© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE PHYSICS

(HINGLISH)

MOTION IN !,2,2 DIMENSIONS AND

POJECTILE MOTION

Others

1. A cat wants to catch a rat. The cat follows
the path whose equation is $x+y=0$. But rat
follows the path whose equation is
$x^{2}+y^{2}=4$. The coordinates of possible points of catching the rat are
A. $(\sqrt{2}, \sqrt{2})$
B. $(-\sqrt{2}, \sqrt{2})$
C. $(\sqrt{2}, \sqrt{3})$
D. $(0,0)$

2. Speed is too velocity is

A. centrimetre is too metre
B. force is too torque
C. velocity is too acceleration
D. distance is too displacement

Answer:

3. A person travelling on a straight line moves
with a uniform velocity v_{1} for some time and
with uniform velocity v_{2} for the next equal
time. The average velocity v is given by

$$
\begin{aligned}
& \text { A. } v=\frac{v_{1}+v_{2}}{2} \\
& \text { B. } \frac{2}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}} \\
& \text { C. } v=\sqrt{v_{1} v_{2}} \\
& \text { D. } \frac{1}{v}=\frac{1}{v_{1}}=\frac{1}{v_{2}}
\end{aligned}
$$

Answer:

4. A car moves at 80 km in the first half of total
time of motion and at 40 km in the later half.
Its average speed is
A. $60 \mathrm{~km} / \mathrm{h}$
B. $30 \mathrm{~km} / \mathrm{h}$
C. $120 \mathrm{~km} / \mathrm{h}$
D. none of these
5. A particle moves with constant speed v along a regular hexagon $A B C D E F$ in the same order. Then the magnitude of the avergae velocity for its motion form A to
A. v
B. $\frac{v}{2}$
C. $\frac{\sqrt{3} v}{2}$
D. none of these

Answer:

D Watch Video Solution

6. During the shooting of a superhit film
'MARD' Amitabh Bachahan was waiting for his
beloved Amrita Singh with his dog. When he saw her approaching, thedog was excited and dashed to her than back to master and so on, never stopping. How far would you estimate the dog ran if his speed is $30 \mathrm{~km} / \mathrm{h}$ and each
of them walked at $4 \mathrm{~km} / \mathrm{h}$, starting 400 m apart?
A. 400 m
B. 880 m
C. $1500 m$
D. 30 km

Answer:
(Watch Video Solution
7. Two particles start from the same point with different speeds but one moves along
$y=a \sin \omega x$ and other moves along curve
$y=\cos \omega x$
A. they must collide after some time
B. they never collide with each other
C. they may collide at the point

$$
P\left(\frac{\pi}{4 \omega}, \frac{a}{\sqrt{2}}\right)
$$

D. they must collide at the point P

Answer:

- Watch Video Solution

8. A sheet of wood moves over a smooth
surface (shown in the figure). The magnitude of velocity of C is

$$
\%
$$

*

A. v
B. $2 v \cos \theta$
C. $2 v \sin \theta$
D. $2 v$

Answer:

D Watch Video Solution
9. In the arrangement shown in figure, the ends P and Q of an inextensible string move downwards with uniform speed u. Pulleys A
and B are fixed. The mass m moves upwards
with a speed

A. $2 u \cos \theta$
B. $\frac{u}{\cos \theta}$
C. $\frac{2 u}{\cos \theta}$
D. $u \cos \theta$

Answer:

- Watch Video Solution

10. In the figure find the speed of pulley P

A. $\frac{v}{2}$
B. $2 v \cos \theta$

C. $-\frac{2 v}{\cos \theta}$
 D. $\frac{v}{2 \sin \theta}$

Answer:

D Watch Video Solution

11. A link $A B$ is moving in a vertical plane. At a certain instant when the link is inclined 60° to
the horizontal the point A is moving horizontaly at $3 \mathrm{~m} / \mathrm{s}$, while B is moving in the
vertical direction. What is the velocity of B ?

A. $\frac{1}{\sqrt{3}} m / s$
B. $2 \sqrt{3} m / s$
C. $\sqrt{3} m / s$
D. $\frac{\sqrt{3}}{2} m / s$

Answer:

- Watch Video Solution

12. Two intersecting straight lines move parallel to themselves with speeds $3 m / s$ and
$4 m / s$, respectively. The speed of the point of intersection of the lines, if the angle between
them is 90° will be
A. $5 m / s$
B. $3 m / s$
C. $4 m / s$

D. none of these

Answer:

D Watch Video Solution

13. The displacement time graph is shown in
figure. The instantaneous velociyt is negative
at the point.

A. D
B. F
C. C
D. E

Answer:
14. In the given $x-t$ curve,

A. the velocity at A is zero but at B is non-
zero
B. the velocity at A and B are zero

C. the velocity at A and B are non zero

D. the directions of velocity at A and B are

 definite
Answer:

D Watch Video Solution

15. Which of the following speed time graph exists in the nature?
A.華
B.
$0 . t^{\circ} m$
C. ?
D. All of the above

Answer:

- Watch Video Solution

16. Two particles describes the same circle of radius a in the same sense with the same speed v. What is their relative angular velocity?
A. v / a
B. $2 v / a$
C. $v / 2 a$
D. $v a$

Answer:

D Watch Video Solution

17. A particle starts with a velocity of $2 m / s$ and moves in a straight line with a retardation
of $0.1 \mathrm{~m} / \mathrm{s}^{2}$. The time that it takes to describe

15 m is

A. $10 s$ in its backward journey
B. $30 s$ in its forward journey
C. $10 s$ in its forward journey
D. $30 s$ in its backward journey

Answer:

D Watch Video Solution

18. A particle starts from rest with acceleration
$2 m / s^{2}$. The acceleratioin of the particle of the particle descreases down to zero uniformly during time -interval of $4 s$. The velocity of particle after $2 s$ is
A. $3 m / s$
B. $4 m / s$
C. zero
D. $8 m / s$
19. An aeroplane moves 400 m towards north, 300 m towards west and then 1200 m vertically upward. Then its displacement from the initial position is
A. $1300 m$
B. 1400 m
C. 1500 m
D. 1600 m

Answer:

D Watch Video Solution

20. The displacement of a particle is moving by
$x=(t-2)^{2}$ where x is in metres and t in
second. The distance covered by the particle in first 4 seconds is.
A. $4 m$
B. $8 m$
C. $12 m$
D. $16 m$

Answer:

D Watch Video Solution

21. A person walks up a stalled escalator in 90
s. When standingon the same escalator, now moving, he is carried in 60 s . The time it would take him to walk up the moving escalator will be:
A. $27 s$
B. $72 s$
C. $18 s$
D. $36 s$

Answer:

- Watch Video Solution

22. A body starts from rest and moves with constant acceleration. The ratio of distance covered by the body in $n t h$ second to that covered in n second is.

> A. $\frac{2}{n}-\frac{1}{n^{2}}$
> B. $\frac{1}{n^{2}}-\frac{1}{n}$
> C. $\frac{2}{n^{2}-\frac{1}{n}}$
> D. $\frac{2}{n}+\frac{1}{n^{2}}$

Answer:

- Watch Video Solution

23. A particle moving with a uniform acceleration along a straight line covers distances a and b in successive intervals of p
and q second. The acceleration of the particle
is

$$
\begin{aligned}
& \text { A. } \frac{p q(p+q)}{2(b p-a q)} \\
& \text { B. } \frac{2(a q-b p)}{p q(p-q)} \\
& \text { C. } \frac{b p-a q}{p q(p-q)} \\
& \text { D. } \frac{2(b p-a q)}{p q(p+q)}
\end{aligned}
$$

Answer:

D Watch Video Solution

24. A body moves along x-axis with velocity V_{x} at position x. If the plot $v_{x}-x$ is an ellipse with major axis $2 A$ and minor axis $2 V_{0}$ the maximum acceleration has a modulus
A. $\frac{V_{0}^{2}}{A}$
B. $\frac{A}{V_{0}^{2}}$
C. $V_{0} A$
D. none of these
25. The distance time graph of a particle at time t makes angle 45° with respect to time axis. After 1 s , if makes angle 60° with respect to time axis. What is the acceleration of the particle?
A. $(\sqrt{3}-1)$ unit
B. $(\sqrt{3}+1)$ unit
C. $\sqrt{3}$ unit
D. 1 unit

Answer:

D Watch Video Solution

26. The velocity-time plot for a particle moving

on a straight line is shown in the figure, then

$t(\mathrm{~s}) \longrightarrow$
A. The particle has a constant acceleration
B. the particle has never turned around
C. the average speed in the interval 0 to
$10 s$ is the same as the average speed in
the interval $10 s$ and $20 s$
D. Both (a) and (c) are correct

Answer:

D Watch Video Solution

27. The acceleration of a train between two
stations 2 kilometre apart is shown in the
figure. If train starts from rest than maximum speed of the train is

A. $60 m / s$
B. $30 \mathrm{~m} / \mathrm{s}$
C. $120 \mathrm{~m} / \mathrm{s}$
D. $90 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

28. A body is at rest at $x=0$. At $t=0$, it starts moving in the positive x-direction with a constant acceleration. At the same instant another body passes through $x=0$ moving in the positive x-direction with a
constant speed. The position of the first body
is given by $x_{1}(t)$ after time ' t ', and that of the second body by $x_{2}(t)$ after the same time interval . which of the following graphs correctly describes $\left(x_{1}-x_{2}\right)$ as a function of time 't' ?
A.

B.
${ }_{\left(x,-x_{2}\right)}$

C.

Answer:

D Watch Video Solution

29. A particle moves in a straight line, so that after t second, the distance x from a fixed point O on the line is given by $x=(l-2)^{2}(t-5)$. Then
A. after $2 s$ velocity of particle is zero
B. after $2 s$, the particle reaches at O
C. the acceleation is negative when $t<3 s$
D. All of the above

Answer:

D Watch Video Solution

30. A bird flies for 4 s with a velocity
$V=(t-2) m / s$ in a straight line where $\mathrm{t}=$
time in second Calculate the displacement and distance covered by the bird
A. 2
B. 4
C. 6
D. 8

Answer:

D Watch Video Solution

31. The velocity of particle is
$v=v_{0}+\mathrm{gt}+f t^{2}$. If its position is $x=0$ at
$t=0$ then its displacement after unit time

$$
(t=1) \text { is }
$$

A. $v_{0}+2 g+3 f$
B. $v_{0}+\frac{g}{2}+\frac{f}{3}$
C. $v_{0}+g+f$
D. $v_{0}+\frac{g}{2}+f$

Answer:
(Watch Video Solution
32. A particle located at $x=0$ at time $t=0$, starts moving along with the positive x - direction with a velocity ' v ' that varies as $v=a \sqrt{x}$. The displacement of the particle varies with time as
A. t^{2}
B. t
C. $t^{1 / 2}$
D. t^{3}

- Watch Video Solution

33. A particle moves as such acceleration is given by $\mathrm{a}=3 \sin 4 \mathrm{t}$, then :
A. the initial velocity of the particle must be zero
B. the acceleration of the particle becomes
zero after each interval of $\frac{\pi}{4}$ second
C. the particle does not cfome at its initial

D. the particle must move on a circular

 path
Answer:

D Watch Video Solution

34. A particle moves along a straight line such
that its position x at any time t is $x=3 t^{2}-t^{3}$
, where x is in metre and t in second the
A. at $t=0$ acceleration is $6 \mathrm{~m} / \mathrm{s}^{2}$
B. $x-t$ curve has maximum at $8 m$
C. $x-t$ curve has maximum at $2 s$
D. Both (a) and (c) are correct

Answer:

D Watch Video Solution

35. The motion of a body falling from rest in a resting medium is described by the equation $\frac{d v}{d t}=a-b v$, where a and b are constant. The velocity at any time t is
A. $a\left(1-b^{2 t}\right)$
B. $\frac{a}{b}\left(1-e^{-b t}\right)$
C. $a b e^{-t}$
D. $a b^{2}(1-t)$

Answer:

D Watch Video Solution

36. A rectangular box is sliding on a smooth inclined plane of inclination θ. At $t=0$ the box starts to move on the inclined plane. A
bolt starts to fall from point A. Find the time after which bolt strikes the bottom surface of the box.

A. $\sqrt{\left(\frac{2 l}{g \cos \alpha}\right)}$
B. $\sqrt{\left(\frac{2 l}{g \sin \alpha}\right)}$
C. $\sqrt{\left(\frac{2 l}{g}\right)}$
D. $\sqrt{\left(\frac{l}{g}\right)}$

Answer:

D Watch Video Solution

37. A car , starting from rest, accelerates at the rate f through a distance S then continues at constant speed for time t and then decelerates at the rate $\frac{f}{2}$ to come to rest. If the total distance traversed is $15 S$, then
A. $s=t$
B. $s=\frac{1}{6} f t^{2}$
C. $s=\frac{1}{72} f t^{2}$
D. $s=\frac{1}{4} f f^{2}$

Answer:

D Watch Video Solution

38. An object moves startig from rest through
a resistive medium, such that its acceleration
is related to velocity as $a=3-2 v$. Then
A. the terminal velocity is 1.5 unit
B. the terminal velocity is 3 unit
C. the slope of $a-v$ graph is not constant
D. initial acceleration is 2 unit

Answer:

D Watch Video Solution
39. If the velocity of a moving particle $v \propto x^{n}$,
where x is the displacement then
A. when $\quad x=0$ the velocity and acceleratiion are zero
B. $n>\frac{1}{2}$
C. $n<\frac{1}{2}$
D. Both (a) and (c) are correct

Answer:
(Watch Video Solution
40. A particle is projected vertically upward in
vacum with a speed $40 \mathrm{~m} / \mathrm{s}$ then velocity of
particle when it reaches at maximum height $2 s$ before, is
(Take $g=10 m / s$)
A. $20 m / s$
B. $4.2 \mathrm{~m} / \mathrm{s}$
C. $9.8 m / s$
D. none of these

Answer:

- Watch Video Solution

41. A juggler keeps on moving four balls in the air throwing the balls after regular intervals.

When one ball leaves his hand
(speed $=20 \mathrm{~ms}^{-1}$) the positions of other balls (height in m$)\left(\right.$ Take $\left.g=10 \mathrm{~ms}^{-2}\right)$.
A. $10 m, 20 m, 10 m$
B. $15 m, 20 m, 15 m$
C. $5 m, 15 m, 20 m$

D. $5 m, 10 m, 20 m$

Answer:

D Watch Video Solution

42. Balls are thrown vertically upwards in such
a way that the next ball is thorwn when the previous one is at the maximum height. If the maximum hieght is 5 m , the number of balls
thrown per minute will be
B. 40
C. 50
D. 120

Answer:

D Watch Video Solution

43. A ball is dropped vertically from a height d
above the ground. It hits the ground and
bounes up vertically to a height $d / 2$.

Neglecting subsequent motion and air
resistance, its speed v varies with the height h above the ground as
A.

C.

Answer:

Watch Video Solution

44. A ball is thrown vertically upwards. Which of the following graph/graphs represent velocity time graph of the ball during its flight (air resistance is neglected).
A.

B.

C.

Answer:

D Watch Video Solution

45. An object is thrown upward with a velocity u, then displacement -time graph is

Answer:

D Watch Video Solution

46. A balloon going upward with a velocity of
$12 m / s$ is at a height of $65 m$ from the earthh surface at any instant. Exactly at this instant a packet drops from it. How much time will the
packet take in reaching the surface of earth?
(Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. $75 s$
B. $10 s$
C. $5 s$
D. none of these

Answer:
(Watch Video Solution
47. If a stone is relased from a balloon moving upwards with certain velocity v_{0} at certain height above earth's surface then velocity time curve of stone's motion can be best represented by : (g = constant)

C.

D.

Answer:

- Watch Video Solution

48. A particle P is at the origin starts with velocity $u=(2 \hat{i}-4 \hat{j}) m / s$ with constant acceleration $(3 \hat{i}+5 \hat{j}) m / s^{2}$. After travelling for $2 s$ its distance from the origin is
A. 10 m
B. $10.2 m$
C. $9.8 m$
D. 11.7 m

Answer:

D Watch Video Solution

49. At an instasnt t the coordinates of a particles are $x=a t^{2}, y=b t^{2}$ and $z=-0$.

The magnitude of velocity of particle at an instant is
A. $t \sqrt{a^{2}+b^{2}}$
B. $\frac{v}{\sqrt{2}}$
C. $\frac{v}{\sqrt{3}}$
D. $2 t \sqrt{a^{2}+b^{2}}$

Answer:

D Watch Video Solution

50. If $x=a(\cos \theta+\theta \sin \theta)$ and
$y=a(\sin \theta-\theta \cos \theta)$ and θ increases at
uniform rate ω. The velocity of particle is
A. $a \omega$
B. $\frac{a^{2} \theta}{\omega}$
C. $\frac{a \theta}{\omega}$
D. $a \theta \omega$

Answer:

- Watch Video Solution

51. A particle is moving with velocity $\vec{v}=k(y \hat{i}+x \hat{j})$, where k is a constant. The genergal equation for its path is
A. $Y=X^{2}+$ constant
B. $Y^{2}=X+$ constant
C. $X Y=$ constant
D. $Y^{2}=X^{2}+$ constant

Answer:

D Watch Video Solution

52. A light rigid rod is placed on a smooth horizontal surface. Initially the end A begins to move vertically upward with constant
velocity v_{0} and centre of the rod upward with
a velocity $v_{0} / 2$ having downward acceleration
$a_{0} / 2$, the other end moves downward with
A. zero initial velocity having zero
acceleration
B. zero initial velocity having a_{0} downward
acceleration
C. non-zero initial velocity and zero
acceleration
D. none of the above

Answer:

D Watch Video Solution

53. At the top of the trajectory of a projectile,
the directions of its velocity and acceleration are
A. parallel to each other
B. inclined to each other at an angle of 45°
C. anti -parallel to each other
D. perpendicular to each other

Answer:

- Watch Video Solution

54. A projectile is thrown at an angle of
$\theta=45^{\circ}$ to the horizontal, reaches maximum
reaches a maxium height of $16 m$, then
A. its velocity at the highest point is zero
B. its range is $64 m$
C. it is thrown at an angle of 30° its range
D. Both (a) and (c) are correct

Answer:

D Watch Video Solution

55. A heavy stone is thrown from a cliff of
height h in a given direction. The speed with
which it hits the ground
A. must depend on the speed of projection
B. must be larger then the speed of projection
C. must be independent of the speed of
projection
D. Both (a) and (c) are correct

Answer:

- Watch Video Solution

56. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of the angular momentum of the projectile abut the point of projection when the particle is at its maximum height h is.
A. zero initial velocity having zero acceleration
B. $\frac{m v h}{\sqrt{2}}$
C. $\frac{m v h^{2}}{\sqrt{2}}$

D. none of these

Answer:

D Watch Video Solution

57. Two particles are projected vertically upward with the same velocity on two diferent planes with accelerations due to gravities g_{1} and g_{2} respectively. If they fall back to their initial points of projection after lapse of time t_{1} and t_{2} respectively. Then
A. $t_{1} t_{2}=g_{1} g_{2}$
B. $t_{1} g_{1}=t_{2} g_{2}$
C. $\frac{t_{1} g_{2}}{t_{2} g_{1}}=2$
D. $t_{1}^{2}+t_{2}(2)=g_{1}+g_{2}$

Answer:

D Watch Video Solution

58. A point p moves in counter - clockwise direction on a circular path as shown in the figure . The movement of ' p ' is such that it
sweeps out in the figure. The movement of 'p'
is such that it sweeps out a length $s=t^{3}+5$
, where s is in metres and t is in seconds. The radius of the path is 20 m . The acceleration of ' P ' when $t=2 s$ is nearly.

A. $13 m s^{-2}$
B. $12 m s^{-2}$

C. $7.2 m s^{-2}$

$$
\text { D. } 14 m s^{-2}
$$

Answer:

D Watch Video Solution

59. A number of particles are projected from a given point with equal velocities in different directions in the same vertical plane. At any instant they will lie on
A. parabola
B. circle
C. hyperbola
D. rectangle

Answer:

D Watch Video Solution

60. Rain water is falling vertically downward with velocity v. When velocity of wind is u in horizontal direction, water is collected at the
rate of $R m^{3} / s$. When velocity of wind becomes $2 u$ in horizontal direction. The rate of collection of water in vessel is
A. R
B. $\frac{R}{2}$
C. $2 R$

$$
\text { D. } \frac{R \sqrt{4 u^{2}+v^{2}}}{\sqrt{u^{2}+v^{2}}}
$$

Answer:

D Watch Video Solution
61. A ball projected from ground at an angle of
45° just clears a wall infront. If point of projection is $4 m$ from the foot of wall and ball strikes the ground at a distance of $6 m$ on the other side of the wall, the height of the wall is
A. $4.4 m$
B. $2.4 m$
C. $3.6 m$
D. $1.6 m$

Watch Video Solution

62. The maximum range of a bullet fired from a toy pistol mounted on a car at rest is $R_{0}=40 \mathrm{~m}$. What will be the acute angle of inclination of the pistol for maximum range when the car is moving in the direction of firing with uniform velocity $V=20 \mathrm{~m} / \mathrm{s}$, on a horizontal surface? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 30°
B. 60°
C. 75°
D. 45°

Answer:

- Watch Video Solution

63. Figure shows four paths for a kicked football. Ignoring the effects of air on the flight, rank the paths according to the initial
horizontal velocity component, highest first.

A. $1,2,3,4$
B. $2,3,4,1$
C. $3,4,1,2$
D. $4,3,2,1$

Answer:
64. A body is projected at an angle θ with the horzontal. When it is at the highest point, the ratio of the potential and kinetic energies of the body is s
A. $\tan \theta$
B. $\tan ^{2} \theta$
C. $\cot \theta$
D. $\cot ^{2} \theta$
65. A particle is projected at an angle 60° with
the horizontal with a speed $10 \mathrm{~m} / \mathrm{s}$. Then,
latus rectum is (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

A. $5 m$
B. $15 m$
C. 10 m
D. 0

Answer:

D Watch Video Solution

66. A projectile is thrown at an angle θ that it
is just able to cross a vertical wall at its
highest point of journey as shown in the figure. The angle θ at which the projectile is
thrown is given by

A. $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
B. $\tan ^{-1}(\sqrt{3})$
C. $\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
D. $\frac{\tan ^{-1}(\sqrt{3})}{2}$

Answer: C

D Watch Video Solution
67. Two cars move in the same direction along parallel roads. One of them is a 200 m , long travelling with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The second one is 800 m long travelling with a velocity of $7.5 \mathrm{~m} / \mathrm{s}$. How long will it take for the first car to overtake the second car?
A. $20 s$
B. $40 s$
C. $60 s$
D. $80 s$

Answer:

- Watch Video Solution

68. A motorboat covers the distance between
two spots on the river banks $t_{1}=8 g$ and
$t_{2}=12 h$ in down stream and upstream respectively. The time required for the boat to cover this distance in still water will be
A. $6.9 h$
B. $9.6 h$
C. $69 s$
D. 96 s

Answer:

D Watch Video Solution

69. For a man who wants to cross the river,
with the shortest path $A B$, find the anglet θ
(see figure)

A. $\sin ^{-1}\left(\frac{3}{4}\right)$
B. $\sin ^{-1}\left(\frac{4}{3}\right)$
C. 30°

D. Given situation is not possible

Answer:

D View Text Solution

70. To a person, going eastward in a car with a
velociyt of $25 \mathrm{~km} / \mathrm{hr}$, a train appears to move towards north with a velocity of $25 \sqrt{3} \mathrm{~km} / \mathrm{hr}$.

The actual velocity of the train will be
A. $25 \mathrm{~km} / \mathrm{h}$
B. $50 \mathrm{~km} / \mathrm{h}$
C. $5 \mathrm{~km} / \mathrm{h}$
D. $53 \mathrm{~km} / \mathrm{h}$

Answer:

D Watch Video Solution

71. A man can swim with a speed of $4 k m h^{-1}$ in still water. He crosses a river 1 km wise that
flows steadly at $3 k m h^{-1}$. If he makes his strokes normal to the river current, how far down the river does he go when he reaches the other bank?

A. 800 m

B. 900 m
C. 400 m
D. 750 m

Answer:

D Watch Video Solution

72. Rain drops fall vertically at a speed of $20 \mathrm{~m} / \mathrm{s}$. At what angle do they fall on the wind screen of a car moving with a velocity of $15 \mathrm{~m} /$
, if the wind screen velocity incined at an agle of 23° to the vertical $\left(\cot ^{-1} \frac{4}{3} \approx 37^{\circ}\right)$
A. 60°
B. 30°
C. 45°
D. 90°

Answer:
(Watch Video Solution

73. A bus moves over a straight level road with

a constant acceleration a. A boy in the bus drops a ball out side. The acceleration of the ball w.r.t the bus and the earth are respectively
A. a and g
B. $a+g$ and $g-a$
C. $\sqrt{a^{2}+g^{2}}$ and g
D. $\sqrt{a^{2}+g^{2}}$ and a

Answer:

74. A train accelerating uniormly from rest attains a maximum speed of $40 \mathrm{~ms}^{-1}$ in 20 s . It travels at this speed for $20 s$ and is brought to rest with uniform retardation i further 40 s . What is the average velocity during this period?
A. $80 m / s$
B. $25 m / s$
C. $40 \mathrm{~m} / \mathrm{s}$
D. $30 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

75. A ball is projected upwards from the top of a tower with a velocity $50 \mathrm{~ms}^{-1}$ making an angle 30° with the horizontal. The height of tower is 70 m . After how many seconds from the instant of throwing, will the ball reach the ground. $\left(g=10 m s^{-2}\right)$
A. $2 s$
B. $5 s$
C. $7 s$
D. $9 s$

Answer:

D Watch Video Solution

76. A ball thrown upward from the top of a tower with speed v reaches the ground in t_{1}
sec. If this ball is thrown downward from the
top of the same tower with speed v it reaches
the ground in t_{2} sec. In what time, the ball
shall reach the grouned, if it is allowed to fall
freely under gravity from the top of the tower?

$$
\begin{aligned}
& \text { A. } \frac{t_{1}+t_{2}}{2} \\
& \text { B. } \frac{t_{1}-t_{2}}{2} \\
& \text { C. } \sqrt{t_{1} t_{2}} \\
& \text { D. } t_{1}+t_{2}
\end{aligned}
$$

Answer:

77. A man runs at a speed of $4 m / s$ to overtake
a standing bus. When he is $6 m$ beind the door
at $t=0$, the bus mover forward and
continuous with a constant acceleration of
$1.2 m / s^{2}$. The man reaches the door in time t.

Then
A. $4 t=6+0.6 t^{2}$
B. $1.2 t^{2}=4 t$
C. $4 t^{2}=1.2 t$
D. $6+4 t=0.2 t^{2}$

Answer:

D Watch Video Solution

78. For a given velocity, a projectile has the same range R for two angles of rpojection if
t_{1} and t_{2} are the times of flight in the two cases then
A. $t_{1} t_{2} \propto R$
B. $t_{1} t_{2} \propto R^{2}$
C. $t_{1} t_{2} \propto \frac{1}{R^{2}}$

D. $t_{1} t_{2} \propto \frac{1}{R}$

Answer:

D Watch Video Solution

79. A body moves with uniform acceleration, which of the following graph is correct?

Answer:

D Watch Video Solution

80. One second after the projection, a stone moves at an angle of 45° with the horizontal.

Two seconds from the start,
it is travelling horizontally. Find the angle of
projection with the horizontal. $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. 60°
B. $\tan ^{-1}(4)$
C. $\tan ^{-1}(3)$
D. $\tan ^{-1}(2)$

Answer:
(Watch Video Solution
81. A body covers a total distance of $3 s$. The first s is covered with a velocity u the second s with V and the last s with ω. Then, the average velocity during the whole journey is

$$
\begin{aligned}
& \text { A. } \frac{u+v+\omega}{3} \\
& \text { B. } \frac{3 u v \omega}{u+v+\omega} \\
& \text { C. } \frac{3 u v \omega}{u v+v \omega+u \omega} \\
& \text { D. zero }
\end{aligned}
$$

Answer:

82. Do we observe the time variation of position is nature as shown in the graph?

A. yes

B. no

C. often

D. Rarely

Answer:

D Watch Video Solution

83. If a body is projected with an angle θ to the
horizontal, then
A. the velcity is always perpendicular to its
acceleration
B. its velocity becomes zero at its maximum
heigth
C. its velocity makes zero angle with the
horizontal at its maximum height
D. the body just bevore hitting the ground,
the direction of velocity coincides with
the acceleration

Answer:

D Watch Video Solution

84. Velocity-time graph for a moving object is shown in the figure. Total displacement of the object during the time interval when there is non-zero acceleration and retardation is.

A. $60 m$
B. 50 m
C. $30 m$
D. 40 m

Answer:

D Watch Video Solution

85. At the top of the trajectory of a projectile,
the directions of its velocity and acceleration
are
A. perpendicular to each other
B. parallel to each other
C. inclined to each other ant an angle of
45°
D. anti-parallel to each other

Answer:

- Watch Video Solution

86. At what point of a projectile motion acceleration and velocity are perpendicular to each other
A. At the point of projection
B. at the point of drop
C. At the top most point
D. Anywhere in between the point of
projection and top most point
87. From the top of a tower two stones, whose masses are in the ratio 1:2 are thrown one straight up with an initial speed u and the second straight down with the same speed u. Then, neglecting air resistance
A. the heavier stone hits the ground with a
higher speed
B. the lighter stone hits the ground with a
higher speed
C. both the stone will have te same speed when they hit the ground
D. the speed cannot be determined with
the given data

Answer:

D Watch Video Solution

