©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE PHYSICS

(HINGLISH)

LAWS OF THERMODYNAMICS

1. A boy weighing 50 kg eats bananas. The energy constant of banan is 100cal, if this
energy is used to lift the body from ground,
then the height through which his lifted is
A. 8.57 m
B. 10.57 M
C. 6.57 M
D. 5.57 M

Answer: a

D Watch Video Solution

2. The heat energy

A. is a state variable
B. does not depend on the state of the
system
C. is equal to internal energy of the system
D. None of the above

Answer:

1. 1 kg mass of water, bolts at standard atmosphere pressure, turns completely into saturated vapour. Assume saturated vapour to be an ideal gas. Find the increment of internal energy of the system and internal work done.
(Given, specific latent heat of avporisation of water=2250kJ/kg)
A. $3 \times 10^{6} J$
B. $2.1 \times 10^{6} J$
C. $3.2 \times 10^{6} \mathrm{~J}$
D. $4.2 \times 10^{6} \mathrm{~J}$

Answer: b

D Watch Video Solution

2. In a thermodynamic process, pressure of a
fixed mass of a gas is changed in such a manner that the gas release $20 J$ of heat and $8 J$ of work is done on the gas. If initial internal
energy of the gas was $30 J$, what will be the
final internal energy?
A. 2J
B. 42J
C. 18J
D. 58J

Answer:

- Watch Video Solution

1. An ideal gas is heated at constant pressure and absorbs amount of heat Q. if the adiabatic exponent is γ. Then find the fraction of heat absorbed in raising the internal energy and perofrming the work is.

$$
\begin{aligned}
& \text { A. } 1-\frac{1}{\gamma} \\
& \text { B. } 1+\frac{1}{\gamma} \\
& \text { C. } 1-\frac{2}{\gamma} \\
& \text { D. } 1+\frac{2}{7}
\end{aligned}
$$

Answer: a

- Watch Video Solution

2. A thermo-dynamical system is changed from
state $),\left(P_{1}, V_{1}\right)$ to $\left(P_{2}, V_{2}\right)$ by two different process. The quantity which will remain same will be
A. ΔQ
B. ΔW
C. $\Delta Q+\Delta W$

D. $\Delta Q-\Delta W$

Answer:

D Watch Video Solution

1. The latent gas is heated at constant pressure and absorbs amount of heat Q . if the adiabatic exponent is γ, then find the fraction of heat absorbed in raising the
A. 2408J
B. 2240J
C. 2072J
D. 1904J

Answer: c

D Watch Video Solution
2. A sample of an ideal monoatomic gas is taken round the cycle $A B C A$ as shown in the
figure the work done during the cycle is

A. $3 \rho V$
B. zero
C. $9 \rho v$
D. $6 \rho V$

Answer:

D Watch Video Solution

5

1. The molar heat capacity in a process of a diatomic gas if it does a work of $\frac{Q}{4}$ when a heat of Q is supplied to it is
A. $\frac{2}{5} R$
B. $\frac{5}{2} R$

> C. $\frac{10}{3} R$
> D. $\frac{6}{7} R$

Answer: c

D Watch Video Solution

2. An ideal refrigerator has a freezer at a temperature of $-13^{\circ} \mathrm{C}$. The coefficient of performance of the engine is 5 . The temperature of the air (to which heat is rejected) will be
A. $325^{\circ} C$
B. 325 K
C. $39^{\circ} C$
D. $320^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

1. Starting with the same initial conditions, an ideal gas expands from volume V_{1} to V_{2} in three different ways, the work done by the gas is W_{1} if the process is purely isothermal, W_{2} if purely isobaric and W_{3} if purely adiabatic, then

> A. $W_{2}>W_{1}>W_{3}$
> B. $W_{2}>W_{3}>W_{1}$
> c. $W_{1}>W_{2}>W_{3}$
> D. $W_{1}>W_{3}>W_{2}$

Answer: a

D Watch Video Solution

2. In the adiabatic compression the decrease in volume is associated with
A. increase in temperature and decrease in
pressure
B. decrease in temperature and increase in
pressure

C. decrease in temperature and decrease in

pressure
D. increase in temperature and increase in
pressure

Answer:

- Watch Video Solution

1. Calculates the work done $\left(W_{A B}\right)$ by the gas,
if 5 moles of an ideal gas is carried by a quasi
state isothermal process at 500 K to twice its
volume.

A. 1500J
B. 14407J
C. 13380J
D. 14890J

Answer: b

- Watch Video Solution

2. Which of the following is true in the case of

an adiabatic process, where $\gamma=\frac{C_{p}}{C_{v}}$?
A. $p^{1-\gamma} T^{y}=$ constnat
B. $p^{1} T^{1-\gamma}=$ constant
C. $p T^{y}=$ constant
D. $p^{\gamma} T=$ constnat

Answer:

- Watch Video Solution

1. The work done for the cycle shown in given
figure, will be

A. 45 J
B. 54J
C. 22.5J
D. 32.5 J

Answer: a

- Watch Video Solution

2. Initially two gas samples 1 and 2 are at the same condition. The volume of the two are halved, one isothermally and the other adiabatically. What is the relation between the final pressures p_{1} and p_{2} ?
A. $p_{1}=p_{2}$
B. $p_{1}>p_{2}$
C. $p_{2}>p_{1}$

D. Cannot be determined

Answer:

D Watch Video Solution

1. An ideal monoatomic gas is taken round the
cycle ABCDA as shown in the P-V diagram. The
work done during the cycle is

A. $\frac{1}{2} p V$
B. ρV
C. $2 \rho V$
D. $4 \rho \mathrm{~V}$

Answer: d

- Watch Video Solution

2. A cane is taken out from a refrigerator at $0^{\circ} \mathrm{C}$. The atmospheric temperature is $25^{\circ} \mathrm{C}$. If t 1 is the time taken to heat from $0^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ and t_{2} is the time taken from $10^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$, then the wrong statements are
(1) $t_{1}>t_{2}$
(2) $t_{1}=t_{2}$
(3) There is no relation
(4) $t_{1}<t_{2}$
A. $t_{1}>t_{2}$
B. $t_{1}<t_{2}$
C. $t_{1}=t_{2}$
D. there is no relation

Answer:

- Watch Video Solution

1. A balloon that is initially flat, is initiated by
filling it from a tank of compressed air. The
final volume of the balloon is $5 \mathrm{~m}^{3}$. The barometer reads 95kPa. The work done in this process is
A. $475 \times 10^{5} \mathrm{~J}$
B. $4.75 \times 10^{7} J$
C. $4.75 \times 10^{3} J$
D. $4.75 \times 10^{5} \mathrm{~J}$

Answer: d

1. What work will be done, when 3 moles of an
ideal gas are compreseed to half the initial
volume at a constant temperature of 300 K ?
A. $-5188 J$
B. 5000J
C. 5188J

D. $-5000 J$

Answer: a

- Watch Video Solution

12

1. A gas is contained in a cyclinder and expands according to the relation ρV^{13}
=constant. The initial pressure and initial
volume of the gas are 30atm. And 30L
respectively. If the final pressure is 15atm, then
calculate the work done on the face of piston by the pressure force of the gas.
A. $5 \times 10^{4} J$
B. $4.36 \times 10^{4} J$
C. $3 \times 10^{6} \mathrm{~J}$
D. $4 \times 10^{4} J$

Answer: b

D Watch Video Solution

1. Show a vertical cylindrical vesse seperated in two parts by a frictionless piston free to move along the length of vessel. The length of the cylilender is 90 cm and the piston divides the cylinder in the ratio of 5:4. Each of the two parts of the vessel contains 0.1 mole of an ideal gas. The temoerature of the gas is 300 K in each part. Calculate the mass of the piston. (figure)
B. 12.7 kg
C. 16 kg
D. 15 kg

Answer: b

- Watch Video Solution

14

1. During an isothermal expansion of an ideal
gas
A. Its internal energy decreases
B. Its internal energy does not change
C. the work done by the gas is equal to the quantity of heat absorbed by it.
D. both b and c are correct

Answer: d

- Watch Video Solution

1. In the given graph, adiabatic and isothermal
curves are shown. Then,

A. the curve A is isothermal
B. the curve B is isothermal
C. the curve A is adiabatic

D. the curve B is adiabatic

Answer: b,c

D Watch Video Solution

16

1. 0.2 moles of an ideal gas, is taken around the
cycle abc as shown in the figure. The path $b-c$
is adiabatic process, $a-b$ is isovolumic process
and $\mathrm{c}-\mathrm{a}$ is isobaric process. The temperature at
a and b are $T_{A}=300 K$ and $T_{b}=500 K$ and pressure at a is 1 atmospere. find the volume at c .
(Given, $\quad \gamma=\frac{C_{p}}{C_{v}}=\frac{5}{3}, R=8.205 \times 10^{-2} L$ /atm/mol-K)

A. 6.9 L
B. 6.68 L
C. 5.52 L
D. 5.82 L

Answer: b

D Watch Video Solution

17

1. At $27^{\circ} \mathrm{C}$ a motor car tyre has pressure of 2 atmosphere. Find the temperautre. If the tyre
suddenly bursts. (Given, $\gamma_{\text {air }}=1.4$)
A. 24.1 K
B. 250 K
C. 246.1K

D. 248 K

Answer: c

D Watch Video Solution

1. In an adiabatic expansion, a gas does 25J of work while in an adiabatic compression 100J of work is dione on a gas. The chagne of internal energy in the two processes respectively are
A. 25J and -100J
B. $-25 J$ and $100 J$
C. $25 J$ and $-100 J$
D. 25 J and 100 J

Answer: b

1. The molar heat capacity of oxygen gas at $S T P$ is nearly $2.5 R$. As the temperature is increased, it gradually increase and approaches $3.5 R$. The most appropriate reason for this behaviour is that at high temperatures
A. oxygen does not behave as an ideal gas
B. oxygen molecules dissociate in atoms

C. the molecules collide more frequently

D. molecular vibrations gradually become effective.

Answer: a

D Watch Video Solution

1. $\mathrm{P}-\mathrm{V}$ diagram of a diatomic gas is a straight
line passing through origin. The molar heat
capacity of the gas in the process will be
A. 4 R
B. 3 R
C. $4 \mathrm{R} / 3$
D. 2.5 R

Answer: b

D Watch Video Solution

1. An ideal gas is taken from the state A
(pressure P , volume V) to the state B (pressure
$p / 2$, volume 2 V) along a straight line path in
the P-V diagram. Select the correct statement
(s) from the following :
A. The work done by the gas in the process

A to B. exceeds the work that would be
done by it, if system were taken along
the isotherm.
B. In the T-V diagram, the path $A B$ becomes a part of a hyperbola
C. In the p-T diagram, the path $A B$ becomes
a part of a hyperbola
D. In going goind A to B, the temperature T
of the gas first decreases to a miniumum
value and then increase.

Answer: a

1. What is specific heat of a gas is an adiabatic process?
A. zero
B. greater than zero
C. less than zero
D. inifnity

Answer: a

D Watch Video Solution

1. Molar heat capacity is directly related to
A. temperature
B. heat energy
C. molecular structure
D. mass

Answer: c

24

1. If at NTP, velocity of sound in a gas is 1150 m / s, then find out the rms velocity of gas molecules at NTP. (Given $\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$,
$\left.C_{P}=4.8 \mathrm{cal} / \mathrm{mol} / \mathrm{k}\right)$.
A. $1600 \mathrm{~m} / \mathrm{s}$
B. $1532.19 \mathrm{~m} / \mathrm{s}$
C. $160 \mathrm{~m} / \mathrm{s}$

D. $16 \mathrm{~m} / \mathrm{s}$

Answer: b

D Watch Video Solution

25

1. What is the molar heat capacity for the
process, when 10 J of heat added to a monoatomic ideal gas in a process in which
the gas performs a work of 5 J on its surrrounding?
A. 2 R
B. 3 R
C. $4 \mathrm{R} / 3$
D. 5 R

Answer: b

D Watch Video Solution

1. Calculate the values of $\gamma=C_{p} / C_{v}$ for a gaseous mixture consisting of $v_{1}=2.0$ moles
of oxygen and $v_{2}=3.0$ mole of carbon dioxide. The gases are assumed to be ideal.
A. 2.33
B. 1.33
C. 0.33
D. 3.33

- Watch Video Solution

27

1. Find the molar specific heat of mixture at constnat volume. It one mole of a monoatomic gas is mixed with three moles of a diatomic gas.
A. 3.33 R
B. 225 R
C. 115 R

D. 6.72 R

Answer:

D Watch Video Solution

28

1. A gas, for which γ is $\frac{4}{3}$ is heated at constant pressure. The percentage of heat supplied used for external work is
A. 0.25
B. 0.5
C. 0.75
D. 0.8

Answer:

- Watch Video Solution

1. One mole of a gas isobarcally heated by 40 K receives an amount of heat 1.162 KJ . What is the ratio of specific heats of the gas?
A. 1.7
B. 1.4
C. 1.3
D. 1.5

Answer:

D Watch Video Solution

1. In a process $\mathrm{PT}=$ constant, if molar heat capacity of a gas is $\mathrm{C}=37.35 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$, then find the number of degrees of freedom of molecules in the gas.
A. $n=10$
B. $\mathrm{n}=5$
C. $n=6$
D. $\mathrm{n}=7$

Answer:

D Watch Video Solution

31

1. In a adiabatic process pressure is increased
by $2 / 3 \%$ if $C_{P} / C_{V}=3 / 2$. Then the volume decreases by about
A. $-\frac{4}{9} \%$
B. $\frac{2}{3} \%$
C. 4%

$$
\text { D. } \frac{9}{4} \%
$$

Answer:

- Watch Video Solution

32

1. A monoatomic ideal gas is expanded adiabatically to n times of its initial volume.

The ratio of final rate of collision of molecules
with unit area of container walls to the initial

rate will be

A. $n^{-4 / 3}$
B. $n^{4 / 3}$
C. $n^{2 / 3}$
D. $n^{-5 / 3}$

Answer:

D Watch Video Solution

1. In the case of solid, number of degrees of freedom is
A. 3
B. 5
C. 6
D. 7

Answer:

- Watch Video Solution

1. A given quantity of a ideal gas is at pressure

P and absolute temperature T . The isothermal bulk modulus of the gas is
A. $\frac{2}{3} \rho$
B. ρ
C. $\frac{3}{2} \rho$
D. 2ρ

- Watch Video Solution

36

1. when the temperature of a body increses
from t to $t+\Delta t$,its moment of inertia increases form I to $I+\Delta I$. The coefficient of
linear expanison of the body is \propto. The ratio
ΔI
$\frac{\Delta I}{I}$ is equal to
A. $\frac{\Delta t}{t}$
B. $\frac{2 \Delta t}{t}$

C. $\alpha \Delta t$

D. $2 \alpha \Delta t$

Answer:

- Watch Video Solution

37

1. A Carnot engine, whose efficiency is 40%,
takes in heat from a source maintained at a
temperature of 500 K . It is desired to have an
engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be:
A. efficiency of Carnot engine cannot be made larger than 50\%
B. 1200 K
C. 750K
D. 600 K

Answer:

D Watch Video Solution

1. The temperature inside and outside a refrigerator are 273 K and 300 K respectively.

Assuming that the refrigerator cycle is reversible. For every joule of work done heat delivered to the surrounding will be nearly :-
A. 10J
B. 20J
C. 30J
D. 50J

Answer:

- Watch Video Solution

39

1. In a mechanical refrigerator, the low
temperature coils are at a temperature of
$-23^{\circ} \mathrm{C}$ and the compressed gas in the
condenser has a temperature of $27^{\circ} \mathrm{C}$. The theoretical coefficient of performance is :-
A. 0.7
B. 0.2
C. 0.0023
D. 2.5%

Answer:
(D) Watch Video Solution

1. A Carnot engine work as refrigerator in between $0^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$. How much energy is needed to freeze 10 kg ice at $0^{\circ} \mathrm{C} /$
A. 1.4
B. 1.8
C. 0.058
D. 2.5

Answer:

\qquad

