©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - ARIHANT CHEMISTRY

(HINGLISH)

CHEMICAL BONDING

Practice Exercise

1. Which of the following is not correct?
A. $\mathrm{Na}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{NaCl}$

$$
\text { B. } C a^{+}+2 F^{-} \rightarrow C a F_{2}
$$

C. $N a^{+}+F^{-} \rightarrow N a F$
D. $\mathrm{Ca}^{+}+2 \mathrm{Na}^{+} \rightarrow \mathrm{CaNa} 2$

Answer: D

D Watch Video Solution
2. Which postulation provide the basic for the modern concepts regarding ion formation by
electron transfer and the formation opf ionic crystalline compounds?
A. Kossel's postulations
B. Langmulr's postulations
C. Newton's postulations
D. Lewis postulations

Answer:

D View Text Solution

3. In chlorine atom, how many electrons are short of the argon configuration?
A. One
B. Two
C. Three
D. Four

Answer:
(D) Watch Video Solution
4. Which is not paramagnetic?
A. O_{2}
B. O_{2}^{+}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: D

(D) Watch Video Solution
5. Which of the following is the weakest bond?
A. Hydrogen bond

B. Covalent bond

C. Ionic bond
D. Metallic bond

Answer: A

- Watch Video Solution

6. Which of the following compounds has the smallest bond angle?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $H_{2} S$
C. NH_{3}
D. CO_{2}

Answer:

D Watch Video Solution

7. The molecule which contains ionic as well as

A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. $C a C l_{2}$
D. $\mathbb{C l} l_{4}$

Answer:

- Watch Video Solution

8. Consider the following Lewis structure of
HNO_{3},

The formal charge on $O_{(1)}, O_{(2)}$ and $O_{(3)}$ are given in colmun II. Match the following and choose the correct option from the codes given below.

Column I Column II

A.
O_{1}

1. Zero
B.
O_{2}
2.

-1
C. $\mathrm{O}_{3} \quad$ 3. +3
$A B C$
A.

123

$A \quad B \quad C$
B.
$2 \quad 1 \quad 2$
$A \quad B \quad C$
C.
$1 \quad 1 \quad 2$
$A \quad B \quad C$
D.
$\begin{array}{lll}3 & 2\end{array}$

Answer:

- Watch Video Solution

9. Which one has covalent as well as ionic
valency?
A. NaCl
B. HCl
C. $\mathrm{H}_{2} \mathrm{O}$
D. NaOH

Answer:

D Watch Video Solution
10. In $N O_{3}^{-}$ion, the number of bond pairs and
lone pairs of electrons on nitrogen atom
respectively are
A. 2 and 2
B. 3 and 1
C. 1 and 3
D. 4 and 0

Answer:

D Watch Video Solution
11. Which one of the following contains both ionic and covalent bonds?
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
B. $\mathrm{H}_{2} \mathrm{O}$

C. NaOH

D. CO_{2}

Answer:

- Watch Video Solution

12. Lewis dot structures of $\mathrm{CO}, N \mathrm{NO}_{2}^{-}$and
CO_{3}^{2-} are I, II and III respectivley given below.

$$
: C=\ddot{O}:[\because \ddot{O}-\ddot{N}=\ddot{O}]^{-}[: \ddot{O}-\ddot{C}-\ddot{O}:]^{2-}
$$

Which of these structure(s) is/are wrong?
A. Only I
B. Only II
C. Only III
D. I, II and III

Answer:

D Watch Video Solution
13. In the following electron dot structure, calculate the formal charge from left to right nitrogen atom respectively:

A. $-1,-1$ and +1
B. $-1,+1$ and -1
C. $+1,-1$ and -1
D. $+1,-1$ and +1

Answer:

D Watch Video Solution

14. The magnitude of lattice energy of a solid increases if
A. size of ions is small
B. charges of ions are small
C. ions are neutral
D. None of the above

Answer:

- Watch Video Solution

15. If the electronic configuration of an element is $\quad 1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2}, \quad$ four electrons involved in chemical bond formation will be
A. $3 p^{6}$
B. $3 p^{6}, 4 s^{2}$
C. $3 p^{6}, 3 d^{2}$

$$
\text { D. } 3 d^{2}, 4 s^{2}
$$

Answer:

D Watch Video Solution

16. The electronic configuration of the outemost shell of the most electronegative element is
A. $2 s^{2} 2 p^{5}$
B. $3 s^{2} 3 p^{5}$
C. $4 s^{2} 4 p^{5}$
D. $5 s^{2} 5 p^{5}$

Answer:

D Watch Video Solution

17. An electronic arrangement is said to be stable if its outer shell consists
A. doublet of electrons
B. triplet of electrons

C. octet of electrons

D. singlet of electron

Answer:

D Watch Video Solution

18. Which is the most covalent?
A. C-F
B. $\mathrm{C}-\mathrm{O}$
C. C-S

D. $\mathrm{C}-\mathrm{Br}$

Answer:

- Watch Video Solution

19. Which of the following molecules is correct regarding BeCl_{2} ?
A. It violates octet rule and has $s p^{2}$ hybridisation
B. It has sp-hybridisation and follow octet
rule
C. It violates octet rule and has linear structure
D. All of the above are true

Answer:

D Watch Video Solution

20. The correct order of increasing covalent character of the following is
A. $S i C l_{4}<A l C l_{3}<C a C l ~ l ~ K C l ~$
B. $\mathrm{KCl}<\mathrm{CaCl}_{2}<A l C l_{3}<S i C l_{4}$

D. None of the above

Answer:

21. The metallic luster exhibited by sodium is explained by
A. diffusion of sodium ions
B. excitation of free protons
C. oscillation of loose electrons
D. existence of body centred cubic lattice

Answer:

D Watch Video Solution
22. Arrange the following ionic compunds in order of increasing ionic character:

$$
\begin{array}{llll}
K F & K C L & K B r & K l \\
A & B & C & D
\end{array}
$$

A. $A<B<C<D$
B. $D<C<B<A$
C. $B<A<C<D$
D. $C<A<B<D$

Answer:

D Watch Video Solution
23. Consider the Born-Haber cycle for the
formation of an ionic compound given below.
$M(\mathrm{~s}) \xrightarrow{\Delta H_{1}} M(\mathrm{~g}) \xrightarrow{\Delta H_{2}} M^{+}(\mathrm{g})$
$\frac{1}{2} X_{2}(\mathrm{~g}) \xrightarrow{\Delta H_{3}} X(\mathrm{~g}) \xrightarrow{\Delta H_{4}} X^{-}(\mathrm{g}) \xrightarrow{\Delta H_{5}} Z$
Here, Z refers to
A. $M^{+} X^{-}(I)$
B. $M^{+} X^{-}(s)$
C. $M X_{2}$

$$
\text { D. } M^{+} X^{-}(g)
$$

24. Which of the following structures is/are

correct?

A. I, II and IV
B. II, III and IV
C. II and III
D. I, II, III and IV

Answer:

D Watch Video Solution

25. In which of the following molecule/ion, all
the bonds are not equal?
A. $X e F_{4}$
B. $B F_{4}^{-}$
C. $C_{2} H_{4}$
D. $S i F_{4}$

Answer:

D Watch Video Solution

26. The electronegativity difference between two atoms A and B is 2 , then percentage of covalent character in the molecule is
A. 54%
B. 46%
C. 23%
D. 72%

Answer:

D Watch Video Solution

27. Which of the following is a favorable factor

for cation formation?

A. Low ionisation potential
B. High electron affinity

C. High electron negativity

D. Small atomic size

Answer:

D Watch Video Solution

28. Match the reaction give in Column I with enthalpy in Column II and choose the correct
option from the codes given below.

Column I
A. $\mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+2 \theta^{-}$
B. $\mathrm{O} \longrightarrow \mathrm{O}^{2-}-2 e^{-}$
C. $M(g) \longrightarrow M^{+}(g)+e^{-}$
D. $X(g) \longrightarrow X^{-}(g)-e^{-}$

Column II

1. Electron gain enthalpy
2. Ionisation enthalpy

$\begin{array}{llll}A & B & C & D\end{array}$

A.
$\begin{array}{llll}1 & 2 & 1 & 2\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
B.
$\begin{array}{llll}2 & 1 & 2 & 1\end{array}$
$\begin{array}{llll}A & B & C & D\end{array}$
C.

$\begin{array}{llll}1 & 1 & 2 & 2\end{array}$

$\begin{array}{llll}A & B & C & D\end{array}$
D.
$\begin{array}{llll}2 & 2 & 1\end{array}$

Answer:

29. In the formation of a molecule, only the outer shell electrons take part in chemical combination and are known as
A. Valence electrons
B. inner electrons
C. inert electrons
D. reactive electrons

Answer:

D Watch Video Solution
30. How many double bonds are present in carbon dioxide molecule?
A. One
B. Two
C. Three
D. Four

Answer:
(D) Watch Video Solution
31. Which of the following hybridisations is not possible?
A. $s p^{3}$
B. $s p^{3} d^{3}$
C. $s d^{3}$
D. None of the above

Answer:

D Watch Video Solution
32. The hybridization of atomic orbitals of nitrogen is $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$, and NH_{4}^{+} respectively are
A. $s p^{2}, s p^{3}$ and $s p^{2}$
B. $s p, s p^{2}$ and $s p^{3}$
C. $s p^{2}, s p$ and $s p^{3}$
D. $s p^{2}, s p^{3}$ and $s p$

Answer:

D Watch Video Solution
33. What is the type of hybridisation of carbon atoms marked with star?

$$
\stackrel{\star}{\mathrm{C}} \mathrm{H}_{2}=\mathrm{CH}-\stackrel{\stackrel{*}{\mathrm{C}}}{\|_{\mathrm{O}}}-\mathrm{O}-\mathrm{H}
$$

A. $s p^{2}$ and $s p$
B. $s p^{2}$ and $s p^{2}$
C. $s p$ and $s p^{2}$
D. None of these

Watch Video Solution

34. Among the three molecules
$X e F_{4}, S F_{4}, S i F_{4}$, which has/have tetrahedral structure?
A. All three
B. $S i F_{4}$ and $S F_{4}$
C. Only SiF_{4}
D. Only $S F_{4}$

- Watch Video Solution

35. What is the structure ox $X e F_{6}$?
A. Tetrahedral
B. Distorted octahedral
C. Octahedral
D. None of these

Answer:

D Watch Video Solution
36. Which of the molecules has trigonal bipyramidal geometry with bond angles 120° and 90° ?
A. $S F_{6}$
B. $P C l_{5}$
C. CH_{4}
D. $B F_{3}$

Answer:

D Watch Video Solution
37. Which of the following species has tetrahedral geometry?
A. BH_{4}^{-}
B. NH_{2}^{-}
C. CO_{3}^{2-}
D. $\mathrm{H}_{3} \mathrm{O}^{+}$

Answer:
(Watch Video Solution
38. The species having pyramidal shape is
A. SO_{3}
B. $B r F_{3}$
C. SiO_{3}^{2-}
D. $O S F_{2}$

Answer:
(Watch Video Solution
39. Which species having molecules have same molecular geometry?
I. $C H_{4}$ II. $B F_{3}$ III. NH_{4}^{+}IV. $S F_{4}$
A. I and II
B. III and IV
C. I and III
D. I, III and IV

Answer:

D Watch Video Solution
40. The structure of $I F_{7}$ is
A. square pyramidal
B. trigonal bipyramidal
C. octahedral
D. pentagonal bipyramidal

Answer:

41. Based on VSEPR theory, the number of 90 degree $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ angles in $\mathrm{Br} F_{5}$, is
A. 0
B. 1
C. 2
D. 3

Answer:

D Watch Video Solution
42. A sigma-bonded molecule $M X_{3}$ is T shaped. The number of non-bonding pairs of electrons is
A. 0
B. 2
C. 1
D. Can be predicted only If atomic number

of M is known

Answer:

43. Element A has three electrons in the outermost orbit and B has six electrons in the outermost orbit The formula of the compound will be .
A. $X_{2} Y_{6}$
B. $X Y_{2}$
C. $X_{2} Y_{3}$
D. $X_{3} Y_{2}$
44. The number of oxygen atoms bonded to one phosphorus atom in $P_{4} O_{6}$ is
A. 4
B. 3
C. 6
D. 5

Answer:
45. In $P O_{4}^{3-}$ the formal charge on each O atom and $P-O$ bond order respectively are .
A. +1
B. -1
C. -0.75
D. +0.75

Answer:

- Watch Video Solution

46. Which of the following is not the correct representation of resonance?

A. Only I
B. Only II
C. Both I and II
D. None of these

Answer:

- Watch Video Solution

47. Which of the following molecules

represent the resonance?

A. O_{3}
B. CO_{3}^{2-}
C. CO_{2}
D. All of these

Answer:

- Watch Video Solution

48. The structure represents the molecules
more accurately, is called
A. resonance hybrid
B. canonical structure
C. resonating structure
D. None of these

Answer:

- Watch Video Solution

49. Match the following columns and choose
the correct option from the codes given below.

$A B C$
A.

$1 \quad 1 \quad 2$

$A \quad B \quad C$
B.
$2 \quad 2 \quad 1$
$A \quad B \quad C$
C.
$1 \quad 21$

$A B C$
 212

D.

Answer:

D Watch Video Solution

50. The compound $M X_{4}$ is tetrahedral. The number of $\angle X M X$ angles formed in the compound is
A. three
B. four
C. five
D. six

Answer:

(D) Watch Video Solution
51. In accordance to molecular theory,
A. O_{2}^{+}is diamagnetic and bond order is
more than O_{2}
B. O_{2}^{+}is diamagnetic and bond order is
less than O_{2}
C. O_{2}^{+}is paramagnetic and bond order is
less than O_{2}
D. O_{2}^{+}is paramagnetic and bond order is more than O_{2}

Answer:

D Watch Video Solution
52. Which bond angle θ would result in the maximum dipole moment for the triatomic $Y X Y$?
A. $\theta=90^{\circ}$
B. $\theta=120^{\circ}$
C. $\theta=150^{\circ}$
D. $\theta=180^{\circ}$

Answer:

D Watch Video Solution
53. The bond angles of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{\oplus}$ and NH_{2} are in the order .

$$
\begin{aligned}
& \text { A. } \mathrm{NH}_{2}^{-}>\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+} \\
& \text {B. } \mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-} \\
& \text {C. } \mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}>\mathrm{NH}_{4}^{+} \\
& \text {D. } \mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-}
\end{aligned}
$$

Answer:

D Watch Video Solution
54. The molecule having zero dipole moment is
A. $C I F_{3}$
B. CH_{4}
C. PH_{3}
D. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Answer:

D Watch Video Solution

55. Which of the following show correct structure of $l C l_{2}$?

D. None of these

D Watch Video Solution

56. The net dipole moment of $\mathrm{H}_{2} \mathrm{O}$ molecule is
A. zero
B. 1.85 D
C. $4.90 \times 10^{-30} \mathrm{~cm}$
D. $0.80 \times 10^{-30} \mathrm{~cm}$

- Watch Video Solution

57. Deviation of $\mathrm{O}-\mathrm{O}$ bond length in ozone molecule from the normal bond length seems as
A. single bond length increases while double bond length decreases
B. single bond length decreases while double bond length increases
C. single bond length increases while double bond length remains same

D. single bond length remains same while double bond length increases

Answer:

- Watch Video Solution

58. The decreasing order of dipole moments of the molecules $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{BeF}_{2}, \mathrm{NF}_{3}$ is
A. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{BeF}_{2}>\mathrm{NF}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NF}_{3}>\mathrm{BeF}_{2}$
C. $\mathrm{BeF}_{2}>\mathrm{NF}_{3}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{NF}_{3}>\mathrm{BeF}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}$

Answer:

D Watch Video Solution
59. Which of the following will have largest dipole moment?

Answer:

D Watch Video Solution

60. Which pair of moecules will have permanent dipole moment for both members ?
A. SiF_{4} and NO_{2}
B. NO_{2} and CO_{2}
C. NO_{2} and O_{3}
D. SiF_{4} and CO_{2}

Answer:

D Watch Video Solution

61. The correct stability order of the following

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{C}=\stackrel{+}{\mathrm{N}}=\overline{\mathrm{N}} & \mathrm{H}_{2} \stackrel{+}{\mathrm{C}}-\mathrm{N}=\overline{\mathrm{N}} \\
\mathrm{H}_{2} \overline{\mathrm{C}}-\stackrel{+}{\mathrm{N}} \equiv \mathrm{~N} \equiv \mathrm{~N} & \mathrm{H}_{2} \overline{\mathrm{C}}-\mathrm{NV} \equiv \stackrel{+}{\mathrm{N}}
\end{array}
$$

A. $I>I I>I V>I I I$
B. $I>I I I>I I>I V$
C. $I I>I>I I I>I V$
D. $I I I>I>I V>I I$

Answer:

D Watch Video Solution
62. The correct order of bond angles in $\mathrm{NH}_{3}, P C l_{3}$ and $B C l_{3}$ is
A. $\mathrm{PCl}_{3}>\mathrm{NH}_{3}>B C l_{3}$
B. $\mathrm{NH}_{3}>B C l_{3}>P C l_{3}$
C. $\mathrm{NH}_{3}>\mathrm{PCl}_{3}>B C l_{3}$
D. $\mathrm{BCl}_{3}>\mathrm{NH}_{3}>\mathrm{PCl}_{3}$

Answer:

D Watch Video Solution
63. The correct order of decreasing polarity is
A. $\mathrm{HF}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$
B. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{SO}_{2}>\mathrm{NH}_{3}$
C. $\mathrm{HF}>\mathrm{NH}_{3}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{SO}_{2}>\mathrm{HF}$

Answer:

- Watch Video Solution

64. In case of sodium and chlorine, the electron transfer takes place from
A. sodium to chlorine
B. chlorine to sodium
C. Both (a) and (b)
D. None to these

Answer:
(D) Watch Video Solution
65. Bond order of O_{2}, O_{2}^{-}and O_{2}^{2-} is in order
A. 2.5
B. 1.5
C. 1.0
D. 2

Answer:

- Watch Video Solution

66. AICI_{3} is covalent while AIF_{3} is ionic This can be justified on the basic of .
A. valence bond theory
B. crystal structure
C. lattice energy

D. Fajan's rule

Answer:

D Watch Video Solution
67. VSEPR theory was proposed by

A. Pauling

B. Sidgwick and Powell
C. Hund and Mulliken
D. GN Lewis

Answer: B
(D) Watch Video Solution
68. The bond order of O_{2}^{-}is
A. 2
B. 1.5
C. 1
D. 2.5

Answer: B

D View Text Solution

69. In the case of $C l_{2}$, the bond is formed by
A. transfer of electrons
B. sharing of electrons
C. Both (a) and (b)
D. None of the above

Answer:

D Watch Video Solution

70. Match the following species with chemical formula and choose the correct option from

Column I
 Column II

A. Compounds 1. NH_{4}^{+}

B.	Atoms	2.	$\mathrm{H}_{2} \mathrm{O}$
C. Ions	3.	$\mathrm{Li}_{2} \mathrm{O}$	
		4.	Ne
		5.	Li^{+}

$A \quad B \quad C$
A.
$2,3 \quad 4 \quad 1,5$
$A \quad B \quad C$
B.
$3 \quad 1,2 \quad 4,5$
$A \quad B \quad C$
C.
$23,1 \quad 4,5$
$A \quad B \quad C$
D.
$12,14,5$

Answer:

71. Sodium chloride is soluble in water but not

in benzene because

A.

B. $\begin{aligned} & \text { b. } \Delta H_{\text {hydration }}<\Delta H_{\text {lattice }} \text { (in benzene) } \\ & \Delta H_{\text {hydration }}>\Delta H_{\text {lattice }} \text { (in water) }\end{aligned}$
C. $\begin{aligned} & \text { c. } \Delta H_{\text {nydration }}=\Delta H_{\text {lattice }} \text { (in water) } \\ & \Delta H_{\text {hydration }}<\Delta H_{\text {lattice }} \text { (in benzene) }\end{aligned}$
D. d. $\Delta H_{\text {nydration }}<\Delta H_{\text {lattice }}$ (in water)

Answer:

72. Which of the following bonds is present in
$B F_{4}^{-}$?
A. Electrovalent
B. Metallic
C. Dative
D. Hydrogen

Answer:

73. KF combines with HF to form $K H F_{2}$. The

compound contains the species

A. K^{+}, F^{-}and H^{+}
B. K^{+}, F^{-}and $H F$
C. $K^{+} \operatorname{and}\left[H F_{2}\right]^{-}$
D. $[K H F]^{+} \operatorname{and} F_{2}$

Answer:

(D) Watch Video Solution
74. Which of the following pairs of ions are isoelectronic and isostructural?
A. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
C. $\mathrm{CIO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{3}^{2-}, \mathrm{CIO}_{3}^{-}$

Answer:

D Watch Video Solution
75. When two atoms share two electron pairs,
they are said to be joined by a
A. single bond
B. double bond
C. triple bond

D. None of these

Answer:

D Watch Video Solution
76. Which of the following molecules have same bond order?

$$
\begin{array}{lllll}
\mathrm{H}_{2} & C l_{2} & \mathrm{CO} & \mathrm{Br} & \mathrm{~N}_{2} \\
I & I I & I I I & I V & V
\end{array}
$$

A. I, II and IV have same bond order
B. III and V have same bond order
C. Both (a) and (b)
D. None of the above

Answer:

77. An ionic solid is poor conductor of electricity because
A. ions do not conduct electricity
B. charge on the ions is uniformly
distributed
C.ions have uniform field of influence
around it
D. ion occupy fixed position in solids

Answer:

78. The molecule having one unpaired electron

 isA. NO
B. CO
C. $C N^{-}$
D. CO_{2}

Answer:
79. How many corners of a cube would be occupied in the case of noble gas?
A. 1
B. 2
C. 4
D. 8

Answer:

D Watch Video Solution
80. The noble gases have a particularly stable outer shell electronic configuration
represented as
A. $n s^{2} n p^{6}$
B. $n s^{2} n p^{5}$
C. $n s^{2} n p^{4}$
D. $n s^{2} n p^{8}$

Answer:

D Watch Video Solution
81. Which of the following has a linear structure?
A. $C C l_{4}$
B. SO_{4}
C. $C_{2} H_{2}$
D. $C_{2} H_{4}$

Answer:

D Watch Video Solution
82. In $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and XeF_{6}, the number of the lone pairs of Xe respectively are
A. 2,3 and 1
B. 1,2 and 3
C. 4,1 and 2
D. 3,2 and 1

Answer:

- Watch Video Solution

83. The largest bond angle in
A. AsH_{3}
B. NH_{3}
C. $\mathrm{H}_{2} \mathrm{O}$
D. PH_{3}

Answer:

D Watch Video Solution
84. If the bond enthalpy of O_{2}, N_{2} and H_{2}
are 498,946 and $435.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

Choose the correct order of decreasing bond strength.
A. $H_{2}>N_{2}>O_{2}$
B. $N_{2}>O_{2}>H_{2}$
C. $O_{2}>H_{2}>N_{2}$
D. $H_{2}>O_{2}>N_{2}$

Answer:

85. The one which has no coordinate bond, is
A. HNO_{3}
B. $C O$
C. CO_{3}^{2-}
D. $\mathrm{CH}_{3}-\mathrm{NC}$

Answer:

86. Of the two compounds shown below, the vapour pressure of B at a particular temperature is

A. higher than that of A
B. lower than that of A
C. same as that of A
D. Can be higher or lower depending upon
the size of the vassel

Answer:

D Watch Video Solution

Bitsat Archives

1. Which of the following pairs has identical shape?
A. CH_{4} and $S F_{4}$
B. $B C l_{3}$ and $C I F_{3}$
C. XeF_{2} and ZnCl_{2}
D. SO_{2} and CO_{3}

Answer:

D Watch Video Solution

2. Using MOT, which of the following pairs denote paramagnetic species?
A. B_{2} and C_{2}
B. B_{2} and O_{2}
C. N_{2} and O_{2}
D. O_{2} and O_{2}^{2-}

Answer:

D Watch Video Solution

3. Which of the following is isoelectronic with carbon?
A. $N a^{+}$
B. $A l^{3+}$
C. O^{2-}
D. N^{+}

Answer:

- Watch Video Solution

4. Which of the following does not contain a coordinate bond?
A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. $B F_{4}^{-}$
C. $H F_{2}^{-}$
D. NH_{4}^{+}

Answer:

D Watch Video Solution

5. The number of unpaired electrons in nickel
carbonyl, is
A. zero
B. one
C. four
D. five

Answer:

D Watch Video Solution

6. The highest bond strength is shown by
A. O-O bond
B. S-S bond
C. Se-Se bond
D. Te-Te bond

Answer:

D Watch Video Solution

7. Which of the following has maximum dipole

moment?

A. $N C l_{3}$
B. $N B r_{3}$
C. NH_{3}
D. $N I_{3}$

Answer:

- Watch Video Solution

8. Which one of the following species has the
largest internuclear distance for its ion pair?
A. NaCl
B. NaBr
C. LiCi
D. KI

Answer:

D Watch Video Solution

9. The pair of species with similar shape is

A. $\mathrm{PCl}_{3}, \mathrm{NH}_{3}$
B. $C F_{4}, S F_{4}$
C. $\mathrm{PbCl}_{2}, \mathrm{CO}_{2}$
D. $P F_{5}, I F_{5}$
10. The bond length of HCl molecule is $1.275 \AA$
and its dipole moment is 1.03 D . The ionic character of the molecule (in per cent) is
(Charge of the electron $=4.8 \times 10^{-10}$ esu)
A. 100
B. 67.3
C. 33.66
D. 16.83

Answer:

D Watch Video Solution

11. Which of the following is a correct set ?
A. $\mathrm{H}_{2} \mathrm{O}, s p^{3}$ angular
B. $B C l_{3}, s p^{3}$, angular
C. $\mathrm{NH}_{4}^{+}, \mathrm{dsp}^{\wedge}(2)$,square planar
D. $C H_{4}, d s p^{2}$, tetrahedral
12. The isoelectronic pair is

A. $\mathrm{Cl}_{2} \mathrm{O}, \mathrm{ICl}_{2}^{-}$
B. $\mathrm{Cl}_{2}^{-}, \mathrm{ClO}_{2}$
C. $I F_{2}^{+}, I_{3}^{-}$
D. $\mathrm{ClO}_{3}^{-}, \mathrm{CIF}_{2}^{+}$

Answer:

13. Which of the following species has a bond order other than 3 ?
A. CO
B. $C N^{-}$
C. NO^{+}
D. O_{2}^{+}

Answer:
(Watch Video Solution
14. The molecular electronic configuration of $B e_{2}$ is
A. $\sigma 1 s^{2 *} \sigma 1 s^{2} \sigma 2 s^{2}{ }_{\sigma}^{*} 2 p^{2}$
B. $K K \sigma 2 s^{2}$
C. $\sigma 1 s^{2} \sigma 1 s^{2} \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2}$
D. None of these

Answer:

- Watch Video Solution

