©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE PHYSICS

(HINGLISH)

ROTATIONAL MOTION

Practice Exercise

1. The angular displacement at any time t is given by $\theta(t)=2 t^{3}-6^{2}$. The torque on the
wheel will be zero at
A. 1 s
B. 0.1 s
C. 2 s
D. 0.2 s

Answer:

D Watch Video Solution

2. Four 2 kg masses are connecte dby 1.4 m spokes to an axle. A force of 24 N acts on a
lever $\frac{1}{2} m$ long to produce angular acceleration α. The magnitude of α (in rad s^{-2} is the angle between r and F is 30°.
A. 24
B. 12
C. 6
D. 3

Answer:
3. A flywheel of moment of inertia $0.4 \mathrm{~kg} \mathrm{~m}^{2}$ and radius 0.2 m is free to rotate about a central axis. If a string is wrapped around it and it is pulled with a force of 10 N . Then its angular velocity after 4 s will be
A. 10 rads $^{-1}$
B. 5 rads $^{-1}$
C. 20 rads $^{-1}$

Answer:

D Watch Video Solution

4. The centre of a wheel rolling on a plaen
surface moves with a speed v_{0}. A particle on
the rim of the wheel at the same level as the centre will be moving at speed
A. zero
B. v_{0}
C. $\sqrt{2} v_{0}$
D. $2 v_{0}$

Answer:

D Watch Video Solution

5. A meter stick is hold vertically with one end on the floor of the sticks does not move. The
velocity of the other end when it hits the floor, will be
A. $9.8 \mathrm{~m} / \mathrm{s}$
B. $6.2 \mathrm{~m} / \mathrm{s}$
C. $8.9 \mathrm{~m} / \mathrm{s}$
D. $5.4 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

6. The instaneous velocity of point B of the given rod of length 0.5 is $3 \mathrm{~m} / \mathrm{s}$ in the represented direction. The angualr velocity of
the rod for minimum velocity of end A is

A. $1.5 \mathrm{rad} / \mathrm{s}$
B. $5.2 \mathrm{rad} / \mathrm{s}$
C. $2.5 \mathrm{rad} / \mathrm{s}$
D. $3.6 \mathrm{rad} / \mathrm{s}$

Answer:

D
7. A car is moving in a circular horizonta track of radius 10 m with a constant speed of $10 \mathrm{~m} / \mathrm{s}$.

A pendulum bob is suspended from the roof of the cat by a light rigid rod of length 1.00 m .

The angle made by the rod with track is
A. zero
B. 30°
C. 45°
D. 60°

- Watch Video Solution

8. If a raw egg and a boiled egg are spinned on the table by applying same torque. Then
A. boiled egg will spin faster
B. raw egg will spin faster
C. moment of intertia of boiled egg will be
lesser than that of the raw egg
D. Both a and c are correct

Answer:

- Watch Video Solution

9. The torque τ on a body about a given point
is found to be equal to $A \times L$, where A is constant vector and L is the angular momentum of the body that point. From this, it follows that
A. $\frac{d L}{d t}$ is perpendicular to L at all the instant of time
B. the component of L in the direction of A does not change with time
C. The magnitude of L does not change

with time

D. all of the above

Answer:

- Watch Video Solution

10. The tricycle weighing 20 kg has a small wheel symmmetrically placed 1 m behind the two large wheels, which are also 1 m apart. If
the center of gravity of machine is at a horizontal distance of 25 cm behind the front wheels and the rider whose weight is 40 kg is

10 cm behind the front wheels. Then, the thrust on each front wheel is
A. 255 N
B. 90 N
C. 200 N

D. 400 N

Answer:

D Watch Video Solution

11. A rectangular plate of mass 20 kg is suspended from points A and B as shown. If
the pin B is suddenly removed, then determine
the angular acceleration (in rad $/ \mathrm{sec}^{\wedge}(2)$) of
the plate.

A. 48
B. 19.6
C. 29.4
D. 23.6

Answer:

D Watch Video Solution

12. A uniform rod of length I and mass m is
suspended by two vertical inextensible strings
as shwon in figure. Then, tension in the left
string when right string snape, si

13. A rod of length L is hinged from one end. It
is brought to a horizontal position and released. The angular velocity of the rod, when it is in vertical position, is
A. $\sqrt{\frac{2 g}{L}}$
B. $\sqrt{\frac{3 g}{L}}$
C. $\sqrt{\frac{g}{2 L}}$
D. $\sqrt{\frac{g}{L}}$

Answer:

D Watch Video Solution

14. A light rod carries three equal masses A, B
and C as shown in figure. Find the velocity of B
in vertical position of rod, if it is released from
horizontal position. As shown in figure.
A. $\sqrt{2 g l}$
B. $\sqrt{\frac{18 g l}{7}}$

> C. $\sqrt{\frac{4 g l}{3}}$
> D. $\sqrt{\frac{8 g l}{7}}$

Answer:

- Watch Video Solution

15. The kinetic energy of a lamina moving in its
planeis

$$
\begin{aligned}
& \text { A. } M\left(v_{c m}^{2}+K^{2} \omega^{2}\right) \\
& \text { B. } \frac{1}{2} M\left(v_{C M}^{2}+K^{2} \omega^{2}\right)
\end{aligned}
$$

C. $\frac{1}{2} k \omega p^{2}$
D. None of these

Answer:

D Watch Video Solution

16. A wheel has mass of the rim 1 kg , having 50
spokes each of mass 5 g . The radius of the wheel is 40 cm . The moment of inertia is
A. $0.273 \mathrm{~kg} \mathrm{~m}^{2}$
B. $1.73 \mathrm{~kg} \mathrm{~m}{ }^{2}$
C. $0173 \mathrm{~kg} \mathrm{~m}^{2}$
D. $2.73 \mathrm{~kg} \mathrm{~m}{ }^{2}$

Answer:

D Watch Video Solution

17. The moment of inertia of a system of four rods each of length I and mass m about the
axis shown is

A. $\frac{2}{3} m l^{2}$
B. $2 m l^{2}$
C. $3 m l^{2}$
D. $\frac{8}{3} m l^{2}$

Answer:

- Watch Video Solution

18. The surface density (mass/area) of a circular disc of radius a depends on the distance from the centre as $\rho(r)=A+B r$.

Find its moment of inertia about the line perpendicular to the plane of the disc through its centre.

$$
\text { А. } \pi a^{2}\left(\frac{A}{2}+\frac{2 a}{5}\right) \text { В }
$$

B. $\pi a^{4}\left(\frac{A}{2}+\frac{2 B}{5}\right)$
C. $2 \pi a^{3}\left(\frac{A}{2}+\frac{B a}{5}\right)$
D. None of these

Answer:

D Watch Video Solution

19. A hoop of radius 2 m , weight 100 kg . It rolls along horizontal floor so that its center of mass has a speed of $20 c \frac{m}{s}$. How much work has to be done to stop it?
A. 4.8 J
B. 4.0 J
C. 6.2 J
D. 7.2 J

Answer:

D Watch Video Solution

20. Mass of bigger disc having radius $2 R$ is M.

A disc of radius R is cut from bigger disc.

Moment of intertia of disc about an axis
passing through periphery and perpendicular to plane is

A. $\frac{27 M R^{2}}{8}$
B. $\frac{29 M R^{2}}{8}$
C. 3.5 MR
D. $2 M R^{2}$

Answer:

D Watch Video Solution
21. Three thin rods each of length Land mass
M are placed along x, y and z-axes such that one of each rod is at origin. The moment of inertia of this system about z -axis is
A. $2.3 M L^{2}$
B. ${ }^{`}\left(4 M L^{\wedge}(2)\right) / 3$
C. ${ }^{`}\left(5 \mathrm{ML}^{\wedge}(2)\right) / 3$
D. ${ }^{\prime}\left(M L^{\wedge}(2)\right) / 3$

Answer:

22. If r is the distance between the Earth and
the Sun. Then, angular momentum of the

Earth around the sun is proportional to
A. $r^{-\frac{1}{2}}$
B. $r^{\frac{1}{2}}$
C. r^{2}
D. r^{-2}

Answer:
23. Two wheels A and B are mounted on 6 kg m^{2} the same shaft. One of them having their moment of inertia $8 \mathrm{~kg} m^{2}$ with the angular speed 600 rpm and other is at rest. The value of moment of intertia of another wheel in order to achive the combined angular speed 300 rpm is
A. $4 \mathrm{~kg} \mathrm{~m}{ }^{2}$
B. $3 \mathrm{~kg} \mathrm{~m}^{2}$
C. $6 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{2}$
D. $9 \mathrm{~kg} \mathrm{~m}{ }^{2}$

Answer:

- Watch Video Solution

24. Choose the correct option.
A. Friction is necessary for rolling motion
B. Frictioin is necessary for pure
accelerated rolling motion
C. Friction is necessary for pure accelerated rolling on an inclined plane D. None of the above

Answer:

D Watch Video Solution

25. An arm making an angle of 120° at the center of ring of mass m and radius r is cut
from the ring. The arc is made to rotate about
z-axis perpendicular to its plane and passing
through the center of the ring. The moment of
inertia of the arc about the z-axis is

A. $m r^{2}$
B. $\frac{m r^{2}}{3}$
C. $\frac{m r^{2}}{2}$
D. $\left(m \frac{r^{2}}{4}\right.$

Answer:

D Watch Video Solution

26. A particle of mass m rotates in a circle of
radius a with uniform angular speed ω_{0}. It is
viewed from a frame rotating about the z-axis
with a uniform angualr speed ω. The
centrifugal force on the particle is
A. $m \omega^{2} a$
B. $m \omega_{0}^{2} a$

> C. $m \frac{\omega+\omega_{0}}{2^{2}} a$
> D. $m \omega \omega_{0}$

Answer:

D Watch Video Solution

27. At any instant, a rolling body may be considered to be in pure rotation about an axis through the point of contact. This axis is translating forward with speed
A. equal to center of mass
B. zero
C. Twice of center of mass
D. No sufficient data

Answer:

D Watch Video Solution

28. In the given figure, the spheres rolls without slipping on the plank which is moving with constant velocity v_{0}. The radius and
angualr velocity of the sphere is r and ω, respectively. The velocity of center fo mass of the sphere is
A. $v_{0}+r \omega$
B. $V_{0}-r \omega$
C. $r \omega$
D. v_{0}

Answer:

29. A uniform cube of mass m and edge a moves on a horizontal surface along the positive x-axis, with initial velocity v_{0}. Then
A. During motion , Ngtmg
B. During motion, normal reactions acts on
the center of mass
C. during motion, the normal reaction
shifts towards positive x-axis from the
center of mass

D. during motion, normal reaction shifts in

 the direction of the force of friction.
Answer:

D Watch Video Solution

30. In the case of toppling of the body about the point A (shown in the figure),

$$
\text { A. } v_{c}>v_{2}>v_{1}>v_{A}
$$

$$
\begin{aligned}
& \text { B. } v_{1}>v_{2}>v_{c}>v_{A} \\
& \text { C. } v_{A}>-0 \\
& \text { D. } v_{C}<V_{1}<V_{2}<V_{A}
\end{aligned}
$$

Answer:

- Watch Video Solution

31. In q. 30. acceleration of the point A is
A. $a>-0$
B. gt0

C. ItO

D. 0

Answer:

D Watch Video Solution

32. Two cubes A and B of same shape, size and mass are placed on a rough surface in the
same manner. Equal forces are applied on the both cubes. But at the cube A, the force is applied at the top in horizontal direction. But
at the cube B just above the center of mass of the cube in the same manner. Then,
A. A will topple first
B. B will topple first
C. Both will topple at the same time
D. None of the above

Answer:

D Watch Video Solution
33. A regular polygon of n sides is placed on a rough surface vertically as such one of the side of regular polygaon touches the surface.

A force is applied horizontally at the top. The chosen value of n are 3,5 and 8 . For which value of n, the polygon first is likely to topple?
A. 3
B. 5
C. 8
D. All of these

Answer:

- Watch Video Solution

34. A particle performs uniform circular velocity along a line parallel to the x-axis, away
from the origin. Its angular momentum with respect to the origin.
A. is zero
B. remains constant
C. goes on increasing

D. goes on decreasing

Answer:

D Watch Video Solution

35. A mass m is moving with a constant velocity along a line parallel to the x-axis, away
from the origin. Its angular momentum with respect to the origin.
A. is zero
B. remains constant
C. goes on increasing
D. goes on decreasing

Answer:

D Watch Video Solution

36. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of the angular momentum of the projectile abut the point of
projection when the particle is at its maximum height h is.
A. zero
B. $\frac{m v^{3}}{4 \sqrt{2 g}}$
C. $\frac{m v^{3}}{\sqrt{2 g}}$
D. $m \sqrt{2} g h^{3}$

Answer:

- Watch Video Solution

37. A uniform rod of length $2 a$ is held with one end resulting on a smooth horizontal table makin an angle α with the vertical. When the rod is released,
A.its center of mass moves vertically downwards on a straight line
B. Its center of mass remains in rest
C. the rod rotates about a vertical axis
D. Both a and c are correct

Answer:

- Watch Video Solution

38. A 70 kg man standing on ice throws a 3 kg body horizontally at $8 \mathrm{~m} / / \mathrm{s}$. The friction coefficient between the ice and his feet is 0.02 .

The distance, the man slip is
A. 0.3 m
B. 2 m
C. 1 m

D. ∞

Answer:

D Watch Video Solution

39. A weightless rod of length I carries two equal masses m one fixed at the end and other in the middle ofhte rod. The rod can revolve in
a vertical plane about A. Then, horizontal
velocity which must be imparted to end C of
rod to deflect it to horizontal position is

A. $\left.\frac{\sqrt{12}}{5} \mathrm{~g} \right\rvert\,$
B. $\sqrt{3 g l}$
C. $\sqrt{\frac{16}{5}} \mathrm{gl}$
D. $\sqrt{2 g l}$

Answer:

D Watch Video Solution

40. Two balls A and B of angular velocities ω_{A} and ω_{B} collide with each other. Then, after collision
A. both have same angular velocities
B. $\omega_{A}>\Omega_{B}$
C. $\omega_{A}=\omega_{B}$ when balls are smooth
D. $\omega_{A}>\omega_{B}$ when balls are smooth

Answer:

- Watch Video Solution

41. A uniform rod $O A$ of mass M and length $2 a$
rests on a smooth table and is free to turn about a smooth pivot at its end O , in contact with it at a distance b from O is an inelastic particle of mass m, a horizontal blow of impulse p is given to rod at a distance x from
O in a direction perpendicular to the rod. The
resultant intantaneous angular velocity of the

rod is

A. $\frac{p x}{\frac{4 M a^{2}}{3}+m b^{2}}$
B. $\frac{p x}{M}$
C. $\frac{p x}{m a^{2}+m b^{2}}$
D. none of these

Answer:

D Watch Video Solution

42. A uniform rod $A B$ of mass m and length I is
at rest on a smooth horizontal surface. An impulse p is applied to the end B. The time taken by the rod to turn through a right angle is

$$
\begin{aligned}
& \text { A. }\left(2 \pi \frac{m l}{p}\right. \\
& \text { B. }(2 \pi)\left(\frac{p}{m l}\right. \\
& \text { C. } \frac{\pi m l}{12 p} \\
& \text { D. } \frac{\pi p}{m l}
\end{aligned}
$$

43. A sphere of radius R is rolling on a rough
horizontal surface. The magnitude of velocity of A with respect to ground will be

A. $\sqrt{2} v_{C M}$
B. $2 V_{C M} \sin \theta$
C. $\sqrt{2} v_{C M} \sqrt{1+\sin \theta}$
D. No sufficient information

Answer:

D Watch Video Solution

44. When a wheel moves a distance shorter
than $2 \pi R$ while making one rotation. Then,

$$
\text { A. } v_{C M}<R \omega
$$

B. $v_{C M} \leftarrow R \omega$
C. $v_{C M}>R \omega$
D. $v_{C M}>-R \omega$

Answer:

D Watch Video Solution

45. If a body moves through a distance greater
than $2 \pi R$ in one full rotation. Then,

$$
\text { A. } v_{C M}<R \omega
$$

B. $v_{C M} \leftarrow R \omega$
C. $v_{C M}>R \omega$

$$
\text { D. } v_{C M}>-R \omega
$$

Answer:

- Watch Video Solution

46. A uniform sphere of radius a rotating with an angular velocity ω about an axis perpendicualr to the plane of motion and its cener impinges on a horizontal plane, let u
and v are horizontal and vertical component of velocity before impact. Then
A. if $u=a \omega$, then u and ω are unaltered
B. if $u=a \omega$, then surface is frictionless
C. If ugt $a \omega$, then angular velocity increases
D. all of the above

Answer:

D Watch Video Solution

47. In the given figure, a solid sphres is placed on a plank having acceleration a_{0} (shown in the figure). Then,
`(BIT_PHY_CO8_EO1_047_S01.png" width="80\%">
A. if $a_{p}=a_{0}$, then pure rolling takes place
B. if $v_{p}=v_{0}$, then pure rolling takes place
C. if $a_{p}=a_{0}, v_{p} \neq v_{0}$, then pure rolling
takes place
D. if $a_{p}=a_{0}, v_{p}=v_{0}$ then pure rolling takes place

Answer:

- Watch Video Solution

48. The cylinder of mass M is suspended
through two strings as shown in figure. The speed of cylinder after descending through a

depth h, is

A. $\sqrt{\frac{3 g h}{2}}$
B. $\sqrt{\frac{4 g h}{3}}$
C. $\sqrt{\frac{2 g h}{3}}$
D. $\sqrt{\frac{8 g h}{3}}$

Answer:

D Watch Video Solution

Bitsat Archives

1. Two rings of radius R and $n R$ made of same
material have the ratio of moment of inertia
about an axis passing through center is $1: 8$.
The value of n is
A. 2
B. $2 \sqrt{2}$
C. 4
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

2. A mass m is moving with a constant velocity
along a line parallel to the x-axis, away from
the origin. Its angular momentum with respect to the origin.
A. zero
B. remains constant
C. goes on increasing
D. goes on decreasing

Answer:

D Watch Video Solution

3. The moment of inertia of the body about an axis is $1.2 \mathrm{~kg} \mathrm{~m}{ }^{2}$. Initially the body is at rest. In order to produce a rotational kinetic energy of

1500J, an angualr acceleration of $25 \mathrm{ra} \frac{d}{s^{2}}$ must be applied about the axis for the duration of
A. 2 s
B. 4s
C. 8 s
D. 10 s

Answer:

D Watch Video Solution
4. When the mass is rotated in a plane about an fixed point, then angualr momentum is directed along the
A. radius
B. tangent to orbit
C. axis of rotation
D. line at an angle of 45° to plane of
rotation

Answer:

5. A solid cylinder of mass 2 kg rolls down (pure rolling) an inclined plane from a height of 4 m .

Its rotational kinetic energy, when its reaches
the foot of the plane is (Take $\mathrm{g}=10 \mathrm{~m} s^{-2}$)
A. 20 J
B. 40 J
C. $\frac{80}{3} \mathrm{~J}$
D. 80 J

Answer:

- Watch Video Solution

6. The radius of a wheel is R and its radius of gyration about its axis passing through its center and perpendicualr to its plane is K. If the wheel is roling without slipping. Then the ratio of tis rotational kinetic energy to its translational kinetic energy is

$$
\begin{aligned}
& \text { A. } \frac{K^{2}}{R^{2}} \\
& \text { B. }\left(\frac{R^{2}}{K^{2}}\right) \\
& \text { C. }\left(\frac{R^{2}}{R^{2}+K^{2}}\right.
\end{aligned}
$$

D. $\left(\frac{K^{2}}{R^{2}+K^{2}}\right.$

Answer:

D Watch Video Solution

7. The moment of inertia of an thin circular disc about an axis passing through its center and perpendicualr to its plane, is I. Then, the moment of intertia of the disc about an axis parallel to its diameter and touching the edge of the rim is
A. I
B. 21
C. 3/2|
D. $\frac{5}{2}$ I

Answer:

D Watch Video Solution

8. The moment of inertia of a circular disc about an axis passing through the
circumstances perpendicular to the plane of the disc is

> A. $\left(M R^{2}\right.$
> B. $\frac{3}{2} M R^{\wedge}(2)$
> C. $\frac{M R^{2}}{2}$
> D. $\frac{5}{4} M R^{2}$

Answer:

D Watch Video Solution

9. Angular momentum is conserved

A. Always
B. never
C. when external force is absent

D. when external torque is absent

Answer:

