©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - ARIHANT CHEMISTRY

(HINGLISH)

ATOMIC STRUCTURE

Practise Exercise

1. The charge on eletron was determined by
A. Schrodinger
B. Chadwick
C. Thomson
D. Millikan

Answer: D

D View Text Solution

2. Deflection back of a few particles on hitting
thin foil of gold shows that
A. nucleus is heavy
B. nucleus is small
C. Both a and b
D. eletrons create hindrance in the movement of $\alpha-$ partic $\leq s$

Answer: C

- View Text Solution

3. A photon of frequency v has momentum
A. $h v / c$
B. $h v / v$
C. $\frac{h}{v c}$
D. $\frac{v c}{h}$

Answer: C

D View Text Solution
4. The energy of one quantum of light with a
wavelength of $6500 \AA\left(1 \AA=10^{-10} \mathrm{~cm}\right)$
A. $9.04 \times 10^{-24} \mathrm{~J}$
B. $3.02 \times 10^{-20} \mathrm{~J}$
C. $3.06 \times 10^{-19} \mathrm{~J}$
D. $6.02 \times 10^{-20} \mathrm{~J}$

Answer: C

D View Text Solution
5. Sodium lamp emits yellow light of wavelength $5800 \AA$ the wave number of the light is
A. $1.72 \times 10^{6} / m$
B. $17.2 \times 10^{8} / m$
C. $5.17 \times 10^{14} / \mathrm{s}$
D. $17.2 \times 10^{7} / \mathrm{m}$

Answer: A

D View Text Solution

6. The ultraviolet radiation has frequency
$6 \times 10^{16} / s$ The wavelength would be
A. $2 \times 10^{6} \mathrm{~cm}$
B. $5 \times 10^{-7} \mathrm{~cm}$
C. $18 \times 10^{-26} \mathrm{~cm}$
D. $2 \times 10^{7} \mathrm{~cm}$

Answer: B

D View Text Solution
7. A radiation of $2000 \AA$ falls on the metal whose work function is 4.2 eV . Then the kinetic energy of the fastest photo eletron is
A. $6.4 \times 10^{-10} \mathrm{~J}$
B. 16×10^{-10} J
C. $1.6 \times 10^{-19} \mathrm{~J}$
D. $3.2 \times 10^{-19} \mathrm{~J}$

Answer: D

- View Text Solution

8. The threshold wavelength for the ejection of electron from metal is 330 nm , then work function for the photoelectric emission is
A. 6×10^{-12} J
B. $6 \times 10^{-19} \mathrm{~J}$
C. $1.2 \times 10^{-20} \mathrm{~J}$
D. $1.2 \times 10^{-18} \mathrm{~J}$

Answer: B

D View Text Solution

2.859 energy associated with radiation of wavelength $4 \times 10^{-5} \mathrm{~m}$ will be
A. $71.5 \mathrm{kcal} / \mathrm{mol}$
B. $35.75 \mathrm{kcal} / \mathrm{mol}$
C. $32.0 \mathrm{kcal} / \mathrm{mol}$
D. $7.15 \mathrm{kcal} / \mathrm{mol}$

Answer: A

D View Text Solution

10. The ratio of energy of photon of
$\lambda=2000 \AA$ to that of $\lambda=4000 \AA$ is
A. 2
B. 4
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: A

D Watch Video Solution

11. Electromagnetic radiation with maximum wavelengths is :
A. infrared
B. Ultraviolet rays
C. X-rays
D. Radiowave

Answer: D

D Watch Video Solution

12. The kinetic energy of proton, whose mass is

140 times that of electron and potential difference V is
A. 1 KeV
B. 1840 KeV
C. 920 KeV
D. $\frac{1}{1840} \mathrm{keV}$

Answer: A

D Watch Video Solution

13. In first Bohr orbit of hydrogen atom, the velocity of electron would be (given that radius of first Bohr orbit is $0.53 \times 10^{-10} \mathrm{~m}$)
A. $2.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B. $3.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $1.1 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. $4.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution
14. Bohr atomic model explains
A. Finer details of atomic spectra
B. splitting of spectral lines in the presence of magnetic and electric field
C. spectra of hydrogen or hydrogen like atoms
D. intensity of various spectral lines

Answer: C

D Watch Video Solution

15. The expression for Bohr radius of nth orbit

 of an atoms is$$
\begin{aligned}
& \text { A. } r=\frac{n^{2} h^{2}}{4 \pi^{2} m Z e^{2}} \\
& \text { B. } r=\frac{n h}{4 \pi^{2} m Z e^{2}} \\
& \text { C. } r=\frac{n^{2} h^{2}}{4 \pi^{2} m Z} \\
& \text { D. } r=\frac{n^{2} h^{2}}{4 \pi^{2} m e^{2}}
\end{aligned}
$$

Answer: A
16. The potential energy of the electron in the
hydrogen atom is -6.8 eV The excited state in
which the eletron is present is
A. first
B. second
C. third
D. none of these

Answer: A
17. The energy required for the ionisation of excited hydrogen atom would be (in eV)
A. <13.6
B. >13.6
C. 13.6
D. none of these

Answer: A
(Watch Video Solution
18. For hydrogen atom, radius of first Bohr's orbit is a for Li^{2+} the radius of first Bohr's orbit is
A. $27 a$
B. 3 a
C. $\frac{a}{27}$
D. $\frac{a}{3}$

Answer: D

- Watch Video Solution

19. If the velocity of an electron in the first orbit of hydrogen atom is approximately $2.2 \times 10^{8} \mathrm{~cm} / \mathrm{s}$ is velocity in the fourth orbit would be
A. $5.5 \times 10^{7} \mathrm{~cm} / \mathrm{s}$
B. $4.4 \times 10^{7} \mathrm{~cm} / \mathrm{s}$
C. $3.3 \times 10^{7} \mathrm{~cm} / \mathrm{s}$
D. $6.6 \times 10^{7} \mathrm{~cm} / \mathrm{s}$

Answer: A
20. Energy of an eletron in hydrogen atom is given by $E=\frac{13.6}{n^{2}} \mathrm{eV}$. If n is changed from 1 to 4 then energy 1 is
A. four times that of 4
B. five times that of 4
C. sixteen times that of 4
D. equal that of 4

Answer: C
21. The radii of neclei and atoms are known to be of the order of $10^{-13} \mathrm{~cm}$ and $10^{-8} \mathrm{~cm}$ respectively assuming them to be spherical.

The fraction of atomic volume occupied by the nucleus would be
A. 10^{-15}
B. 10^{-17}
C. 10^{-14}
D. 10^{-16}

- Watch Video Solution

22. Which of the following statements is false ?
A. Spin quantum number corresponds to
two posible direction of spin
B. No two electrons in an atom may have
the same set of values for the four

quantum numbers

C. Number of electrons in an atom is equal
to the number of orbitals
D. The momentum and position of an
electron cannot be known
simultaneously

Answer: C

- Watch Video Solution

23. For hydrogen atom, radius of first Bohr orbit would be

A. $9.63 \times 10^{-10} m$
B. $0.43 \times 10^{-10} m$
C. $0.50 \times 10^{-10} m$
D. $0.53 \times 10^{-10} m$

Answer: D

D Watch Video Solution
24. The relation between radius of third orbit r_{3} and radius of first orbit r_{1} in hydrogen atom would be
A. $r_{3}=3 r_{1}$
B. $r_{3}=9 r_{1}$
C. $r_{1}=3 r_{3}$
D. $r_{1}=9 r_{3}$

Answer: B
25. The electron of hydrogen atom is excited
to certain level. When the electron returns to
the first Bohr orbit, the wavelength of line emitted if the energy difference is 11.0 eV would be
A. $11.25 \times 10^{-7} m$
B. $2.2 \times 10^{-6} \mathrm{~m}$
C. $9.1176 \times 10^{-8} m$
D. $1.22 \times 10^{-7} \mathrm{~m}$

Answer: A

- Watch Video Solution

26. Ionisation energy of $H e^{+}$is
19.6×10^{-18} Jatom $^{-1}$. The energy of the first
stationary state $(n=1)$ of $L i^{2+}$ is.
A. $4.41 \times 10^{-16} \mathrm{Ja} \rightarrow m^{-1}$
B. $-4.41 \times 10^{-17} \mathrm{Ja} \rightarrow m^{-1}$
C. $-2.2 \times 10^{-15} \mathrm{Ja} \rightarrow \mathrm{m}^{-1}$
D. $8.82 \times 10^{-17} \mathrm{Ja} \rightarrow m^{-1}$
27. Assuming atom to be a sphere, the radius of atom would be [if the apparent volume of atom of a metal is $\left.1.23 \times 10^{-23} \mathrm{~mL}\right]$
A. $1.401 \AA$
B. $1.942 \AA$
C. $1.642 \AA$
D. $1.541 \AA$

- Watch Video Solution

28. In hydrogen an electron transition takes
place from $n=2$ level $n=3$ level. The wavelength of the line in the hydrogen spectrum would be
A. 5.485×10^{7}
B. $6.56 \times 10^{-7} m$
C. $4.57 \times 10^{14} m$
D. $0.529 \times 10^{-10} m$

D View Text Solution

29. The line spectra are characteristics of
A. molecules in ground state
B. atoms in ground state
C. molecules in the excited state
D. atoms in excited state
30. In Boh'r series of lines of hydrogen spectrum, the third line from the red corresponds to which one of the following inter orbit jumps of the electron for Boh'r orbit in an atom of hydrogen ?
A. $5 \rightarrow 2$
B. $4 \rightarrow 1$
C. $2 \rightarrow 5$

$$
\text { D. } 3 \rightarrow 2
$$

Answer: A

D Watch Video Solution

31. The wavelength of the radiation emitted
when the electron jumps from 4th shell to 2 nd
shell is
A. $4862 \AA$
B. $2056 \AA$

C. $5241 \AA$

D. 109700 cm

Answer: A

D View Text Solution
32. First line of Paschen series has wave number $\left(R_{H}=109700 / \mathrm{cm}\right)$
A. $2854 \times 10^{8}(\AA)^{-1}$
B. $6243 \times 10^{8}(\AA)^{-1}$

> C. $6856 \times 10^{8}(\AA)^{-1}$
> D. $3452 \times 10^{8}(\AA)^{-1}$

Answer: C

D View Text Solution

33. Which of the following statement is false ?
A. Violet radiations have a longer
wavelength than red radiations
B. The energy of light with $\lambda=600 \mathrm{~nm}$ is
lower than that of $\lambda=500 \mathrm{~nm}$
C. Spectrum of an atom is known as line
spectrum
D. The wavelength associated with an
electron is longer than that of proton if
they have the same speed

Answer: A

34. The effect of splitting of spectral lines under the influence of magnetic field is called
A. photoelectric effect
B. Zeeman effect
C. Raman effect
D. Stark effect

Answer: B

- View Text Solution

35. In the influence of electric field the splitting of spectral lines is called
A. Zeeman effect
B. Stark effect
C. photoelectric effect
D. none of these

Answer: B
(D) View Text Solution
36. The visible part of electromagnetic radiations is
A. $2000 \AA \rightarrow 4000 \AA$
B. $2000 \AA \rightarrow 5000 \AA$
C. $4000 \AA \rightarrow 8000 \AA$
D. $1000 \AA \rightarrow 2000 \AA$

Answer: C
(D) View Text Solution
37. In hydrogen spectrum wave number of different lines is given by
$\frac{1}{\lambda}=R_{H}\left[\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right] \quad$ where
$R_{H}=1.090678 \times 10^{7} m^{-1}$ The wavelength of first line of Lyman series would be
A. $122 \times 10^{-7} m$
B. $9.1176 \times 10^{-8} m$
C. $12.2 \times 10^{-7} \mathrm{~m}$
D. $1.22 \times 10^{-7} \mathrm{~m}$
38. The mass of a photon of wavelength $1.54 \AA$ is

A. $2.5 \times 10^{-32} \mathrm{~kg}$
B. $1.42 \times 10^{32} \mathrm{~kg}$

C. Both of these

D. None of these

Answer: B

D View Text Solution
39. The uncertainty in the velocity of moving bullet of mass 10 g , when uncertainty in its position is $10^{-5} \mathrm{~m}$ is
A. $5.2 \times 10^{-28} \mathrm{~m} / \mathrm{s}$
B. $5.2 \times 10^{-22} \mathrm{~m} / \mathrm{s}$
C. $3 \times 10^{-28} \mathrm{~m} / \mathrm{s}$
D. $3 \times 10^{-22} \mathrm{~m} / \mathrm{s}$

Watch Video Solution

40. The momentum of a particle having deBroglie wavelength of $6 \AA$

$$
\begin{aligned}
& \text { A. } 1.1 \times 10^{34} \mathrm{~kg}-\mathrm{m} / \mathrm{s} \\
& \text { B. } 39.6 \times 10^{-34} \mathrm{~kg}-\mathrm{m} / \mathrm{s} \\
& \text { C. } 1.1 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s} \\
& \text { D. } 39.6 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s}
\end{aligned}
$$

Answer: C
41. When an electron is moving uniformly, it produces
A. both electric and magnetic fields
B. an electric field only
C. a magnetic field only
D. no such fields

Answer: A
42. Which of the following scientists demonstrated the wave nature of electron?
A. Davisson
B. Heisenberg
C. de- Broglie
D. Schrodinger

Answer: C

- Watch Video Solution

43. Which one of the following statements is most appropriate?
A. Electron spins around its own axis only
B. Electron moves around the nucleus in
spherical orbits
C. Electron moves around the nucleus in
elliptical orbits
D. Electrons moves around the necleus in
spherical or elliptical orbits spins around its own axis

Answer: D

D Watch Video Solution

44. The maximum number of electrons that
can be taken by a subshell with $l=3$ is
A. 8
B. 14
C. 10
D. 12

Answer: B

D Watch Video Solution

45. The spectrum of $H e$ is expected to be similar to that of
A. hydrogen
B. $L i^{+}$
C. Na
D. He

Answer: A

D Watch Video Solution

46. The orbital with $n=3$ and $l=2$ is
A. 5 d
B. 3d
C. 4 d
D. 5 s
47. If n and l are respectively the principal and azimuthal quantum numbers , then the expression for calculating the total number of electrons in any energy level is :

$$
\begin{aligned}
& \text { A. } \sum_{l=0}^{l=n} 2(2 l+1) \\
& \text { B. } \sum_{l=1}^{l=n-1} 2(2 l+1) \\
& \text { C. } \sum_{l=0}^{l=n+1} 2(2 l+1) \\
& \text { D. } \sum_{l=0}^{l=n+1} 2(2 l+1)
\end{aligned}
$$

Answer: D

- Watch Video Solution

48. Which of the following set of quantum number is not applicable for an electron in an atom?

$$
\begin{aligned}
& \text { A. } n=2 l=0 m=0 s=+1 / 2 \\
& \text { B. } n=1 l=0 m=0 s=-1 / 2 \\
& \text { C. } n=1 l=0 m=0 s=+1 / 2 \\
& \text { D. } n=1 l=1 m=1 s=+1 / 2
\end{aligned}
$$

Answer: D

D Watch Video Solution

49. The maximum number of electrons that dorbital can contain is
A. 10
B. 2
C. 14
D. 6

D Watch Video Solution

50. The shape of the orbital is determined by
A. spin quantum number
B. Magnetic quantum number
C. azimuthal quantum number
D. principal quantum number
51. For the valency electron in copper, the four quantum numbers are

$$
\begin{aligned}
& \text { A. } n=4 l=0 m=0 s=+1 / 2 \\
& \text { B. } n=4 l=2 m+2=-1 / 2 \\
& \text { C. } n=4 l=-2 m=2 s=+\frac{1}{2} \\
& \text { D. } n=4 l=2 m=0 s=+\frac{1}{2}
\end{aligned}
$$

52. What will be the uncertainly in velocity of a cricket ball of 100 g if the uncertainly in its position is $1.65 \AA$?

$$
\begin{aligned}
& \text { A. } \frac{10^{-23}}{\pi} m s^{-1} \\
& \text { B. } \frac{6.6}{\pi} 10^{-45} \mathrm{~ms}^{-1} \\
& \text { C. } 4.65 \times 10^{-43} m s^{-1} \\
& \text { D. } \frac{10^{-26}}{\pi} m s^{-1}
\end{aligned}
$$

53. The electrons, identified by quantum numbers n and \mid
(i) $n=4 l=1$
(ii) $n=4 l=0$
(iii) $n=3 l=2$
(iv) $n=3 l=1$
can be placed in increasing order of energy from the lowest to highest as

$$
\text { A. }(i v)<(i i)<(i i i)<(i v)
$$

$$
\begin{aligned}
& \text { B. }(i i)<(i v)<(i)<(i i i) \\
& \text { C. }(i)<(i i i)<(i i)<(i v) \\
& \text { D. }(i i i)<(i)<(i v)<(i i)
\end{aligned}
$$

Answer: A

D Watch Video Solution

54. An element has atomic number 37 the electronic configuration of the element is

$$
\text { A. (28) } 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 5 s^{6} 4 p^{5}
$$

B. $(28) 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 5 s^{1}$
 C. $(28) 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{9} 5 s^{1} 4 p^{5}$

D. None of the above

Answer: B

D Watch Video Solution

55. The number of unpaired electrons in ferrous ion is
A. 5
B. 2
C. 4
D. 3

Answer: C

D Watch Video Solution

56. The triad of nuclei that is isotonic is
A. ${ }_{6} C^{14}{ }_{\cdot 7} N^{14}{ }_{\cdot 9} F^{19}$
B. . ${ }_{6} C^{14}{ }_{\cdot 7} N^{15}{ }_{\cdot 9} F^{17}$
C. ${ }_{6} C^{14}{ }_{\cdot 7} N^{14}{ }_{\cdot 9} F^{17}$
D. ${ }_{6} C^{12}{ }_{\cdot 7} N^{14} \cdot{ }_{9} F^{19}$

Answer: B

- Watch Video Solution

57. In which of the following orbital diagram

Aufbau principal is not violated
A. 1$] 1111$
B. 1111
C. [1] 1111
D. 11$] 111$

Answer: B

D Watch Video Solution

58. Nitrogen has electronic configuration $1 s^{2} 2 s^{2} 2 p_{x}^{1} 2 p_{y}^{1} 2 p_{z}^{1}$ This is because of
A. Pauli's exclusion principle
B. $(n+1)$ rule

C. Hund's rule

D. Uncertainty principle

Answer: C

- Watch Video Solution

Bitsat Archives

1. Which of the following relation is incorrect regarding Bohr's theory?
A. Velocity of electron $\propto \frac{1}{n}$
B. Frequency of revolution $\propto \frac{1}{n^{2}}$
C. Radius of orbit $\propto n^{2} / Z$
D. Force on electron $\propto \frac{1}{n^{4}}$

Answer: C

D Watch Video Solution
2. Bohr theory is applicable to
A. He
B. $L i^{2+}$
C. He^{2+}
D. None of these

Answer: B

D Watch Video Solution

3. if the radius of H is $0.53 \AA$ then what will be
the radius of ${ }_{3} L i^{2+}$?
A. $0.17 \AA$
B. $0.36 \AA$
C. $0.53 \AA$
D. $0.59 \AA$

Answer: A

D Watch Video Solution

4. Which of the following has the largest de Broglie wavelength given that all have equal
velocity?
A. $C O_{2} m o \leq c \underline{e}$
B. $N H_{3} m o \leq c \underline{e}$
C. Electron
D. Proton

Answer: C

D View Text Solution
5. The wave number of a spectral line is
$5 \times 10^{5} \mathrm{~m}^{-1}$. The energy corresponding to
this line is
A. $3.49 \times 10^{-23} \mathrm{~kJ}$
B. $4.45 \times 10^{-24} \mathrm{~J}$
C. $5.50 \times 10^{-22} \mathrm{~J}$
D. $9.93 \times 10^{-23} \mathrm{~kJ}$

Answer: D

D Watch Video Solution

6. Energy of third orbit of Bohr's atom is
A. -13.6 eV
B. $-3.4 e V$
C. -1.5 eV
D. none of these

Answer: C

D Watch Video Solution

7. An electronic transition in hydrogen atom result in the formation of $H \alpha$ line of

Hydrogen in Lyman series, the energies associated with the electron in each of the
orbits involved in the transition (in $\mathrm{kcalmol}^{-1}$
) are
A. $-313.6-34.84$
B. $-313.6-78.4$
C. $-78.4-34.84$
D. $-78.4-19.6$

Answer: B

D Watch Video Solution

8. The velocities of two particles A and B are 0.05 and $0.02 m s^{-1}$ respectively. The mass of B is five times the mass of A. The ratio of their de- Broglie's wavelength is
A. $2: 1$
B. $1: 4$
C. $1: 1$
D. $4: 1$

Answer: A
9. Cr has electronic configuration as

> A. $3 s^{2} 3 p^{2} 3 d^{4} 4 s^{1}$
> B. $3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$
> C. $3 s^{2} 3 p^{6} 3 d^{6}$
> D. $3 s^{2} 3 p^{6} 3 d^{6} 4 s^{1}$

Answer: B

10. The number of waves in an orbit are

A. n^{2}
B. n
C. $n-1$
D. $n-2$

Answer: B

D View Text Solution
11. The probability of finding the electron in the orbital is
A. 100%
B. $90-95 \%$
C. $70-80 \%$
D. $50-60 \%$

Answer: B

D Watch Video Solution
12. The velocity of electron in first orbit of H atom as compared to the velocity of light is

> A. $\frac{1}{10} t h$
> B. $\frac{1}{100} t h$
> C. $\frac{1}{1000} t h$
> D. same

Answer: B

- Watch Video Solution

