©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DHANPAT RAI \& CO PHYSICS

(HINGLISH)

TRANSIENT CURRENT

Type A

1. A charged capacitor of capacitance $40 \mu F$ is
discharged through a 50Ω resistance.

Determine the time constant of the circuit.

- Watch Video Solution

2. A circuit containing a 30 mH inductor in
series with a 60Ω resistance is connected to a d.c. supply. Determine the time constant of the circuit.

D Watch Video Solution
3. An inductor coil carries a steady state current of 2.0 A when connected across an ideal battery of emf 4.0 V . if its inductance is 1.0 H , find the time constant of the circuit.

- Watch Video Solution

4. A 40 mH coil is joined to 2 eV battery
through $1 M \Omega$ resistance. Find the time constant of the circuit. What is the maximum current that is established.
5. An ideal inductor of self-inductance 2.5 H is connected to a battery of 3 V through a resistance of 50Ω. Calculate (i) time constant of the circuit (ii) the steady current in the circuit, (iii) the maximum rate of increase of current, (iv) The value of current after 0.5 s and
(v) the potential drop across the inductor at $t=0.05 s$.
6. How many time constants one should wait for the current in an LR-circuit to grow within 0.1% of its steady state value.

D Watch Video Solution

7. A 3 H inductor is placed in series with 10Ω
resistor and an emf of 10 V is applied to the
combination. Find
(i) the current at 0.3 s ,
(ii) the rate of increase of current at 0.3 s ,
(iii) the rate at which energy is dissipated as
heat at $t=0.3 \mathrm{~s}$.
(iv) the rate at which energy is stored in the magnetic field at 0.3 s .
(v) the rate at which energy is delivered by the battery, and
(vi) the energy stored when the current has attained steady value.

D Watch Video Solution

8. A capacitor of $2.0 \mu F$ is connected to a battery of 2 V through a resistance of $10 \mathrm{k} \Omega$.

Calculate (i) the initial current in the circuit and (ii) the current after 0.02 s .

D Watch Video Solution

9. A capacitor is being charged from a battery through a $2 M \Omega$ resistor. If it takes 0.5 s for charge to reach half its final value, what is the capacitance of the capacitor ?

- Watch Video Solution

10. Find the time in which the charge on a capacitor of $1 \mu F$ will be halved if it is connected across a resistor of $10^{6} \Omega$.

D Watch Video Solution

11. A capacitor of capacitance $0.1 \mu F$ is charged to a certain potential through resistance of $10 M \Omega$ and then discharged. Calculate the time in which the potential will fall to half its original value.
12. Two capacitors $4 \mu F$ and $6 \mu F$ in series are connected through a resistor of $10 k \Omega$ to a 18

V battery of negligible internal resistance. Ater
a time of about 10 s , the battery is disconneted and capacitors are allowed to discharge through the resistance. Determine the voltage across each capacitor after a time
lapse of 48 millisecond.

- Watch Video Solution

13. In a circuit, a resistor of $10 M \Omega$, a capacitance of $0.2 \mu F$ and a battery of 20 V are connected in series. Calculated the rate of
(i) growth of charge.
(ii) energy stored by the capacitor,
(iii) heat dissipation in the resistor and
(iv) the energy delivered by the battery after

2 s.

- Watch Video Solution

14. A radio can tune over the frequency range of a portion of MW broadcast band (800 kHz to 1200 kHz). If its LC circuit has an effective
inductance of $200 \mu \mathrm{H}$, what must be the range of its varialbe capacitor?

D Watch Video Solution

15. An LC circuit contains a 20 mH inductor and
a $50 \mu F$ capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible.

Let the instant the circuit is closed be $t=0$.
(a) What is the total energy stored initially ? Is
it conserved during the oscillalions?
(b) What is the natural frequency of the
circuit?
(c) At what time is the energy stored?

Completely electrical ? (ii) Completely magnetic ?
(d) At what time is the total energy shared equally between the inductor and the capacitor ?
(e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat?
16. What resistance must be connected in series with an inductor of 5 mH so that the circuit has a time constant of $2 \times 10^{-3} S$?

D Watch Video Solution

17. The pressure of a gas is changed at constant volume from $200 \mathrm{Nm}^{-2}$ to $3000 \mathrm{Nm}^{-2}$. If the initial temperature of the gas is $77^{\circ} C$, what will be its final temperature?
18. Air is filled in a bottle and it is corked at $35^{\circ} C$. If the cork can come out at 3 atmospheric pressure, then upto what temperature should the bottle be heated to remove the cork?

D Watch Video Solution

19. A narrow uniform glass tube contains air enclosed by 15 cm long thread of mercury.

When the tube is vertical with open end uppermost, the air column is 30 cm long. When the tube is inverted, the length of air column becomes 45 cm . Calculate the atmospheric pressure.

D Watch Video Solution

20. An open glass tube is immersed in mercury
so that a length of 8 cm of the tube projects above the mercury. The tube is then closed and raised through 44 cm . What length of the
tube will be occupied by the air after it has been raised? Given $1 \mathrm{~atm}=76 \mathrm{~cm}$ of Hg .

D Watch Video Solution

21. An empty barometric tube 1 m long is lowered vertically (mouth downwards) into a tank of water. What will be the depth above the water level in the tube, when the water has risen 20 cm inside the tube ? Take atmospheric pressure as 10.4 m column of water.

Watch Video Solution

22. When a gas filled in a closed vessel is heated through $1^{\circ} C$, its pressure increases by 0.4%. What is the initial temperature of gas ?

D Watch Video Solution

Problems

1. Capacitor C_{1} of the capacitance $1 \mu F$ and another capacitor C_{2} of capacitance $2 \mu F$ are
separately charged fully by a common battery.The two capacitors are then separately allowed to discharge through equal resistors at time $t=0$.

D Watch Video Solution

2. A solenoid has an inductance of 10 henty and a resistance of 2 ohm. It is connected to a 10 volt battery. How long will it take for the magnetic energy to reach $1 / 4$ of its maximum value?
3. A solenoid of resistance 50Ω and inductance

80 H is connected to a 200 V battery, How long will it take for the current to reach 50% of its
final equlibrium value ? Calculate the maximum enargy stored ?

D Watch Video Solution

4. An inducatane L and a resistance R are connected in series with a battery of emf
epsilon. Find the maximum rate at which the energy is stored in the magnetic field.

D Watch Video Solution

5. A capacitor discharges through an inductance of 0.1 henry and a resistance of 100
ohm. If the frequency of discharge is 1000 Hz , calculate the capacitance.
6. The temperature of an ideal gas is increased
from 120 K to 480 K . If at 120 K the root mean
square velocity of the gas molecules is v , at 480 K it becomes

- Watch Video Solution

7. You are given the following group of particles n_{1} represents the number of molecules with speed $v e_{1}$
8. In a certain region of space there are only 5 molecules per cm^{3} of gas on an average. The temperature is 3 K . What is the average pressure of this gas?.

D Watch Video Solution

9. Two glass bulbs of equal volume are connected by a narrow tube and are filled with
a gas at $0^{\circ} \mathrm{C}$ and a pressure of 76 cm of mercury. One of the bulbs is then placed in
melting ice and the other is placed in a water bath maintained at $62^{\circ} C$. What is the new value of the pressure inside the bulbs? The volume of the connecting tube is negligible.

D Watch Video Solution

10. A vessel of volume $2 \times 10^{-2} m^{3}$ contains a mixture of hydrogen and helium at $47^{\circ} C$ temperature and $4.15 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ Pressure.

The mass of the mixture is $10^{-2} \mathrm{~kg}$. Calculate
the masses of hydrogen and helium in the given mixture.

D Watch Video Solution

11. A closed container of volume $0.02 m^{3}$
contains a mixture of neon and argon gases,
at a temperature of $27^{\circ} \mathrm{C}$ and pressure of
$1 \times 10^{5} \mathrm{Nm}^{-2}$. The total mass of the mixture
is 28 g . If the molar masses of neon and argon
are 20 and $40 \mathrm{gmol}^{-1}$ respectively, find the
masses of the individual gasses in the
container assuming them to be ideal
(Universal
gas
$R=8.314 J / m o l-K)$.
constant

D Watch Video Solution

12. A thin tube, sealed at both ends, is 100 cm
long. If lies horizontally, the middle 10 cm containing mercury and the two equal containing air at stan-dard atmospheric pressure. If the tube is now turned to a verical
position, by what amount will the mercury be displaced ?

D Watch Video Solution

13. A thin tube of uniform cross-section is sealed at both ends. It lies horizontally, the middle 5 cm containing mercury and the two equal end containing air at the same pressure
P. When the tube is held at an angle of 60°
with the vetical direction, the length of the air column above and below the mercury column
are 46 cm and 44.5 cm respectively. Calculate the pressure P in centimeters of mercury. (The temperature of the system is kept at $30^{\circ} \mathrm{C}$).

- Watch Video Solution

14. A vertical hollow cylinder of height $1.52 m$
is fitted with a movable piston of negligible
mass and thickness. The lower half portion of
the cylinder contains an ideal gas and the
upper half is filled with mercury. The cylinder is
initially at $300 K$. When the temperature is
raised half of the mercury comes out of the cylinder. Find this temperature assuming the thermal expansion of the mercury to be negligible.

$$
\prod_{i}^{T}=1.52 \mathrm{~m}
$$

15. Two perfect gases at absolute temperature
T_{1} and T_{2} are mixed. There is no loss of energy. The masses of the molecules are m_{1} and m_{2}. The number of molecules in the gases are n_{1} and n_{2}. The temperature of the mixture is

D Watch Video Solution

16. Calculate the rms speed of smoke particles
of mass $5 \times 10^{-17} \mathrm{~kg}$ in their Brownian
motion in air at NTP. Given
$k_{B}=1.38 \times 10^{-23} J / K$

- Watch Video Solution

17. About 0.014 kg nitrogen is enclosed in a vessel at temperature of $27^{\circ} C$ How much heat has to be transferred to the gas to double the rms speed of its molecules ? $(R=2 \mathrm{cal} / \mathrm{molK})$

D Watch Video Solution

18. N molecules each of mass m of gas A and 2

N molecules each of mass 2 m of gas B are contained in the same vessel which is maintined at a temperature T. The mean square of the velocity of the molecules of B
type is denoted by v^{2} and the mean square of the x-component of the velocity of a tye is denoted by ω^{2}. What is the ratio of $\omega^{2} / v^{2}=?$

- Watch Video Solution

19. Two vessels A and B, thermally insulated,
contain an ideal monoatomic gas. A small tube
fitted with a valve connects these vessels.
Initially the vessel A has 2 litres of gas at 300 K and $2 \times 10^{5} \mathrm{Nm}^{-2}$ pressure while
vessel B has 4 litres of gas at $350 K$ and
$4 \times 10^{5} \mathrm{Nm}^{-2}$ pressure. The value is now opened and the system reaches equilibrium in pressure and temperature. Calculate the new pressure and temperature
$\left(R=\frac{25}{3} \mathrm{~J} / \mathrm{mol}-K\right)$

Problems For Self Practice

1. Show that the time for attaining half the value of the final steady current in LR-series circuit is $0.693(L / R)$.

- Watch Video Solution

2. A coil of inductance 10 H and resistance 15Ω
is connected to a supply of 90 V . Determine the
value of current after 0.67s. How long will it take for the current to attain 50% of its final value?

D Watch Video Solution

3. A potential difference of 4 V is applied to a coil of resistance 8Ω and inductance 8 H . How long does it take for the current to reach half of its final value?
4. A coil of resistance 11Ω and inductance
$0.1 H$ is connected to a 110 V d.c. mains. Find
(i) the current finally established in the coil.
(ii) the voltage used in overcoming the resistance when the rising current is 3 A , and
(iii) the rate at which the current is rising at that instant.

D Watch Video Solution

5. An L-R combination is connected to an ideal
battery. If $L=20 \mathrm{mH}, R=100 \Omega$ and
$\varepsilon=10 V$, find (i) the time constant (ii) the maximum current and (iii) the time elapsed before the current reaches 90% of the maximum value.

D Watch Video Solution

6. In an LR-circuit the current attains one-third of its final steady value in 5 s . What is the timeconstant of the circuit ? $\left(\log _{2}=0.405\right)$

D Watch Video Solution

7. A inductor of 20 mH inductance and a resistor of 100Ω resistance are connected in
series to a battery of emf 10V. After a long
time the circuit is short-circuited and the battery is disconnected. Find the current in the circuit 1 ms after short-circuiting.

D Watch Video Solution

8. A solenoid having a resistance of 5Ω and self-inductance of 4 H is connected to a battery
of emf 10 V and negligible resistance. After how long will the current in it rise to 1 A ?

D Watch Video Solution

9. A coil of reistance 5Ω and inductance 1 H is connected to a battery of 10 V . At $t=0 s$, calculate (i) the current in the circuit (ii) the rate of rise of current (iii) the rate at which energy is supplied by the battery, (iv) the rate at which energy is dissipated as heat and (v)
the rate at which energy is stored in the magnetic field of the coil.

D View Text Solution

10. A capacitor of $10 \mu F$ is connected with a resistance of $2.2 M \Omega$. What is the time constant of the circuit.

D Watch Video Solution
11. A capacitor of $1.443 \mu F$ capacitance after being charged is shunted by a high resistance.

If half the charge leaks away in one minute, find the value of the resistance.

- Watch Video Solution

12. A capacitor is being charged from dc source through a resistance of $5 M \Omega$. If it takes 0.5 s for charge to reach three-quarters
of its final value, what is the capacitance of the capacitor ?

D Watch Video Solution

13. A capacitr is charged from a dc source
through a resistance of $3 M \Omega$. If the potential
difference across it reaches 75% of its final
value in half a second, find its capacitance.
14. A resistor R and $2 \mu F$ capacitor in series are connected to a 220 V dc supply. Across the capacitor is a neon bulb that strikes at 120 V .

Calculate the value of R to make the bulb strike 5 s after the switch has been closed.

D Watch Video Solution

15. A $0.18 \mu \mathrm{~F}$ capacitor is first charged and
then discharged through a high resistance. If it takes 0.5 sec for the chage to reduce to one
forth of its initial value, find the value of the resistance. Given $\log _{e} 4=1.386$

D Watch Video Solution

16. A capacitor charged to 10 V is being discharged through a resistance R. At the end of 1 s , the voltage across the capacitor is 5 V . What will be the voltage after 2 s ?
17. A mass of gas exerts a pressure of 72 cm of

Hg at $27^{\circ} \mathrm{C}$. It is heated at constant volume so
that its pressure after some time is 90 cm of Hg. Calculate the new temperature of the gas.

- Watch Video Solution

Example

1. A narrow uniform glass tube 80 cm long and
open at both ends is half immersed in
mercurry. Then the top of the tube is closed and it is taken out of mercury. A column of mercury 22 cm long then remains in the tube. What is the atmospheric pressure?

- Watch Video Solution

2. A metre long narrow bore held horizontally
(and close at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom?

- Watch Video Solution

3. A given mass of a gas at $-73^{\circ} \mathrm{C}$ exerts a pressure of 50 cm of mercury. What pressure
will it exert at $27^{\circ} C$, if the volume remains

constant?

D Watch Video Solution

4. The rms velocity of hydrogen at S.T.P is u
$m s^{-1}$. If the gas is heated at constant pressure till its volume is three fold, what will be its final temperature and rms velocity?

D Watch Video Solution

5. A gas at $27^{\circ} \mathrm{C}$ in a cylinder has a volume of 4 litre and pressure $100 \mathrm{Nm}^{-2}$.
(i) Gas is first compressed at constant temperature so that the pressure is $150 \mathrm{Nm}^{-2}$. Calculate the change in volume.
(ii) It is then heated at constant volume so
that temperature becomes $127^{\circ} \mathrm{C}$. Calculate the new pressure.

- Watch Video Solution

6. As an air bubble rises from the bottom of a
lake to the surface, its volume is doubled. Find
the depth of the lake. Take atmospheric pressure $=76 \mathrm{~cm}$ of Hg .

- Watch Video Solution

7. Molar volume is the volume occupied by 1 mole of any (Ideal) gas at standard temperature and pressure (STP , $0^{\circ} C, 1$
atmospheric pressure). Show that it is 22.4
litres. Take $R=8.31 \mathrm{Jmol}^{-1} K^{-1}$.

D Watch Video Solution

8. Using the ideal gas equation, determine the value of gas constant R. Given that one gram mole of a gas at S.T.P occupies a volume of 22.4 litres

D Watch Video Solution

9. Molecular weight of oxygen is 32 . At S.T.P., volume of $1 g$ of oxygen is $700 \mathrm{~cm}^{3}$. Find the value of gas constant R.

D Watch Video Solution

10. Estimate the total number of air molecules
(inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity $25.0 \mathrm{~m}^{3}$ at a temperature of $27^{\circ} \mathrm{C}$ and 1 atm

$$
\left.=1.38 \times 10^{-23} J K^{-1}\right)
$$

D Watch Video Solution

11. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from
the bottom of a lake 40 m deep at a temperature of $12^{\circ} \mathrm{C}$. To what volume does it grow when it reaches the surface, which is at a temperature of $\quad 35^{\circ} C$. ?

Given
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$.

D Watch Video Solution
12. An oxygen cylinder of volume 30 litres has an initial gauge pressure of 15 atm. And a temperature of $27^{\circ} \mathrm{C}$. After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm . And its temperature drops to $17^{\circ} C$. Estimate the mass of oxygen taken out of the cylinder.
$\left(R=8.1 \mathrm{Jmole}^{-1} K^{-1}\right.$, molecular mass of
$\left.O_{2}=32 u\right)$.
13. A mixture of hydrogen and oxygen has volume $2000 \mathrm{~cm}^{3}$, temperature 300 K , pressure $100 K P a$ and mass 0.76 g . Calculate the masses of hydrogen and oxygen in the mixture.

D Watch Video Solution

14. A vessel with open mouth contains air at $60^{\circ} C$. When the vessel is heated upto temperature T, one fourth of the air goes out.

The value of T is
15. The density of nitrotgen is $1.25 \mathrm{kgm}^{-3}$ at
S.T.P. Find its density at $42^{\circ} \mathrm{C}$ and 730 mm of Hg.

D Watch Video Solution

16. A vessel contains $14 g$ of hydrogen and $96 g$ of oxygen at STP.
(a) Find the volume of the vessel.
(b) Chemical reaction is induced by passing
electric spark in the vessel till one of the gases
is consumed, The temperature is brought back
to its starting value $273 K$. Find the pressure in the vessel.

- Watch Video Solution

17. A vessel contains two non-reactive gases
neon (monoatomic) and oxygen (diatomic).
The ratio of their partial pressures is 3:2.

Estimate the ratio of
(i) number of molecules, and
(ii) mass density of neon and oxygen in the vessel.

Atomic mass of neon = 20.2 u , and molecular mass of oxygen $=32.0 \mathrm{u}$.

- Watch Video Solution

18. Four molecules of a gas have speeds $2,4,6$ and $8 \mathrm{kms}^{-1}$ respectively. Calculate their average speed and root mean square speed.

D Watch Video Solution

19. If three gas molecules have velocity $0.5,1$ and $2 \mathrm{~km} / \mathrm{s}$ respectively, find the ratio of their root mean square speed and average speed.

- Watch Video Solution

20. Calculate the r.m.s. velocity of air molecules
at $S . T . P$. Given density of air at S.T.P. is $1.296 \mathrm{kgm}^{-3}$.
21. Calculate the rms velocity of oxygen molecules at S.T.P. The molecular weight of oxygen is 32 .

- Watch Video Solution

22. Calculate the temperature at which the rms speed of nitrogen molecules will be equal to $8 \mathrm{~km} / \mathrm{s}$. Given molecular weight of nitrogen
$=28$ and $^{~} \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mole} / \mathrm{K}$.
23. The r.m.s speed of oxygen molecule $\left(O_{2}\right)$ at
a certain temperature T is V . If on increasing the temperature of the oxygen gas to 2 T , the oxygen molecules dissociate into atomic oxygen, find the speed of the oxygen atom.

- Watch Video Solution

24. Calculate the temperature at which r.m.s
velocity of gas molecules is double its value at
$27^{\circ} \mathrm{C}$, pressure of the gas remaining the same.
25. Calculate the temperature at which rms velocity of a gas is half its value at $0^{\circ} C$, pressure remaining constant

- Watch Video Solution

26. At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the r.m.s. speed of a helium
gas atom at $-20^{\circ} C$? (Atomic mass of $\mathrm{Ar}=$ 39.9 u , of $\mathrm{He}=4.0 \mathrm{u}$).

D Watch Video Solution

27. A vessel is filled with a gas at a pressure of

76 cm of mercury at a certain temperature. The mass of the gas is increased by 50% by introducing more gas in the vessel at the same temperature. Find the resultant pressure of the gas.
28. Estimate the average energy of a helium atom at (i) room temperature $\left(27^{\circ} \mathrm{C}\right)$ (ii) the temperature on the surface of the sun $(6000 K)$ and (iii) the temperature of $10^{7} \mathrm{~K}$.

Given $k_{B}=1.38 \times 10^{-23} \mathrm{Jmolecule}{ }^{-1} \mathrm{~K}^{-1}$

D Watch Video Solution

29. Calculate the kinetic energy of one mole of argon at $127^{\circ} C$. Given,Boltzmann's constant,
$k_{B}=1.381 \times 10^{-23} \mathrm{Jmolecular}{ }^{-1} K^{-1}$.
Avogardro numbe, $N=6.02 \times 10^{23} \mathrm{~mol}^{-1}$

D Watch Video Solution
30. Calculate the kinetic energy of 1 gram of
helium $\quad(M=4) \quad$ at $\quad 127^{\circ} C . \quad$ Given
$R=8.31 \mathrm{Jmole}^{-1} K^{-1}$.

D Watch Video Solution
31. The kinetic energy of a molecule of oxygen at $0^{\circ} \mathrm{C}$ is $5.64 \times 10^{-21} \mathrm{~J}$. Calculate Avogadro's number. Given $R=8.31 \mathrm{Jmol}^{-1} K^{-1}$.

D Watch Video Solution

32. Calculate the kinetic energy of one gram mole of gas at NTP. Density of gas $=0.178 \mathrm{kgm}^{-3}$ at NTP. Its molecular weight $=$ 4. Density of mercury $=13.6 \times 10^{3} \mathrm{kgm}^{-3}$.
33. Calculate the KE per molecule and also rms
velocity of a gas at $127^{\circ} \mathrm{C}$. Given
$k=1.38 \times 10^{-23} J$ molecule ${ }^{-1} K^{-1}$ and mass of each molecule $=6.4 \times 10^{-27} \mathrm{~kg}$.

- Watch Video Solution

34. (a) Calculate (i) root-mean-square speed and (ii) the mean energy of 1 mol of hyderogen at STP given that density of hydrogen is $0.09 \mathrm{~kg} / \mathrm{m}^{3}$. (b) Given that the mass of a
molecule of hydergen is $3.34 \times 10^{-27} \mathrm{~kg}$, calculate Avogadro's number. (c) Calculate Boltmann's constant.

D Watch Video Solution

35. At what temperature will the average velocity of oxygen molecules be sufficient to escape from the earth. Given mass of oxygen molecule $=5.34 \times 10^{-26} \mathrm{~kg} . \quad$ Boltzmann constant, $k=1.38 \times 10^{-23} J$ molecule ${ }^{-1} K^{-1}$
. Escape velocity of earth $=11.0 \mathrm{kms}^{-1}$.

Watch Video Solution

36. Calculate the temperature at which the average K.E. of a molecule of a gas will be the same as that of an electron accelerated through 1 volt. Boltzmann constant $=1.4 \times 10^{-23} \mathrm{Jmolecule}^{-1} \mathrm{~K}^{-1}$, charge of an electron $=1.6 \times 10^{-19} C$.

- Watch Video Solution

37. A vessel A contains hydrogen and another
vessel B whose volume is twice that of A
contains same mass of oxygen at same temperature. Compare
(i) average KE of hydrogen and oxygen molecule.
(ii) root mean square speeds of molecules
(iii) pressure of gases in A and B.

Molecular weight of hydrogen and oxygen are 2 and 32 respectively.

1. A bulb contains air at atmospheric pressure at $40^{\circ} \mathrm{C}$. The maximum pressure bulb can with stand is 2 atmosphere. Calculate the temperature of air when the bulb is on the point of bursting.

- Watch Video Solution

2. A $3000 \mathrm{~cm}^{3}$ tank contains oxygen at $20^{\circ} \mathrm{C}$ and the gauge pressure is $2.5 \times 10^{6} \mathrm{~Pa}$. Find
the mass of the oxygen in the tank. Take 1 atm $=10^{5} \mathrm{~Pa}$.

D Watch Video Solution

3. Calculate the number of molecules in each
cubic metre of a gas at 1 atm and $27^{\circ} \mathrm{C}$.

D Watch Video Solution

4. The volume of a gas at pressure
$1.2 \times 10^{7} \mathrm{Nm}^{-2}$ and temperature $127^{\circ} \mathrm{C}$ is
2.0 litre. Find the number of molecules in the gas.

D Watch Video Solution

5. There are 4×10^{24} gas molecules in a vessle at $50 K$ temperature. The pressure of the gas
in the vessel is 0.03 atm . Calculate the volume of the vessel.
6. A vessel of volume $8.0 \times 10^{-3} \mathrm{~m}^{3}$ contains
an ideal gas at $300 K$ and pressure $200 k P a$.

The gas is allowed to leak till the pressure falls to $125 k P a$. Calculate the amount of the gas
(in moles) leaked assuming that the temperature remains constants.

D Watch Video Solution

7. A vessel of volume $2000 \mathrm{~cm}^{3}$ contains 0.1 mol of oxygen and 0.2 mol of carbon dioxide. If the
temperature if the mixture is $300 K$, find its

pressure.

D Watch Video Solution

8. A balloon partially filled with helium has a volume of $30 m^{3}$, at the earth's surface, where pressure is 76 cm of (Hg) and temperature is $27^{\circ} C$ What will be the increase in volume of gas if balloon rises to a height, where pressure is 7.6 cm of Hg and temperature is $-54^{\circ} \mathrm{C}$?

D Watch Video Solution

9. Find the volume of $1 g$ of CO_{2} at $107^{\circ} \mathrm{C}$ and half the standard pressure when 1 ml of CO_{2} weighs $0.0019 g$ at S.T.P.

- Watch Video Solution

10. A litre of dry air weighs 1.293 gram at S.T.P

Find the temperature at which a litre of air will weigh one gram when the pressure is 72 cm . of mercury.
11. A vessel of volume , $V=5.0$ litre contains
$1.4 g$ of nitrogen at a temperature $T=1800 \mathrm{~K}$.
Find the pressure of the gas if 30% of its molecules are dissociated into atoms at this temperature.

- Watch Video Solution

12. 8 g of oxygen, 14 g of nitrogen and 22 g
carbon dioxide are mixed in an encloser of
volume 10 litre and temperature $27^{\circ} \mathrm{C}$.

Calculate the pressure exerted by the mixture,
$R=8.3 J \mathrm{~mole}^{-1} K^{-1}$, Molecular weight of oxygen, nitrogen and carbon 32,28 and 44 respectively.

D Watch Video Solution

Type C

1. The velocities of ten particles in $m s^{-1}$ are
$0,2,3,4,4,4,5,5,6,9$. Calculate
(i)average speed and
(ii)rms speed
(iii) most probable speed.

D Watch Video Solution

2. The velocities of ten molecules of any gas
are given $v, 0,2 v, 4 v, 3 v, 2 v, v, 3 v, 5 v, v$.

Calculate their root mean square velocity.

D Watch Video Solution

3. Calculate the rms velocity of molecules of a gas of density 1.5 glitre $^{-1}$ at a pressure of $2 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$.

- Watch Video Solution

4. Calculate the rms velocity of the molecules
of ammonia at S.T.P. Given molecular weight of ammonia $=17$.
5. The r.m.s. velocity of the molecules of a gas at S.T.P. is $485.6 m s^{-1}$. Calculate the density of the gas.

- Watch Video Solution

6. Calculate the root mean square velocity of
the molecules of hydrogen at $0^{\circ} C$ and pressure 76 cm of Hg when the density of hydrogen at S.T.P. is $0.00009 \mathrm{gcm}^{-3}$.
7. Show that the rms velocity of O_{2} molecule is
$\sqrt{2}$ times that of SO_{2}. Atomic weight of sulphur is 32 and atomic weight of oxygen is 16.

- Watch Video Solution

8. Calculate the temperature at which the rms
velocity of SO_{2} is the same as that of oxygen at $27^{\circ} \mathrm{C}$.
9. Estimate the temperature at which the oxygen molecules will have the same rms velocity as hydrogen molecules at $150^{\circ} \mathrm{C}$. Molecular weight of oxygen is 32 and that of hydrogen is 2 .

- Watch Video Solution

10. If root mean sqauare velocity of the molecules of hydrogen at NTP is $1.84 \mathrm{kms}^{-1}$, calculate the rms velocity of oxygen molecules
at NTP. Molecular weights of hydrogen and oxygen are 2 and 32 respectively.

D Watch Video Solution

11. At what temperature, pressure remaining unchanged, will the rms velocity of hydrogen be doubled its value at NTP ?

D Watch Video Solution
12. Calculate the rms velocity of CO_{2} molecules at
$R=8.31 K \mathrm{~mole}^{-1} K^{-1}$. N.T.P.

Given

D Watch Video Solution

13. Calculate the temperature at which root mean square velocity of N_{2} molecules is 25% more than that of molecules of hydrogen at $-73^{\circ} \mathrm{C}$. Molecular weight of nitro-gen is 28 while that of hydrogen at is 2 .
14. The root mean square velocity of helium atoms at normal temperature and pressure is $1300 \mathrm{~ms}^{-1}$. Calculate (i) density of helium at $0^{\circ} C$ and (ii) mass of helium atom. Normal pressure $=1.01 \times 10^{5} \mathrm{Nm}^{-2}$.

- Watch Video Solution

15. The density of carbon dioxide gas at $0^{\circ} C$ and at pressure $1.0 \times 10^{5} \mathrm{Nm}^{-2}$ is
$1.98 \mathrm{kgm}^{-3}$. Find the rms velocity of its molecules at $0^{\circ} C$ and also at $30^{\circ} C$, assuming pressure to be constant.

D Watch Video Solution

16. What will be the root mean square speed of helium at $40^{\circ} C$, if root mean square speed of oxygen molecule at $0^{\circ} \mathrm{C}$ is $460 \mathrm{~m} / \mathrm{s}$? Molecular weight of oxygen is $32 g /$ mole and of helium is $4 g /$ mole.
17. A gas is filled in a vessel at a certain temperature and at a pressure of 80 cm of Hg .

At the same temperature, more gas is filled in
the vessel so that its mean increases by 60%. Determine the resultant in the vessel.

D Watch Video Solution

1. Calculate the value of Boltzmann constant
k_{B}, Given $R=8.3 \times 10^{3} \mathrm{~J} / \mathrm{kg}-\mathrm{mol}-K$
and Avogadro number,
$N=6.03 \times 10^{26} / \mathrm{kg}-\mathrm{mol}$.

- Watch Video Solution

2. The kinetic energy of a molecule of oxygen at $0^{\circ} \mathrm{C}$ is $5.64 \times 10^{-21} \mathrm{~J}$. Calculate Avogadro's number. Given $R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$.
3. Calculate the total K.E. of 1 g of nitrogen at 300 K . Molecule weight of nitrogen $=28$.

- Watch Video Solution

4. Find the molecular kinetic energy of 1 g of helium at S.T.P. Given $R=8.3 \times 10^{7} \mathrm{erg}$.

- Watch Video Solution

5. Consider hydrogen gas in a container at

NTP. Calculate the average kinetic energy of each molecule.

D Watch Video Solution

6. At what temperature the kinetic energy of a molecule will be equal to $2.8 \times 10^{-20} \mathrm{~J}$? Boltzmann constant

$$
\left(k_{B}\right)=1.4 \times 10^{-23} \mathrm{Jmolecule}^{-1} K^{-1}
$$

7. The mean kinetic energy of $1 \mathrm{~kg}-\mathrm{mol}$ of nitrogen at $27^{\circ} \mathrm{C}$ is 600 J . What will be its mean kinetic energy at $127^{\circ} \mathrm{C}$?

- Watch Video Solution

8. Calculate for hydrogen at 27°
(i) KE of one gram mole of the gas
(ii) KE of one gram of the gas
(iii) root mean square velocity of the molecule.

Given, molecule wt. Of hydrogen $=2$.

- Watch Video Solution

9. The average kinetic energy of a hydrogen molecule at $27^{\circ} \mathrm{C}$ is $9.3 \times 10^{-21} \mathrm{~J}$. The mass of hydrogen molecule is $3.1 \times 10^{-27} \mathrm{~kg}$.

Determine the average kinetic en-ergy at $227^{\circ} \mathrm{C}$. (ii) Determine the root mean square speed of hydrogen molecule at $27^{\circ} \mathrm{C}$.
10. At what temperature the average value of
the kinetic energy of the molecule of a gas will be $1 / 3$ of the average value of kinetic energy at $27^{\circ} C$?

D Watch Video Solution

11. If the temperature of air is increased from
$27^{\circ} \rightarrow 227^{\circ}$, in what ratio will the average kinetic energy of its molecules be increased?
12. The temperature of a gas is $-68^{\circ} \mathrm{C}$. To what temperature should it be heated so that
(i) the average kinetic energy of the molecules be doubled and (ii) the root-mean-square velocity of the molecules be doubled?

- Watch Video Solution

13. There are 6×10^{21} hydrogen molecules in a vessel of volume $200 \mathrm{~cm}^{3}$. Its tempera-ture is
$27^{\circ} \mathrm{C}$ and the pressure is $10^{5} \mathrm{Nm}^{-2}$. If the
temperature be raised to $47^{\circ} \mathrm{C}$, then in what
ratio the following qunatities would change (i) number of molecules per unit volume
pressure of the gas is the vessel and (iii) average kinetic energy of hydrogen ?

D View Text Solution

