đず doubtnut

PHYSICS

BOOKS - BITSAT GUIDE PHYSICS

(HINGLISH)

TRANSMISSION

Others

1. One end of a metal rod is kept in a furnace. In steady state, the temperature of the rod
A. may be variable
B. must be constant
C. must be variable
D. none of the above

Answer:

(D) Watch Video Solution

2. Calculate the daily loss of energy by the earth,
if the temperature gradient in the earth's crust is
$32^{\circ} \mathrm{C}$ per km and mean conductivity of the rock
is 0.008 of CGS unit. (Given radius of earth
$=6400 \mathrm{~km})$
A. $10^{40} \mathrm{cal}$
B. $10^{30} \mathrm{cal}$
C. $10^{18} \mathrm{cal}$
D. $10^{10} \mathrm{cal}$

Answer:
(D) Watch Video Solution
3. Cylinder rod of copper of length $2 m$ and crosssectional area $2 \mathrm{~cm}^{2}$ is insulated at its curved surface. The one end of rod is maintained in steam chamgber and other is maintained in ice at $0^{\circ} C$ (The thermal coductivity of copper is $\left.386 J / m-s .{ }^{\circ} C\right)$. Find the temperature at a point which is at a distance of 120 cm from the colder end.
A. $80^{\circ} C$
B. $60^{\circ} \mathrm{C}$
C. $50^{\circ} \mathrm{C}$

D. none of the above

Answer:

D Watch Video Solution

4. Cylinder copper rod of length $1 m$ and a cylinder steel rod of length $1.5 m$ are joined together end to end. The cross sectional area of eac rod is 3.14 cm . The free ends of steel rod and copper rods are maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. The surfaces of rods are thermally insulated. Find the temperature of copper steel
junction. (Given thermal conductivity of steel
$=46 \mathrm{~J} / \mathrm{m}-\mathrm{s} .{ }^{\circ} \mathrm{C}$ and the thermal
conductivity of copper $=386 \mathrm{~J} / m-s .{ }^{\circ} C$)
A. 40°
B. 60°
C. 93°
D. $80.64^{\circ} \mathrm{C}$

Answer:

- Watch Video Solution

5. A block of ice at $0^{\circ} C$ rest on the upper surface of the slab of stone of area $3600 \mathrm{~cm}^{2}$ and thickness of 10 cm . The slab is exposed on the lower surface to steam at $100^{\circ} \mathrm{C}$. If 4800 g of ice is melted in one hour, then calculate the thermal conductivity of stone.
(Given the latent heat of fusion of ice $=80 \mathrm{cal} / \mathrm{g}$

$$
\text { A. } K=2.96 \times 10^{-3} \mathrm{cal} / \mathrm{cms} .^{\circ} \mathrm{C}
$$

B. $K=1.96 \times 10^{3} \mathrm{cal} / \mathrm{cms} .{ }^{\circ} \mathrm{C}$
C. $K=0.96 \times 10^{3} \mathrm{cal} / \mathrm{cms} .{ }^{\circ} \mathrm{C}$

D. none of the above

Answer:

D Watch Video Solution

6. The ice is filled in a hollow glass sphere of thickness 2 mm and external radius 10 cm . This hollow glass sphere with ice now placed in a bath containing boiling water at $100^{\circ} \mathrm{C}$. Calculate the rate at which ice melts. Neglect volume change in ice.
(Given, thermal conductivity of glas $1.1 W / m / K$,
latent heat of ice $=336 \times 10^{3} \mathrm{~J} / \mathrm{kg}$)

$$
\begin{aligned}
& \text { A. } \frac{m}{t}=0.01 \mathrm{~kg} / \mathrm{s} \\
& \text { B. } \frac{m}{t}=0.002 \mathrm{~kg} / \mathrm{s} \\
& \text { C. } \frac{m}{t}=0.02 \mathrm{~kg} / \mathrm{s} \\
& \text { D. } \frac{m}{t}=0.001 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Answer:

D Watch Video Solution

7. 5 cm thick walls of a box like cooler is made of plastic toam. Its total surface area is $1.5 \mathrm{~m}^{2}$. If outside temperature is $30^{\circ} \mathrm{C}$, then how much ice melts each hour inside the cooler to old its temperature at $0^{\circ} C$.
(Given
K
for
plastic
$=0.04 \mathrm{~W} / \mathrm{mK}, L_{0}=80 \mathrm{cal} / \mathrm{g}$
and
$1 k c a l=4.184 k J / k c a l)$
A. 4 kg
B. 0.39 kg
C. 3.9 kg

D. 0.2 kg

Answer:

D Watch Video Solution

8. If in two identical containers, equal quantities
of ice melts completely in 30 and 20 minutes respectively, then find the ratio of the thermal conductivities of the material of two containers.
A. 1:1
B. $1: 2$
C. $3: 2$
D. 2: 3

Answer:

(D) Watch Video Solution

9. A compound rod is formed of a steel core of diameter 1 cm and outer casing is of copper, whose outer diameter is 2 cm . The length of this
compound rod is $2 m$ and one end is maintained
as $100^{\circ} \mathrm{C}$ and the end is at $0^{\circ} \mathrm{C}$. If the outer surface of the rod is thermally insulated, then
heat current in the rod will be (Given thermal conductivity of steel $j=12 \mathrm{cal} / \mathrm{m} / k / s$, thermal conductivity of copper $=92 \mathrm{cal} / \mathrm{m} / \mathrm{k} / \mathrm{s}$
A. $2 c a l / s$
B. $1.13 \mathrm{cal} / \mathrm{s}$
C. $1.42 \mathrm{cal} / \mathrm{s}$
D. $2.68 \mathrm{cal} / \mathrm{s}$

Answer:
(D) Watch Video Solution
10. An aluminium rod of length L and crosssectional area $2 A$ is joined with a copper rod of length $2 L$ and area of cross-section is A as shown in figure. Find the temperature of aluminium-copper junction in the steady state of the system.

Given
thermal
conductivity

$$
K_{A l}=240 \mathrm{~J} / \mathrm{m} / \mathrm{s} / .^{\circ} \mathrm{C}, K_{C u}=400 \mathrm{~J} / \mathrm{m} / \mathrm{s} / .^{\circ} \mathrm{C}
$$

A. $300^{\circ} \mathrm{C}$
B. $400^{\circ} \mathrm{C}$
C. $288.24^{\circ} C$
D. $275.4^{\circ} \mathrm{C}$

Answer:

(D) Watch Video Solution

11. A uniform metal ring with centre C have two points A and B such that angle $A C B$ is $\theta . A$ and B are maintained at two different constant
temperature.
If the angle between A and B i.e. $\theta=180^{\circ}$ the rate of heat flow from A and B is $1.2 W$, then what will be the rate, when $\theta=90^{\circ}$?
A. $0.6 W$
B. 0.9 W
C. 1.6 W
D. 1.8 W

Answer:

12. What amount of ice at $-14^{\circ} \mathrm{C}$ required to cool 200 gg of water from $25^{\circ} \mathrm{C}$ to 10 CC ?
(Given $C_{\text {ice }}=0.5 c a \frac{l}{g} .{ }^{\circ} C, L_{f}$ for ice $=80 c a l / g$)
A. $31 g$
B. $41 g$
C. $51 g$
D. $21 g$

Answer:
13. A metallic sphere having inner and outer radii a and b respectively has thermal conductivity

$$
K=\frac{K_{0}}{r}(a \leq r \leq b)
$$

Find the thermal resistance between inner surface and outer surface.

$$
\begin{aligned}
& \text { A. } \frac{(b-a)}{4 \pi K_{0}} \\
& \text { B. } \frac{\left(b^{2}-a^{2}\right)}{4 \pi K_{a} a b} \\
& \text { C. } \frac{4 \pi K_{0}}{(b-a)}
\end{aligned}
$$

D. none of these
14. A body cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 minutes. If the room temperature is $25^{\circ} \mathrm{C}$ and assuming Newton's law of cooling to hold good, the temperature of the body at the end of the next 10 minutes will be
A. $42.85^{\circ} \mathrm{C}$
B. $45^{\circ} \mathrm{C}$
C. $40.46^{\circ} \mathrm{C}$
D. $44.23^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution

15. Find the time in which a layer of ice thickness
h will grow on the surface of the pond of surface area A, when the surrounding temperature falls to $-T^{\circ} C$.
(Assume $K=$ thermal conductivity of ice, $\rho-$ densityy of water $L=$ latent heat of fusion)

$$
\begin{aligned}
& \text { A. } t=\frac{\rho L}{2 K T} h^{2} \\
& \text { B. } t-\frac{\rho L}{K T} h^{2}
\end{aligned}
$$

C. $t=\frac{\rho L h^{2}}{3 K T}$
D. $t=\frac{\rho L h^{2}}{4 K T}$

Answer:

(D) Watch Video Solution

16. A black body maintained at a certain temperature radiates heat energy at the rate Q watt. If its surface is smoothened so as to lower its emissivitiy by 10%, what will be the increase in its rate of radiation at double the initial temperature?
A. $\left(0.9 \times 102^{4}-1\right) Q$ watt
B. $0.9 \times 2^{4} Q$ watt
C. $(0.9 \times 2)^{4} Q$ watt
D. $(0.9)^{4} \times 2 Q$ watt

Answer:

(D) Watch Video Solution

17. The thermal radiation emitted by a body per second per unit area is $\frac{\Delta H}{A \Delta t}=k T^{4}$. If σ is Stefan's constant, then body
A. may be polished
B. may be black body
C. must be black body
D. must not be black body

Answer:

(D) Watch Video Solution

18. If temperature of black body increases from
$300 K$ to $900 K$, then the rate of energy radiation increases by
A. 81
B. 3
C. 9
D. 2

Answer:

D Watch Video Solution

19. Three objects coloured black, gray and white can withstand hostile conditions upto $2800^{\circ} C$.

These objects are thrown into a furance where
each of them attains a temperature of $2000^{\circ} \mathrm{C}$.
Which object will glow brightest?
A. The white object
B. The black object
C. All glow with equal brightness
D. Grey object

Answer:
(D) Watch Video Solution
20. The power P is received by a surface at temperature $T_{0} K$ from a small sphere at temperature
A. $T\left(T \gg T_{0}\right)$ and at a distance ' d '. If both ' T ' and ' d ' are doubled, then power received by surface will become
B. P
C. $2 P$
D. $4 P$
21. A cylindrical rod having temperature T_{1} and T_{2} at its ends. The rate of flow of heat is
$Q_{1} \mathrm{cal} / \mathrm{sec}$. If all the linear dimensions are doubled keeping temperature constant, then rate of flow of heat Q_{2} will be
A. $4 Q_{1}$
B. $2 Q_{1}$
C. $\frac{Q_{1}}{4}$
D. $\frac{Q_{1}}{2}$

Answer:

D Watch Video Solution

22. Assuming the Sun to be a spherical body of radius R at a temperature of $T K$, evaluate the total radiant powered incident of Earth at a distance r from the sun
where r_{0} is the radius of the Earth and σ is
Stefan's constant.
A. $4 \pi r_{0}^{2} R^{2} \sigma T^{4} / r^{2}$
B. $\pi r_{0}^{2} R(2) \sigma T^{4} / r^{2}$
C. $r_{0}^{2} R^{2} \sigma T^{4} / 4 \pi r^{2}$
D. $R^{2} \sigma T^{4} / r^{2}$

Answer:

D Watch Video Solution

23. What will be the increment in heat energy radiated when the temperature of hot body is raised by 5\%?
A. 0.05
B. 0.06
C. 0.1165
D. 0.2155

Answer:

(D) Watch Video Solution

24. Two spheres of the same material having radii
r and $4 r$ and temperature $2 T_{0}$ and T_{0}
respectively. The ratio of rate of radiation of energy by the sphere is
A. 1:1
B. $1: 2$
C. 2:1
D. 3:1

Answer:

D Watch Video Solution

25. A sphere a cube and a thin circular plate all of
same material having same mass are initially
heated to $200^{\circ} \mathrm{C}$. Which of these will cool
fastest?

A. Circular plate

B. Sphere

C. Cube
D. All of these

Answer:

D Watch Video Solution

26. A body at a temperature of $727^{\circ} \mathrm{C}$ and having surface area $5 \mathrm{~cm}^{2}$, radiations $300 J$ of energy
each minute. The emissivity is(Given Boltzmann constant $=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
A. $e=0.18$
B. $e=0.05$
C. $e=0.2$
D. $e=0.15$

Answer:
(D) Watch Video Solution
27. Choose the correct relation, when the temperature of an isolated black body falls from
T_{1} to T_{2} in time ' t ' and assume ' c ' to be a
constant.

$$
\begin{aligned}
& \text { A. } t=c\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \text { B. } t=c\left(\frac{1}{T_{2}^{2}}-\frac{1}{T_{1}^{2}}\right) \\
& \text { C. } T=C\left(\frac{1}{T_{2}^{3}-\frac{1}{T_{1}^{3}}}\right) \\
& \text { D. } t=c\left(\frac{1}{T_{2}^{4}}-\frac{1}{T_{1}^{4}}\right)
\end{aligned}
$$

Answer:
28. The temperature and the surface area of the body are $227^{\circ} \mathrm{C}$ and 0.15 m respectively. If its transmitting power is negligible and reflecting power is 0.5 , then calculate the thermal power of the body.
(Given $\sigma-5.67 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{2} / \mathrm{s} / \mathrm{K}$)
A. 300 W
B. 265.78 W
C. $201 W$
D. $320.89 W$

Answer:

D Watch Video Solution

29. The surface temperature of the sun is ' T ' K
and the solar constant for a plte is ' s '. The sun
subtends an angle θ at the planet. Then,
A. $s \propto T^{4}$
B. $s \propto T^{2}$
C. $s \propto \theta^{2}$
D. $s \propto \theta$

Answer:

D Watch Video Solution

30. When a blackened platium wire is heated gradually, it apears
A. first blue, then red and finally white
B. first red, then blue and finally white
C. first white, then blue and finally red
D. first red, then white and finally blue

Answer:

D Watch Video Solution

31. Surface temperature of the sun as estimate is
$6032.25 K$. Find the wavelength at which sun radiates maximum energy (Given, Wien's constant

$$
=0.2898 c m-k)
$$

A. $\lambda_{m}=5000 \AA$
B. $\lambda_{m}=4804.2 \AA$
C. $\lambda_{m}=3809.5 \AA$

D. $\lambda_{m}=2891.6 \AA$

Answer:

- Watch Video Solution

32. The plots of intensity of radiation versus wavelength of 3 black bodies of temperatures
T_{1}, T_{2} and T_{3} as shown in the figure, then

A. $T_{1}>T_{2}>T_{3}$
B. $T_{3}>T_{2}>T_{1}$
C. $T_{1}>T_{3}>T_{2}$
D. $T_{1}<T_{3}<T_{2}$

Answer:

(D) Watch Video Solution

33. A partition wall has two layers of different materials A and B in contact with each other.

They have the same thickness but the thermal
conductivity of layer A is twice that of layer B. At steady state the temperature difference across
the layer B is 50 K , then the corresponding difference across the layer A is
A. 50 K
B. $12.5 K$
C. $25 K$
D. 60 K

Answer:

34. The rate at which a black body emits radiation
at a temperature T is proportional to
A. $\frac{1}{T}$
B. T
C. T^{3}
D. T^{4}

Answer:

35. A hot and a cold body are kept in vacuum separated from each other. Which of the following cause decrease in temperature of the hot body

A. Radiation

B. Convection
C. conduction
D. Temeprature remains unchanged

Answer:

36. In a 10 m deep lake, the bottom is at a constant temperature of $4^{\circ} C$. The air temperature is constant at $-4^{\circ} C . K_{i c e}=3 K_{\omega}$. Neglecting the expansion of water on freezing, the maximum thickness of ice will be
A. $7.5 m$
B. $6 m$
C. $6 m$
D. $2.5 m$
37. Two slabs A and B of equal surface area are placed one over the other such that their surfaces are completely in contact. The thickness of slab A is twice that of B. The coefficient of thermal conductivity of slab B is maintained at $25^{\circ} \mathrm{C}$. The temperature at the contact of their surface is
A. $62.5^{\circ} \mathrm{C}$
B. $45^{\circ} \mathrm{C}$
C. $55^{\circ} \mathrm{C}$
D. $85^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution

38. The wavelength of radiation emitted by a body depends upon
A. the nature of the surface
B. the area of the surface
C. the temperature of the surface

D. all of the factors

Answer:

- Watch Video Solution

