©゙doubtnut India's Number 1 Education App

CHEMISTRY

BOOKS - BITSAT GUIDE

CHEMICAL THERMODYNAMICS

Eexercise

1. themodynamic is not concerned about \qquad
A. energy changes invoived in a chemical reaction
B. the extent to which a chemical reaction proceeds
C. the rate at which a reaction proceeds
D. the feasibllilty of a chemical reaction

Answer: c

2. what is ΔE for a system that does 500 cal of work pm surrounding and 300 cal of heat is adsorbed by the system ?
A. $-200 c a l$
B. -300 cal
C. +200 cal
D. +300 cal

Answer: a

D View Text Solution

3. flying bird is an example of
A. closed system
B. open system
C. isolated system
D. microscopic system

Answer: b

- View Text Solution

4. for an adiabatic process, which of the following is correct ?
A. $P \Delta V=0$
B. $q=+W$
C. $\Delta q=0$
D. $\Delta E=q$

Answer: c

5. A gas expands , isthemally and reversiby.the work done by the gas is
A. zero
B. maximum
C. minimum
D. cannot be determined

Answer: b

- View Text Solution

6. which of the following statement is correct ?
A. the presence of reacting species in a covered beaker is an example of open system
B. there is an exchange of energy as well as matter between the system and the surrounding in a closed system
C. the presence of reactants in a closed vessel made up of copper is an example of a closed system
D. the presence of reactants in a thermos flask or any other closed insulated vessel is an example of a closed system

Answer: c

- View Text Solution

7. 1 mole of CO_{2} gas at 300 K is expanded under adiabatic conditions such that its volume becomes 27 times. What is work done ? ($\gamma=1.33$ and $C_{v}=6 \mathrm{calmol}^{-1} f$ or $\left.\mathrm{CO}_{2}\right)$
A. 900 cal
B. 1000 cal
C. 1200 cal
D. 1400 cal

Answer: c

- View Text Solution

8. the heat of combustion of benzene determined in a bomb calorimeter is $-870 \mathrm{kcalmol}^{-1} a t 298 \mathrm{~K}$. The value of δE for reaction is
A. $-1740 \mathrm{kcalmol}^{-1}$
B. $+870 \mathrm{kcalmol}^{-1}$
C. $-32.64 \mathrm{kcalmol}^{-1}$
D. $+1740 \mathrm{kcalmol}^{-1}$

Answer: c

D View Text Solution

9. Enthalpy of combustion of $C_{6} H_{6}(l)$ is $-3264.64 \mathrm{kj} / \mathrm{mol}$. The heat produced by burning 3.9 g of benzene is
A. $-163.23 k J$
B. 326.4 kJ
C. 32.64 kJ
D. $-3.254 k J$

Answer: a

- View Text Solution

10. A molecule with highest bond energy is
A. $B r_{4}$
B. F_{2}
C. $c l_{2}$
D. l_{2}

Answer: c

11. for the reaction $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
A. $\Delta H>\Delta E$
B. $\Delta H<\Delta E$
C. $\Delta H=\Delta E$
D. none of these

Answer: c

- View Text Solution

12.

Given
that
$\Delta H_{\text {comb }}$ ofC $(s), H_{2}(g)$ and $C H_{4}(g)$ are $,-394,-294$ and $-829 k J / m o$
respectively. The heat of formation fo CH_{4} is
A. $70 \mathrm{~kJ} / \mathrm{mol}$
B. $-71.8 \mathrm{~kJ} / \mathrm{mol}$
C. $-244 \mathrm{~kJ} / \mathrm{mol}$
D. $-748 \mathrm{~kJ} / \mathrm{mol}$

Answer: a

- View Text Solution

13. for which of the following reactions ΔH is less than ΔE ?
A. $\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
B. $\mathrm{H}_{2}(\mathrm{~g})+l_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Hl}(\mathrm{g})$
C. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Answer: d
14. Enthalpy change , when 1 g water is frozen at $0(\circ) C$ is ($\Delta H_{\text {fus }}=1.435 \mathrm{kcalmol}^{-1}$)
A. 0.0797 kcal
B. -0.0797 kcal
C. 1.435 kcal
D. -1.435 kcal

Answer: b

- View Text Solution

15. $\mathrm{S}_{\text {rhombic }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}), \Delta H=-297.5 \mathrm{kcal}$
$S_{\text {monoclinic }}+O_{2}(g) \rightarrow \mathrm{SO}_{2}(g), \Delta H=-300 k J$
A. rhombic sulphur is yellow in color
B. monoclinic sulphur has metallic lustre
C. monoclinic sulphur is more stable
D. $\Delta H_{\text {translition }} o f S_{R} o f S_{M}$ is endothermic

Answer: d

- View Text Solution

16. when ammonium chloride is dissoved in water, the sloution becomes cold. The change is
A. endothermic
B. exothermic
C. supercooling
D. none of these

Answer: a

- View Text Solution

17. if a refrigerator's door is kept opend, then we get a
A. room cooled
B. room heated
C. more heat is passed out
D. no effect on room

Answer: b

- View Text Solution

18. internal energy and pressure of a gas of unit valume are related as
A. $P=\frac{2}{3} E$
B. $P=\frac{E}{2}$
C. $P=\frac{3}{2} E$
D. $P=2 E$

Answer: a

- View Text Solution

19. latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is 10 $.0 \mathrm{kcal} / \mathrm{mol}$. What will be the change in internal energy (ΔE) of 3 moles of liquid at same temperature?
A. 30 kcal
B. $-54 k c a l$
C. 27.0 kcal
D. 50 kcal

Answer: c

20. water is brought to boil under a pressure of 1.0 atm . When an electric current of 0.50 A from 12 V supply is passed for 300 s through a resistance in thermal contact with it , it found that 0.798 g of water is vaporised. Calculate the molar internal energy change at boiling point (375.15 K).
A. $37.5 \mathrm{kJmol}^{-1}$
B. $3.75 \mathrm{kJmol}^{-1}$
C. $42.6 \mathrm{kJmol}^{-1}$
D. $4.26 \mathrm{kJmol}^{-1}$

Answer: a

- View Text Solution

21. Enthalpuy of solution of $\mathrm{NaOH}(\mathrm{s})$ in water is $-41.6 \mathrm{KJmol}^{-1}$. when NaOH is dissolved in water, the temperature of water
A. increases
B. decreases
C. does not change
D. fluctuates indefinitely

Answer: a

- View Text Solution

22. the heat of combustion of carbon to $\mathrm{CO}_{2} i s-393.5 \mathrm{~kJ} / \mathrm{mol}$. The heat released upon formation of 35.2 g of CO_{2} from carbon and oxygen gas is
A. $+315 k J$
B. $-31.5 k J$
C. $-315 k J$
D. $+31.5 K J$

Answer: c

- View Text Solution

23. if the heat of neutralisation for a strong acid- base reaction is $-57.1 k J$, would be the heat released when $350 \mathrm{~cm}^{3} o f 0.20 \mathrm{M}$ ofa dibasic strong acid is mixed with ${ }^{`} 650 \mathrm{~cm}^{\wedge}(3)$ of 0.10 M monoacidic base ?
A. 57.1 kJ
B. 3.71 kJ
C. $-57.1 k J$
D. 0.317 kJ

Answer: b
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{at} 250^{\circ}$ and 1 atm pressure be 52 , 394 and $-286 \mathrm{kJmol}^{-1}$ respectively,the enthalpy of combustion of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ will be
A. $1412 \mathrm{kJmol}^{-1}$
B. $-1412 \mathrm{kJmol}^{-1}$
C. $+141.2 \mathrm{kJmol}^{-1}$
D. $-141.2 \mathrm{kJmol}^{-1}$

Answer: b

- View Text Solution

25. the bond dissociation energies of gasseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104
.58 and 103 kcal respectively. The enthaply of formation of HCl gas would be
A. $-44 k c a l$
B. 44 kcal
C. $-22 k \mathrm{kal}$
D. 22 kcal

Answer: c

- View Text Solution

26.

the
$\Delta H_{t}^{\circ} f$ or $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are $-393.5,-110.5$ and -241. respectively, the standed enthalpy change (in kJ) for the reaction $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is
A. 524.1
B. 41.2
C. -262.5
D. -412

- View Text Solution

27. heat of formation of
$\mathrm{H}_{2} \mathrm{Ois}-188 \mathrm{~kJ} / \mathrm{mol}$ and $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{is}-286 \mathrm{~kJ} / \mathrm{mol}$. The enthaply change
for the reaction
$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ is
A. 196 kJ
B. -196 kJ
C. 984 kJ
D. $-984 k j$

Answer: a

28. the enthalpy of dissolution
$\mathrm{BaCl}_{2}(\mathrm{~s})$ and $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ are -20.6 and $8.8 \mathrm{~kJ} / \mathrm{mol}$ respectively. The enthalpy of hydration for
$\mathrm{BaCl}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(s)$ is
A. 29.4 kJ
B. $-29.4 k J$
C. -11.8 kJ
D. 38.2 kJ

Answer: b

- View Text Solution

29. $\Delta_{f} U^{-}$of formation of $\mathrm{CH}_{4}(g)$ at certain temperature is $-393 \mathrm{kJmol}^{-1}$. The value of $\Delta_{f} H^{-}$
A. zero
B. $<\Delta_{f} U^{-}$
C. $>\Delta_{f} U^{-}$
D. equal to $\Delta_{f} U^{-}$

Answer: b

- View Text Solution

30. find the entropy change when 2 moles of ideal gas at $27^{\circ} \mathrm{C}$ temperature is expanded reversiby from 2 L to 20 L .
A. 92.1
B. 0
C. 4
D. 9.2

Answer: d

31. when a gas expands from 1. 5 L to 6.5 L againt a constant pressure of 0.50 atm and during process, the gas also absorbs 100 J of heat. The change in internal energy is
A. 153.3 J
B. 353.3 J
C. $-153.3 J$
D. $-353.3 J$

Answer: c

- View Text Solution

32. the reaction between cyanamide $\mathrm{NH}_{2} \mathrm{CH}(s)$ and oxygen was allowed to complete and $\Delta U a t 300 \mathrm{~K}$ was observed to be $-743 \mathrm{kJmol}^{-1}$. The value of ΔH at 300 K for the combustion reaction
$\mathrm{NH}_{2} \mathrm{CN}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$ would be
A. $-741.75 \mathrm{kJmol}^{-1}$
B. $-743 \mathrm{KJmol}^{-1}$
C. $-744.25 \mathrm{kJmol}^{-1}$
D. $-740.5 \mathrm{kJmol}^{-1}$

Answer: a

- View Text Solution

33. the following data (s) are given as the standed enthalpies of combustion of $C(s), H_{2}(g)$ and $C H_{4}(g)$ and $-393.5 \mathrm{kJmol}^{-1} 285.8 \mathrm{kJmol}^{-1}$ and -89 respectively at 298 K . The standed enthalpy of fromation of methation of methane $\left[\mathrm{CH}_{4}(\mathrm{~g})\right]$ is
A. $+724.42 \mathrm{kJmol}^{-1}$
B. $+74.7 \mathrm{kJmol}^{-1}$
C. $-114.82 \mathrm{kJmol}^{-1}$
D. $-194.62 \mathrm{kJmol}^{-1}$

Answer: b

- View Text Solution

34. if for a given substance, melting point is T_{B} and freezing point is T_{A} then correct variation of entropy by graph between entropy change and temperature is
A.
B.
c.
D.

Answer: a

- View Text Solution

35. mark out the enthalpy for the formation of carbon. Monoxide (CO) given, $C(s)=\frac{1}{2} O_{2}(g) \rightarrow C O(g), \Delta H=-393.3 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-282 \mathrm{~kJ} / \mathrm{mol}$
A. $110.5 \mathrm{~kJ} / \mathrm{mol}$
B. $676.1 \mathrm{~kJ} / \mathrm{mol}$
C. $282.8 \mathrm{~kJ} / \mathrm{mol}$
D. $300.0 \mathrm{~kJ} / \mathrm{mol}$

Answer: a

- View Text Solution

36. in the reaction,$N a(s) \rightarrow N a(g)$
the enthalpy of atomsiation is same as the
A. enthalpy of dissociation
B. enthalpy os sublimation
C. enthaply of association
D. ethalpy of vaporisation

Answer: b

- View Text Solution

37. calcaulate the bond enthalpy of $\mathrm{Xe}-\mathrm{F}$ bond as given in the equation,
$X e F_{4}(g) \rightarrow X e^{+}(g)+F^{-}(g)+f_{2}(g)+F(g)$
$\Delta_{r} H=292 k^{c a l m o l}{ }^{-1}$
lonisation energy of $X e=279 \mathrm{kcalmol}^{-1}$
bond energy $(F-F)=38 \mathrm{kcal} / \mathrm{mol}$
Electronaffinity of $\mathrm{F}=85 \mathrm{kcal} / \mathrm{mol}$
A. $8.5 \mathrm{kcal} / \mathrm{mol}$
B. $34 \mathrm{kcal} / \mathrm{mol}$
C. $24 \mathrm{kcal} / \mathrm{mol}$
D. none of these

- View Text Solution

38. calculateth resonance energy of $\mathrm{N}_{2} \mathrm{O}$
$\Delta_{f} \mathrm{H}^{-}$of $\mathrm{N}_{2} \mathrm{O}=82 \mathrm{kJmol}^{-1}$
bond energy of $\mathrm{N}=\mathrm{O}=607 \mathrm{kJmol}^{-1}$
bond energy of $\mathrm{O}=\mathrm{O}=498 \mathrm{kJmol}^{-1}$
nond energy of $\mathrm{N}=\mathrm{N}=418 \mathrm{kJmol}^{-1}$
bond energy of $\mathrm{N}=\mathrm{N}=946 \mathrm{kJmol}^{-1}$
A. $82 \mathrm{kJmol}^{-1}$
B. $-88 \mathrm{kJmol}^{-1}$
C. $-82 \mathrm{kJmol}^{-1}$
D. $+88 \mathrm{kJmol}^{-1}$

Answer: b

39. use the following data to calculate
$\Delta_{\text {lattice }} H^{\circ} f$ or $N a B r . \Delta(\mathrm{sub}) H^{-}$fpr sodium metal $=108.4 \mathrm{kJmol}^{-1}$ lonisation enthaply of sodium $=496 \mathrm{kJmol}^{-1}$ Itbr gt Electron gain enthalpy of bromine $=325 \mathrm{kJmol}^{-1}$ bond dissociation enthalpy of bromine $=192 \mathrm{kJmol}^{-1}$
$\Delta_{t} H^{-} f$ or $\operatorname{NaBr}(s)=-360.1 \mathrm{kJmol}^{-1}$
A. $-735.5 \mathrm{kJmol}^{-1}$
B. $+735.5 \mathrm{kJmol}^{-1}$
C. $-789.89 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $+735.5 \mathrm{Jmol}^{-1}$

Answer: b

- View Text Solution

40. find out the standard free energy change at $60^{\circ} \mathrm{C}$ and at 1 atn if the $\mathrm{N}_{2} \mathrm{O}_{4}$ is 50% dissociated
A. $-800.0 \mathrm{kJmol}^{-1}$
B. $+800.0 \mathrm{kJmol}^{-1}$
C. $789.89 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $+789.98 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: c

- View Text Solution

41. moles of an ideal gas expand isothermallty anad reversibly from pressure of 5 atm to 1 atm at 300 K . Calculate the largest mass than can be lifted through a height of 1 M by this expansion.
A. 4092.76 kg
B. 8730.9368 kg
C. 4492.76 kg
D. 8170.2344 kg

Answer: d

- View Text Solution

42. At $27^{\circ} \mathrm{C}$, one mole of an ideal gas is compressed isothermallty and reversiblty and reversibly from a pressure of 2 atm to 10 atm . The value of ΔE and q are ($\mathrm{R}=2 \mathrm{cal}$)
A. -965.84 cal
B. $-965.84 \mathrm{cal},-865.58 \mathrm{cal}$
C. 865.58, - 865.58cal
D. $965.84 \mathrm{cal},+865.58 \mathrm{cal}$

Answer: a

43. the enthalpy of vasporisation of water is $186.5 \mathrm{~J} / \mathrm{mol}$.
the entropy of its vaporisation will be
A. $0.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. 1.0 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $1.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $2.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: a

D View Text Solution

44. the reaction which proceeds in the forwards direaction is
A. $\mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH}$
C. $\mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2}$
D. $2 \mathrm{Cul}+l_{2}+4 \mathrm{~K}^{+} \rightarrow 2 \mathrm{Cu}^{+}+4 \mathrm{Kl}$

Answer: d

- View Text Solution

45. Ammonium chloride,when dissolved in water, leads to a cooling sensation. The dissolution of ammonium chloridae at constant temperature is accompanied by q
A. increases in entropy
B. decreases in entropy
C. no change in entropy
D. no change in enthalpy

Answer: a

- View Text Solution

46. at $27^{\circ} C$ the reaction
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
proceeds spontaneously becouse of magnitude of
A. $\Delta H=T . \Delta S$
B. $\Delta H>T . \Delta S$
C. $\Delta G<T$. Delat S
D. $\Delta H>0$ and $T . \Delta S<0$

Answer: b

- View Text Solution

47. the sing of ΔG for the process of melting of ice at 273 K and 1 atm pressurme is
A. positive
B. negaitive
C. neither negative nor positive
D. either negative or positive

Answer: c

- View Text Solution

48. the intial state A has the temperature $T_{A} U_{A}$ as the internal energy of the system. By appling the mechanical work. New state B is achieved with the temperatutre T_{B} and having the interanal energy U_{B}. Given that $t_{B}>T_{A}$. What is the correct expression for the change in internal energy $(\Delta V) ?$
A. $U_{B}=U_{A}$
B. $U_{B}-U_{A}$
C. $U_{A}-U_{B}$
D. none of these

- View Text Solution

49. when 1.8 g of steam at the normal boiling point of water is converted inot water ,at the same temperature, enthalpy and entropy changes respectively will be $\left[\right.$ given, $\Delta H_{\text {vap }} f$ or water $\left.=40.8 \mathrm{KJmol}^{-1}\right]$
A. $-8.12 k J, 11.89 \mathrm{Jk}^{-1}$
B. $10.25 \mathrm{~kJ}, 12.95 \mathrm{Jk}^{-1}$
C. $-4.08 \mathrm{~kJ},-10.93 \mathrm{JK}^{-1}$
D. $10.93 \mathrm{KJ},-4.08 \mathrm{JK}^{-1}$

Answer: c

- View Text Solution

50. what the heat of a reaction at constant pressure is -2.5×10^{3} cal and entropy change for the reaction is $7.4 \mathrm{caldeg}^{-1}$, it is predicted that
the reaction at $25^{\circ} \mathrm{C}$ is
A. reversible
B. spontaneous
C. non-spontaneous
D. irreversible

Answer: c

- View Text Solution

51. what will be the change of entropy $\Delta_{r} S^{\circ}$ at $298 K$ for the reaction in which urea is formed from NH_{3} and CO_{2} ?
$2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) \rightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
[given ,the standard entropy of $\mathrm{NH}_{2} \mathrm{CONH}_{2}(a q)$,
$\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{are} 174.0,213.7,192.3$ and $69.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively]
A. $200 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $-35.44 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $-354.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $425.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: a

- View Text Solution

52. for an isomerisation reaction $A \Leftrightarrow B$, the temperature dependence of equilibrium constant is given by $\log _{e} K=4.0-\frac{2000}{T}$.the value of ΔS° at 300 K is therefore,
A. 4 R
B. 5 R
C. 400 R
D. 2000 R
53. ΔG, in process of melting of ice at $-15^{\circ} C$, is
A. $\Delta G=-v e$
B. $\Delta G=+v e$
C. $\Delta G=0$
D. all of these

Answer: b

D View Text Solution

54. using following data
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})[373.15 \mathrm{~K}, 1 \mathrm{~atm}] \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})[373.15 \mathrm{~K}, 1 \mathrm{~atm}], \Delta \mathrm{S}_{1} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})[273.15 \mathrm{~K}$, predict which of the following is correct ?
A. $\Delta S_{1}=\Delta S_{2}$
B. $\Delta S_{1}>\Delta S_{2}$
C. $\Delta S_{1}<\Delta S_{2}$
D. ΔS_{1} may be greater or smaller than ΔS_{2}

Answer: c

- View Text Solution

55. on the basis of thermochemical equation a, b and c, find out which of the algebraic relationships given in option a, to d . Is correct ?
a. $\mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta_{c} \mathrm{H}=x \mathrm{kJmol}^{-1}$
b. C(graphite) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(g), \Delta_{c} H=\mathrm{ykJmol}^{-1}$
$\mathrm{Co}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta_{c} \mathrm{H}=z \mathrm{kJmol}^{-1}$
A. $z=x+y$
B. $x=y-z$
C. $x=y+z$
D. $y=2 z-x$

Answer: c

- View Text Solution

56. the heat of atomosaton pf $P_{4} H_{4}(g)$ and $\mathrm{PH}_{3}(g)$ are $355 \mathrm{kcal} / \mathrm{mol}$ and $228 \mathrm{kcal} / \mathrm{mol}$ respectively . The energy of $\mathrm{P}-\mathrm{-} \mathrm{P}$ bond is
A. $102 \mathrm{kcalmol}^{-1}$
B. $51 \mathrm{kcalmol}^{-1}$
C. $26 \mathrm{kcalmol}^{-1}$
D. $204 \mathrm{kcalmol}^{-1}$

Answer: b

- View Text Solution

57. in the given equation
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
the entropy change is $=-549.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 298 K
(Delta_rH $\left.\left.{ }^{\wedge}(-)=-1648 \times x 10^{\wedge}(3)\right) \mathrm{mol}^{\wedge}(-1)\right)^{\prime} \cdot$.the above reactions is
A. spontaneous
B. non-spontaneous
C. both (a) and (b)
D. none of these

Answer: a

D View Text Solution

58. find out the entroupy change in surroundings when 1 mole of $\mathrm{H}_{2} \mathrm{O}(l)$ is fromed under standard conditions $\Delta_{f} H^{-}=286 \mathrm{kJmol}^{-1}$
A. $959.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $286 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $-959.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $-286 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: a

- View Text Solution

Bitsat Archives

1. A swimmer coming out from a pool is covered with a film of water weighing about 18 g . calculte the internal energy of vaporisation at 100°, $\left[\Delta_{\text {vap }} H^{\circ} f\right.$ or waterat $\left.373 K=40.66 \mathrm{kJmol}^{-1}\right]$
A. $35.67 \mathrm{kJmol}^{-1}$
B. $35.67 \mathrm{kJmol}^{-1}$
C. $36.57 \mathrm{kJmol}^{-1}$
D. $38.75 \mathrm{kJmol}^{-1}$

Answer: b

2. the heat of combustion of soucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})$ at constany volume is $1348.9 \mathrm{kcalmol}^{-1} \mathrm{at}^{2} 25^{\circ}$ then the heat of reaction at constant pressure when steam is produced is
A. -1348.9 kcal
B. -1342.34 kcal
C. +1250 Kcal
D. none of these

Answer: b

- View Text Solution

3. At constant temperture and pressure which one of the following statements is correct for the reaction ?
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
A. $\Delta H=\Delta E$
B. $\Delta H<\Delta E$
C. $\Delta H>\Delta E$
D. ΔH is independent of physical state of reactant

Answer: b

- View Text Solution

4. the equillibrium constant K_{P} for the reaction,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
$1.6 \times 10^{-4}(\mathrm{~atm})^{-2} \mathrm{at} 400^{\circ} \mathrm{C}$ if heat of the reaction in this temoerture range is -25.14 kcal ?
A. $1.231 \times 10^{-4}(\mathrm{~atm})^{-2}$
B. $1.876 \times 10^{-7}(\mathrm{~atm})^{-2}$
C. $1.462 \times 10^{-5}(\mathrm{~atm})^{-2}$
D. $3.462 \times 10^{-5}(\mathrm{~atm})^{-2}$

Answer: c

D View Text Solution

5. given

$\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q), \Delta H=57.32 k J$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-286.02 \mathrm{~kJ}$
then, calculate the enthalpy of formation of OH^{-}at $25^{\circ} \mathrm{C}$
A. $-228.8 k J$
B. $-343.52 k J$
C. $+228.8 k J$
D. $+343.52 k J$

Answer: a

6. calcualate the amount of heat evolved when $500 \mathrm{~cm}^{3}$ of 0.1 M HCl is mixed with $200 \mathrm{~cm}^{3}$ of 0.2 M NaOH .
A. 57.3 kJ
B. 2.865 kJ
C. 2.292 kJ
D. 0.573 kJ

Answer: c

- View Text Solution

7. the mutual heat of neutralusation of 40 g NaOH and 60 g CH 33 COOH will be
A. 57.1 kJ
B. less than 57.1 kJ
C. more than 57.1 kJ
D. 13.7 kJ

Answer: b

- View Text Solution

8. for the dissociation reaction,
$H_{2}(g) \Leftrightarrow 2 H(g), \Delta H=162 k c a l$
heat of atomisation of H is
A. 81 kcal
B. 162 kcal
C. 208 kcal
D. 218 kcal

Answer: a

- View Text Solution

9. internal energy does not include
A. vibrational energy
B. ratatoinal energy
C. energy arising by gravitational pull
D. nuclear energy

Answer: c

- View Text Solution

10. A reaction has both ΔH and ΔS negative. The rate of reaction
A. increses with increase of temperature
B. increases with decrease of temperature
C. ramains unaffected by change of temperature
D. cannot be predicated for change in tempeature

- View Text Solution

11. one mole of an anydrose salt $A B$ dissolves in water with the evolution of $21.0 \mathrm{~mol}^{-1}$ of heat. If the heat of hydration of $A B$ is $-29.4 \mathrm{Jmol}^{-1}$, then the heat of dissociation of hydrated salt $A B$ is
A. $50.4 \mathrm{Jmol}^{-1}$
B. $8.4 \mathrm{Jmol}^{-1}$
C. $-50.4 \mathrm{Jmol}^{-1}$
D. $-8.4 \mathrm{Jmol}^{-1}$

Answer: b
12. calculate the ΔH in kJ for the following reaction, $\mathrm{C}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
given that ,
$\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{C}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}, \Delta H=+131 k J$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-282 k J$
$H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(g), \Delta H=-242 k J$
A. -393
B. +393
C. +655
D. -655

Answer: a

- View Text Solution

13. For a reversible reaction $A \Leftrightarrow B$ which one of the following statements is wrong from the given energy profile diagram ?
A. Activation energy of forward reaction is greater than backward reaction
B. the forward reaction is endothermic
C. the threshold energy is less than that of activation energy
D. the energy of activation of forward reaction is equal to the sum of heat of reaction and the energy of activation of backward reaction

Answer: c

- View Text Solution

14. A 27° one mole of an ideal gas is compressed isothermally and reversibly from a pressure of 2 atm to 10 atm , the value of ΔE and q are ($\mathrm{R}=2 \mathrm{cal}$)
A. $0,-965.84 \mathrm{cal}$
B. $-965.58 \mathrm{cal},-865.58 \mathrm{cal}$
C. $+865.58 \mathrm{cal},-865.58 \mathrm{cal}$
D. $+965.84 \mathrm{cal},+865.58 \mathrm{cal}$

Answer: a

- View Text Solution

15. Gibbs free energy G , enthalpy H and entropy S are interrelated as in
A. $\mathrm{G}=\mathrm{H}+\mathrm{TS}$
B. $\mathrm{G}=\mathrm{H}-\mathrm{TS}$
C. G-TS-H
D. $\mathrm{G}=\mathrm{S}=\mathrm{H}$

Answer: b

