of resoluation process.
(i) $100 \sqrt{2}$ dyne alond north-east
(ii) $980 \sqrt{2}$ dyne along north-west
(iii) 1960 dyne along south.

Watch Video Solution

33. Prove that the vectors $\vec{A}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{B}=2 \hat{i}-\hat{j}$ are perpendicular to each other.

- Watch Video Solution

34. Find the value of λ so that the vectors $\vec{A}=2 \hat{i}+\lambda \hat{j}+\hat{k} \quad$ and $\quad \vec{B}=4 \hat{i}-2 \hat{j}-2 \hat{k} \quad$ are perpendicular to each other.

(D) Watch Video Solution

35. If the magnitudes of two vectors are 3 and 4 and their scalar product is 6 , then find the angle between the two vectors.
36. A body acted upon by a force of 50 N is displaced through a distance of 10 m in a direction making an angle of 60° with the force. Calculate the work done by the force.

- Watch Video Solution

37. A body constrained to move along the z-axis of a coordinate system is subjected to a constant force \vec{F} given by $\vec{F}=-\hat{i}+2 \hat{j}+3 \hat{k}$ newton, where \hat{i}, \hat{j} and \hat{k} represen unit vectors along x, y - and z-axis of the system respectively.

Calculate the work done by force in displacing the body through a distance of 4 m along the z -axis.
38. A forc of $7 \hat{i}+6 \hat{k}$ newton makes a body move on a rough plane with a velocity of $3 \hat{j}+4 \hat{k} m s^{-1}$. Calculate the power in watt.

(D) Watch Video Solution

39. Three vectors \vec{A}, \vec{B} and \vec{C} are such that $\vec{A}=\vec{B}+\vec{C}$ and their magnitude are 5,4 and 3 respectively. Find the angle between \vec{A} and \vec{C}.

- Watch Video Solution

40. If $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$, find the angle between \vec{A} and \vec{B}.

(Watch Video Solution

41. If vector P, Q and R have magnitude 5,12 , and 13 units and $\vec{P}+\vec{Q}=\vec{R}$, the angle between Q and R is

(Watch Video Solution

42. Determine the angles which the vector
$\vec{A}=5 \hat{i}+0 \hat{j}+5 \hat{k}$ makes with X -, Y - ad Z -axes.

D Watch Video Solution

43. If \hat{i} and \hat{j} are unit vectors along X-and Y-axis respective, then what is the magnitude and direction of $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$

- Watch Video Solution

44. Find the components of $\vec{a}=2 \hat{i}+3 \hat{j}$ along the direction of vectors $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$.

- Watch Video Solution

45. If unit vectors \widehat{a} and \hat{b} are inclined at angle θ, then prove
that

$$
|\vec{a}-\vec{b}|=2 \sin \cdot \frac{\theta}{2}
$$

(D) Watch Video Solution
46. If $\vec{A}+\vec{B}=\vec{C}$ and $A^{2}+B^{2}=C^{2}$, then prove that \vec{A} and \vec{B} are perpendicular to each other.

D Watch Video Solution

47. Calculate the area of the parallelogram whose two adjacent sides are formed by vectors $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=-3 \hat{i}+7 \hat{j}$.

(D) Watch Video Solution

48. If \vec{A} and \vec{B} denpte the sides of a parallelogram and its area is $A B / 2$, find the angle between \vec{A} and \vec{B}.
49. Determine a unit vecor perpendicular to both $\vec{A}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{B}=\hat{i}-\hat{j}+2 \hat{k}$

- Watch Video Solution

50. Find a vector whose length is 7 and which is perpendicular to each of the vectors,
$\vec{A}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{B}=\hat{i}+\hat{j}-\hat{k}$

- Watch Video Solution

51. Determine the sine of the angle between the vectors $3 \hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}-2 \hat{j}+4 \hat{k}$.
52. Show that $(\vec{A}-\vec{B}) \times(\vec{A}+\vec{B})=2(\vec{A} \times \vec{B})$

- Watch Video Solution

53. For any three vectors \vec{A}, \vec{B} and \vec{C} prove that
$\vec{A} \times(\vec{B}+\vec{C})+\vec{B} \times(\vec{C}+\vec{A})+\vec{C} \times(\vec{A}+\vec{B})=\vec{O}$

D Watch Video Solution

54. For any to vectors \vec{A} and \vec{B}, prove that

$$
|\vec{A} \times \vec{B}|^{2}=A^{2} B^{2}-(\vec{A} \cdot \vec{B})^{2}
$$

55. Find $|\vec{A} \times \vec{B}|$ if $|\vec{A}|=10|\vec{B}|=2$ and $\vec{A} \cdot \vec{B}=12$

D Watch Video Solution

56. Find $\vec{A} \cdot \vec{B}$ if $|\vec{A}|=2,|\vec{B}|=5$ and $|\vec{A} \times \vec{B}|=8$

D Watch Video Solution

57. Find the area of the triangle formed by the tips of the vectors

$$
\vec{a}=\hat{i}-\hat{j}-3 \hat{k}, \vec{b}=4 \hat{i}-3 \hat{j}+\hat{k} \quad \text { and }
$$

$\vec{c}=3 \hat{i}-\hat{j}+2 \hat{k}$.

D Watch Video Solution

58. Find the moment about the point $(1,-1,-1)$ of the force $3 \hat{i}+4 \hat{j}-5 \hat{k}$ acting at the point $(1,0,-1)$

- Watch Video Solution

59. The diagonals of a parallelogram are gives by the vectors $3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$. Find the area of the parallogram.

D Watch Video Solution

60. Prove by the method of vectors that in a triangle

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

61. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=10,|\vec{b}|=6$ and $|\vec{c}|=14$. What is the angle between \vec{a} and \vec{b} ?

(D) Watch Video Solution

62. If $\vec{a}=\hat{i}-2 \hat{j}-3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k} \quad$ and
$\vec{c}=\hat{i}+3 \hat{j}-2 \hat{k}$ then find $\vec{a} \times(\vec{b} \times \vec{c})$.

- Watch Video Solution

1. A particle P is moving along a straight line with a velocity of $3 \mathrm{~ms}^{-1}$ and another particle Q has a velocity of $4 m s^{-1}$ at an angle of 30° to the path of P . Find the speed of Q relative to P .

D Watch Video Solution

2. The velocity of particle P due east is $4 m s^{-1}$ and that of Q is $3 m s^{-1}$ due north. What is the relative velocity of P w.r.t. Q .

(D) Watch Video Solution

1. Find the vector $\overrightarrow{A B}$ and its magnitude if it has initial point
$A(1,2,-1)$ and final point $B(3,2,2)$.

- Watch Video Solution

2. If $\vec{A}=3 \hat{i}+2 \hat{j}$ and $\vec{B}=\hat{i}-2 \hat{j}+3 \hat{k}$, find the magnitudes of $\vec{A}+\vec{B}$ and $\vec{A}-\vec{B}$.

- Watch Video Solution

Type D

1. One of the rectangular components of a velocity of $80 \mathrm{kmh}^{-1}$ is $40 \mathrm{kmh}^{-1}$. Find the other component.
2. A force is inclined at 30° to the horizontal. If its rectangular component in the horizontal direction is 50 N , find the magnitude of the force and its vertical component.

- Watch Video Solution

Type E

1. Find the angle between the vertors $\vec{A}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{B}=-\hat{i}+\hat{j}-2 \hat{k}$.

- Watch Video Solution

2. Find the angle between the vectors $\vec{A}=2 \hat{i}-4 \hat{j}+6 \hat{k}$ and $\vec{B}=3 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

Type F

1. Prove that the vectors $\vec{A}=2 \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{B}=-6 \hat{i}+9 \hat{j}+3 \hat{k}$ are parallel.

D Watch Video Solution

2. If $\vec{A}=\hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{B}=3 \hat{i}+\hat{j}+2 \hat{k}$, then find the vector product $\vec{A} \times \vec{B}$.

Problem

1. In Fig. ABCDEF is a ragular hexagon. Prove that
$\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}=6 \overrightarrow{A O}$

- Watch Video Solution

2. The x and y-components of vector A are 4 m and 6 m respectively. The x and y-components of vector $A+B$ are 10 m and 9 m respectively. Calculate for the vector B the following:
(a) its x and y-components
(b) its length
(c) the angle it makes with x-axis.

(D) Watch Video Solution

3. A biard is at a point $P(4 m,-1 m, 5 m)$ and sees two points $P_{1}(-1 m,-1 m, 0 m)$ and $P_{2}(3 m,-1 m,-3 m)$.

At time $t=0$, it starts flying in a plane of the three positions, with a constant speed of $2 m / s$ in a direction perpendicular to the straight line $P_{1} P_{2}$ till it sees $P_{1} \& P_{2}$ collinear at time t . Find the time t .
4. A particle is moving eastwards with a velocity of $5 m s_{-1}$. In 10 sec onds the velocity changes to $5 m s^{-1}$ northwards. The average acceleration in this time is

(Watch Video Solution

5. In Fig. a particle is moving in a circle of radius r centred at

O with constant speed v . what is the change in velocity in moving from A to B ? Given $\angle A O B=40^{\circ}$.

(D) Watch Video Solution

6. A boat which has a spped of $5 \mathrm{kmh}^{-1}$ in still water crosses a river of width 1 km along the shortest possible path in 15 minutes. Calculate the velocity of river water.

- Watch Video Solution

7. A river is flowing from west to east at a speed of 5 metresper min ute. A man on the south bank of the river , capable of swimming at 10 metresper min ute, in still water, wants to swim across the river in the shortest time .

He should swim in a direction

- Watch Video Solution

8. A person travelling eastward with a speed of $3 k \mathrm{kh}^{-1}$ finds that wind seems to blow from north. On doubling his speed, the wind appears to flow from north-east. Find the magnitude of the actual velocity of the wind.
9. A man directly crosses a river in time t_{1} and swims down the current a distance equal to the width of the river I time t_{2}. If u and v be the speed of the current and the man respectively, show that $\left.t_{1}: t_{2}:: \sqrt{v+u}: \sqrt{v-u}\right)$.

- Watch Video Solution

10. Consider a collection of a large number of particles each with speed v . The direction of velocity is randomly distributed in the collection. Show that the magnitude of the relative velocity between a pair of particles averaged over all the pairs in the collection is greater than v .

Problems For Self Practice

1. Two forces of 5 N and 7 N act on a aprticle with an angle of 60° between them. Find the resultant force.

D Watch Video Solution

2. Find the magnitude and direction of the resultant of the velocities of $100 \mathrm{~ms}^{-1}$ and $60 \mathrm{~ms}^{-1}$ inclined to each other at angle of 60°.
(D) Watch Video Solution
3. A body is simultaneously given two velocities, one $10 m s^{-1}$ due east and other $20 m s^{-1}$ due north-west.

Calculate the resultant velocity.

- Watch Video Solution

4. Two forces whose magnitudes are in the ratio $3: 5$ give a resultant of $35 N$.If the angle between them is 60°, the magnitude of each force is

(D) Watch Video Solution

5. Two equal forces act at a point. The square of their resultant is 3 times their product, Find the angle between them.

- Watch Video Solution

6. Find the resultant of two velocities, on $30 \mathrm{~ms}^{-1}$ due east and other $40 \mathrm{~ms}^{-1}$ due north.

- Watch Video Solution

7. When the angle between two vectors of equal magnitude is $2 \pi / 3$, prove that tha magnitude of the resultant is equal to either.

- Watch Video Solution

8. AT what angle two forces $(P+Q)$ and ($P-Q$) act so that resultant is
(i) $\sqrt{3 P^{2}+Q^{2}}$
(ii) $\sqrt{2\left(P^{2}+Q^{2}\right)}$
(iii) $\sqrt{P^{2}+Q^{2}}$.

- Watch Video Solution

9. The resultant of two equal forces acting at right angles to each other is 1414 dyne. Find the magnitude of either force.

D Watch Video Solution

10. A particle is being acted upon by four forces of 30 N due east, 20 N due north, 50 N due west and 40 N due south.

The resultant force will be
11. Two persons are raising a load pulling at an angle of each other. If they exert forces of 30 N and 60 N respectively and their effective pull is at right angles to the direction of the pull of the first person, what is the angle between their pulling forces? What is the effective pull

D Watch Video Solution

12. A ship is steaming towards east at a speed of $12 \mathrm{~ms}-1$. A woman runs across the deck at a speed of $5 \mathrm{~ms}-1$ in the direction at right angles to the direction of motion of the ship i.e. towards north. What is the velocity of the woman relative to sea ?
13. A car travelling a $20 \mathrm{~ms}^{-1}$ due north along the highway makes a right turn on to a side road that heads due east. It takes 50s for the car to complete the turn. At the end of 50 second, the car has a speed of $15 \mathrm{~ms}^{-1}$ along the side road. Determine the magnitude of average acceleration over the 50 second interval.

- Watch Video Solution

14. A train is moving with a velocity of $30 \mathrm{kmh}^{-1}$ due East and a car is moving with a veloicty of $40 \mathrm{kmh}^{-1}$ due North .

What is the velocity of car as appears to a passenger in the train?

(D) Watch Video Solution

15. A man is going due east with a velocity of $3 k m h^{-1}$. Rain falls vertically downwards at a speed of $10 \mathrm{kmh}^{-1}$. Calculate the angle at which he should hold his umbrella so as to protect himself from rain.

D Watch Video Solution

16. A boy is moving due east with a velocity $50 \mathrm{mmin} .^{-1}$.

The rain is falling vertically with a velocity of $250 \mathrm{mmin} .^{-1}$.
At what angle and with what velocity rain appears to fall to the person?
17. To a driver going east in a car with a velocity of $40 \mathrm{kmh}^{-1}$
, a bus appears to move towards north with a velocity of $40 \sqrt{3} \mathrm{kmh}^{-1}$. What is the actual velocity and direction of motion of the bus?

- Watch Video Solution

18. A cyclist is moving due east with a velocity of $10 \mathrm{kmh}^{-1}$.

There is no wind and rain appoars to fall at an angle of 10° to the vertical. Calculate the actual speed of the rain.

- Watch Video Solution

19. A plane is travelling eastward at a speed of $500 \mathrm{kmh}^{-1}$.

But a $90 \mathrm{kmh}^{-1}$ wind is blowing southward. What is the
direction and speed of the plane relative to the ground ?

- Watch Video Solution

20. A reackless drunk is playing with a gun in an airplane that is going directly east at $500 \mathrm{kmh}^{-1}$. The drunk shoots the gun straight up at the ceiling of the plane. The bullet leaves the gun at a speed of $1000 \mathrm{kmh}^{-1}$. Relative to an observer on earth, what angle does the bullet make with the vertical ?

(Watch Video Solution

21. Find the unit vector parallel to the resultant of the unit vectors $\vec{A}=2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $\vec{B}=4 \hat{i}+3 \hat{j}-\hat{k}$.
22. Determine the vector which when added to the resultant of $\vec{A}=2 \hat{i}-4 \hat{j}-6 \hat{k}$ and $\vec{B}=4 \hat{i}+3 \hat{j}+3 \hat{k}$ gives the unit vector along z -axis.

D Watch Video Solution

23. Find the value of λ in the unit vector $0.4 \hat{i}+0.8 \hat{j}+\lambda \hat{k}$.

- Watch Video Solution

24. Given the three coplaner vectors
$\vec{a}=4 \hat{i}-\hat{j}, \vec{b}=-3 \hat{i}+2 \hat{j}$ and $\vec{c}=-3 \hat{j}$. Find the magnitude of the sum of the three vectors.

(D) Watch Video Solution

25. A velocity of $10 \mathrm{~ms}^{-1}$ has its Y -component $5 \sqrt{2} \mathrm{~ms}^{-1}$.

Calculate its X-component.

- Watch Video Solution

26. An aeroplane taked off at an angle of 30° to the horizontal. If the component of its velocity along the horizontal is $200 \mathrm{kmh}^{-1}$, what is its actual velocity? Also find the vertical component of its velocity.

- Watch Video Solution

27. A child pulls a rope attached to a stone with a force of $80 N$. The rope makes and angle of 40° to the ground. (i)

Calculate the effective value of the pull tending to move the stone along the ground. (ii) Calculate the force tending to lift the stone.

- Watch Video Solution

28. Show that vector $\vec{A}=\hat{i}+\hat{j}+\hat{k}$ is perpendicular to the vector $\vec{B}=-\hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

29. Find the value of m so that vector $3 \hat{i}-2 \hat{j}+\hat{k}$ is perpendicular to the vector. $2 \hat{i}+6 \hat{j}+m \hat{k}$.

D Watch Video Solution

30. For what value of a are the vectors $\vec{A}=a \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{B}=2 a \hat{i}+a \hat{j}-4 \hat{k}$ perpendicular to each other ?

(Watch Video Solution

31. Find the angles between the following pairs of vectors:
(i) $\vec{A}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{B}=-2 \hat{i}-\hat{j}-2 \hat{k}$.
(ii) $\vec{A}=-2 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{B}=3 \hat{i}+6 \hat{j}+2 \hat{k}$
(iii) $\vec{A}=4 \hat{i}+6 \hat{j}-3 \hat{k}$ and $\vec{B}=-2 \hat{i}-5 \hat{j}+7 \hat{k}$
32. Calculate the values of (i) $\hat{j} \cdot(2 \hat{i}-3 \hat{j}+\hat{k})$ and
$(2 \hat{i}-\hat{j})(3 \hat{i}+\hat{k})$

- Watch Video Solution

33. A force $\vec{F}=4 \hat{i}+\hat{j}+3 \hat{k}$ newton acts on a particle and displaces it through displacement $\vec{S}=11 \hat{i}+11 \hat{j}+15 \hat{j}$ metre. Calculate the work done by the force.

- Watch Video Solution

34. Under a force of $10 \hat{i}-3 \hat{j}+6 \hat{k}$ newton, a body of mass 5 kg is displaced from the position $6 \hat{i}+5 \hat{j}-3 \hat{k}$ to the
position $10 \hat{i}-2 \hat{j}+7 \hat{k}$. Calculate the work done.

- Watch Video Solution

35. The sum and difference of two vectors \vec{A} and \vec{B} are $\vec{A}+\vec{B}=2 \hat{i}+6 \hat{j}+\hat{k}$ and $\vec{A}-\vec{B}=4 \hat{i}+2 \hat{j}-11 \hat{k}$. Find the magnitude of each vector and their scalar product $\vec{A} \vec{B}$.

- Watch Video Solution

36. A force $\vec{F}=5 \hat{i}+4 \hat{j}$ newton displaces a body through
$\vec{S}=3 \hat{i}+4 \hat{k}$ metre in 3s. Find the power.

- Watch Video Solution

37. If the resultant of the vectors $3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $5 \hat{i}+3 \hat{j}+4 \hat{k}$ makes an angle θ with x -axis, then find $\cos \theta$.

- Watch Video Solution

38. Show that the vectors
$a=3 \hat{i}-2 \hat{j}+\hat{k}, b=\hat{i}-3 \hat{j}+5 \hat{k} \quad$ and $\quad c=2 \hat{j}+\hat{j}-4 \hat{k}$
form a right angled triangle.

D Watch Video Solution

39. If vectors \vec{A}, \vec{B} and \vec{C} have magnitudes 8,15 and 17 units and $\vec{A}+\vec{B}=\vec{C}$, find the angle between \vec{A} and \vec{B}.
40. If $\vec{A}=\vec{B}-\vec{C}$, then determine the angle between
\vec{A} and \vec{B}.

- Watch Video Solution

41. For two vectors \vec{A} and \vec{B} if $\vec{A}+\vec{B}=\vec{C}$ and $A+B=C$, then prove that \vec{A} and \vec{B} are parallel to each other.

- Watch Video Solution

42.

Prove
that
$(\vec{A}+2 \vec{B}) \cdot(2 \vec{A}-3 \vec{B})=2 A^{2}+A B \cos \theta-6 B^{2}$.
43. Prove that the vectors $\vec{A}=4 \hat{i}+3 \hat{j}+\hat{k}$ and
$\vec{B}=12 \hat{i}+9 \hat{j}+3 \hat{k}$ are parallel to each other.

- Watch Video Solution

44. If $\vec{A}=2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{B}=3 \hat{i}+2 \hat{j}+4 \hat{k}$, then find the value of $(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})$

- Watch Video Solution

45. Find the value of a for which the vectors $3 \hat{i}+3 \hat{j}+9 \hat{k}$ and $\hat{i}+a \hat{j}+3 \hat{k}$ are parallel.
46. Find a unit vector perpendicular the vectors
$\vec{A}=4 \hat{i}=\hat{j}+3 \hat{k}$ and $\vec{B}=-2 \hat{i}+\hat{j}-2 \hat{k}$.

D Watch Video Solution

47. Find the sine of the angle between the vectors
$\vec{A}=3 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{B}=\hat{i}-\hat{j}+\hat{k}$.

(D) Watch Video Solution

48. Find a vector of magnitude 18 which is perpendicular to both the vectors $4 \hat{i}-\hat{j}+3 \hat{k}$ and $-2 \hat{i}+\hat{j}-2 \hat{k}$.
49. Determine the area of the parallelogram whose adjacent sides are formed by the vectors $\vec{A}=\hat{i}-3 \hat{j}+\hat{k}$ and $\vec{B}=\hat{i}+\hat{j}+\hat{k}$.

(D) Watch Video Solution

50. Find the area of the triangle formed by points O, A and B such that $\overrightarrow{O A}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\overrightarrow{O B}=-3 \hat{i}-2 \hat{j}+\hat{k}$

D Watch Video Solution

51. Find with the help of vectors, the area of the triangle with vertices $A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$
52. If \vec{A} and \vec{B} are two such vectors that $|\vec{A}|=2,|\vec{B}|=7$ and $\vec{A} \times \vec{B}=3 \hat{i}+2 \hat{j}+6 \hat{k}$, find the angle between \vec{A} and \vec{B}.

- Watch Video Solution

53. Find the moment about the point $\hat{i}+2 \hat{j}-\hat{k}$ of a force represented by $3 \hat{i}+\hat{k}$ acting through the point $2 \hat{i}-\hat{j}+3 \hat{k}$

- Watch Video Solution

54. Prove that $(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=2(\vec{b} \times \vec{a})$
55. Prove that $|\vec{a} \times \vec{b}|=\sqrt{a^{2} b^{2}-(\vec{a}-\vec{b})^{2}}$

(D) Watch Video Solution

56. If $\vec{a}=\hat{i}-2 \hat{j}-3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k} \quad$ and
$\vec{c}=\hat{i}+3 \hat{j}-2 \hat{k}$ find $(\vec{a} \times \vec{b}) \times \vec{c}$

D Watch Video Solution

