©゙ doubtnut

PHYSICS

BOOKS - BITSAT GUIDE PHYSICS

(HINGLISH)

SCALARS AND VECTORS

Others

1. In insect moves on a circular path of radius $7 m$.

Find the maximum magnitude of displacement of the insect
A. $7 m$
B. $14 \pi m$
C. $7 \pi m$
D. $14 m$

Answer:

- Watch Video Solution

2. Two forces of magnitudes $3 N$ and $4 N$ are acted
on a body. The ratio of magnitude of minimum and maximum resultant force on the body is
A. $3 / 4$
B. $4 / 3$
C. $1 / 7$
D. none of these

Answer:

Watch Video Solution
3. A vector a makes 30° and b makes 120° angle with the x-axis. The magnitude of these vectors
are 3 unit and 4 unit, respectively. The magnitude of resultant vector is
A. 3 unit
B. 4 unit
C. 5 unit
D. 1 unit

Answer:

- Watch Video Solution

4. If two forces of equal magnitude 4 units acting at a point and the angle between them is 120°, then find the magnitude of direction of the sum of the two vectors
A. $4, \theta=\tan ^{-10(1.73)}$
B. $4, \theta=\tan ^{-1}(0.73)$
C. $2, \theta=\tan ^{-1}(1.73)$
D. $6, \theta^{-1}(0.73)$

Answer:

5. If $\frac{|a+b|}{|a-b|}=1$, then the angle between a and b is
A. 0°
B. 45°
C. 90°
D. 60°

Answer:

- Watch Video Solution

6. The angle between A the resultant of $(A+B)$ and $(A-B)$ will be
A. 0°
B. $\tan ^{-1}\left(\frac{A}{B}\right)$
C. $\tan ^{-1}\left(\frac{B}{A}\right)$
D. $\tan ^{-1}\left(\frac{A-B}{A+B}\right)$

Answer:

- Watch Video Solution

7. Three forces are acted on a body. Their magnitudes are $3 N, 4 N$ and $5 N$. Then,
A. the acceleration of body must be zero
B. the acceleration of body may be zero
C. the acceleration of the body must not be zero
D. none of the above

Answer:

8. In the given figure O is the centre of regular pentagon $A B C D E$. Five forces each of magnitude F_{0} are acted as shown in figure. The resultant force is

A. $5 F_{0}$
B. $5 F_{0} \cos 72^{\circ}$
C. $5 F_{0} \sin 72^{\circ}$
D. zero

Answer:

- Watch Video Solution

9. $A B C D$ is a parallelogram, and a, b, c and d are the position vector of vertices A, B, C and D of a parallelogram choose the correct option.

$$
\text { A. } c+b=d-a
$$

B. $c-b=d-a$
C. $c-c=d-a$
D. None of these

Answer:

- Watch Video Solution

10. A man walks 4 km due West, 500 m due south
finally $7580 m$ in South-West direction. Find the
distance and magnitude of displacement travelled by the man.
A. 4646.016 m and 5250 m
B. 5250 m and $4646.016 m$
C. $4550.016 m$ and $2300 m$
D. None of these

Answer:

- Watch Video Solution

11. A particle is being acted upon by four forces of

30 N due east, 20 N due north, 50 N due west and $40 N$ due south. The resultant force will be
A. $20 \sqrt{2} N, 60^{\circ}$ South to West
B. $20 \sqrt{2} N, 45^{\circ}$, South of West
C. $20 \sqrt{2} N, 45^{\circ}$, South of East
D. $20 \sqrt{2}, 45^{\circ}$, South of East

Answer:

D Watch Video Solution

12. A block of 150 kg is placed on an inclined plane withh an angle of 60°. Calculate of the weight
parallel to the inclined plane.

A. 1300 N
B. 1400 N
C. 1100 N
D. 750 N

Watch Video Solution

13. A cat is situated at a point $A(0,3,4)$ and rat is
situated at point $B(5,0,-8)$. The car is free to move but the rat is always at rest. Find the minimum distance travelled by cat to catch the rat.
A. 5 unit
B. 12 unit
C. 13 unit
D. 17 unit

Answer:

D Watch Video Solution

14. An insect fly start from one corner of a cubical room and reaches at diagonally opposite corner.

The magnitude or displacement of the insect is $40 \sqrt{3} \mathrm{ft}$. Find the volume of cube.
A. $64 \sqrt{3} f t^{3}$
B. $1600 \mathrm{ft}^{3}$
C. $64000 \mathrm{ft}^{3}$
D. None of these

Answer:

- View Text Solution

15. If a particle is moving on an parallel path given by $r=b \cos \omega t \hat{i}+a \sin \omega t \hat{j}$, then find its radial acceleration along r
A. ωr
B. $\omega^{2} r$
C. $-\omega^{2} r$
D. none of these

Answer:

- View Text Solution

16. Obtain the magnitude and direction cosines of vector $(A-B)$,
$A=2 \hat{i}+3 \hat{j}+\hat{k}, B=2 \hat{i}+2 \hat{j}+3 \hat{k}$
A. $0, \frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}$
B. $0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}$
C. $0,0, \frac{1}{\sqrt{5}}$
D. none of these

Answer:

- Watch Video Solution

17. The vertices of a quadrilateral are
$A(1,2,-1), B(-4,2,-2), C(4,1,-5)$ and
$D(2,-1,3)$. Forces of magnitude $2,3,2 N$ are acting at point A along the lines $A B, A C, A D$
respectively.Find their resultant.

$$
\begin{aligned}
& \text { A. } \frac{10 \hat{i}-9 \hat{j}+6 \hat{k}}{\sqrt{26}} \\
& \text { B. }\left(\frac{\hat{i}-9 \hat{j}-6 \hat{k}}{\sqrt{26}}\right) \\
& \text { C. } \frac{\hat{i}-9 \hat{j}+16 \hat{k}}{\sqrt{26}} \\
& \text { D. } \frac{\hat{i}-19 \hat{j}+6 \widehat{K}}{\sqrt{26}}
\end{aligned}
$$

Answer:

- Watch Video Solution

18. A force $F=a \hat{i}+b \hat{j}+c \hat{k}$ is acted upon a body of mass m. If the body starts from rest and
was at athe origin initially, find its new coordinate after time t.
A. $\frac{a t^{2}}{2 m}, \frac{b t^{2}}{2 m}, \frac{c t^{2}}{2 m}$
B. $\frac{a t^{2}}{2 m}, \frac{2 b t^{2}}{m}, \frac{c t^{2}}{2 m}$
C. $\frac{a t^{2}}{m}, \frac{b t^{2}}{m}, \frac{c t^{2}}{2 m}$
D. none of these

Answer:

19. The angle between vector $a=2 \hat{i}+\hat{j}-2 \hat{k}$ and $b=3 \hat{i}-4 \hat{j}$ is equal to

> A. $\cos ^{-1}\left(\frac{3}{15}\right)$
> B. $\cos ^{-1}\left(\frac{1}{15}\right)$
C. zero
D. $\cos ^{-1} \frac{2}{15}$

Answer:

- Watch Video Solution

20. If $c=a \times b$, then
A. the direction of c changes, when the angle
between $a \times b$ increases up to $\theta\left(\theta<180^{\circ}\right)$
B. the diection of c changes when the angle
between a and b decreases up to $\theta\left(\theta>0^{\circ}\right)$
C. the direction of c does not changes, when
the angle between a and b increases
D. none of the above

Answer:

- View Text Solution

21. The unit vector perpendicular to vectors

$$
a=3 \hat{i}+\hat{j} \text { and }=2 \hat{i}-\hat{j}-5 \hat{k} \text { is }
$$

A. $\pm \frac{(\hat{i}-3 \hat{j}+\hat{k})}{\sqrt{11}}$
B. $\pm \frac{3 \hat{i}+\hat{j}}{\sqrt{11}}$
C. $\pm \frac{(2 \hat{i}-\hat{j}-5 \hat{k})}{\sqrt{30}}$
D. none of these

Answer:

22. If three vectors along coordinate axes represent the adjacent sides of a cubie of length b , then the unit vector along its diagonal passing through the origin will be

$$
\begin{aligned}
& \text { A. } \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}} \\
& \text { B. } \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3} b} \\
& \text { C. } \hat{i}+\hat{j}+\hat{k} \\
& \text { D. } \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}
\end{aligned}
$$

Answer:

23. Choose the correct option $A \times B=C$
(i) C is perpendicular to A
(ii) C is perpendicular to B
(iii) C is perpendicular to $(A+B)$
(iv) C is perpendicular to $(A \times B)$
A. Only (i) and (ii) are correct
B. Only (ii) and (iv) are correct
C. (i),(ii) and (iii) are correct
D. All of the above

D View Text Solution

24. Find the vector area of a triangle whose vertices are a, b, and c
A. $\frac{1}{2}(b \times c+c \times a+a \times b)$
B. $\frac{1}{3}(b \times c+c \times a+a \times b)$
C. $\frac{1}{3}(b \times c+a \times c+b \times a)$
D. None of these

Answer:

25. If three vectors $x a-2 b+3 c,-2 a+y b-4 c$
and $-z b+3 c$ are coplanar, where a, b and c are unit (or any) vectors then
A. $x y+3 z x-3 z=4$
B. $2 x y-3 z x-3 z-4=0$
C. $4 x y-3 z x-3 z=4$
D. $x y-2 z x-3 z-4=0$

Answer:

- Watch Video Solution

26. A force $F=(2 \hat{i}+3 \hat{j}-\hat{k}) N$ is acting on a body at a position $r=(6 \hat{i}-3 \hat{j}-2 \hat{k})$. Calculate the torque about the origin
A. $(3 \hat{i}+2 \hat{j}+12 \hat{k}) N m$
B. $(9 \hat{i}+2 \hat{j}+7 \hat{k}) N m$
C. $(\hat{i}+2 \hat{j}+12 \hat{k}) N m$
D. $(3 \hat{i}+12 \hat{j}+\hat{k}) N m$

Answer:

27. Find the values of x and y for which vectors
$A=(6 \hat{i}+x \hat{j}-2 \hat{k})$ and $B(5 \hat{i}-6 \hat{j}-y \hat{k})$ are
be parallel

$$
\begin{aligned}
& \text { A. } x \equiv 0, y=\frac{2}{3} \\
& \text { B. } x=-\frac{36}{5}, y=\frac{5}{3} \\
& \text { C. } x=-\frac{15}{3}, y=\frac{23}{5} \\
& \text { D. } x=\frac{36}{5}, y=\frac{15}{4}
\end{aligned}
$$

Answer:

28. Find the area oif the parallelogram determined

$$
A=2 \hat{i}+\hat{j}-3 \hat{k} \text { and } B=12 \hat{j}-2 \hat{k}
$$

A. 42
B. 56
C. 38
D. 74

Answer:

- Watch Video Solution

29. Choose the correct option
A.

$$
a \times(b \times c)+b \times(c \times a)+c \times(a \times b)=0
$$

B.

$$
a \times(c \times b)+b \times(c \times a)+c \times(a \times b)=0
$$

C.

$$
a \times(c \times b)+b \times(c \times a)-c \times(a \times)=0
$$

D. none of the above

Answer:
30. The three conterminous edges of
parallelopiped are

$$
a=2 \hat{i}-6 \hat{j}+3 \hat{k}, b=5 \hat{j}, c=-2 \hat{i}+\hat{k}
$$

Calculate the volumeof parallelopiped
A. 36 cubic units
B. 45 cubic units
C. 40 cubic units
D. 54 cubic units

Answer:

31. If the three vectors are coplanar, then find x.

$$
A=\hat{i}-2 \hat{j}+3 \hat{k}, B=x \hat{j}+3 \hat{k}, C=7 \hat{i}+3 \hat{j}-11 \hat{k}
$$

A. $36 / 21$
B. $-51 / 32$
C. $51 / 32$
D. $-36 / 21$

Answer:

32. A particle is moving along a circular path with a constant speed $30 \mathrm{~m} / \mathrm{s}$. What is change in velociyt of a particle, when it describe and angle of 90° at the centre of the circle
A. zero
B. $30 \sqrt{2} m / s$
C. $60 \sqrt{2} \mathrm{~m} / \mathrm{s}$
D. $30 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer:

33. One day in still air, a motor-cyclist riding norht
at $30 \mathrm{~m} / \mathrm{s}$, suddenly the wind starts blowing
Westward with a velocity $50 \mathrm{~m} / \mathrm{s}$, then calculate the apparent velocity with which the motor-cylist will move
A. $58.3 m / s$
B. $65.4 \mathrm{~m} / \mathrm{s}$
C. $73.2 \mathrm{~m} / \mathrm{s}$
D. $53.8 \mathrm{~m} / \mathrm{s}$

Answer:
34. Calculate the distance travelled by the car, if a car travels 4 km towards north at an angle of 45° to the east and then travels a distance of 2 km towards north at an angle of 135° to the est.
A. 6 km
B. 8 km
C. 5 km
D. $2 k m$
35. One one rainy day a car starts moving with a constant acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$. If a toy monkey is suspended from the ceilling of the car by a string, then find the angle with the vertical with the string be now inclined.
A. $\tan ^{-1} 0.25$
B. $\tan ^{-1}(0.63)$
C. $\tan ^{-1}(0.12)$
D. $\tan ^{-1}(\sqrt{3})$

(D) Watch Video Solution

36. If A and B denote the sides of a parallelogram and its area is $\frac{1}{2} A B$ (A and B are magnitude of A and B respectively), the angle between A and B is
A. 30°
B. 45°
C. 60°
D. 90°

Answer:

- Watch Video Solution

37. A vector \vec{F}_{1} is along the positive X-axis. If its vectors product with another vector \vec{F}_{2} is zero then \vec{F}_{2} could be
A. $4 \hat{j}$
B. $(\hat{k}+\hat{j})$
C. $(\hat{j}+\hat{k})$
D. $-4 \hat{i}$

Answer:
38. The component of vector
$A=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$ and the directioin of $\hat{i}-\hat{j}$ is
A. $a_{x}-a_{y}+a_{z}$
B. $a_{x}-a_{y}$
C. $\left(a_{x}-a_{y}\right) / \sqrt{2}$
D. $\left(a_{x}+a_{y}+a_{z}\right)$

Answer:

- Watch Video Solution

39. If A. $B=A \times B$, then angle between A and B is
A. 45°
B. 30°
C. 60°
D. 90°

Answer:

D Watch Video Solution

40. If $a=\hat{i}+2 \hat{j}-3 \hat{k}$ and $b=3 \hat{i}+2 \hat{k}$ then the angle between the vectors $a+b$ and $a-b$ is
A. 60°
B. 90°
C. 45°
D. 55°
