

PHYSICS

BOOKS - DHANPAT RAI & CO PHYSICS (HINGLISH)

THERMOELECTRICITY

1. A sensitive microphone cannot withstand currents greater than 0.05 A when connected

across a thermocouple of emf 8.5 m V , the current in a very low resistance ammeter placed in series in the circuit reads 34 mA. What is the resistance of the microphone?

2. In a given thermocouple, the temperature of cold junction is 10° C , while the temperature of inversion is 510° C. What will be the neutral temperature?

3. In a copper-iron thermocouple , the temperature of cold junction is 20° C and the neutral temperature is $280^{\circ}C$. Find the temperature of inversion.

Watch Video Solution

4. The cold junction of a thermocouple is kept at 10° C. Calculate the temperature at which thermo emf would be maximum. Given that thermo emf changes sign at 800K.

5. Near room temperature , the thermo emf of a thermo couple is $40\mu V$ per degree. A galvanometer of 25Ω and capable of detecting current of the order of 4μ A is used. Calcualate the smallest temperature difference that can be detected with this galvanometer.

6. The junctions of a Ni - Cu thermocouple are maintained at $0^{\circ}C$ and $100^{\circ}C$. Calculate the Seebeck emf produced in the loop. $a_{Ni,Cu} = 16.3 \times 10^{-6} V^{\circ}C^{-1}$ and $b_{Ni,Cu} = -0.042 \times 10^{-6} V^{\circ}C^{-3}$

Watch Video Solution

7. The thermoelectric emf \mathcal{E} of a copper constantan thermocouple and the temperature θ of the hot junction (with cold junction at 0° C) are found to satisfy approximately the following relation. $oldsymbol{arepsilon} oldsymbol{arepsilon} = a heta + b heta^2$ where ${m {m {\cal E}}}$ is in $\mu V, heta$ in $.^\circ C$ and $lpha = 41 \mu V\,^{\circ}\,C^{\,-1}, b = 0.041 \mu V\,^{\circ}\,C^{\,-2}$ What is the temperture of the hot junction when the thermoelectric emf is measured to be 5.5 mV?

8. The emf ε of a Cu-Fe thermocouple varies with the temperature θ of the hot junction (cold junction at $0^{\circ}C$), as $\varepsilon(\mu V) = 14\theta - 0.02\theta^2$ Determine the neutral temperature.

Watch Video Solution

9. The thermo emf of a therocouple , one junction of which is kept at $0^\circ C$, is given by ${\cal E}=at+bt^2$ where a and b constants of the

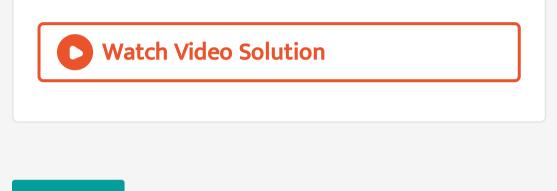
thermocouple . Calculate the neutral temperature and peltier and Thomson coefficients.

Watch Video Solution

10. In a given thermocouple, the emfs at $250^{\circ}C$ and 50° C with respect to 0° C are $40\mu V$ and $5\mu V$ respectively. Find of emf generated when the junctions are maintained at the temperature at $250^{\circ}C$ and $50^{\circ}C$.

11. A thermocouple is made of iron and constantan. Find the emf developed per0° C difference of temperature between the junctions, given that the thermo emf of iron and constantan against platinum are +1600 and $-3400\mu V$ per $100^{\circ}C$ difference of temperatures.

12. The thermoelectric powers of iron and copper with respect to lead are +10.5 and $-3.5\mu V$ respectively at $100^{\circ}C$. Find the emf of Cu-Fe thermocouple when its junctions are maintained at 50° and 150° C.


Watch Video Solution

13. An emf of 1 V is developed when the temperature difference between the hot and cold junctions of a thermocouple is 100 K.

Assuming that the cold junction is heated by

20 K , determine the percentage change in the

thermo emf.

Problem

1. The thermoelectric pewers of Pt, Ni and Fe are -4 , -21 and $12\mu V$ per $0^{\circ}C$ respectively . What will be the magnitude of emf of Pt-Ni and Ni-Fe thermocouples with junctions at

 $0\,{}^{\circ}\,C$ and $100\,{}^{\circ}\,C$?

Watch Video Solution

2. A thermocouple circuit consists of two thermal junctions and a low-resistance galvanometer, all in series. The galvanmeter has a resistance of 8Ω and the rest of the circuit has a resistance of 1.6Ω . The temperature develops an emf of 10 microvolt per degree Celsius difference of temperature

between the two junction. When one junction is kept is $0^{\circ}C$ and the other in a molten metal, the galvanmeter reads 8 millivolt. What is the temperature of the molten metal? Assume that the emf varies linearly with the temperature difference.

View Text Solution

Problems For Self Practice

1. In a thermocouple the temperature of cold junction is $20^{\circ}C$, while the temperature of inversion is 520° C. At what temperature is the thermo emf maximum?

Watch Video Solution

2. In a copper-iron thermocouple , the temperature of cold junction is 20° C and the neutral temperature is $280^{\circ}C$. Find the temperature of inversion.

3. The emf of a thermocouple changes sign at 600 K. If the nertral temperature is $210^{\circ}C$, what is the temperature of cold junction?

Watch Video Solution

4. The themo emf of a copper-constantan thermocouple is $40\mu V$. $^{\circ}C^{-1}$ at room temperature. A galvanometer whose resistance is 80 Ω and current sensitivity $1\mu A$ is used. Find the smallest temperature

difference that the galvanometer can detect.

Watch Video Solution

5. Calculate the emf of silver-iron thermocouple with junction at 10° C and $80^{\circ}C$ given $\alpha = +13.31 \mu V.^{\circ} C^{-1}$ and $\beta = -0.019 \mu V.^{\circ} C^{-2}$.

Watch Video Solution

6. For a Cu-Fe thermocouple, nertral temperature is $270^{\circ}C$. If $\alpha = 15.86 \mu V \cdot ^{\circ}V^{-1}$ then find the value of β

Watch Video Solution

7. The thermo emf of a copper-constantan thermocouple with one junction at $0^{\circ}C$ and the other at $t^{\circ}C$ is given by the relation $\mathcal{E} = at = \frac{1}{2}bt^2$ where \mathcal{E} is in μV , $a = 41\mu V$. $^{\circ}C^{-2}$. If the

thermo emf developed is 5.5 mV, find the

temperature of the hot junction.

8. The emf in a lead-iron thermocouple , one junction of which is at $t^{\circ}C$ is given by $\varepsilon = 178t - 2.4t^2(\text{in } \mu V)$ where t is the temperature in .° C .Find the neutral temperature , Peltier coefficient and

Thomson coefficient.

9. For a certain thermocouple , $\varepsilon = \alpha \theta + \frac{1}{2} \beta \theta^{\circ}$, where $\theta \cdot C$ is the temperature of the hot junction and $0^{\circ}C$ is the temperature of the cold junction . If $\alpha = 10 \mu V \cdot C^{-1}$ and $\beta = -\frac{1}{20} \mu V \cdot C^{-2}$, find the neutral temperature and temperature

of inversion.

10. The thermo emf of a thermocouple is $40\mu VK^{-1}$ at room temperature. A galvanometer of resistance 100Ω capable of detecting current as law as $10\mu A$ is connected with one such thermocouple. Calculate the smallest temperature difference that can be detected by such a thermocouple.

Watch Video Solution

11. A thermocouple with one junction at icepoint , has emf given by the relation, $\varepsilon = a\theta + \frac{1}{2}b\theta^{\circ}$, where $\theta^{\circ}C$ is the temperature of the hot junction. If the emf has the value 4.05 mV and 9.85 mV at $\theta = 100^{\circ}$ C and $300^{\circ}C$ respectively . What is the emf at $\theta = 500^{\circ}C$?

Watch Video Solution

12. Find the emf developed per .° C temperature difference of an iron constantan thermocouple , given that thermo emf's of iron and constantan against platinum are $16\mu V$ and $-34\mu V$ per.° C temperature.

Watch Video Solution

13. The thermoelectric powers of iron and nickel with respect to lead are +12 and $-20\mu V$ respectivelty at $50^\circ C$. Find the emf of the an

iron-nickel thermocouple with junctions at

 $0^{\,\circ}\,C$ and $100^{\,\circ}\,$ C.

Watch Video Solution