©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE PHYSICS

(HINGLISH)

UNITS, MEASUREMENTS \&

DIMENSION

Others

1. Which one is not a unit of time?
A. Leap year
B. Year
C. Shake
D. Light yeat

Answer:

D Watch Video Solution
2. The height of the building is 50 ft . The same in millimetre is
A. 560 mm
B. 285 mm
C. 1786.8 mm
D. 15240 mm

Answer:

D View Text Solution

3. Which of the following is the most recise

 device for measuring length?A. A vernier calliper with 20 divisioins of
the sliding scale
B. An optical insturment that can measure
length within wavelength of light
C. A screw gauge of pitch $1 m m$ and 100
division on the circular scale
D. None of the above

Answer:

4. The radius of hydrogen atom is ground
state is $5 \times 10^{-11} \mathrm{~m}$. Find the radius of
hydrogen atom
is
fermimetre.(
$\left.1 f m=10^{-15} m\right)$
A. $5 \times 10^{4} \mathrm{fm}$
B. $2 \times 10^{4} m$
C. $5 \times 10^{2} \mathrm{fm}$
D. $5 \times 10^{6} \mathrm{fm}$

Answer:

5. One nautical mile is 6080 ft . The same is kilimetre is
A. 0.9 km
B. 0.8 km
C. 1.85 km
D. None of these

Answer:

- Watch Video Solution

6. The area of a room is $10 \mathrm{~m}^{2}$. The same in $f t^{2}$
is
A. $107.6 f t^{2}$
B. $77 f t^{2}$
C. $77.6 f t^{2}$
D. None of these

Answer:

7. The density of iron is $7.87 \mathrm{~g} / \mathrm{cm}^{3}$. If the atoms are spherical and closely packed. The mass of iron atom is $9.27 \times 10^{-26} \mathrm{~kg}$. What is the volume of an iron atom?

$$
\begin{aligned}
& \text { A. } 1.18 \times 10^{-26} \mathrm{~m}^{3} \\
& \text { B. } 2.63 \times 10^{-29} \mathrm{~m}^{3} \\
& \text { C. } 1.73 \times 10^{-28} \mathrm{~m}^{3} \\
& \text { D. } 0.53 \times 10^{-29} \mathrm{~m}^{3}
\end{aligned}
$$

8. The world's largest cut diamond is the first start of Africa (mounted in the British Royal

Sceptre and kept in the tower of London). Its
voume is 1.84 cubic inch. What is tis volume is
cubic metre?
A. $30.2 \times 10^{-6} m^{3}$
B. $33.28 m^{2}$
C. $4.8 m^{3}$
D. None of these

Answer:

D Watch Video Solution

9. Crane is British unit of volume
(One crane $=170.474$ litre). Convert crane into Si unit.
A. $0.170474 m^{3}$
B. $17.0474 m^{3}$
C. $0.0017474 m^{3}$
D. $1704.74 m^{3}$

Answer:

D View Text Solution

10. The nearest star to our solar system is 4.29
light year away. How much is this distance in terms of parsecs/?
A. 1.32
B. 3.21
C. 2.31
D. 3.12

Answer:

D View Text Solution

11. The concorde is the fastest airlines used for commercial service. It can cruise at 1450 mile per hour (about two times the speed of sound or in other words, mach 2). What is it in m / s ?
A. $644.4 m / s$
B. $80 \mathrm{~m} / \mathrm{s}$
C. $40 \mathrm{~m} / \mathrm{s}$

D. none of these

Answer:

D Watch Video Solution

12. The acceleration of a car is 10 mile per hour per second. The same is $(f t) /\left(s^{2}\right)$ is
A. $1.467 \frac{f t}{s^{2}}$
B. $14.67 \frac{f t}{s^{2}}$
C. $40 \mathrm{ft} / \mathrm{s}^{2}$

D. none of these

Answer:

D View Text Solution

13. The speed of light in vacuum is
$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. How many nanosecond does it take to travel one metre in a vacuum?
A. $8 n s$
B. $\frac{10}{3} n s$
C. $3.34 n s$
D. none of these

Answer:

D View Text Solution

14. The time taken by an electron to go from ground state to excited state in one shake (one shake $=10^{-8} s$). Find this tijme is nanosecond.
A. $10 n s$
B. $4 n s$
C. $2 n s$
D. $25 n s$

Answer:

D Watch Video Solution

15. The time between human heart beat is $8 \times 10^{-1} s$. How many heart beats are measured in one minute.
A. 75
B. 60
C. 82
D. 64

Answer:

D Watch Video Solution

16. The age of the universe is $5 \times 10^{17} s$. Find
the age of universe in year.
A. 158×10^{6} year
B. 158×10^{9} year
C. 158×10^{8} year
D. 158×10^{11} year

Answer:

D View Text Solution

17. Assuming the length of the day uniformly increases by 0.001 second per century.

Calculate the net effect on the measure of time over 20 centuries.

A. 3.2 hour

B. 2.1 hour
C. 2.4 hour
D. 5 hour

Answer:
(Watch Video Solution
18. Find the number of molecules of $\mathrm{H}_{2} \mathrm{O}$ is
$90 g$ of water.
A. 35.6×10^{23} molecules
B. 41.22×10^{23} molecules
C. 27.2×10^{23} molecules
D. 30.11×10^{23} molecules

Answer:

D Watch Video Solution
19. The mass of Earth is $5.98 \times 10^{24} \mathrm{~kg}$. The average atomic weight of atoms that make up

Earth is $40 u$. How many atoms are there is Earth?
A. 9×10^{51}
B. 9×10^{49}
C. 9×10^{46}
D. 9×10^{55}

Answer:

20. One amu is equivalent of 931 meV energy.

The rest mass of electron is $9.1 \times 10^{-31} \mathrm{~kg}$.
The mass equivalent energy is (Here

$$
\left.1 a \mu=1.67 \times 10^{-27} \mathrm{~kg}\right)
$$

A. 2.5073 MeV
B. 0.693 MeV
C. 4.0093 MeV
D. None of these

- View Text Solution

21. One atomic mass unit is amu
$=166 \times 10^{-27} \mathrm{~kg}$. The atomic weight of oxcygen is 16 . Find the mass of the atom of oxygen.

$$
\begin{aligned}
& \text { A. } 26.56 \times 10^{-27} \mathrm{~kg} \\
& \text { B. } 10.53 \times 10^{-27} \mathrm{~kg} \\
& \text { C. } 74 \times 10^{-27} \mathrm{~kg} \\
& \text { D. } 2.73 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

Answer:

D View Text Solution

22. One horse power is equal to
A. 746 W
B. 756 W
C. $736 W$
D. 766 W
23. If $E=m c^{2}$
wher $m=$ mass of the body $c=$ speed of
light Guess the name of physical quantity E.
A. Energy
B. Power
C. Momentum
D. None of these
24. One calorie of heat is equivalent to 4.2 J .

BTU (British Thermal Unit) is equivalent to
1055 J . The vlaue of on BTU in calorie is
A. 251.2 cal
B. 200 cal
C. 263 cal
D. None of these
25. It is claimed that the two cesium clocks, if allowed t run for 100 yr , free from any disturbance, may differ by only about $0.02 s$.

Which of the following is the corret fractional error?
A. 10^{-9}
B. 10^{-5}
C. 10^{-13}

D. 10^{-11}

Answer:

- Watch Video Solution

26. Which of the following is the average mass
density of sodium atom assuming, its size to
be about $2.5 \AA$ (use the known values off

Avogadro's number and the atomic mass of sodium)
A. $0.64 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
B. $8.0 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}$
C. $8.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
D. $6.4 \times 10^{5} \mathrm{~kg} / \mathrm{m}^{3}$

Answer:

D Watch Video Solution

27. Electorn volt is the unit of energy
$\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$ in H -atom the binding
energy of electron in first orbit is 13.6 eV . The
same in joule (J) is
A. $10 \times 10^{-19} J$
B. $21.76 \times 10^{-19} J$
C. $13.6 \times 10^{-19} J$
D. None of these

Answer:

D Watch Video Solution

28. 1 mmHg pressure is equivalent to one torr and one torr is equivalent to $133.3 \mathrm{~N} / \mathrm{m}^{2}$. The atomospheric presue in mm of $H g$ pressure is
A. 70 mm
B. 760 mm
C. 3.76 mm
D. none of these

Answer:

D Watch Video Solution

29. One bar is equivalent of $10^{5} \mathrm{~N} / \mathrm{m}^{2}$. The atmosphere pressure is $1.0313 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.

The same in bar is
A. 1.88 bar
B. 1.013 bar
C. 2.013 bar
D. none of these

Answer:

D Watch Video Solution

30. 1 revolution is equivalent to 360°. The
value of 1 revolution per minute is
A. $2 \pi r a / s$
B. $0.104 \mathrm{rad} / \mathrm{s}$
C. 3.14rad / s
D. None of these

Answer:

D View Text Solution
31. The height of a man is 5.87532 ft . But measurement is correct upto three significant figures. The correct height is
A. 5.86 ft
B. $5.87 f t$
C. $5.88 f t$
D. 5.80 ft

Answer:

D Watch Video Solution

32. $4.32 \times 2.0=. . . .$.
A. 8.64
B. 8.6
C. 8.60
D. 8.640

Answer:

D Watch Video Solution

33. $4.338+4.835 \times 3.88+3.0$ is equal to

A. 10.6
B. 10.59

C. 10.5912

D. 10.591267

Answer:

D Watch Video Solution

34.10×2.88 is equal to
A. 2.88
B. 2.880
C. 2.9

D. none of these

Answer:

D Watch Video Solution

35.100×2.88 is equal to

A. 2.88
B. 2.880
C. 2.9
D. none of these

Answer:

D Watch Video Solution

36. If $v=$ velocity of a body $c=$ speed of
light
Then, the dimension of $\frac{v}{c}$ is
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. none of these

Answer:

D Watch Video Solution

37. The expression from centripetal force depends upon mass of body, speed of the body and the radius of circular path. Find the expression for centripetal force.

$$
\begin{aligned}
& \text { А. } F=\frac{m v^{2}}{2 r^{3}} \\
& \text { В. } F=\frac{m v^{2}}{r} \\
& \text { С. } F=\frac{m v^{2}}{r^{2}}
\end{aligned}
$$

D. $F=\frac{m^{2} v^{2}}{2 r}$

Answer:

D Watch Video Solution

38. The maximum staic friction on a body is
$F=\mu N$.

Here $N=$ normal reaction force on the body.
$\mu=$ coefficient of static friction. The
dimension of μ is
A. $\left[M L T^{-2}\right]$
B. $\left[M^{0} L^{0} T(0) \theta^{-1}\right]$
C. dimensionless
D. none of these

Answer:

D View Text Solution
39. What are dimensions of Young's modulus of elasticity?

$$
\text { A. }\left[M L^{-1} T^{-2}\right]
$$

B. $\left[M L T^{-2}\right]$
C. $\left[M L T^{-1}\right]$
D. none of these

Answer:

- Watch Video Solution

40. The surface tension is $T=\frac{F}{l}$, then the dimensions of surface tension is
A. $\left[M L T^{-2}\right]$
B. $\left[M T^{-2}\right]$
C. $\left[M^{0} L^{0} T^{0}\right]$
D. none of these

Answer:

D Watch Video Solution

41. The dimension of heat capacity is
A. $\left[L^{2} T^{-2} \theta^{-1}\right]$
B. $\left[M L^{2} T^{-2} \theta^{-1}\right]$
C. $\left[M^{-1} L^{2} T^{-2} \theta^{-1}\right]$
D. none of these

Answer:

- Watch Video Solution

42. If $\Delta H=m L$, where m is mass of body.
$\Delta H=$ total thermal energy supplied to the
body
$L=$ latent heat of fusion.

Find the dimensions of latent of fusion.
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[L^{2} T^{-2}\right]$
C. $\left[M^{0} L^{0} T^{-2}\right]$
D. $\left[M L^{0} T^{-1}\right]$

Answer:

D View Text Solution

43. Solar constant is defined as energy received by Earth per cm^{2} per minute. Find the dimensions of solar constant.
A. $\left[M L^{2} T^{-3}\right]$
B. $\left[M^{2} L^{0} T^{-1}\right]$
C. $\left[M T^{-3}\right]$
D. $\left[M L T^{-2}\right]$

Answer:

D Watch Video Solution

44. The unit of electric permittivity is $\frac{C^{2}}{N m^{2}}$.

Find the dimesions of electric permittivity
A. $\left[A^{2} M^{-1} L^{-3} T^{4}\right]$
B. $\left[A M^{-1} L^{-3} T^{4}\right]$
C. $\left[A^{2} M^{-1} L^{-3} T^{0}\right]$
D. $\left[A^{2} M^{0} L^{-3} T^{4}\right]$

Answer:

D Watch Video Solution

45. A physical relation is $\varepsilon=\varepsilon_{0} \varepsilon_{r}$
where $\varepsilon=$ electric permittivity of a medium
$\varepsilon_{0}=$ electric permittivity of vacuum
$\varepsilon_{r}=$ relative permittivity of medium

What are dimensions of relative permittivity?
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M^{0} L^{2} T^{-3}\right]$
C. $\left[M^{0} L^{0} T^{0}\right]$
D. $\left[M^{0} L^{0} T^{-1}\right]$

Answer:

D View Text Solution
46. The electric flux is given by scale product of electric field strength and area. What are the dimension of electric flux?

$$
\begin{aligned}
& \text { A. }\left[A^{-2} M L^{3} T^{-2}\right] \\
& \text { B. }\left[A^{-1} M L^{3} T^{-2}\right] \\
& \text { C. }\left[A^{-1} M L^{3} T^{-3}\right] \\
& \text { D. }\left[A^{0} M^{2} L T^{-1}\right]
\end{aligned}
$$

Answer:

D Watch Video Solution
47. Electric displacement is given by $D=\varepsilon E$

Here
$\varepsilon=$ electric permittivity
$E=$ electric field strength,
Find the dimensions of electric displacement.
A. $\left[A M L^{-2} T\right]$
B. $\left[A L^{-2} T^{-1}\right]$
C. $\left[A L^{-2} T\right]$
D. None of these
48. The energy stored in an electric device
known as capacitor is given by $U=\frac{q^{2}}{2 C}$ where $U=$ energy stored in capacitor
$C=$ capacity of capacitor
$q=$ charge on capacitor
Find the dimensions of capacity of the capacitor

$$
\text { A. }\left[A^{2} M^{-1} L^{-3} T^{4}\right]
$$

B. $\left[A M^{-1} L^{-2} T^{4}\right]$

$$
\begin{aligned}
& \text { C. }\left[A^{2} M^{-1} L^{-2} T^{4}\right] \\
& \text { D. }\left[A^{0} M^{0} L^{-2} T^{4}\right]
\end{aligned}
$$

Answer: C

D View Text Solution

49. The work done by a battery is $W=\varepsilon \Delta q$,
where $\Delta q=$ charge transferred by battery
$\varepsilon=$ emf of the battery. What are dimensions
of emf of battery?
A. $\left[A^{-2} M^{0} L^{0} T^{-2}\right]$
B. $\left[A^{-2} M L^{2} T^{-3}\right]$
C. $\left[A^{0} M^{2} T^{-3}\right]$
D. $\left[A^{-1} M L^{2} T^{-3}\right]$

Answer:

D Watch Video Solution

50. The expression for drift speed is $v_{d}=\frac{J}{\mathrm{ne}}$

Here $J=$ current density,
$n=$ number of electrons per unit volume,
$e=1.6 \times 10^{-19}$ unit

The unit and dimension of e are
A. coulomb and $[A T]$
B. ampere per second aned $\left[A T^{-1}\right]$
C. No sufficient information
D. None of the above

Answer:

D View Text Solution
51. The unit of current element is amperemetre. Find the dimensions of curent element.
A. $[A M L]$
B. $\left[A M L^{2} T\right]$
C. $\left[M L T^{2}\right]$
D. $[A L]$

Answer:

- Watch Video Solution

52. The magnetic force on a point moving
charge is $F=q(v \times B)$.
Here $q=$ electric charge
$v=$ velocity of the point charge
$B=$ magnetic field

The dimensions of B is

$$
\begin{aligned}
& \text { A. }\left[A M L T^{-1}\right] \\
& \text { B. }\left[A^{-1} M L T^{-2}\right] \\
& \text { C. }\left[A^{-1} M T^{-2}\right] \\
& \text { D. none of these }
\end{aligned}
$$

Answer:

D Watch Video Solution

53. What are dimensions of $\frac{E}{B}$?
A. $\left[L T^{-1}\right]$
B. $\left[L T^{-2}\right]$
C. $\left[M L T^{-1}\right]$
D. $\left[M L^{2} T^{-1}\right]$
54. What are the dimensions of $\mu_{0} \varepsilon_{0}$?

Here $\mu_{0}=$ magnetic permeability in vacuum,
$\varepsilon_{0}=$ electric permittivity in vacuum
A. $\left[M L^{-2} T^{-2}\right]$
B. $\left[L^{-2} T^{-2}\right]$
C. $\left[L^{-2} T^{2}\right]$
D. None of these
55. In the forumla $a=3 b c^{2}{ }^{\prime} a$ ' and ' c ' have dimensions of electric capacitance and magnetic induction, respectively, what are dimensions of ' b ' in MKS system?

$$
\begin{aligned}
& \text { A. }\left[M^{-3} L^{-2} T^{4} Q^{4}\right] \\
& \text { B. }\left[M^{-3} T^{4} Q^{4}\right] \\
& \text { C. }\left[M^{-3} T^{3} Q\right] \\
& \text { D. }\left[M^{-3} L^{2} T^{4} Q^{-4}\right]
\end{aligned}
$$

Answer:

- Watch Video Solution

56. The dimension of $\frac{R}{L}$ are
A. $\left[T^{-2}\right]$
B. $\left[T^{-1}\right]$
C. $\left[M L^{-1}\right]$
D. $[T]$
57. The magnetic energy stored in an inductor is given by $E=\frac{1}{2} L^{a} l^{b}$. Find the value of ' a ' and ' b '.

Here $L=$ self-inductance $l=$ electric current.

$$
\text { A. } a=3, b=0
$$

$$
\text { B. } a=2, b=1
$$

$$
\text { C. } a=0, b=2
$$

$$
\text { D. } a=1, b=2
$$

Answer:

D Watch Video Solution

58. $\ln L-R$ circuit $l=l_{0}\left[1-e^{-t / \lambda}\right]$

Here $l=$ electric current in the circuit. Then
A. the dimensions of l_{0} and λ
B. the dimension of t and λ are same
C. the dimensions o l and l_{0} are not same

D. All of the above

Answer:

D Watch Video Solution

59. A physical quantity u is given by the
relation $u=\frac{B^{2}}{2 \mu_{0}}$
Here $B=$ magnetic field strength
$\mu_{0}=$ magnetic permeability of vacuum

The name of physical quantity u is
A. energy
B. energy density
C. pressure
D. none of these

Answer:

D View Text Solution

60. The energy of a photon depends upon

Planck's constant and frequency of light. Find
the exprression for photon energy.
A. $E=h v$
B. $E=\frac{h}{v}$
C. $E=\frac{v}{h}$
D. $E=h v^{2}$

Answer:

D Watch Video Solution

61. If energy of photon is $E \propto h^{a} c^{b} \lambda^{d}$.

Here $h=$ Planck's constant $c=$ speed of
light and
$\lambda=$ wavelength of photon

Then, the value of a, b and d are
A. $1,1,1$
B. $1,-1,1$
C. $1,1,-1$
D. none of these

Answer:

D Watch Video Solution
62. The radius of nucleus is $r=r_{0} A^{1 / 3}$, where
A is mass number. The dimensions of r_{0} is
A. $\left[M L T^{-2}\right]$
B. $\left[M^{0} L^{0} T^{-1}\right]$
C. $\left[M^{0} L T^{0}\right]$
D. None of these

Answer:
(Watch Video Solution
63. The power of lens is $P=\frac{1}{f^{\prime}}$ where f is
focal length of the lens. The dimensions of power of lens is
A. $\left[L T^{-2}\right]$
B. $\left[M^{0} L^{-1} T^{0}\right]$
C. $\left[M^{0} L^{0} T^{0}\right]$
D. None of these

Answer:

D Watch Video Solution
64. The dimensions of frequency is
A. $\left[T^{-1}\right]$
B. $\left[M^{0} L^{0} T\right]$
C. $\left[M^{0} L^{0} T^{-2}\right]$
D. none of these

Answer:

D Watch Video Solution
65. The dimensions of wavelength is
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M^{0} L T^{0}\right]$
C. $\left[M^{0} L^{-1} T^{0}\right]$
D. none of these

Answer:

D Watch Video Solution

66. The optical path difference is defined as
$\Delta x=\frac{2 \pi}{\lambda}$.

What are dimensions of optical path difference?
A. $\left[M^{0} L^{-1} T^{0}\right]$
B. $\left[M^{1} L^{1} T^{0}\right]$
C. $\left[M L^{0} T^{1}\right]$
D. $\left[M L^{-2 T}\right.$

Answer:
(Watch Video Solution
67. The unit of intensity of a wave is $\frac{W}{m^{2}}$? What are dimensions of intensity of wave?
A. $\left[M T^{-3}\right]$
B. $\left[A M L^{0} T^{-2}\right]$
C. $\left[M^{0} L^{-1} T^{-2}\right]$
D. None of these

Answer:
(Watch Video Solution
68. If $x=\frac{a \sin \theta+b \cos \theta}{a+b}$, then
A. the dimensions of x and a are same
B. the dimensions of a and b are not same
C. x is dimensions
D. None of the above

Answer:

69. $\in \frac{g(d v)}{\sqrt{2 n v-v^{2}}}=a^{n} \sin ^{-1}\left[\frac{x}{a}-1\right]$ on
the basis of dimensional analysis, the value of n is
A. 0
B. -2
C. 3
D. none of these

Answer:

70. Calcualte the fractional error $\left(\frac{\Delta x}{x}\right)$, if $x=a^{n}$,

$$
\begin{aligned}
& \text { A. } \pm\left(\frac{\Delta a}{a}\right)^{n} \\
& \text { B. } \pm n\left(\frac{\Delta a}{a}\right) \\
& \text { C. } \pm n \frac{\log _{e}(\Delta a)}{a} \\
& \text { D. } \pm n \frac{\log (\Delta a)}{a}
\end{aligned}
$$

Answer:
71. The relation gives the value of ' x '
$x=\frac{a^{3} b^{3}}{c \sqrt{d}}$
Find the percentage error in ' x ' if the percentagr error in a, b, c and d are $2 \%, 1 \%, 3 \%$ and 4% respectively.
A. $\pm 8 \%$
B. $\pm 10 \%$
C. $\pm 12 \%$
D. $\pm 14 \%$

Answer:

72. For the equation $F \propto A^{a} v^{b} d^{\oplus}$, where F is the force, A is the area V is the velocity and d is the density, the values of a, b and c are, respectively.
A. $1,2,1$
B. 2, 1, 1
C. 1, 1, 2
D. $0,1,1$

Answer:

D View Text Solution

73. If edge lengths of a cuboid are measured to be $1.2 \mathrm{~cm}, 1.5 \mathrm{~cm}$, and 1.8 cm , then volume of the cuboid is
A. $3.240 \mathrm{~cm}^{3}$
B. $3.24 \mathrm{~cm}^{3}$
C. $3.2 \mathrm{~cm}^{3}$
D. $3.0 \mathrm{~cm}^{3}$

Answer:

- Watch Video Solution

74. If the force is given by $F=a t+b t^{2}$ with t is time. The dimensions of a and b are
A. $\left[M L T^{-4}\right]$ and $\left[M L T^{-2}\right]$
B. $\left[M L T^{-3}\right.$ and $\left[M L T^{-4}\right]$
C. $\left[M L^{2} T^{-3}\right]$ and $\left[M L^{2} T^{-2}\right]$
D. $\left[M L^{2} T^{-3}\right]$ and $\left[M L^{3} T^{-4}\right]$

Answer:

- Watch Video Solution

75. The dimensional formula for inductance is

A. $\left[M L^{2} T^{-2} A^{-2}\right]$
B. $\left[M L^{2} T A^{-2}\right]$
C. $\left[M L^{2} T^{-1} A^{-2}\right]$
D. $\left[M L^{2} T^{-2} A^{-1}\right]$
76. A cube has a side of length $1.2 \times 10^{-2} \mathrm{~m}$.

Calculate its volume

A. $1.7 \times 10^{-6} \mathrm{~m}^{3}$
B. $1.73 \times 10^{-6} \mathrm{~m}^{3}$
C. $1.70 \times 10^{-6} m^{3}$
D. $1.732 \times 10^{-6} \mathrm{~m}^{3}$

Answer:
77. The dimensions of the quantity hc (where $\left.h=\frac{h}{2 \pi}\right)$ is
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{3} T^{-2}\right.$
D. $\left[M L^{2} T^{-1}\right]$

Answer:

- Watch Video Solution

78. A resistor of $10 k \Omega$ has a tolerance of 10% and another resistor of $20 k \Omega$ has a tolerance of 20%. The tolerance of the series combination is rearly
A. 10%
B. 20%
C. 15%
D. 17%

- Watch Video Solution

79. The energy (E), angular momentum (L) and universal gravitational constant (G) are chosen as fundamental quantities. The dimensions of universal gravitational constant in the dimensional formula of Planck's constant h is
A. zero
B. -1
C. $5 / 3$
D. 1

Answer:

D View Text Solution

80. In the releation $p=\frac{\alpha}{\beta} e^{-\frac{a z}{k \theta}}$, where p is
the pressure z is distance k is Boltzmann constant and θ is the temperature the dimensional formula β will be
A. $\left[M^{0} L^{2} T^{0}\right]$
B. $\left[M L^{2} T\right]$
C. $\left[M L^{0} T^{-1}\right]$
D. $\left[M L^{2} T^{-1}\right]$

Answer:

D Watch Video Solution

81. A physical quantity is given by
$X=\left[M^{a} L^{b} T^{c}\right]$. The percentage error in measurement of M, L and T are α, β, γ
respectively. Then the maximum \% error in the quantity X is
A. $a \alpha+b \beta+c \gamma$
B. $a \alpha+b \beta-c \gamma$
C. $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}$
D. None of the above

Answer:

(Watch Video Solution
82. Which of the following is not a unit of Young's modulus?
A. $N m^{-1}$
B. $N m^{-2}$
C. dynecm ${ }^{-2}$
D. mega pascal

Answer:

D Watch Video Solution

