©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE PHYSICS
 (HINGLISH)

WAVE MOTION

Practice Exercise

1. The equation of a wave travelling on a
stretched string along the x-axis is
$y=a e^{-(b x+c t)}$. The direction of propagation of wave is
A. along negative y-axis
B. along positive y-axis
C. along negative x-axis
D. along positive x-axis

Answer: C

D Watch Video Solution
2. In (Q. 1.) the maximum displacement of particle of string is
A. a
B. b
C. c
D. c / b

Answer: A

D Watch Video Solution

3. In (Q. 1.) the speed of wave is

A. c / b
B. b/c
C. a
D. C

Answer: A
(Watch Video Solution
4. The wave travels along a string whose equation is $y=\frac{p^{3}}{p^{2}+(p x-q t)^{2}}$, where $\mathrm{p}=2$ unit and $q=0.5$ units.

Find the direction of propagation of wave.
A. along $+y$ - axis
B. along - x -axis
C. along $+x$-axis
D. None of these
5. If wave $\mathrm{y}=\mathrm{A} \cos (\omega t+k x)$ is moving along x-axis The shape of pulse at $t=0$ and $t=2 s$
A. are different
B. are same
C. may not be same

D. None of these

Answer: B

6. At any instant a wave travelling along the string shown in figure. Here, point A is moving
upward. Which of the following statement is

true?

A. The wave is travelling to the right
B. The displacement amplitude of wave is
equal to displacement of B at this
instant
C. At this instant C also directed upward.
D. None of the above

Answer: B

D Watch Video Solution
7. In the given figure,

A. the velocity of particles B and C are same
B. the velocity of particles A, C and E are maximum
C. the particle F moves upward
D. all particles have same velocity

Answer: B

- Watch Video Solution

8. If a wave propagates through a medium.

Then, the velocity of particle of medium is given by
A. wave velocity \times strain
B. $\frac{\text { wave velocity }}{\text { strain }}$
C. wave velocity
D. $\frac{\text { angular frequency }}{\text { propagation constant }}$

Answer: A

- Watch Video Solution

9. In a wave motion $y=\sin (k x-\omega t), y$ can represent :-
A. electric field
B. magnetic field
C. displacement, pressure
D. All of these

Answer: D

D Watch Video Solution
10. The equation of a wave travelling on a
stretched string is $y=4 \quad \sin$
$2 \pi\left(\frac{t}{0.02}-\frac{x}{100}\right)$
Here, x and y are in cm and t is in second. The speed of wave is
A. $50 \mathrm{~m} / \mathrm{s}$
B. $40 \mathrm{~m} / \mathrm{s}$
C. $50 \mathrm{~cm} / \mathrm{s}$
D. $40 \mathrm{~cm} / \mathrm{s}$

Answer: A
11. In (Q. 10.) the ratio of particle velocity amplitude and wavelength is
A. π
B. 2π
C. 3π
D. 4π

Answer: D

12. In (Q. 10.) the relative deformation amplitude of medium is
A. 0.02π
B. 0.08π
C. 0.06π
D. None of these

Answer: B
13. Along a stretched string equation of transverse wave is
$y=3 \sin \left[2 \pi\left(\frac{x}{20}-\frac{t}{0.01}\right)\right]$
Where, x, y are in cm and t is in second.

Calculate wave velocity.
A. $20 \mathrm{~m} / \mathrm{s}$
B. $30 \mathrm{~m} / \mathrm{s}$
C. $15 \mathrm{~m} / \mathrm{s}$
D. $25 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

14. A transverse wave along a string is given by
$y=2 \sin \left(2 \pi(3 t-x)+\frac{\pi}{4}\right)$
where x and y are in cm and t in second. Find acceleration of a particle located at $x=4 \mathrm{~cm}$ at $\mathrm{t}=1 \mathrm{~s}$.
A. $36 \sqrt{2} \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$
B. $36 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$
C. $-36 \sqrt{2} \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$
D. $-36 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$

Answer: C

- Watch Video Solution

15. A travelling wave is described by the equation $\quad y=y_{0} \sin \left(\left(f t-\frac{x}{\lambda}\right)\right) . \quad$ The maximum particle velocity is equal to four times the wave velocity if
A. $y_{0} \pi$
B. $\frac{y_{0} \pi}{2}$
C. $2 y_{0} \pi$
D. $1.5 y_{0} \pi$

Answer: B

D Watch Video Solution

16. Along a stretched wire a transverse wave passes with speed $3000 \mathrm{~m} / \mathrm{s}$. If the tension in
the wire increased four times, then the velocity of the wave is
A. $1500 \mathrm{~m} / \mathrm{s}$
B. $3000 \mathrm{~m} / \mathrm{s}$
C. $6000 \mathrm{~m} / \mathrm{s}$
D. $9000 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution
17. A long rubber tube having mass 0.9 kg is
fastened to a fixed support and the free end of the tube is attached to a cord which passes over a pulley and supports an object, with a mass of 5 kg as shown in figure. If the tube is
struck by a transverse blow at one end, find
the time required for the pulse to reach the
other end.

12 m

A. 5 s
B. 0.47 s
C. 4.7 s
D. 3.2 s

Answer: B

D Watch Video Solution

18. The time taken by a transverse wave going on a wire having mass 5 g , form one end to another end of wire is 0.5 s . The area of crosssection fo wire is $1 \mathrm{~mm}^{2}$ and Young's modulus of elasticity is $16 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. The speed of wave is $80 \mathrm{~m} / \mathrm{s}$. The strain in wire is
A. 5×10^{-7}
B. 2×10^{-7}
C. 3×10^{-6}
D. 4×10^{-6}

Answer: A

D Watch Video Solution
19. Find the time taken by a transverse wave to
travel the full length fo a uniform rope of
mass 0.1 kg and length 2.45 m hangs from the

ceiling

A. 1 s
B. 0.5 s
C. 2 s
D. 1.5 s

Answer: A
(Watch Video Solution
20. A transverse wave of equation $y=2 \sin$
$(0.01 x+30 t)$ moves on a stretched string
from one end to another end. In the equation of wave, x and y are in cm and t is in second.

The time taken by wave to reach from one end to another end of string is 5 s . The length of string is
A. 10 m
B. 100 m
C. 150 m

D. 160 m

Answer: C

D Watch Video Solution

21. A sinusoidal wave travelling in the same direction have amplitudes of 3 cm and 4 cm and difference in phase by $\pi / 2$. The resultant amplitude of the superimposed wave is

A. 7 cm

B. 5 cm
C. 2 cm
D. 0.5 cm

Answer: B

- Watch Video Solution

22. Two simple harmonic motions are represented by the equations
$y_{1}=10 \sin \left(3 \pi t+\frac{\pi}{4}\right)$
and $\quad y_{2}=5(3 \sin 3 \pi t+\sqrt{3} \cos 3 \pi t)$. Their amplitudes are in the ratio of
A. $\sqrt{3}$
B. $1 / \sqrt{3}$
C. 2
D. $1 / 6$

Answer: B
(Watch Video Solution
23. Predict for the wave
$y=A \cos . \frac{2 \pi x}{\lambda} \sin \left(\frac{2 \pi v t}{\lambda}\right)$
A. It is a progressive wave
B. It is a transverse progressive wave
C. It is a longitudinal progressive wave
D. It is a stationary wave

Answer: D

D Watch Video Solution

24. A string of length I is fixed at both ends and is vibrating in second harmonic. The amplitude at anti-node is 2 mm . The amplitude of a particle at distance $l / 8$ from the fixed end is
A. $5 \sqrt{2} m m$

$$
\text { B. } \frac{5}{\sqrt{2}} m m
$$

C. 5 mm

$$
\text { D. } \frac{10}{\sqrt{2}} m m
$$

Answer: B

Watch Video Solution

25. In (Q. 24.) the tension in string is T and the linear mass density of string is μ. The ratio of magnitude of maximum velocity of particle and the magnitude of maximum acceleration is
A. $\frac{1}{2 \pi} \sqrt{\frac{\mu l^{2}}{T}}$
B. $2 \pi \sqrt{\frac{\mu l^{2}}{T}}$
C. $\frac{1}{2 \pi} \sqrt{\frac{T}{\mu l^{2}}}$
D. $\frac{1}{4 \pi} \sqrt{\frac{\mu l^{2}}{T}}$

Answer: A

D Watch Video Solution

26. In (Q. 24.) if at $t=0, y=2.5 \mathrm{~mm}$, the equation of standing wave is
A. $(2.5 \mathrm{~mm}) \sin \cdot \frac{2 \pi}{l} x \cos \left(2 \pi \sqrt{\left(\frac{T}{\mu l^{2}}\right)}\right) t$
B. $5 m m \sin . \frac{\pi}{l} x \cos 2 \pi t$
C. $5 m m \sin . \frac{2 \pi}{l} x \cos \left(2 \pi \sqrt{\left(\frac{T}{\mu l^{2}}\right)}\right) t$
D. $5 m m \cos . \frac{2 \pi}{l} x \cos \left(2 \pi \sqrt{\left(\frac{T}{\mu l^{2}}\right)}\right) t$

Answer: C

D Watch Video Solution

27. If a string fixed at both ends vibrates in four loops. The wavelength is 10 cm . The length of string is
A. 5 cm
B. 15 cm

C. 30 cm

D. None

Answer: B

D Watch Video Solution

28. In (Q. 27.) the distance of plucking poing
from the fixed end is
A. 5 cm
B. 10 cm
C. 2.5 cm
D. 7.5 cm

Answer: C

D Watch Video Solution

29. A stretched wire carries a body of density
$\sigma=8000 \mathrm{~kg} / \mathrm{m}^{3}$ at its end. The fundamental
frequency of vibration of wire is 280 Hz . The body is dipped completely in a vessel of water.

Find the new frequency of fundamental mode
of vibrations. (Density of water is $\left.\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\right)$
A. 262 Hz
B. 260 Hz
C. 243.2 Hz
D. 255.5 Hz

Answer: C
(Watch Video Solution
30. An elastic string of length 2 m is fixed at its
end. The string starts to vibrate in third overtone with a frequency 1200 Hz . The ratio of frequency of lower overtone and fundamental is
A. 1
B. 2
C. 3
D. 4

Answer: B
31. If a string is stretched with a weight 4 kg then the fundamental frequency is equal to 256 Hz . What weight is needed to produce its octave?
A. 4 kg-wt
B. $12 \mathrm{~kg}-\mathrm{wt}$
C. 16 kg-wt
D. $24 \mathrm{~kg}-\mathrm{wt}$

Answer: C

D Watch Video Solution

32. A string fixed at both ends has consecutive standing wave modes for which the distances
between adjacent nodes are 18 cm and 16 cm respectively. The minimum possible length of the string is:
A. 150 cm
B. 144 cm

C. 140 cm

D. 142 cm

Answer: B

- Watch Video Solution

33. A sonometer wire of length 114 cm is fixed
at both the ends. Where should the two
bridges be placed so as to divide the wire into
three segments whose fundamental
frequencies are in the ratio $1: 3: 4$?
A. At 36 cm and 84 cm from one end
B. At 24 cm and 72 cm from one end
C. At 48 cm and 96 cm from one end
D. At 72 cm and 96 cm from one end

Answer: C

- Watch Video Solution

34. A wave of angular frequency ω propagates
so that a certain phase of oscillation moves
along x-axis, y-axis, z-axis with speeds $c_{1} c_{2}$ and c_{3} respectively.

$$
\begin{aligned}
& \text { А. } \frac{\omega}{\sqrt{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}}}(\hat{i}+\hat{j}+\hat{k}) \\
& \text { В. } \frac{\omega}{c_{1}} \hat{i}+\frac{\omega}{c_{2}} \hat{j}+\frac{\omega}{c_{3}} \hat{k} \\
& \text { С. }(\omega \hat{i}+\omega \hat{j}+\omega \hat{k}) \frac{1}{c}
\end{aligned}
$$

D. None of these

Answer: B

D Watch Video Solution

35. Wave of frequency 500 Hz has a phase velocity $360 \mathrm{~m} / \mathrm{s}$. The phase difference between two displacement at a certain point at time $10^{-3} s$ apart will be
A. $\pi \mathrm{rad}$
B. $\frac{\pi}{2} \mathrm{rad}$
C. $\frac{\pi}{4} \mathrm{rad}$
D. $2 \pi \mathrm{rad}$

Answer: A

36. Equation of a plane wave is given by
$4 \sin . \frac{\pi}{4}\left[2 t+\frac{x}{8}\right]$. The phase difference at any given instant of two particles 16 cm apart is
A. 60°
B. 90°
C. 30°
D. 120°

Answer: B

- Watch Video Solution

37. The transverse displacement $y(x, t)$ of a
wave on a string is given by
$y(x, t)=e^{-\left(a x^{2}+b t^{2}+2 \sqrt{(a b)} x t\right)}$.
represents a :
A. wave moving in - x-direction with speed

$$
\sqrt{\frac{b}{a}}
$$

B. standing wave of frequency \sqrt{b}
C. standing wave of frequency $\frac{1}{\sqrt{b}}$
D. wave moving in $+x$-direction with speed

$$
\sqrt{a / b}
$$

Answer: A

- Watch Video Solution

38. For a wave $y=0.0002 \sin$
$\left[2 \pi\left(110 t-\frac{x}{3}\right)+\frac{\pi}{3}\right]$
is travelling in a medium. Find energy per unit
volume being transferred by wave if density of medium is $1.5 \mathrm{~kg} / \mathrm{m}^{3}$.
A. $14 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{3}$
B. $143.2 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{3}$
C. $14.3 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{3}$
D. $1.43 \times 10^{-4} \mathrm{~J} / \mathrm{m}^{3}$

Answer: B
(D) Watch Video Solution

1. The equation of a simple harmonic motion is
given by $y=3 \sin . \frac{\pi}{2}(50 t-x)$, where x and y
are in metres and t is in seconds, the ratio of
maximum particle velocity to the wave velocity
is
A. $25 \mathrm{~m} / \mathrm{s}$
B. $30 \mathrm{~m} / \mathrm{s}$
C. $50 \mathrm{~m} / \mathrm{s}$
D. None of these

Answer: C

D View Text Solution

2. A stretched string of length 2 m vibrates in

4 segments. The distance between consecutive nodes is
A. 0.5 m
B. 0.25 m
C. 1.0 m
D. 0.75 m

Answer: A

- Watch Video Solution

3. At $t=0$, a transverse wave pulse in a wire is
described by the function $y=6 /\left(x^{2}-3\right)$
where x and y are in metres. The function $y(x, t)$
that describes this wave equation if it is travelling in the positive x direction with a speed of $4.5 m / s$ is

$$
\text { A. } y=\frac{6}{(x+4.5 t)^{3}-3}
$$

$$
\begin{aligned}
& \text { B. } y=\frac{6}{\left(x-4.5 t^{2}\right)+3} \\
& \text { C. } y=\frac{6}{(x+4.5 t)^{2}-3} \\
& \text { D. } y=\frac{6}{(x-4.5 t)^{2}-3}
\end{aligned}
$$

Answer: C

- Watch Video Solution

4. in a sine wave ,postive of different particles
at time $t=0$ is shown in figure. The equation for
this wave if it is travelling along positive x -axis

can beB

A. $y=A \sin (\omega t-k x)$
B. $y=A \cos (k x-\omega t)$
C. $y=A \cos (\omega t-k x)$
D. $y=A \sin (k x-\omega t)$

Answer: D

D Watch Video Solution

5. A wave has velocity u in medium P and velocity 2 u in medium Q . If the wave is incident in medium P at an angle of 30° then the angle of refraction will be
A. 30°
B. 45°
C. 60°
D. 90°

Answer: A

D Watch Video Solution

6. The equation of progressive wave is
$y=0.2 \sin 2 \pi\left[\frac{t}{0.01}-\frac{x}{0.3}\right]$, where x and y
are in metre and t is in second. The velocity of
propagation of the wave is
A. $30 \mathrm{~m} / \mathrm{s}$
B. $40 \mathrm{~m} / \mathrm{s}$
C. $300 \mathrm{~m} / \mathrm{s}$

D. $400 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

7. Two progressive waves having equation $x_{1}=3 \sin \omega \tau$ and $x_{2}=4 \sin \left(\omega \tau+90^{\circ}\right)$ are
superimposed. The amplitude of the resultant wave is
A. 5 unit
B. 1 unit
C. 3 unit
D. 4 unit

Answer: D

D Watch Video Solution

8. A particle on the trough of a wave at any instant will come to the mean position after a
time ($\mathrm{T}=$ time period)
A. $T / 2$
B. $T / 4$
C. T
D. 2 T

Answer: B

- Watch Video Solution

