©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE PHYSICS

(HINGLISH)

MAGNETOSTATICS

Practice Exercise

1. Calculate the force acting between two small
apart from their centres. (Given, magnetic moment of each magnet is $5 A m^{2}$).
A. 0.6 N
B. 0.8 N
C. 0.15 N
D. 0.2 N

Answer: C

D Watch Video Solution

2. Two similar equal magnetic poles when separated by a distance of $1 m$,
A. $10 A m$
B. 20 Am
C. 50 Am
D. 100 Am

Answer: D

- View Text Solution

3. Three similar magnetic south poles each of
streright 10 Am are placed at the corners of an equallateral triangle of side 20 cm . Find the magnetic force on one of the pole.
A. $0.25 \times 10^{-3} N$
B. $10^{-3} \mathrm{~N}$
C. $10 \times 10^{-3} N$

D. None of these

Answer: D

4. Six s imilar magnetic poles are placed on six corners of a regular hexagon of side 10 cm . A south pole of strength 10 Am is placed at the centre of hexagon. Find the magnetic force on the south pole.
A. Zero
B. $4 \pi \times 10^{-4} N$
C. 10 N
D. None of these

Answer: A

- Watch Video Solution

5. A magnetic wire of dipole moment $4 \pi A m^{2}$
is bent in the form of semicircle. The new magnetic moment is
A. $4 \pi A m^{2}$
B. $8 \pi A m^{2}$
C. $8 A m^{2}$
D. None of these

Answer: C

D Watch Video Solution

6. A current I flows in a conducting wire of
lenth L. If we bent it in a circular form, then
calculate its magnetic dipole moment.
A. $\frac{l l}{4 \pi}$
B. $\frac{l^{2} l}{4 \pi}$
C. $\frac{l l^{2}}{4 \pi}$
D. $\frac{l^{2} l^{2}}{4 \pi}$

Answer: B

D Watch Video Solution

7. The magnetic induction inside a solenoid is
$6.5 \times 10^{-4} T$. When it is filled with iron medium, then the induction becomes $1.4 T$. The relative permeability of iron will be
A. 1578
B. 2355
C. 1836

D. 2154

Answer: D

D Watch Video Solution

8. If a magnetising field of $1600 \mathrm{~A} / \mathrm{m}$ produces
a magnetic flux of $14 \times 10^{-5} W b$ in an iron bar of cross-sectional area $0.2 \mathrm{~cm}^{2}$. Then,
A. magnetic permeability of iron rod is
B. magnetic susceptibility is very larger than unity
C. magnetic susceptibility is 340
D. None of the above

Answer: C

D Watch Video Solution

9. Two dissimilar poles of strength $x m W b$ and $2 m W b$ are sparated by a distance 12 cm . If the
null point is at a distance of a 4 cm fro 2 mWb , then calculate x.
A. 5 mWb
B. 6 mWb
C. 7 mWb
D. 8 mWb

Answer: D
(Watch Video Solution
10. Two small magnets of each of magnetic moment M_{0} is placed parallel to each other
(show in figure). The magnetic field at point O is
A. zero
B. $4 \times 10^{-4} N$
C. $2 \times 10^{-4} N$
D. None of these
11. Two short magnets of magnetic moment
$2 A m^{2}$ and $5 A m^{2}$ are placed along two lines drawn at right angle to each other on the sheet of paper as shown in the figure. What is the magnetic field at the point of intersection of their axis?

$$
\text { A. } 2.15 \times 10^{-5} T
$$

B. $215 \times 10^{-5} T$
C. $2.15 \times 10^{-3} T$
D. $21.5 \times 10^{-5} T$

Answer: A

D Watch Video Solution

12. Calculate the magnetic induction at P, for
the arrangement shown in figure, when two
similar short magnets of magnetic moment M
are joined at the middle. So that they are
mutually perpendicular -

A. $\frac{\mu_{0}}{4 \pi} \frac{M \sqrt{3}}{d^{3}}$
B. $\frac{\mu_{0}}{4 \pi} \frac{2 M}{d^{3}}$
C. $\frac{\mu_{0} M \sqrt{5}}{4 \pi d^{3}}$
D. $\frac{\mu_{0} 2 M}{4 \pi d^{3}}$

Answer: C
13. A small magnet of dipole moment M is
kept on the arm of a deflection magentometer
set in $\tan A$ position at a distance of 0.2 m . If
the deflection is 60°, find the value of

$$
P\left(B_{H}=0.4 \times 10^{-4} T\right)
$$

A. $2.77 A m^{2}$
B. $8 A m^{2}$
C. $0.2 A m^{2}$
D. None of these

Answer: A

D Watch Video Solution

14. A short bar magnet of moment $0 \cdot 32 J T^{-1}$
is placed in a uniform external magnetic field of $0 \cdot 15 T$, if the bar is free to rotate in the plane of the field, which orientations would correspond to its, (i) stable and (ii) unstable equilibrium? What is the potential energy of the magnet in each case?
A. when m is anti-parallel to B, U

$$
=4.8 \times 10^{-2} J
$$

B. when m is perpendicular to $B, U=0$
C. when m is perpendicular to $B, U=$

$$
4.8 \times 10^{-2} J
$$

D. None of the above

Answer: A

D Watch Video Solution

15. A magnet of dipole moment $2 A m^{2}$ is deflected through 30° from magnetic meridian. The required deflecting torque is

$$
\left(B_{H}=0.4 \times 10^{-4} T\right)
$$

A. $0.4 \times 10^{-4} \mathrm{Nm}$
B. 0.4 Nm
C. $0.2 \times 10^{-4} \mathrm{Nm}$
D. None of these

Answer: A
16. If the areas under the $I-H$ hysteresis
loop and B_{H} hysteresis loop are denoted by
A_{1} and A_{2}, then
A. $A_{2}=\mu_{0} A_{1}$
B. $A_{2}=A_{1}$
C. $A_{2}=\frac{A_{1}}{\mu_{0}}$
D. $A_{2}=\mu_{0}^{2} A_{1}$

Answer: A
17. Consider the plane S formed by the dipole axis and the axis of earth. Let P be point on the magnetic equator and in S. Let Q be the point of intersection of the geographical and magnetic equators Obtain the declination and dip angles at P and Q .
A. 0° and 11.3°
B. 0° and 0°
C. 113° and 6.5°

D. 11.3° and 11.3°

Answer: A

D Watch Video Solution

18. A magnet of length 14 cm and magnetic moment μ is broken into two parts of length 6 cm and 8 cm . They are put at right angles to each other with the opposite poles togather.

The magnetic dipole moment of the combination is:
A. $M / 10$
B. M
C. $M / 1.4$
D. 2.8 M

Answer: C

D Watch Video Solution

19. A uniform magnetic needle of strength of each pole is $98.1 \mathrm{amp}, \mathrm{cm}$, is suspended from its centre by a thread. When a mass of 50 mg is
loaded to its upper end, the needle becomes
horizontal, then the vertical component of earth's magnetic induction is
$\left(g=981 \mathrm{~cm} / \mathrm{s}^{2}\right)$
A. 0.50 gauss
B. 0.25 gauss
C. 0.05 gauss
D. 0.005 gauss

Answer: B
20. Two short bar magnets of dipole moments
M and $M \sqrt{3}$ are joined at right angles to form a cross as depicted in the figure. The value of
θ for which the system remains in equilibrium
in a uniform external magnetic field B, is

A. $\theta=30^{\circ}$
B. $\theta=45^{\circ}$
C. $\theta=60^{\circ}$
D. $\theta=15^{\circ}$

Answer: C

D Watch Video Solution

21. The couple acting on a magnet of length

10 cm and pole strength $15 \mathrm{~A}-\mathrm{m}$, kept in a field of $B=2 \times 10^{-5}$, at an anlge of 30° is
A. $1.5 \times 10^{-5} \mathrm{Nm}$
B. $1.5 \times 10^{-3} \mathrm{Nm}$
C. $1.5 \times 10^{-2} \mathrm{Nm}$
D. $1.5 \times 10^{-6} \mathrm{Nm}$

Answer: A

D Watch Video Solution

22. A bar magnet has a magnetic moment
$2.5 J T^{-1}$ and is placed in a magnetic field of
$0.2 T$. Calculate the work done in turning the
magnet from parallel to antiparallel position

relative to field direction.

A. 1 J
B. 2 J
C. 3 J
D. 4 J

Answer: A
(Watch Video Solution
23. Two like poles of strengths m_{1} and m_{2} are
at far distance apart. The energy repuired to
bring them r_{0} distance apart is
A. $\frac{\mu_{0} m_{1} m_{2}}{4 \pi r_{0}}$
B. $\frac{\mu_{0} m_{1} m_{2}}{8 \pi r_{0}}$
C. $\frac{\mu_{0} m_{1} m_{2}}{16 \pi r_{0}}$
D. None of these

Answer: A

D Watch Video Solution
24. Calculate the work done in deflecting a small magnet of magnetic moment $10 \mathrm{Am}^{2}$ through 180° from a uniform magnetic field of strength $0.4 \times 10^{-4} T$.
A. $8 \times 10^{-4} J$
B. zero
C. $4 \times 10^{-4} \mathrm{~J}$
D. None of these

Answer: A
25. At a place the value of B_{H} and B_{V} are
$0.4 \times 10^{-4} T$ and $0.3 \times 10^{-4} T$ respectively.

The resultant earth's magnetic field is
A. $0.5 \times 10^{-4} T$
B. $10^{-4} T$
C. $2 \times 10^{-4} T$
D. None of these

Answer: A
26. In previous problem, the angle of dip is
A. $\tan ^{-1}(0.75)$
B. $\tan ^{-1}(0.5)$
C. $\tan ^{-1}(0.8)$
D. None of these

Answer: A

- View Text Solution

27. The real angle of dip, if a magnet is suspended at an angle of 30° to the magnetic meridian and the dip needle makes an angle of 45° with horizontal, is:

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& \text { B. } \tan ^{-1}(\sqrt{3}) \\
& \text { C. } \tan ^{-1}\left(\frac{\sqrt{3}}{\sqrt{2}}\right) \\
& \text { D. } \tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)
\end{aligned}
$$

28. A magnet is cut in three equal parts by cutting it perpendicular to its length. The time period of original magnet is T_{0} in a uniform magnetic field B. Then, the time period of each part in the same magnetic field is
A. $\frac{T_{0}}{2}$
B. $\frac{T_{0}}{3}$
C. $\frac{T_{0}}{4}$
D. None of these

Answer: B

- Watch Video Solution

29. A magnet is cut in three equal parts by cutting it perpendicular to its length. The time period of original magnet is T_{0} in a uniform magnetic field B. Then, the time period of each part in the same magnetic field is
A. $\frac{T_{0}}{\sqrt{2}}$
B. $\frac{T_{0}}{2}$
c. $\frac{T_{0}}{4}$
D. $4 T_{0}$

Answer: A

- Watch Video Solution

30. The current on the winding of a toroid is 2
A. It has 400 turns and mean circumferential
length is 40 cm . With the help of search coil and charge measuring instrument the
magnetic field is found to be 1 T . The

susceptibility is

A. 100
B. 290
C. 398
D. 397

Answer: D
(Watch Video Solution
31. The magnetic needle of a tangent galvanometer is deflected at an angle 30° due to a magnet. The hoeizontal component of earth's magnetic field $0.34 \times 10^{-4} T$ is along the plane of the coil. The magnetic intensity is

A. $1.96 \times 10^{-4} T$
B. $1.96 \times 10^{4} T$
C. $1.96 \times 10^{-5} T$
D. $1.96 \times 10^{5} T$

Answer: C

- Watch Video Solution

32. Calculate the angle of dip, if a dip needle oscillating in a vertical plane makes 40 oscillations per minute in a magnetic meridian and 30 oscillations per minute in a vertical plane at right angle to the magnetic meridian.

$$
\begin{aligned}
& \text { A. } \theta=\tan ^{-1}(0.5625) \\
& \text { B. } \theta=\tan ^{-1}(0.325) \\
& \text { C. } \theta=\tan ^{-1}(0.425)
\end{aligned}
$$

$$
\text { D. } \theta=\tan ^{-1}(0.235)
$$

Answer: A

D Watch Video Solution

33. Inside a long solenoid wounded with 300 turns $/ \mathrm{m}$, an iron rod is placed. An iron rod is
0.2 m long, 10 mm in diameter and of permeability 10^{3}. Calculate the magnetic moment of the rod, if 0.5 A of current is passed through the rod.
A. 2.356 Sl units
B. 1.335 SI units
C. 3.664 SI units
D. 1.664 SI units

Answer: A

D Watch Video Solution

34. An iron rod is subjected to cycles of magnetisation at the rate of 50 Hz . Given the density of the rod is $8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and
specific heat is $0.11 \times 10^{-3} \mathrm{cal} \times k g^{\circ} \mathrm{C}$. The
rise in temperature per minute, if the area enclosed by the $B-H$ loop corresponds to energy of $10^{-2} J$ is (Assume there is no radiation losses)
A. $78^{\circ} C$
B. $88^{\circ} \mathrm{C}$
C. $8.1^{\circ} \mathrm{C}$
D. None of these

Answer: C

Bitsat Archives

1. The susceptibility of magnesium at $300 K$ is
1.2×10^{-5}. At what temperature will the
susceptibility increase to 1.8×10^{-5} ?
A. 150 K
B. 200 K
C. 250 K
D. 20 K

Answer: B

D Watch Video Solution

2. Magnetic moment of bar magnet is M. The
work done to turn the magnet by 90° of magnet in direction of magnetic field B will be
A. zero
B. $\frac{1}{2} M B$
C. $M B$
D. $M B$

Answer: D

D Watch Video Solution

3. If m is magnetic moment and B is the magnetic field, then the torque is given by
A. M. B
B. $\frac{|M|}{|B|}$
C. $M \times B$
D. $|M||B|$

Answer: C

D Watch Video Solution

4. At the magnetic north pole of the earth, the value of horizontal component of earth's magnetic field and angle of dip are, respectively
A. zero, maximum
B. maximum, minimum
C. maximum, maximum

D. minimum, minimum

Answer: A

- Watch Video Solution

5. With a standard rectangular bar magnet,
the time period in the uniform magnetic field is 4 sec . The bar magnet is cut parallel to its length into 4 equal pieces. The time period in the uniform magnetic field when the piece is used (in sec) (bar magnet breadth is small)
A. 16
B. 8
C. 4
D. 2

Answer: C

D Watch Video Solution

6. A magnetised wire of magnetic moment
' M ' and length ' l ' is bent in the form of a
semicircle of radius ' r '. The new magnetic

moment is

A. $\frac{2 M}{\pi}$
B. 2 M
C. $\frac{M}{\pi}$
D. zero

Answer: A
(Watch Video Solution

7. Susceptibility of ferromagnetic substance is

A. >1
B. <1
C. zero
D. 1

Answer: A
8. Among the following properties describing diamagnetism, identify the property that is wrongly stated.
A. Diamagnetic material do not have permanent magnetic moment
B. Diamagnetism is explained in terms of
electromagnetic induction
C. Diamagnetic materials have a small
positive susceptibility
D. The magnetic moment of individual

electrons neutralise each other

Answer: C

D Watch Video Solution

