# © 'doubtnut 

India's Number 1 Education App

## CHEMISTRY

## BOOKS - BITSAT GUIDE

## CHEMICAL KINETICS

Practice Exercise

1. For a chemical reaction $2 X+Y \rightarrow Z$, the rate of appearance of $Z$ is $0.05 \mathrm{~mol} L^{-1}$. The rate of disappearance of $X$ will be
A. $0.05 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$
B. $0.05 \mathrm{~mol} L^{-1} h^{-1}$
C. $0.1 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$
D. $0.25 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$

## Watch Video Solution

2. A gaseous $A_{2}(g) \rightarrow B(g)+\frac{1}{2} C(g)$, shows increase in pressure from 100 mm to 120 mm in 5 min . The rate of disappearance of $A_{2}$ is
A. $4 \mathrm{~mm} \mathrm{~min}^{-1}$
B. $8 \mathrm{~mm} \mathrm{~min}^{-1}$
C. $16 \mathrm{~mm} \mathrm{~min}^{-1}$
D. $2 \mathrm{~mm} \mathrm{~min}^{-1}$

## Answer: B

## - Watch Video Solution

3. For the reaction $2 N_{2} O_{4} \Leftrightarrow 4 N O_{2}$, given that
$\frac{-d\left[N_{2} O_{4}\right]}{d t}=K$ and $\frac{d\left[N O_{2}\right]}{d t}=K$, then
A. $K=2 K$
B. $K^{\prime}=K$
C. $2 \mathrm{~K}^{\prime}=\mathrm{K}$
D. None of these

## Answer: A

## - Watch Video Solution

4. The rate constant of a first order reaction is $2.0 \times 10^{-5} s^{-1}$ and the initial concentration is $0.10 \mathrm{~mol} L^{-1}$. The initial rate is
A. $2.0 \times 10^{-6} \mathrm{~mol} L^{-1} s^{-1}$
B. $1.0 \times 10^{-6} \mathrm{~mol} L^{-1} s^{-1}$
C. $1.5 \times 10^{-6} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$
D. $0.5 \times 10^{-6} \mathrm{~mol} L^{-1} s^{-1}$

## Answer: A

5. The chemical reaction $2 O_{3} \xrightarrow{k_{1}} 3 O_{2}$ proceeds as follows:
$O_{3} \stackrel{k_{\text {eq }}}{\Longleftrightarrow} O_{2}+O$ (fast)
$\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k} 2 \mathrm{O}_{2}$ (slow)
What should be the rate law expresison ?
A. $r=k^{\prime}\left[O_{3}\right]^{2}$
B. $r=k^{\prime}\left[O_{3}\right]^{2}\left[O_{2}\right]^{-1}$
C. $r=k^{\prime}\left[O_{3}\right]\left[O_{2}\right]$
D. Unpredictable

## Answer: B

## - Watch Video Solution

6. The rate for the decomposition of $\mathrm{NH}_{3}$ on platinum surface is zero order. What are the rate of production of $N_{2}$ and $H_{2}$ if $K=2.5 \times 10^{-4}$ mollitre $^{-1} s^{-1}$ ?
A.
$1.25 \times 10^{-4}$ and mol $L^{-1} s^{-1}$ and $3.75 \times 10^{-4}$ and mol $L^{-1} s^{-}$
B.
$3.75 \times 10^{-4}$ and mol $L^{-1} s^{-1}$ and $1.25 \times 10^{-4}$ and mol $L^{-1} s^{-}$
C.
$2.5 \times 10^{-4}$ and mol $L^{-1} s^{-1}$ and $3.75 \times 10^{-4}$ and mol $L^{-1} s^{-1}$
D.
$1.25 \times 10^{-4}$ and mol $L^{-1} s^{-1}$ and $2.5 \times 10^{-4}$ and mol $L^{-1} s^{-1}$

## Answer: A

## - Watch Video Solution

7. In a reversible reaction $2 \mathrm{NO}_{2} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~N}_{2} \mathrm{O}_{4}$, the rate of disappearance of $\mathrm{NO}_{2}$ is equal to
A. $\frac{2 k_{1}}{k_{2}}\left[N O_{2}\right]^{2}$
B. $2 k_{1}\left[N O_{2}\right]^{2}-2 k_{2}\left[N_{2} O_{4}\right]$
C. $2 k_{1}\left[N O_{2}\right]^{2}-k_{2}\left[N_{2} O_{4}\right]$
D. $\left(2 k_{1}-k_{2}\right)\left[N O_{2}\right]$

## Answer: B

## - Watch Video Solution

8. The concentration of a reactant changes form $0.03 M$ to $0.02 M$ in 25 min . Calculate the average rate of reaction uisng of time both in minutes and seconds.
A. $6.66 \times 10^{-5} \mathrm{Ms}^{-1}$
B. $6.6 \times 10^{-6} \mathrm{Ms}^{-1}$
C. $5.67 \times 10^{-5} \mathrm{Ms}^{-1}$
D. $7.26 \times 10^{-6} \mathrm{Ms}^{-1}$

## Answer: B

9. Rate law for the reaction, $A+2 B \rightarrow C$ is found to be Rate $=k[A][B]$

Concentration of reactant ' $B$ ' is doubled keeping the concentration of ' $A$ ' constant, the value of rate constant will be $\qquad$
A. the same
B. doubled
C. quadrupled
D. halved

## Answer: B

## - Watch Video Solution

10. For the reaction $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$, the rate law expression is, $r=k\left[H_{2}\right]^{n}$. When the concentration of $H_{2}$ is doubled, the rate of
reaction found to be quadrupled. The value of $n$ is
A. 0
B. 1
C. 2
D. 3

## Answer: C

## - Watch Video Solution

11. Consider the following reaction,
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}, \frac{d\left[\mathrm{NO}_{2}\right]}{d t}=k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$,
$\frac{d\left[O_{2}\right]}{d t}=k_{3}\left[N_{2} O_{5}\right]$ and $\frac{d}{d t}\left[N_{2} O_{5}\right]=k_{1}$
The relation between $k_{1}, k_{2}$ and $k_{3}$ is
A. $k_{1}=k_{2}=k_{3}$
B. $2 k_{1}=k_{2}=4 k_{3}$
C. $2 k_{1}=4 k_{2}=k_{3}$
D. None of these

## Answer: B

## - Watch Video Solution

12. The rate of formation of $\mathrm{SO}_{3}$ in the reaction
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
is $100 \mathrm{~g} \mathrm{~min}^{-1}$ Hence rate of disappearance of $O_{2}$ is
A. $29 \mathrm{~g} \mathrm{~min}^{-1}$
B. $20 \mathrm{~g} \mathrm{~min}^{-1}$
C. $50 \mathrm{~g} \mathrm{~min}^{-1}$
D. $200 \mathrm{~g} \mathrm{~min}^{-1}$

## Answer: B

13. Consider the following reaction,
$2 A+B+C \rightarrow$ Products
How will the rate of reaction changes when the concentration of $A$ is doubled and that of $B$ is triplet while $C$ is taken in excess ?
A. The rate reduces 8 times of its original value
B. The rate reduces 12 times of its original value
C. The rate increases 8 times of its original value
D. The rate increases 12 times of its original value

## Answer: D

## - Watch Video Solution

14. In the reaction $2 A \rightarrow$ Products, the concentration of A Calculate from $1.0 \mathrm{~mol} L^{-1}$ to $0.8 \mathrm{~mol} L^{-1}$ in 20 min . Calculate the rate during this interval.
A. $0.5 \mathrm{~mol} L^{-1} \min ^{-1}$
B. $0.005 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$
C. $0.05 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$
D. $0.0005 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$

## Answer: B

## - Watch Video Solution

15. The unit of the rate constant of nth order is
A. $\operatorname{mol}^{1-n} L^{n-1} s^{-1}$
B. $\mathrm{mol}^{n-1} L^{1-n} s^{-1}$
C. $\operatorname{mol}^{n-1} L^{n-1} s$
D. $\operatorname{mol}^{n} L^{1-n} s^{-1}$

## Answer: A

16. In the presence of acid, the initial concentration of cane sugar was reduced from 0.2 M to 0.1 M in 5 h and to 0.05 M in 10 h . The reaction must be of
A. zero order
B. first order
C. second order
D. fractional order

## Answer: B

## - Watch Video Solution

17. The rate constant of a reaction is $3.25 \times 10^{-3} \mathrm{~mol}^{-2} L^{2} \min ^{-1}$. The order of raction is
B. 1
C. 2
D. 3

## Answer: D

## - Watch Video Solution

18. The half-life period of a first order process is 1.6 min . It will be $90 \%$ completed in
A. 0.8 min
B. 3.2 min
C. 5.3 min
D. 1.6 min

## Answer: C

19. The hydrolysis of ester in alkaline medium is a
A. first order reaction with molecularity 1
B. second order reaction with molecularity 2
C. first order reaction with molecularity 2
D. second order reaction with molecularity 1

## Answer: B

## - Watch Video Solution

20. The rate constant of first order reaction whose half-life is 480 s , is
A. $1.44 \times 10^{-3} s^{-1}$
B. $1.44 s^{-1}$
C. $0.72 \times 10^{-3} s^{-1}$
D. $2.88 \times 10^{-3} s^{-1}$

## D View Text Solution

21. In accordance to Arrhenius equation, the plot of $\log \mathrm{k}$ against $\frac{1}{T}$ is a straight line. The slope of the line is equal to
A. $\frac{-E_{a}}{R}$
B. $\frac{-2.303}{E_{a} \cdot R}$
C. $\frac{-E_{a}}{2.303 R}$
D. $\frac{-E_{a}}{2.303}$

## Answer: C

## - Watch Video Solution

22. For the first order reaction, $k=5.48 \times 10^{-4} s^{-1}$, the two-third life time for this reaction is
A. 2005 s
B. 1000 s
C. 2000 s
D. 3005 s

## Answer: A

## - Watch Video Solution

23. The rate constant for a zero order reaction is
A. $k=\frac{C_{0}}{2 t}$
B. $k=\frac{C_{0}-C_{t}}{t}$
C. $k=\ln . \frac{C_{0}-C_{t}}{t}$
D. $k=\frac{C_{0}}{C_{t}}$

## Answer: B

24. The time required for 100 percent completion of a zero order reaction is:
A. ak
B. $\frac{a}{2 k}$
C. $\frac{a}{k}$
D. $\frac{2 k}{a}$

## Answer: C

## - Watch Video Solution

25. Pieces of wood burn faster than a log of wood of the same mass because
A. surface area of log of wood is larger and needs more time to burn
B. pieces of wood have larger surface area
C. all pieces of wood catch fire at the same time
D. log of wood has higher density than pieces of the same wood

## Answer: B

## - Watch Video Solution

26. What is the order of a reaction which has a rate expression, i.e. rate $=$ $k[A]^{3 / 2}[B]^{-1}$ ?
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. Zero
D. None of these

## Answer: B

27. If initial concentration is doubled, the time for half-reaction is also doubled, the order of reaction is
A. zero
B. first
C. second
D. third

## Answer: A

## - Watch Video Solution

28. If the graph of concentration of [A] vs $T$ for completion of reaction is a straight line, then the order of reaction is
A. zero
B. second
C. first
D. third

## Answer: A

## - Watch Video Solution

29. For a reaction, temperature increases by $10^{\circ} \mathrm{C}$, the equilibrium will be attained faster
A. 2 times
B. same
C. $\frac{1}{2}$ same
D. 4 times

## Answer: A

$30.75 \%$ of a first order reaction was completed in 32 min . When was $50 \%$ of the reaction completed?
A. 16 min
B. 24 min
C. 8 min
D. 4 min

## Answer: A

## - Watch Video Solution

31. The rate of a reaction becomes 4 times when temperature is raised from 293 K to 313 K . The activation energy for such reaction would be
A. $50.855 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $52.849 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $54.855 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $56.855 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Answer: B

## - Watch Video Solution

32. Half-life of a hypothetical reaction is found to be inversely proportional to the cube of initial concentration. The order of reaction is
A. 4
B. 3
C. 5
D. 2

## Answer: A

## - Watch Video Solution

33. $\mathrm{H}_{2} \mathrm{O}$ and O -atom react in upper atmosphere bimolecularly to form two OH radicals. $\Delta H$ for the reaction is 72 kJ at 500 K and energy of activation is $77 \mathrm{~kJ} \mathrm{~mol}^{-1}$. $E_{a}$ for bimolecular recombination of two OH radicals to form $\mathrm{H}_{2} \mathrm{O}$ and O -atom, will be
A. $5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $72 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $77 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $149 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Answer: A

## - Watch Video Solution

34. Calculate the half-life of the first order reaction, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$. If the initial pressure of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g})$ is 80 mm and the total pressure at the end of 20 min is 120 mm .
A. 40 min
B. 120 min
C. 20 min
D. 80 min

## Answer: C

## - View Text Solution

35. The half-lives for two samples are 0.1 and 0.8 s whose concentrations are 400 and $50 \mathrm{~mol} L^{-1}$ respectively. The order of the reaction is
A. 0
B. 1
C. 2
D. 3

## Answer: C

36. The rate constant for the first order reaction is $60 s^{-1}$. How much time will it take to reduce the concentration of the reactant to $1 / 16$ th value ?
A. $4.6 \times 10^{4} s$
B. $4.6 \times 10^{-4} s$
C. $4.6 \times 10^{-2} s$
D. $4.6 \times 10^{2} s$

## Answer: C

## - Watch Video Solution

37. The half-time of the following first order decomposition of nitramide is 2.1 h at $15^{\circ} \mathrm{C}$ :
$\mathrm{NH}_{2} \mathrm{NO}_{2}(a q) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

If 6.2 g of nitramide is allowed to decompose then time taken for it to decompose $99 \%$, will be
A. 2.1 h
B. 12 h
C. 13.96 h
D. 33 h

## Answer: C

## - Watch Video Solution

38. A first order reaction is found to have a rate constant, $k=4.2 \times 10^{-12} s^{-1}$. Find the half-life of the reaction.
A. $1.26 \times 10^{13} s$
B. $1.65 \times 10^{11} s$
C. $1.65 \times 10^{-11} s$
D. $1.26 \times 10^{-13} s$

## Answer: B

## - Watch Video Solution

39. The value of $\log \frac{k_{2}}{k_{1}}$ is equal to
A. $\frac{E_{a}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
B. $\frac{E_{a}}{2.303 R}\left[\frac{T_{1} T_{2}}{T_{2}-T_{1}}\right]$
C. $\frac{E_{a}}{2.303 R}\left[\frac{T_{2}+T_{1}}{T_{1} T_{2}}\right]$
D. $\frac{E_{a}}{2.303 R}\left[\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right]$

## Answer: A

## D View Text Solution

40. A graph plotted between $\log \mathrm{k}$ vs $\frac{1}{T}$ is represented by
a. $\log _{1 / T \longrightarrow}^{\text {C }}$
A.
B.

C. $\log k$ (
D. $\log k \underbrace{\text { d }}_{1 / T \longrightarrow}$

## Answer: C

## - Watch Video Solution

41. Rate of a reaction can be expressed by Arrhenius equation as:
$k=A e^{-E_{a} / R T}$
In this equation, $E_{a}$ represents:
A. the total energy of the reacting molecules at a temperature $T$
B. the energy above which all the colliding molecules will react
C. the energy below which colliding molecules will not react
D. the fraction of molecules with energy greater than the activation energy of the reaction

## Answer: C

## - Watch Video Solution

42. Compounds $A$ and $B$ react according to the following chemical equation :

$$
A(g)+2 B(g) \rightarrow 2 C(g)
$$

Concentration of either A or B were changed keeping the concentrations of one of the reactant constants and rates were measured as a function of initial concentration, Following results were obtained.


Choose the correct option for the rate equations for this reaction.
A. Rate $=k[A]^{2}[B]$
B. Rate $=k[A][B]^{2}$
C. Rate $=k[A][B]$
D. Rate $=k[A]^{2}[B]^{0}$

## Answer: B

## - View Text Solution

43. For a chemical reaction $2 X+Y \rightarrow Z$, the rate of appearance of $Z$ is $0.05 \mathrm{~mol} L^{-1}$. The rate of disappearance of X will be
A. $0.05 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$
B. $0.05 \mathrm{~mol} L^{-1} h^{-1}$
C. $0.1 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$
D. $0.25 \mathrm{~mol} L^{-1} \mathrm{~min}^{-1}$

## Answer: C

## D Watch Video Solution

44. A gaseous $A_{2}(g) \rightarrow B(g)+\frac{1}{2} C(g)$, shows increase in pressure from 100 mm to 120 mm in 5 min . The rate of disappearance of $A_{2}$ is
A. $4 \mathrm{~mm} \mathrm{~min}^{-1}$
B. $8 \mathrm{~mm} \mathrm{~min}^{-1}$
C. $16 \mathrm{~mm} \mathrm{~min}^{-1}$
D. $2 \mathrm{~mm} \mathrm{~min}^{-1}$

## Answer: B

45. For the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{4} \Leftrightarrow 4 \mathrm{NO}_{2}$, given that
$\frac{-d\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}{d t}=K$ and $\frac{d\left[N O_{2}\right]}{d t}=K$, then
A. $K=2 K$
B. $K^{\prime}=K$
C. $2 \mathrm{~K}^{\prime}=\mathrm{K}$
D. None of these

## Answer: A

## Watch Video Solution

46. The rate constant of a first order reaction is $2.0 \times 10^{-5} s^{-1}$ and the initial concentration is $0.10 \mathrm{~mol} L^{-1}$. The initial rate is
A. $2.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L} L^{-1} s^{-1}$
B. $1.0 \times 10^{-6} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}$
C. $1.5 \times 10^{-6} \mathrm{~mol} L^{-1} s^{-1}$
D. $0.5 \times 10^{-6} \mathrm{~mol} L^{-1} s^{-1}$

## Answer: A

## - Watch Video Solution

47. The chemical reaction $2 \mathrm{O}_{3} \xrightarrow{k_{1}} 3 \mathrm{O}_{2}$ proceeds as follows:
$O_{3} \stackrel{k_{\text {eq }}}{\Longleftrightarrow} O_{2}+O$ (fast)
$\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k} 2 \mathrm{O}_{2}$ (slow)
What should be the rate law expresison ?
A. $r=k^{\prime}\left[O_{3}\right]^{2}$
B. $r=k^{\prime}\left[O_{3}\right]^{2}\left[O_{2}\right]^{-1}$
C. $r=k^{\prime}\left[O_{3}\right]\left[O_{2}\right]$
D. Unpredictable

## Answer: B

48. The rate for the decomposition of $\mathrm{NH}_{3}$ on platinum surface is zero order. What are the rate of production of $N_{2}$ and $H_{2}$ if $K=2.5 \times 10^{-4}$ mollitre $^{-1} s^{-1}$ ?
A.
$1.25 \times 10^{-4}$ and mol $L^{-1} s^{-1}$ and $3.75 \times 10^{-4}$ and mol $L^{-1} s^{-}$
B.
$3.75 \times 10^{-4}$ and mol $L^{-1} s^{-1}$ and $1.25 \times 10^{-4}$ and mol $L^{-1} s^{-}$
C.
$2.5 \times 10^{-4}$ and mol $L^{-1} s^{-1}$ and $3.75 \times 10^{-4}$ and mol $L^{-1} s^{-1}$
D.
$1.25 \times 10^{-4}$ and mol $L^{-1} s^{-1}$ and $2.5 \times 10^{-4}$ and mol $L^{-1} s^{-1}$

## Answer: A

49. In a reversible reaction $2 N O_{2} \underset{k_{2}}{\stackrel{k_{1}}{\longrightarrow}} N_{2} O_{4}$, the rate of disappearance of $\mathrm{NO}_{2}$ is equal to
A. $\frac{2 k_{1}}{k_{2}}\left[N O_{2}\right]^{2}$
B. $2 k_{1}\left[N O_{2}\right]^{2}-2 k_{2}\left[N_{2} O_{4}\right]$
C. $2 k_{1}\left[N O_{2}\right]^{2}-k_{2}\left[N_{2} O_{4}\right]$
D. $\left(2 k_{1}-k_{2}\right)\left[N O_{2}\right]$

## Answer: B

## - Watch Video Solution

50. For the reaction $R \rightarrow P$, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 min . Calculate the average rate of reaction using units of time in seconds.
A. $6.66 \times 10^{-5} \mathrm{Ms}^{-1}$
B. $6.6 \times 10^{-6} \mathrm{Ms}^{-1}$
C. $5.67 \times 10^{-5} \mathrm{Ms}^{-1}$
D. $7.26 \times 10^{-6} \mathrm{Ms}^{-1}$

## Answer: B

## - View Text Solution

51. Rate law for the reaction $A+2 B \rightarrow C$, is found to be Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]$. If the concentration of reactant $B$ is doubled keeping the concentration of A constant, the value of rate constant will be
A. the same
B. doubled
C. quadrupled
D. halved

## Answer: B

52. For the reaction $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$, the rate law expression is, $r=k\left[H_{2}\right]^{n}$. When the concentration of $H_{2}$ is doubled, the rate of reaction found to be quadrupled. The value of $n$ is
A. 0
B. 1
C. 2
D. 3

## Answer: C

## - Watch Video Solution

53. Consider the following reaction,
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}, \frac{d\left[\mathrm{NO}_{2}\right]}{d t}=k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$,
$\frac{d\left[O_{2}\right]}{d t}=k_{3}\left[N_{2} O_{5}\right]$ and $\frac{d}{d t}\left[N_{2} O_{5}\right]=k_{1}$
The relation between $k_{1}, k_{2}$ and $k_{3}$ is
A. $k_{1}=k_{2}=k_{3}$
B. $2 k_{1}=k_{2}=4 k_{3}$
C. $2 k_{1}=4 k_{2}=k_{3}$
D. None of these

## Answer: B

## - Watch Video Solution

54. The rate of formation of $\mathrm{SO}_{3}$ in the following reaction is $100 \mathrm{~g} \min ^{-1} .2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$

The rate of disappearance of $O_{2}$ is
A. $29 \mathrm{~g} \mathrm{~min}^{-1}$
B. $20 \mathrm{~g} \mathrm{~min}^{-1}$
C. $50 \mathrm{~g} \mathrm{~min}^{-1}$
D. $200 \mathrm{~g} \mathrm{~min}^{-1}$

## Answer: B

## ( Watch Video Solution

55. Consider the following reaction,
$2 A+B+C \rightarrow$ Products

How will the rate of reaction changes when the concentration of $A$ is doubled and that of $B$ is triplet while $C$ is taken in excess ?
A. The rate reduces 8 times of its original value
B. The rate reduces 12 times of its original value
C. The rate increases 8 times of its original value
D. The rate increases 12 times of its original value

## Answer: D

56. In the reaction $2 A \rightarrow$ Products, the concentration of A Calculate from $1.0 \mathrm{~mol} L^{-1}$ to $0.8 \mathrm{~mol} L^{-1}$ in 20 min . Calculate the rate during this interval.
A. $0.5 \mathrm{~mol} L^{-1} \min ^{-1}$
B. $0.005 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$
C. $0.05 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$
D. $0.0005 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$

## Answer: B

## - Watch Video Solution

57. The unit of the rate constant of $n$th order is
A. $\operatorname{mol}^{1-n} L^{n-1} s^{-1}$
B. $\mathrm{mol}^{n-1} L^{1-n} s^{-1}$
C. $\operatorname{mol}^{n-1} L^{n-1} s$
D. $\operatorname{mol}^{n} L^{1-n} s^{-1}$

## Answer: A

## - Watch Video Solution

58. In the presence of acid, the initial concentration of cane sugar was reduced from 0.2 M to 0.1 M in 5 h and to 0.05 M in 10 h . The reaction must be of
A. zero order
B. first order
C. second order
D. fractional order

## Answer: B

## - Watch Video Solution

59. The rate constant of a reaction is $3.25 \times 10^{-3} \mathrm{~mol}^{-2} L^{2} \mathrm{~min}^{-1}$. The order of raction is
A. zero
B. 1
C. 2
D. 3

## Answer: D

## - Watch Video Solution

60. The half-life period of a first order process is 1.6 min . It will be $90 \%$ completed in
A. 0.8 min
B. 3.2 min
C. 5.3 min
D. 1.6 min

## Answer: C

## - Watch Video Solution

61. The hydrolysis of ester in alkaline medium is a
A. first order reaction with molecularity 1
B. second order reaction with molecularity 2
C. first order reaction with molecularity 2
D. second order reaction with molecularity 1

## Answer: B

## - Watch Video Solution

62. The rate constant for a first order reaction whose half life is 480 sec , is
A. $1.44 \times 10^{-3} s^{-1}$
B. $1.44 s^{-1}$
C. $0.72 \times 10^{-3} s^{-1}$
D. $2.88 \times 10^{-3} s^{-1}$

## Answer: A

## - Watch Video Solution

63. In accordance to Arrhenius equation, the plot of $\log \mathrm{k}$ against $\frac{1}{T}$ is a straight line. The slope of the line is equal to
A. $\frac{-E_{a}}{R}$
B. $\frac{-2.303}{E_{a} . R}$
C. $\frac{-E_{a}}{2.303 R}$
D. $\frac{-E_{a}}{2.303}$

## Answer: C

## - Watch Video Solution

64. For the first order reaction, $k=5.48 \times 10^{-4} s^{-1}$, the two-third life time for this reaction is
A. 2005 s
B. 1000 s
C. 2000 s
D. 3005 s

## Answer: A

## - Watch Video Solution

65. The rate constant for a zero order reaction is
A. $k=\frac{C_{0}}{2 t}$
B. $k=\frac{C_{0}-C_{t}}{t}$
C. $k=\ln . \frac{C_{0}-C_{t}}{t}$
D. $k=\frac{C_{0}}{C_{t}}$

## Answer: B

## - Watch Video Solution

66. The time required for $100 \%$ completion of a zero order reaction is
A. ak
B. $\frac{a}{2 k}$
C. $\frac{a}{k}$
D. $\frac{2 k}{a}$

## Answer: C

## - Watch Video Solution

67. Pieces of wood burn faster than a log of wood of the same mass because
A. surface area of log of wood is larger and needs more time to burn
B. pieces of wood have larger surface area
C. all pieces of wood catch fire at the same time
D. log of wood has higher density than pieces of the same wood

## Answer: B

## D View Text Solution

68. What is the order of a reaction which has a rate expression, i.e. rate = $k[A]^{3 / 2}[B]^{-1} ?$
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. Zero
D. None of these

## Answer: B

## - Watch Video Solution

69. If initial concentration is doubled, the time for half-reaction is also doubled, the order of reaction is
A. zero
B. first
C. second
D. third
70. If the graph of concentration of [A] vs $T$ for completion of reaction is a straight line, then the order of reaction is
A. zero
B. second
C. first
D. third

## Answer: A

## D Watch Video Solution

71. For a reaction, temperature increases by $10^{\circ} \mathrm{C}$, the equilibrium will be attained faster
A. 2 times
B. same
C. $\frac{1}{2}$ same
D. 4 times

## Answer: A

## - View Text Solution

72.75\% of a first order reaction was completed in 32 min . When was $50 \%$ of the reaction completed?
A. 16 min
B. 24 min
C. 8 min
D. 4 min

## Answer: A

73. The rate of a reaction becomes 4 times when temperature is raised from 293 K to 313 K . The activation energy for such reaction would be
A. $50.855 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $52.849 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $54.855 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $56.855 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Answer: B

## - Watch Video Solution

74. Half-life of a hypothetical reaction is found to be inversely proportional to the cube of initial concentration. The order of reaction is
A. 4
B. 3
C. 5
D. 2

## Answer: A

## - Watch Video Solution

75. $\mathrm{H}_{2} \mathrm{O}$ and O -atom react in upper atmosphere bimolecularly to form two OH radicals. $\Delta H$ for the reaction is 72 kJ at 500 K and energy of activation is $77 \mathrm{~kJ} \mathrm{~mol}^{-1}$. $E_{a}$ for bimolecular recombination of two OH radicals to form $\mathrm{H}_{2} \mathrm{O}$ and O -atom, will be
A. $5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $72 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $77 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $149 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Answer: A

76. Calculate the half life of the first-order reaction:
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
The initial pressure of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g})$ is 80 mm and the total pressure at the end of 20 min is 120 mm .
A. 40 min
B. 120 min
C. 20 min
D. 80 min

## Answer: C

## - Watch Video Solution

77. The half-lives for two samples are 0.1 and 0.8 s whose concentrations are 400 and $50 \mathrm{~mol} L^{-1}$ respectively. The order of the reaction is
A. 0
B. 1
C. 2
D. 3

## Answer: C

## - Watch Video Solution

78. The rate constant for the first order reaction is $60 s^{-1}$. How much time will it take to reduce the concentration of the reactant to $1 / 16 t h$ value ?
A. $4.6 \times 10^{4} s$
B. $4.6 \times 10^{-4} s$
C. $4.6 \times 10^{-2} s$
D. $4.6 \times 10^{2} s$

## Answer: C

79. The half-time of the following first order decomposition of nitramide is 2.1 h at $15^{\circ} \mathrm{C}$ :
$\mathrm{NH}_{2} \mathrm{NO}_{2}(a q) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
If 6.2 g of nitramide is allowed to decompose then time taken for it to decompose $99 \%$, will be
A. 2.1 h
B. 12 h
C. 13.96 h
D. 33 h

## Answer: C

## - Watch Video Solution

80. A first order reaction is found to have a rate constant, $k=4.2 \times 10^{-12} s^{-1}$. Find the half-life of the reaction.
A. $1.26 \times 10^{13} s$
B. $1.65 \times 10^{11} s$
C. $1.65 \times 10^{-11} s$
D. $1.26 \times 10^{-13} s$

## Answer: B

## - Watch Video Solution

81. The value of $\log \frac{k_{2}}{k_{1}}$ is equal to
A. $\frac{E_{a}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
B. $\frac{E_{a}}{2.303 R}\left[\frac{T_{1} T_{2}}{T_{2}-T_{1}}\right]$
C. $\frac{E_{a}}{2.303 R}\left[\frac{T_{2}+T_{1}}{T_{1} T_{2}}\right]$
D. $\frac{E_{a}}{2.303 R}\left[\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right]$

## D View Text Solution

82. A graph plotted between $\log k$ versus $1 / T$ for calculating activation energy is shown by

B.
b.

C.

D.


## Answer: C

## (D) Watch Video Solution

83. Rate of a reaction can be expressed by Arrhenlus equation, $k=A e^{-E_{a} / R T}$. Here, E is
A. the total energy of the reacting molecules at a temperature $T$
B. the energy above which all the colliding molecules will react
C. the energy below which colliding molecules will not react
D. the fraction of molecules with energy greater than the activation energy of the reaction

## Answer: C

## - View Text Solution

84. Compounds A and B react according to the following chemical equation:
$A(g)+2 B(g) \rightarrow 2 C(g)$

Concentration of either A or B were changed keeping the concentrations of one of the reactant constants and rates were measured as a function of initial concentration, Following results were obtained.

| Experiment | Inital <br> concentration <br> of $[A] /$ mol $\mathrm{L}^{-1}$ | Initial <br> concentration <br> of $[B] / \mathrm{mal}^{-1}$ | Initial rate of <br> (ormation of <br> $[\mathrm{C}] / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 .}$ | 0.30 | 0.30 | 0.10 |
| 2. | 0.30 | 0.60 | 0.40 |
| $\mathbf{3 .}$ | 0.60 | 0.30 | 0.20 |

Choose the correct option for the rate equations for this reaction.
A. Rate $=k[A]^{2}[B]$
B. Rate $=k[A][B]^{2}$
C. Rate $=k[A][B]$
D. Rate $=k[A]^{2}[B]^{0}$

## Answer: B

## - View Text Solution

1. Following is the graph between $\log T_{50}$ and $\log a(a=$ initial concentration) for a given reaction at $27^{\circ} \mathrm{C}$.


Hence, order is
A. 1
B. 2
C. 3
D. 0

## - Watch Video Solution

2. Choose the law that corresponds to data shown for the reaction, $A+B \rightarrow$ products.

| Experiment | $[A]$ | $[B]$ | Initial rate |
| :---: | :---: | :---: | :---: |
| 1 | 0.012 | 0.035 | 0.1 |
| 2 | 0.024 | 0.070 | 0.8 |
| 3 | 0.024 | 0.035 | 0.1 |
| 4 | 0.012 | 0.070 | 0.8 |

A. Rate $=k[B]^{3}$
B. Rate $=k[B]^{4}$
C. Rate $=k[A][B]^{3}$
D. Rate $=k[A]^{3}[B]$

## Answer: A

3. A reaction takes place in three steps. The rate constant are $k_{1}, k_{2}$ and $k_{3}$. The overall rate constant $k=\frac{k_{1} k_{3}}{k_{2}}$. If $E_{1}, E_{2}$ and $E_{3}$ (energy of activation) are 60,30 and 10 kJ , respectively, the overall energy. Of activation is
A. 40 kJ
B. 30 kJ
C. 400 kJ
D. 300 kJ

## Answer: A

## - Watch Video Solution

4. Consider the following reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \Leftrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$.

If rate and rate constant for above reaction are $2.40 \times 10^{-5} \mathrm{~mol} L^{-1} s^{-1}$ and $3 \times 10^{-5} s^{-1}$ respectively, then calculate the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$.
A. $1.4 \mathrm{~mol} L^{-1}$
B. $1.2 \mathrm{~mol} L^{-1}$
C. $0.04 \mathrm{~mol} L^{-1}$
D. $0.8 \mathrm{~mol} L^{-1}$

## Answer: D

## - Watch Video Solution

5. For a given reaction, $t_{1 / 2}=1 / k a$. The order of this reaction is
A. 0
B. 1
C. 2
D. 3

## Answer: C

## - Watch Video Solution

6. The time taken for $90 \%$ of a first order reaction to be completed is approximately
A. 1.1 times that of half-life
B. 2.2 times that of half-life
C. 3.3 times that of half-life
D. 4.4 times that of half-life

## Answer: C

## - Watch Video Solution

7. What is the energy of activation of a reaction is its rate doubles when the temperature is raised from 290 K to 300 K ?
A. 12 kcal
B. 15 kcal
C. 10 kcal
D. 20 kcal

## Answer: A

## - Watch Video Solution

8. The active mass of solid is generally taken as
A. $>1$
B. $=1$
C. $<1$
D. 0

## Answer: B

9. Following is the graph between $\log T_{50}$ and $\log a$ ( $a=$ initial concentration) for a given reaction at $27^{\circ} \mathrm{C}$. Hence order is

A. 1
B. 2
C. 3
D. 0
10. Select the law that corresponds to data shown for the following reaction $A+B \rightarrow$ Products

| $\operatorname{Exp}$ | $[A]$ | $[B]$ | Initial rate |
| :--- | :--- | :--- | :--- |
| 1 | 0.012 | 0.035 | 0.1 |
| 2 | 0.024 | 0.070 | 0.8 |
| 3 | 0.024 | 0.035 | 0.1 |
| 4 | 0.012 | 0.070 | 0.8 |

A. Rate $=k[B]^{3}$
B. Rate $=k[B]^{4}$
C. Rate $=k[A][B]^{3}$
D. Rate $=k[A]^{3}[B]$

## Answer: A

## - Watch Video Solution

11. A reaction takes place in three steps. The rate constant are $k_{1}, k_{2}$ and $k_{3}$. The overall rate constant $k=\frac{k_{1} k_{3}}{k_{2}}$. If $E_{1}, E_{2}$ and $E_{3}$ (energy of activation) are 60,30 and 10 kJ , respectively, the overall energy. Of activation is
A. 40 kJ
B. 30 kJ
C. 400 kJ
D. 300 kJ

## Answer: A

## - Watch Video Solution

12. Consider the following reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \Leftrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$.
If rate and rate constant for above reaction are $2.40 \times 10^{-5} \mathrm{~mol} L^{-1} s^{-1}$ and $3 \times 10^{-5} s^{-1}$ respectively, then calculate the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$.
A. $1.4 \mathrm{~mol} L^{-1}$
B. $1.2 \mathrm{~mol} L^{-1}$
C. $0.04 \mathrm{~mol} L^{-1}$
D. $0.8 \mathrm{~mol} L^{-1}$

## Answer: D

## - Watch Video Solution

13. For a given reaction, $t_{1 / 2}=1 / k a$. The order of this reaction is
A. 0
B. 1
C. 2
D. 3

## Answer: C

14. The time taken for $90 \%$ of a first order reaction to be completed is approximately
A. 1.1 times that of half-life
B. 2.2 times that of half-life
C. 3.3 times that of half-life
D. 4.4 times that of half-life

## Answer: C

## - Watch Video Solution

15. What is the energy of activation of a reaction is its rate doubles when the temperature is raised from 290 K to 300 K ?
A. 12 kcal
B. 15 kcal
C. 10 kcal
D. 20 kcal

## Answer: A

## - Watch Video Solution

16. The active mass of solid is generally taken as
A. $>1$
B. $=1$
C. $<1$
D. 0

## Answer: B

## - Watch Video Solution

