

# **CHEMISTRY**

# BOOKS - ARIHANT CHEMISTRY (HINGLISH)

# **CHEMICAL AND IONIC EQUILIBRIUM**

**Practice Exericese** 

**1.** An aqueous solution of  $HCIis10^{-9}MHCI$ .

The pH of the solution should be

- A. 8
- B. -8
- C. between 7 and 8
- D. between 6 and 7

# Answer: D



**Watch Video Solution** 

**2.** The following concentrations were obtained for the formation of  $NH_3$  from  $N_2$  and  $H_2$  at equilibrium at 500K.

 $[N_2] = 1.5 imes 10^{-2} M, [H_2] = 3.0 imes 10^{-2} M,$ 

and  $[NH_3]=1.2 imes10^{-2}M.$  Calculate the equilibrium constant.

A.  $1.08 \times 10^4$ 

 $\mathsf{B.}\,3.98\times10^2$ 

C.  $1.06 \times 10^{3}$ 

D.  $2.93 \times 10^4$ 

# **Answer: B**



**3.** Which of the following relations represent correct relation between standard electrode potential and equilibrium constant?

I. 
$$\log K=rac{nFE^\circ}{2303RT}$$
 II.  $K=e^{-rac{nFE^\circ}{RT}}$  III.  $\log K=rac{-nFE^\circ}{2303RT}$  IV.  $\log K=0.4342rac{nFE^\circ}{RT}$ 

A. I,II and III

B. II and III

C. I, II and IV

D. I and IV

# **Answer: C**



**Watch Video Solution** 

**4.** If the ionisation constant of acetic acid is  $1.8 \times 10^{-5}$ , at what concentration will it be dissociated to  $2\,\%$  ?

A. 1M

 $\mathsf{B.}\ 0.018M$ 

 $\mathsf{C.}\ 0.18M$ 

 $\mathsf{D}.\,0.045M$ 

# **Answer: D**



# **Watch Video Solution**

**5.** The dissociation constant of acetic acid at a given temperature is  $1.69\times10^{-5}$ . The degree of dissociation of 0.01 M acetic acid in presence of 0.01 M HCl is equal to :

A. 0.41

B. 0.13

 $\mathsf{C.}\,0.169 imes 10^{-2}$ 

D.0.013

**Answer: C** 



Watch Video Solution

**6.** The concentration of hydrogen ion in a sample of soft drink is  $3.8 \times 10^{-3} M$ . What is its pH?

A.4.32

B. 5.12

C. 3.31

D. 2.42

# **Answer: D**



**Watch Video Solution** 

**7.** The  $pK_a$  of acetic acid and  $pK_b$  of ammonium hydroxide are 4.76 and 4.75 respectively. Calculate the pH of ammonium acetate solution.

- A. 4.765 B. 5.012
  - D. 6.098

C. 7.005

# Answer: C

Watch Video Solution

# **8.** For a reaction, $CH_3COOH(aq) \Leftrightarrow H^+(aq) + CH_3COO^-(aq)$ or $HAc(aq) \Leftrightarrow H^+(aq) + Ac^-(aq)$

Evaluate the pH of the solution resulting on addition of 0.05M acetata ion to 0.05M acid solution  $\left(K_a=1.8\times 10^{-5}\right)$ 

- A. 5.72
- B. 3.87
- C. 4.24
- D. 4.74

**Answer: D** 



**9.** pH of an acidic buffer is given by

A. 
$$pH=pK_a+\log.rac{[ ext{salt}]}{[ ext{acid}]}$$
B.  $pH=pK_a-\log.rac{[ ext{salt}]}{[ ext{acid}]}$ 

B. 
$$pH = pK_a - \log. \; rac{ ext{[salt]}}{ ext{[acid]}}$$

C. 
$$pH=rac{1}{2}pK_a+\log.rac{[ ext{salt}]}{[ ext{acid}]}$$
D.  $pH=\log K_a+\log.rac{[ ext{salt}]}{[ ext{acid}]}$ 

D. 
$$pH = \log K_a + \log. \ rac{[ ext{salt}]}{[ ext{acid}]}$$

## Answer: A



**10.** The pH of buffer solution containing  $4 imes10^{-3}$  and 0.4 mole of acetic acid  $(pK_a=4.76)$  and sodium acetate respectively will be

A. 6.76

B. 4.76

C. 2.76

D.0.76

#### **Answer: A**



Water video Solution

11. For the pair of reactions given below,

I. 
$$N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$$

II. 
$$rac{1}{2}N_2(g)+rac{3}{2}H_2(g)\Leftrightarrow NH_3(g)$$

If at a particular temperature,  $K_{p1}$  and  $K_{p2}$  are the equilibrium constants for reaction I and II respectively, then

A. 
$$K_{p1}=2K_{p2}$$

B. 
$$K_{p1}=K_{p2}^2$$

C. 
$$2K_{p1}=K_{p2}$$

D. 
$$K_{p1}=K_{p2}$$

# **Answer: B**



Watch Video Solution

12. Solubility of  $BaF_2$  in a solution of  $Ba(NO_3)_2$ , will be represented by the concentration term:

A.  $\left[Ba^{2\,+}
ight]$ 

B.  $\left\lceil F^{\,-1} 
ight
ceil^2$ 

C. 
$$\frac{1}{2}[F^{-1}]$$

D.  $2[NO_3^-]$ 

# **Answer: C**



# **Watch Video Solution**

**13.** pH for the solution of salt undergoing anionic hydrolysis (say  $CH_3COONa$ ) is given by:

A. 
$$pH=rac{1}{2}pK_a-rac{1}{2}pK_b+rac{1}{2}{
m log}\,C$$

B. 
$$pH=rac{1}{2}pK_{\omega}+rac{1}{2}pK_{a}-rac{1}{2}pK_{b}$$

C. 
$$pH=rac{1}{2}pK_w+rac{1}{2}pK_a+rac{1}{2}{
m log}\,C$$

D. 
$$pH=\ -rac{1}{2}pK_w+rac{1}{2}pK_a+rac{1}{2}pK_b$$

# Answer: C



**14.** The solubility of  $AgBrO_3$  in an aqueous solution of  $NaBrO_3$  (as compared to that in water) is

- A. the same
- B. more
- C. less
- D. unpredicted due to a new chemical reaction

# **Answer: C**



**15.** Which of the following salts undergoes anionic hydrolysis?

- A.  $CuSO_4$
- B.  $NH_4CI$
- C.  $FeCI_3$
- D.  $Na_2CO_3$

**Answer: D** 



**16.** How do we differentiate between  $Fe^{3+}$  and  $Cr^{3+}$  in group III?

A. By taking excess of  $NH_4OH$ 

B. By increasing  $NH_4^{\,+}$  ion concentration

C. By decreasing  $OH^{\,-}$  ion concentration

D. Both (a) and (c)

# **Answer: D**



17. Calculate the degree of ionisation of 0.05M acetic acid if its  $pK_a$  value is 4.74. How is the degree of dissociation affected when its solution also contains

a. 0.01M, b. 0.1M in HCl?

A. 0.019~%

 $\mathsf{B.}\,1.9~\%$ 

C.  $3.0\,\%$ 

D.  $4.74\,\%$ 

# **Answer: B**

**18.** A certain buffer solution contains equal concentartion of  $X^\Theta$  and HX. The  $K_b$  for  $X^\Theta$  is  $10^{-10}$ . The pH of the buffer is

A. 4

B. 6

C. 7

D. 14

Answer: A

**19.** The buffering action of an acidic buffer is maximum when its pH equals to

**A.** 5

B. 7

**C**. 1

D.  $pK_a$ 

Answer: D

Watch Video Solution

20. The expression for the solubility product of

 $Ag_2CrO_3$  will be

A. 
$$K_{sp}=S^2$$

B. 
$$K_{sp}=4S^3$$

$$\mathsf{C.}\,K_{sp}=27S^4$$

D. 
$$K_{sp} = S$$

#### **Answer: B**



# 21. Amphoteric behaviour is shown by

A. 
$$H_2CO_3$$
 and  $AI_2O_3$ 

B. 
$$HCO_3^-$$
 and  $H_2O$ 

C. 
$$HCO_3^-$$
 and  $H_3O^+$ 

D. 
$$H_2CO_3$$
 and  $H_2O$ 

#### **Answer: B**



**22.** The value of  $pK_w$  of water

A. increases with increase in temperature

B. decreases with rise in temperature

C. does not change with variation in temperature

D. increases till  $50^{\circ}C$  and there after decreases

# **Answer: B**



**23.** The  $\left[Ag^{+}
ight]$  ion in a saturated solution of

 $Ag_2CrO_4$  at  $25^{\circ}\,Cis1.5 imes10^{-4}M$ . Determine

 $K_{SP}$  of  $Ag_2CrO_4$  at  $25\,^{\circ}\,C$ .

A. 
$$3.3750 imes 10^{-12}$$

B. 
$$1.6875 \times 10^{-10}$$

C. 
$$1.6875 imes 10^{-12}$$

D. 
$$1.6875 \times 10^{11}$$

# **Answer: C**



# **24.** If the solubility of $Ag_2CrO_4$ is S mol/L, its solubility product will be

- A.  $S^2$
- $\mathsf{B.}\,S^3$
- $\mathsf{C.}\,4S^3$
- $\mathsf{D.}\,2S^3$

## **Answer: C**



**Bitsat Archives** 

**1.** Calculate the pH at the equivalence point during the titration of  $0.1M,\,25mLCH_3COOH$  with 0.05MNaOH solution.  $\left[K_a(CH_3COOH)=1.8\times 10^{-5}\right]$ 

A. 9.63

B. 8.63

C. 10.63

D. 11.63

## **Answer: B**



**Watch Video Solution** 

**2.** The  $pK_a$  of acteylsalicylic acid (aspirin) is 3.5 . The pH of gastric juice in human stomach is about 2-3 and the pH in the small intestine is about 8. Aspirin will be:

A. ionised in the small intestine and stomach

- B. ionised in the stomach and almost unionised in the small intestine
- C. unionised in small intensity and stomach
- D. completely ionised in small intestine and stomach

Answer: A



# **3.** At $27^{\circ}\,C,\,K_p$ value for the reaction

$$CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$$
, is 0.1 atm.

 $K_C$  value for this reaction is

A. 
$$4 imes 10^{-3}$$

$$\text{B.}\,6\times10^{-3}$$

C. 
$$2 imes 10^{-3}$$

D. 
$$9 imes 10^{-3}$$

# **Answer: A**



**4.** In the titration of NaOH and HCI, which of the following indicators will be used ?

A. Methyl organe

B. Methyl red

C. Both (a) and (b)

D. None of (a) and (b)

**Answer: C** 



 $2NOBr(g)\Leftrightarrow 2NO+Br_2(g)$  , calculate the ratio  $rac{K_p}{P}$  , where P is the total pressure and  $P_{Br_2}=rac{P}{Q}$  at a certain temperature

A. 
$$\frac{1}{3}$$

B. 
$$\frac{1}{9}$$

c. 
$$\frac{1}{27}$$

D. 
$$\frac{1}{81}$$

# **Answer: D**



the 6. For reaction,

 $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$ , the units of  $K_p$ 

are .....

A.  $Lmol^{-1}$ 

 $\mathsf{B.}\,L^2 mol^{-2}$ 

C.  $mol L^{-1}$ 

D. No units

# **Answer: B**



**7.** A sulphuric acid solution has pH=3. Its normality is

A. 1/1000

B. 1/200

C.1/2000

D.1/100

**Answer: A** 



**8.** The pH of 0.01MHCN solution for which  $pK_a$  is 4 is

- A.0.47
- B. 1.2
- C. 3.0
- D. 4.0

**Answer: C** 



**9.** If dissociation constant of ammonia is  $10^{-5}$ ,

its  $pK_b$  and  $pK_4$  value respectively are

- A. 5 and 9
- B. 9 and 5
- C. 7 and 7
- D. 4 and 10

**Answer: A** 



**10.**  $\left[H^{+}\right]$  of  $0.02NCH_{3}COOH$  which is  $4\,\%$ 

dissociated, is

- $\mathsf{A.}\ 0.08M$
- $\mathsf{B.}\ 0.12M$
- $\mathsf{C.}\ 0.008M$
- D.0.8M

**Answer: C** 



**11.** 50 mL of  $H_2O$  is added to 50mL of  $1\times 10^{-3}M$  barium hydroxide solution. What is the pH of the resulting solution?

- A. 3.0
- $B. \, 3.3$
- **C**. 11.0
- D. 11.7

#### **Answer: C**



**12.** Assertion (A) The aqueous solution of  $CH_3COONa$  is alkaline in nature.

Reason (R) Acetate ion undergoes atomic hydrolysis.

- A. Both (A) and (R) are true and (R) is the correct explanation of (A)
- B. Both (A) and (R) are true and (R) is not the correct explanation of (A)
- C. (A) is true but (R) is not true
- D. (A) is not true but (R) is true

# **Answer: A**



**Watch Video Solution** 

13. In a 500mL falsk, the degree of dissociation of  $PCI_5$  at equilibrium is  $40\,\%$  and the initial amount is 5 moles. The value of equilibrium constant in mol  $L^{-1}$  for the decomposition of  $PCI_5$  is

A. 2.33

B.2.66

C. 5.32

D. 4.66

# **Answer: B**



**Watch Video Solution** 

**14.** For an equilibrium reaction,  $N_2O_4(g)\Leftrightarrow 2NO_2(g)$ , the concentrations of  $N_2O_4$  and  $NO_2$  at equilibrium are  $4.8\times 10^{-2}$  and  $1.2\times 10^{-2}mol/L$  respectively. The value of  $K_c$  for the reaction is

A. 
$$3 imes10^{-3} mol/L$$

B. 
$$3.3 imes10^{-3} imes10^{-3}mol/L$$

C. 
$$3 imes 10^{-1} mol/L$$

D. 
$$3.3 imes10^{-1} mol/L$$

# **Answer: A**



**Watch Video Solution** 

**15.** In  $2HI \Leftrightarrow H_2 + I_1$ , the forward reaction is not affected by change in

A. catalyst

B. pressure

C. volume

D. temperature

# **Answer: A**



**Watch Video Solution** 

16. In which of the following reactions is

 $K_p < K_C$ ?

A.  $I_2(g) \Leftrightarrow 2l(g)$ 

 $\texttt{B.}\, 2BrCI(g) \Leftrightarrow CI_2(g) + Br_2(g)$ 

C.

$$CO(g) + 3H_2(g) \Leftrightarrow CH_4(g) + H_2O(g)$$

D. All of the above

# **Answer: C**



**17.** The change in pressure will not affect the equilibrium constant for

A. 
$$N_2+3H_2\Leftrightarrow 2NH_3$$

$$\mathsf{B.}\,PCI_5 \Leftrightarrow PCI_3 + CI_2$$

$$\mathsf{C}.\,H_2+I_2\Leftrightarrow 2HI$$

D. All of these

## **Answer: D**

