©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE PHYSICS

 (HINGLISH)
CIRCULAR MOTION

Practice Exercise

1. In circular motion

A. radial acceleration is non-zero
B. radia velocity is zero
C. body is in equallibrium
D. All of the above

Answer:

D Watch Video Solution
2. A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the particle.

The motion of the particle takes place in a plane. It follows that
A. its velocity is contatnt
B. its acceleration is constant
C. its kinetic energy is constant
D. It does not move on a circular path

Answer:

D Watch Video Solution

3. A stone of a mass m tied to a string of length /is rotated in a circle with the other end of the string as the centre. The speed of the stone is V . If the string breaks, the stone will
A. move towards the centre
B. move away from the centre
C. move along a tangent
D. stop

- Watch Video Solution

4. Particles are released from rest A and slide down the smooth surface of hight h to a conveyor B. The correct angular veleocity ω of the coneyor pulley of radius r to prevent any sliding on the belt as the particles transfer to the conveyor is

A. $\sqrt{2 g h}$
B. $\frac{2 g h}{r}$
C. $\frac{\sqrt{2 g h}}{r}$
D. $\frac{2 g h^{2}}{r^{2}}$

Answer:

(Watch Video Solution
5. Two moving particles P and Q are 10 m apart at a certain instatn. The velocity of P is $8 \mathrm{~m} / \mathrm{sm}$
making an angle of 30° with the line joining P abd Q and that of Q is $6 \mathrm{~m} / \mathrm{s}$ making an angle 30° with $P Q$ as shwon in figure.

Then, angular velocity of P wiht respect to Q is
A. zero
B. $0.1 \mathrm{rad} / \mathrm{s}$
C. $0.4 r a d / s$
D. $0.7 \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution

6. A solid body rotest about a stationary axis,
so that its angular velocity depends on the
rotational angle ϕ as $\omega=\omega_{0}-k \phi$ where ω_{0}
and K are postitive constatns. At the moment
$t=0, \phi=0$ Find the dependence of rotaions
angle.
A. $k \omega_{0} e^{-k t}$
B. $\frac{\omega_{0}}{k} e^{-k t}$
C. $\frac{\omega_{0}}{k}\left(1-e^{-k t}\right)$
D. $\frac{k}{\omega_{0}}\left(e-{ }^{k t-1}\right)$

Answer:

- Watch Video Solution

7. The position of paint P is $r=a \cos$
$\theta \hat{i}+b \sin \theta \hat{j}$, where a and b ar constants and
θ is angle between r and x axis. If the rate of
increasing of θ Is ω Find the equation of path of particle.
A. Circle
B. Parabola
C. Ellipse
D. Stratight line

Answer:
(Watch Video Solution
8. The angular displacement of the rod is defied a $s 0=\frac{3}{20} t^{2}$ where θ is in radian and t is in second. The collar B slides along the rod in such a way that its distance from O is $r=0.9-0.12 t^{2}$ where r is in metre and t is
secnd The velocity of collar at $\theta=30^{\circ}$ is

A. $0.45 m / s$
B. $0.48 \mathrm{~m} / \mathrm{s}$
C. $0.52 \mathrm{~m} / \mathrm{s}$
D. $0.27 m / s$

Answer:

D Watch Video Solution

9. Two buses A and B are moving around concentric circular pathe of radii r_{A} and r_{B} If
the two buses complete the circular paths in
the sme time. The ratio on their linear speeds
is
A. 1
B. r_{A} / R_{B}
C. r_{B} / r_{A}
D. None

Answer:
(Watch Video Solution
10. A stone of mass 0.3 kg attched to a 1.5 m
long stirng is whirled around in a horizontal cirlcle at a speed of $6 \mathrm{~m} / \mathrm{s}$ The tension in the string is
A. 10 N
B. 20 N
C. $7.2 N$
D. None of these

Answer:
11. A cyslist goes round a circular path of length 4000 m in 20 second. Calculate the angle through which he bends from vertical in order to maintain the balance
A. $\sin ^{-1}(0.64)$
B. $\tan ^{-1}(0.64)$
C. $\cos ^{-1}(0.64)$
D. None of these

Answer:

D Watch Video Solution

12. Fing the maximum speed with which an automobile can round a curve of radius 8 m without slipping of the road is unbanked and he coefficient of friction between the orad an the tyres is $0.8\left(g=10 m /^{2}\right)$
A. $8 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$

C. $20 \mathrm{~m} / \mathrm{s}$

D. None of these

Answer:

D Watch Video Solution

13. A tube of length L is filled completely with an incompressible liquid of mass M and closed
at both ends. The tube is then roted in a horizontal plane about one of its ends with a
uniform angular velocity ω The force exerted by the liquid at the other end is
A. $\frac{M L \omega^{2}}{2}$
B. $M L \omega^{2}$
C. $\frac{M L \omega^{2}}{4}$
D. $\frac{M L^{2} \omega^{2}}{2}$

Answer:

D Watch Video Solution

14. A point on the periphery of a rotating disc
has its acceleration vector making angle of 30° with the velocity. The ratio $\left(a_{c} / a_{t}\left(a_{c}\right.\right.$ "is centripetal acceleration and a_{1} is tangential acceleration ") equals
A. $\sin 30^{\circ}$
B. $\cos 30^{\circ}$
C. $\tan 30^{\circ}$
D. None

- Watch Video Solution

15. A car of 1400 kg kis moving on a circular path of radius 30 m with a speed of $40 \mathrm{~km} / \mathrm{h}$.

When the drive applies the breaks and the carf conntinues to move along the circular path, what is the maximum deceleration possible if
the types are limited to a horozontal friction of 10.6 kN ?
A. $10 m / s^{2}$
B. $6.36 \mathrm{~m} / \mathrm{s}^{2}$
C. $4 m / s^{2}$
D. None

Answer:

D Watch Video Solution

16. A cyslist is traveilling on a circular section of highway of radius 2500 ft at the speed of 60 mile/h. The cyclist suddenly applies the brakes
causing the bicycle to slow down at constant rate. Knowing that after 8 second,the speed
has been reduced to 45 mile/h. The acceleration of the bicyle immediately after the breakes have been applied. is
A. $2 f t / s^{2}$
B. $4.14 \mathrm{ft} / \mathrm{s}^{2}$
C. $3.10 \mathrm{ft} / \mathrm{s}^{2}$
D. $2.75 \mathrm{ft}^{2} / \mathrm{s}$

Answer:

D Watch Video Solution
17. A road of width 20 m froms an arc of radius

15 m ,its outer edge is 2 m higher than its inner edge. Calculate for what velocity the road is banked?
A. $\sqrt{10} m / s$
B. $\sqrt{14.7} \mathrm{~m} / \mathrm{s}$
C. $\sqrt{9.8} \mathrm{~m} / \mathrm{s}$
D. None of these

Answer:

D Watch Video Solution
18. Three identical cars A, B and C are moving at the same speed on three bridges. The car A goes on a plane bridge, B on a bridge convex upward and C goes on a bridge concave upward. Let F_{A}, F_{B} and F_{C} be the normal forces exerted by the cars on the bridges when they are at the middle of bridges
A. F_{A} is maximum of the three forces
B. F_{B} is maximum of the three forces
C. F_{C} is maximum of the three forces

$$
\text { D. } F_{A}=F_{B}=F_{C}
$$

Answer:

D Watch Video Solution

19. Two identical trains A and B move with equal speeds on parallel tracks along the equator. A moves from east to west and B moves from west to east. Which train will exert greater force on the track?

$$
\text { A. } N_{1}>N_{2}
$$

B. $N_{1}<N_{2}$
C. $N_{1}=N_{2}$
D. None of these

Answer:

- Watch Video Solution

20. A small body of mass m slides down from
the top of a hemisphere of radius r. The
surface of block and hemisphere are
frictionless. The height at which the body lose

contact with the surface of the sphere is

A. $\frac{3}{2} R$
B. $\frac{2}{3} R$
C. $\frac{1}{2} R$
D. $\frac{1}{3} R$

Answer:

21. A persong whants to drive on the verical surface of a large cylindrical wooden wll commonly know as death well in a circus. The radius of well is R and the coefficient of friction between the tyres of the motorcycle and the wall of the well is μ_{s}. The minimum speed, the motorcyclist must have in order to prevent slipping should be

$$
\begin{aligned}
& \text { A. } \sqrt{\left(\frac{R g}{\mu_{s}}\right)} \\
& \text { B. } \sqrt{\left(\frac{\mu_{s}}{R g}\right)}
\end{aligned}
$$

C. $\sqrt{\left(\frac{\mu_{s} g}{R}\right)}$
D. $\sqrt{\left(\frac{R}{\mu_{s} g}\right)}$

Answer:

D Watch Video Solution

22. A rod of length L is hinged from one end. It is brought to horizontal position and released.

The angular velocity of the rod when it is in
vertical position. Is
A. $\sqrt{\left(\frac{2 g}{L}\right)}$
B. $\sqrt{\left(\frac{3 g}{L}\right)}$
C. $\sqrt{\left(\frac{g}{2 L}\right)}$
D. $\sqrt{\left(\frac{g}{L}\right)}$

Answer:

D Watch Video Solution

23. Two wires $A c$ an $B c$ are tied at C of small
sphere of mass 5 kg Which reolves at ta
constant speed v in the horzontal circle of radius of 1.6 m . The minimum value of v is

A. $3.01 m / s$
B. $4.01 \mathrm{~m} / \mathrm{s}$
C. $8.2 m / s$
D. $3.96 m / s$

Answer:

D Watch Video Solution

24. The small sphericla balls are free to move on the inner surface of the rotating spherical chamber of radius $R=0.2 m$ If the balls reach a steady at angular position $\theta=45^{\circ}$, the
anglular speed ω of devices is

A. $8 \mathrm{rad} / \mathrm{s}$
B. $2 \mathrm{rad} / \mathrm{s}$
C. $3.64 \mathrm{rad} / \mathrm{s}$
D. $9.34 \mathrm{rad} / \mathrm{s}$

Answer:

D Watch Video Solution
25. A frictionless track $A B C D$ ends in a semicircular loop of radius R.A body slides down the track from point A which is at a value of R which is at a height $h=5 \mathrm{~cm}$. Maximum value of R for the body to successfully complete the loop is

A. 5 cm
B. $\frac{15}{4} \mathrm{~cm}$
C. $\frac{10}{3} \mathrm{~cm}$
D. 2 cm

Answer:

D Watch Video Solution

26. A rod OA rotates about a horizontal axis
through O with a constant anti-clockwise
velocity $\omega=3 \mathrm{rad} / \mathrm{s}$. As it pases the
positions $\theta=0^{\circ}$ a small block of mass m is
placed on it at a radial distacne $r=450 \mathrm{~mm}$ If the block is observed to slip at $\theta=50^{\circ}$ the coefficient of static friction bewteen the block and the rod is (Given that $\left.\sin 50^{\circ}=0766, \cos 50^{\circ}=0.64\right)$

A. 0.2
B. 0.55
C. 0.8
D. 1

Answer:

D Watch Video Solution

27. Kinetic energy of a particle moving along a circle of radisu R depends on the distance covered as $K=a s^{2}$ where a is a constant.

Find the force acting on the particle as a
function of s .
A. $\frac{2 a}{s} \sqrt{1+\left(\frac{s}{R}\right)^{2}}$
B. $2 a s \sqrt{1+\left(\frac{R}{s}\right)^{2}}$
C. $2 a s \sqrt{1+\left(\frac{s}{R}\right)^{2}}$
D. $\frac{2 s}{a} \sqrt{1+\left(\frac{R}{s}\right)^{2}}$

Answer:

- Watch Video Solution

28. A projectile is projected at a angle 60°
with horozontal with speed $10 \mathrm{~m} / \mathrm{s}$. The minimum radius of curvature of the trajectory described by the projectile is
A. 2.55 m
B. 2 m
C. 10 m
D. None of these

Answer:
29. The skate board negotiates the circular surface of radius $4.5 m$ At $\theta=45^{\circ}$, its speed of centre of mass is $6 \mathrm{~m} / \mathrm{s}$ The comnined mas of skate board an dthe person is 70 kg and his centre of mass is 0.75 m from the surface. The normal reaction between the surface and the

skate board wheeol is

A. 500 N
B. 2040 N
C. 1045 N
D. zero

Answer:

- Watch Video Solution

Bitast Archives

1. A body of mass $m=20 \mathrm{~g}$ is attached to an
elastic spring of length $\mathrm{L}=50 \mathrm{~cm}$ and spring
constant $\mathrm{k}=2 \mathrm{Nm}^{-1}$. The syste is revolved in a horizontal plan with a frequency $\mathrm{v}=30 \mathrm{rev} / \mathrm{min}$.

Find the radius of the circular motion and the tension in the spring .
A. $0.55 m, 0.11 N$
B. $0.5 \mathrm{~m}, 0.52 \mathrm{~N}$
C. $0.55 m, 0.1 N$
D. $0.9 m, 0.2 N$

Answer:

D Watch Video Solution

2. A car is moving on a circular road of diameter 50 m with a speed of $5 \mathrm{~m} / \mathrm{s}$. It is suddenly accelerated at a rate of $1 \mathrm{~m} / \mathrm{s}^{2}$. If the
mass of he car is 500 kg , then the net force acting on the car is
A. 5 N
B. 1000 N
C. $500 \sqrt{2} N$
D. $\frac{500}{\sqrt{2}}$

Answer:

D Watch Video Solution

3. An inclined track ends in a circular loop of

 radius r . From what height on the track a particle should be released so that it completes the loop, assuming there is no friction ?A. $\frac{r}{2}$
B. $\frac{3 r}{2}$
C. r
D. $\frac{5 r}{2}$
4. A small ball descibes a horozontal circle on
the smooth inner surface of a conical funnel. If
the height of the plane of the circle above the vertex be 10 cm what is the speed of the particle?
A. $2 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $16 \mathrm{~m} / \mathrm{s}$

D. $1 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

5. The angle turned by a body undergoing circular motion depends on time as $\theta=\theta_{0}+\theta_{1} t+\theta_{2} t^{2}$. Then the angular acceleration of the body is
A. θ_{1}
B. θ_{2}
C. $2 \theta_{1}$
D. $2 \theta_{2}$

Answer:

- Watch Video Solution

