©゙’ doubtnut

CHEMISTRY

BOOKS - BITSAT GUIDE

ELECTROCHEMISTRY

Practice Exercise

1. Twoelectrodes are fitted in conductance cell 1.5 cm apart while the area of cross-section of each electrode is $0.75 \mathrm{~cm}^{2}$. The cell constant is
A. $1.125 \mathrm{~cm}^{-1}$
B. $0.5 \mathrm{~cm}^{-1}$
C. $2.0 \mathrm{~cm}^{-1}$
D. $0.2 \mathrm{~cm}^{-1}$

Answer: C

- Watch Video Solution

2. Conductivity (unit siemens) is directly propotional to area of the vessel and the concentration of the solution it and is inversely proportional to the length of the vessel then the unit of constant of proportionality is
A. $\mathrm{Sm} \mathrm{mol}{ }^{-1}$
B. $S m^{2} \mathrm{~mol}^{-1}$
C. $S^{-2} m^{2} m o l$
D. $S^{2} m^{2} \mathrm{~mol}^{-2}$

Answer: B

- Watch Video Solution

3. Which of the following solutions has the highest equivalent conductance?
A. 0.01 M NaCl
B. 0.05 M NaCl
C. 0.005 M NaCl
D. 0.02 M NaCl

Answer: C

- Watch Video Solution

4. The resistance of 0.1 N solution of a salt is found to be $2.5 \times 10^{3} \Omega$. The equivalent conductance of the solution is (Cell
constant $=1.15 \mathrm{~cm}^{-1}$)
A. $4.6 o h m^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$
B. $5.6 o \mathrm{hm} \mathrm{m}^{-1} \mathrm{~cm}^{2}$ equive ${ }^{-1}$
C. $6.6 o h \mathrm{~m}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$
D. $7.6 o h m^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$

Answer: A

- Watch Video Solution

5. The equivalent conductivity of a solution containing 2.45 g of CuSO 44 per litre, is $91.0 \Omega^{-1} \mathrm{~cm}^{2} e q^{-1}$. Its conductivity would be
A. $2.9 \times 10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$
B. $1.9 \times 10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$
C. $2.4 \times 10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$
D. $3.6 \times 10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$

Answer: A

- Watch Video Solution

6. Point out the correct statement.
A. Equivalent conductance decreases with dilution
B. Specific conductance increases with dilution
C. Specific conductance decreases with dilution
D. Equivalent conductance increases with increase in concentration

Answer: C

7. The equivalent conductance of solution is
[If cell constant is $1.25 \mathrm{~cm}^{-1}$ and resistance of $N / 10$ solution is $\left.2.5 \times 10^{3} \Omega\right]$.
A. $2.5 \Omega^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$
B. $2.5 \Omega^{-1} \mathrm{~cm}^{-2}$ equiv $^{-1}$
C. $50 \Omega^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$
D. $5.0 \Omega^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$

Answer: D

- Watch Video Solution

8. The increase in the molar conductivity of acetic acid with dilution is due to
A. decrease in interionic forces
B. increase in degree of ionisation
C. increase in self ionisation of water
D. None of the above

Answer: B

- Watch Video Solution

9. The increase in the molar conductivity of HCl with dilution is due to
A. increase in the self ionisation of water
B. decrease in the self ionisation of water
C. decrease in the interionic forces
D. None of the above

Answer: C

- Watch Video Solution

10. Molar conductance Λ_{m} is plotted against \sqrt{C} (mol litre ${ }^{-1}$) for three electrolytes ($\mathrm{NaCl}, \mathrm{HCl}, \mathrm{NH}_{4} \mathrm{OH}$)

which of the following is correct?

I II III
A. $\mathrm{NaCl} \quad \mathrm{HCl} \quad \mathrm{NH}_{4} \mathrm{OH}$
B. II III
B. $\mathrm{HCl} \quad \mathrm{NaCl} \quad \mathrm{NH}_{4} \mathrm{OH}$
C. $\mathrm{NH}_{4} \mathrm{OH} \quad \mathrm{NaCl} \mathrm{HCl}$
D. $\begin{array}{lll}\mathrm{I} & \mathrm{II} & \mathrm{III} \\ \mathrm{NH}_{4} \mathrm{OH} & \mathrm{HCl} & \mathrm{NaCl}\end{array}$

Answer: B

- Watch Video Solution

11. The plot of molar conductance vs \sqrt{C} in strong electrolyte, is
A. circular
B. linear
C. parabolic
D. sinusoidal

Answer: B

12. The value of $\Lambda_{e q}^{\infty}$ for $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and NaCl are $149.74,248.1$ and $126.4 \Omega^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$. The value of $\Lambda_{e q}^{\infty}$ of $\mathrm{NH}_{4} \mathrm{OH}$ is
A. $371,44 \Omega \mathrm{~cm}^{2}$ equiv $^{-1}$
B. $271,44 \Omega \mathrm{~cm}^{2}$ equiv $^{-1}$
C. $71,44 \Omega \mathrm{~cm}^{2}$ equiv $^{-1}$
D. data is insufficient to calculate it

Answer: B

- Watch Video Solution

13. The quantity of electricity required to librate 0.1 g equivalent of an element at the electrode is
A. 9650 C
B. 96500 C
C. 965 C
D. 96.5 C

Answer: A

- Watch Video Solution

14. On passing 3 A of electricity for $50 \mathrm{~min}, 1.8 \mathrm{~g}$ of metal deposits.

The equivalent mass of metal is
A. 20.5
B. 25.8
C. 19.3
D. 30.7

Answer: C

- Watch Video Solution

15. Ione faraday of electricity will liberate one gram atom of a metal from a solution of
A. $A u C l_{3}$
B. CuSO_{4}
C. $B a C l 2$
D. KCl

Answer: D

16. The charge required for the reduction of 1 mole of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ions to Cr^{3+} is
A. 96500 C
B. $2 \times 96500 C$
C. $3 \times 96500 C$
D. $6 \times 96500 C$

Answer: D

D Watch Video Solution

17. On passing 0.1 F of electricity through aluminium chloride, the amount of aluminium meta deposited on cathode is (Atomic weight of $A l=27$)
A. $0.27 g$
B. $0.3 g$
C. $0.9 g$
D. $2.7 g$

Answer: C

D Watch Video Solution

18. The current of 2 A is passed for 5 h through a molten tin salt to deposit 22.2 g tin. What is the oxidation state of tin in salt?
[Atomic weight of $S n=118.69 g$]
A. +2
B. +5
C. +3
D. +4

Answer: A

- Watch Video Solution

19. What will be the weight of silver deposited, if 96.5 A of current is passed into aqueous solution of AgNO_{3} for 100 s ?
A. 1.08 g
B. 10.8 g
C. 108 g
D. 1080 g

Answer: B

20. A certain amount of current liberates 0.5 g of H_{2} in 2.0 h . How many gram(s) of oxygen can be liberated by the same current in the same time?
A. 0.5 g
B. 8.0 g
C. 4.0 g
D. 16.0 g

Answer: C

- Watch Video Solution

21. Pick the odd one out.
A. Daniell cell
B. Voltaic cell
C. Galvanic cell
D. Electrolytic cell

Answer: D

- Watch Video Solution

22. The EMF of a cell is
A. sum of two oxidation potentials
B. sum of two potentials
C. difference of two electrode potentials
D. None of the above

Answer: C

23. Consider the following reaction,

$$
C u\left|C u^{2+}(1 M)\right| \mid\left(Z n^{2+}(1 M) \mid Z n\right.
$$

A cell represented above should have emf
A. positive
B. negative
C. zero
D. Cannot be predicted

Answer: B

- Watch Video Solution

24. The standard reduction potential of $P b$ and $Z n$ electrodes are -0.126 and -0.763 V respectively. The cell equation will be
A. $\mathrm{Pb}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Pb}+\mathrm{Zn}^{2+}$
B. $\mathrm{Pb}^{4+}+2 \mathrm{Zn} \rightarrow \mathrm{Pb}+2 \mathrm{Zn}^{2+}$
C. $\mathrm{Zn}^{2+}+\mathrm{Pb} \rightarrow \mathrm{Zn}+\mathrm{Pb}^{2+}$
D. None of the above

Answer: A

- Watch Video Solution

25. Consider the following reaction,

$$
\frac{1}{2} H_{2}(g)+A g C l(s) \rightarrow H^{+}(a q)+C l^{-}(a q)+A g(s)
$$

Above reaction occurs in the galvanic cell
A. $A g|A g C l(s)| K C l(a q)\left|\left|A g N O_{3}(a q)\right| A g(s)\right.$
B. $P t\left|H_{2}(g)\right| H C l(a q)\left|\left|A g N O_{3}(a q)\right| A g(s)\right.$
C. $P t\left|H_{2}(g)\right| H C l(a q)||A g C l(s)| A g(s)$
D. $P t\left|H_{2}(g)+K C l(a q)\right||A g C l(s)| A g(s)$

Answer: C

- Watch Video Solution

26. When the sample of copper with the zinc impurity is to be purified by electrolysis, the appropriate electrodes are
Cathode Anode
Pure zinc Pure copper
B. Cathode Anode
Impure zinc Pure copper
C. $\begin{array}{ll}\text { Cathode } & \text { Anode } \\ \text { Impure zinc } & \text { Impure sample }\end{array}$
D. $\begin{array}{ll}\text { Cathode } & \text { Anode } \\ \text { Pure copper } & \text { Impure sample }\end{array}$

Answer: D

- Watch Video Solution

27. $C u^{+}$ion is not stable in aqueous solution because because of dispropotionation reaction. E° value of disproportionation of $C u^{+}$is

$$
\left[E_{C u^{2+} / C u^{+}}^{\circ}=+0.15 V, E_{C u^{2+} / C u}^{\circ}=0.34 V\right]
$$

A. -0.38 V
B. +0.19 V
C. -0.49 V
D. +0.38 V

Answer: B

28. Calculate the emf of the following cell:
$C u(s)\left|C u^{2+}(a q)\right|\left|A g^{+}(a q)\right| A g(s)$
Given that, $E_{C u^{2+} / \mathrm{Cu}}^{\circ}=0.34 \mathrm{~V}, E_{\mathrm{Ag} / \mathrm{Ag}^{+}}^{\circ}=-0.80 \mathrm{~V}$
A. 0.046 V
B. 0.46 V
C. 0.57 V
D. -0.46 V

Answer: B

D Watch Video Solution

29. A cell constituted by two electrondes $A\left(E_{A / A^{+}}^{\circ}=-0.35 V\right)$ and $B\left(E_{B / B^{+}}^{\circ}=0.42 V\right)$.

Calculate the emf of the cell.
A. 0.07 V
B. 0.77 V
C. -0.77 V
D. -0.07 V

Answer: B

- Watch Video Solution

30. Out of $C u, A g, F e$ and $Z n$, the metal which can displace all others from their salt solution is
A. $A g$
B. $C u$
C. $Z n$
D. $F e$

Answer: C

D Watch Video Solution

31. Which of the following solution will turn blue when placed in copper vessel?
A. AgNO_{3}
B. NaCl
C. ZnSO_{4}
D. KNO_{3}

Answer: A

32. A gas X at 1 atm is bubbled through a solution containing a mixture of $1 M Y^{-}$and $1 M Z^{-}$at $25^{\circ} C$. If the order of reduction potentials is $Z>Y>X$, then
A. Y will oxidise X but not Z
B. Y will oxidise Zbut not X
C. Y will oxidies both X and Y
D. Y will reduce both X and Y

Answer: A

- Watch Video Solution

33. Using the standard electrode potential, find out the pair between which redox reaction is not feasible. E° values :
$F e^{3+} / \mathrm{Fe}^{2+}=+0.77, I_{2} / I^{-}=+0.54 V$

$$
C u^{2+} / C u=+0.34 V, A g^{+} / A g=+0.80 V
$$

A. $F e^{3+}$ and I^{-}
B. $A g^{+}$and $C u$
C. $F e^{3+}$ and $C u$
D. $A g^{+}$and $F e^{3+}$

Answer: D

- Watch Video Solution

34. The emf of the cell involving the reaction
$2 \mathrm{Ag}^{+}(a q)+\mathrm{H}_{2}(g) \rightarrow 2 \mathrm{Ag}(s)+2 \mathrm{H}^{+}(a q)$ is 0.080 V.
The standard oxidation potential od silver electrode is
B. 0.40 V
C. -0.80 V
D. 0.20 V

Answer: C

D Watch Video Solution

35.

$A(s)+2 B^{+}(a q) \rightarrow A^{2+}(a q) \rightarrow A^{2+}(a q)+2 B, K_{C}$ has been found to be 10^{12}. The $E_{\text {cell }}^{\circ}$ is 0.354 V
A. 0.354 V
B. 0.708 V
C. 0.0098 V
D. 1.36 V

- Watch Video Solution

36. The value of $E_{\text {cell }}$ of hydrogen electrode at $p H=0298 \mathrm{~K}$ and 1 atm, is
A. 0.59 V
B. 0 V
C. -0.59 V
D. -0.059 V

Answer: B

37. The emf of a galvanic cell is positive when free energy change of reaction is
A. >0
B. <0
C. $=0$
D. no relationship of free energy change and emf

Answer: B

D Watch Video Solution

38. What is the value of E° cell in the following reaction?

$$
C r\left|C r^{3+}(0.1 M)\right|\left|F e^{2+}(0.01 M)\right| F e
$$

Given, $E_{C r^{3+} / C r}^{\circ}=-0.74 V, E_{F e^{2+} / F e}^{\circ}=-0.44 V$
A. +0.2606 V
B. 0.5212 V
C. +01303 V
D. -0.2606 V

Answer: A

- Watch Video Solution

39. Consider the following reaction,
$Z n(s)+C u^{2+}(0.1 M) \rightarrow Z n^{2+}(1 M)+C u(s)$ above reaction, taking place in a cell, $E_{\text {cell }}^{\circ}$ is $1.10 \mathrm{~V} . E_{\text {cell }}$ for the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$
A. 1.80 V
B. 1.07 V
C. 0.82 V
D. 2.14 V

Answer: B

- Watch Video Solution

40. The Edison storage cell is represented as
$F e(s)|F e O(s)| K O H(a q)\left|N i_{2} O_{3}(s)\right| N i(s)$
the half-cell reactions are

$$
\mathrm{Ni}_{2} \mathrm{O}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l)+2 e^{-} \Leftrightarrow 2 \mathrm{NiO}(s)+2 \mathrm{OH}^{-}, E^{\circ}=+0.40 \mathrm{~V}
$$

$$
\mathrm{FeO}(s)+\mathrm{H}_{2} \mathrm{O}(l)+2 e^{-} \Leftrightarrow \mathrm{Fe}(s)+2 \mathrm{OH}^{-}, E^{\circ}=-0.87 \mathrm{~V}
$$

What is the maximum amount of electrical energy that can be obtained from one mole of $\mathrm{Ni}_{2} \mathrm{O}_{3}$?
A. 127 kJ
B. 245.11 kJ
C. 90.71 kJ
D. 122.55 kJ

Answer: B

- Watch Video Solution

41. Consider the following cell reaction

$$
C u(s)+2 A g^{+}(a q) \rightarrow C u^{2+}(a q)+2 A g(s)
$$

$E_{\text {cell }}^{\circ}=0.46 \mathrm{~V}$ By boubling the concentration of $\mathrm{Cu}^{2+}, E_{\text {cell }}$ is
A. doubled
B. halved
C. increases nut less than double
D. decreases by a small fraction

Answer: D

- Watch Video Solution

42. The value of the reaction quotient, Q for the following cell is $Z n(s)\left|Z n^{2+}(0.01 M)\right|\left|A g^{+}(1.25 M)\right| A g(s)$
A. 156
B. 125
C. 1.25×10^{-2}
D. 6.4×10^{-3}

Answer: D

- Watch Video Solution

43. The standard e.m.f of a cell, involving one electron change is
found to be 0.591 V at $25^{\circ} \mathrm{C}$. The equilibrium constant of the
reaction is : $\left(F=96,500 \mathrm{Cmol}^{-1}: \mathrm{R}=8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}\right.$
A. 1.0×10^{1}
B. 1.0×10^{5}
C. 1.0×10^{10}
D. 1.0×10^{30}

Answer: C

- Watch Video Solution

44. Hydrogen electrode is placed in the solution whose pH is 10 . The potential of this electrode will be
A. $+0.591 V$
B. -0.591 V
C. 0
D. None of these

Answer: B

- Watch Video Solution

45. What is the Gibbs energy of the following reaction?
$Z n(s)+C u^{2+}(a q) \rightarrow Z n^{2+}(a q)+C u^{2+}(s), E_{\text {cell }}^{\circ}=1.1 V$
A. $106135.75 \mathrm{Jmol}^{-1}$
B. $21227 \mathrm{Jmol}^{-1}$
C. $-212.27 \mathrm{kJmol}^{-1}$
D. $21227 \mathrm{Jmol}^{-1}$

Answer: C

46. When a lead storage battery is charged, it acts as
A. primary cell
B. galvanic cell
C. concentration cell
D. electrolytic cell

Answer: D

- Watch Video Solution

47. In a hydrogen oxygen uel cell, combustion of hydrogen occurs to
A. Produce high purity water
B. remove adsorbed oxygen from electrode surface
C. generate heat
D. create potential between two electrodes

Answer: D

- Watch Video Solution

48. In which of the following, the corrosion of iron will be most rapid?
A. In pure water
B. In pure oxygen
C. In air and moisture
D. In air and saline water

Answer: D

49. On the basis of electrochemical theory of aqueous corrosion, the reaction occurring at the cathode is
A. $\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
B. $\mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+2 e^{-}$
C. $F e^{2+}(a q)+2 e^{-} \rightarrow F e(s)$
D. $F e^{3+}(a q)+e^{-} \rightarrow \mathrm{Fe}^{2+}(a q)$

Answer: A

- Watch Video Solution

Bitsat Archives

1. A reaction, $C u^{2+}+2 e^{-} \rightarrow C u$ is given. For this reaction, graph between $E_{r e d}$ versus $\ln \left[C u^{2+}\right]$ is a straight line of intercept 0.34 V , then the electrode oxidation potential of the half-cell $C u / C u^{2+}(0.1 M)$ will be
A. 0.34
B. $0.34+\frac{0.0591}{2}$
C. $-0.34-\frac{0.0591}{2}$
D. $-0.34+\frac{0.0591}{2}$

Answer: D

- Watch Video Solution

2. If $E_{F e^{3+} / F e}^{\circ}$ and $E_{F e^{2+} / F e}^{\circ}$ are -0.36 V and 0.439 V respectively, then value of $E_{F e^{3+} / F e^{2+}}^{\circ}$ is
A. $(-0.036-0.439) V$
B. $[3(-0.36)+2(0.439)] V$
C. $(-0.36-0.439)] V$
D. $[(3-0.36)-2(-0.439)] V$

Answer: D

- Watch Video Solution

3. The molar conducatance of Ba^{2+} and Cl^{-}are 127 and $76 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1} \mathrm{~mol}^{-1}$ respectively at infinite dilution. The equivalent conductance of BaCl_{2} at infinte dilution will be
A. $330 \Omega^{-1} \mathrm{~cm}^{2}$
B. $203 \Omega^{-1} \mathrm{~cm}^{2}$
C. $139.5 \Omega^{-1} \mathrm{~cm}^{2}$
D. $51 \Omega^{-1} \mathrm{~cm}^{2}$

Answer: C

- Watch Video Solution

4. The equilibrium constant (K) for the reaction

$$
C u(s)+2 A g^{+}(a q) \rightarrow C u^{2+}(a q)+2 A g(s), \text { will be }
$$

[Given, $E_{\text {cell }}^{\circ}=0.46 \mathrm{~V}$]
A. $K_{c}=$ antilog 15.6
B. $K_{c}=$ antilog 2.5
C. $K_{c}=$ antilog 1.5
D. $K_{c}=$ antilog 12.2

Answer: A

5. E° for $\mathrm{Fe} / \mathrm{Fe}^{2+}$ is $+0.44 V$ and E° for $\mathrm{Cu} / \mathrm{Cu}^{2+}$ is -0.32 V

 . Then, in the cell,A. Cu oxidises Fe^{2+} ion
B. Cu^{2+} oxidises iron
C. Cu reduces Fe^{2+} ion
D. Cu^{2+} reduces Fe

Answer: B

- Watch Video Solution

6. A curent of 0.5 A when passed through AgNO_{3} solution for 193 s deposited 0.108 h Ag . The equivalent weight of silver is
A. 108
B. 54
C. 10.8
D. 5.4

Answer: A

- Watch Video Solution

7. When an aqueous solution of sodium chloride is electrolysed using platinum electrodes, the ion discharged at the electrodes are
A. sodium and gydrogen
B. Sodium and chloride
C. hydrogen and chloride
D. hydroxyl and xhloride

Answer: C

- Watch Video Solution

8. When same quantity of electricuty is passed through aqueous AgNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions connected in series, $5.4 \times 10^{-2} g$ of H_{2} is liberated. What is the mass of silver (in grams) deposited? (Equivalent weight of hydrogen $=1008$, silver $=108$)
A. 54
B. 0.54
C. 5.4
D. 10.8

Answer: C

- Watch Video Solution

9. When electric current is passed through acidified water for 1930
$\mathrm{s}, 1120 \mathrm{~mL}$ of H_{2} gas is collected (at STP) at the cathode. What is the current passed in amperes?
A. 0.05
B. 0.50
C. 5.0
D. 50

Answer: C

10. Given, standard electrode potentials

$$
F e^{2+}+2 e^{-} \rightarrow F e, E^{\circ}=-0.440 V
$$

$$
F e^{3+}+3 e^{-} \rightarrow F e, E^{\circ}=-0.036 V
$$

The standarde potential $\left(E^{\circ}\right)$ for

$$
F e^{2+}+e^{-} \rightarrow F e^{2+}, \text { is }
$$

A. +0.772 V
B. -0.772 V
C. +0.417 V
D. -0.417 V

Answer: A

- Watch Video Solution

11. The specific conductivity of $0.1 N K C l$ solution is $0.0129 \Omega^{-1} \mathrm{~cm}^{-1}$. The resistane of the solution in the cell is 100Ω. The cell constant of the cell will be
A. 1.1
B. 1.29
C. 0.56
D. 2.80

Answer: B

(Watch Video Solution

12. The cathodic reaction of a dry cell is represented as
$2 \mathrm{MnO}_{2}(s)+\mathrm{Zn}^{2+}+2 e^{-} \rightarrow \mathrm{ZnMn}_{2} \mathrm{O}_{4}(s)$
If there are 8 g MnO 2 in the cathodic compartment then the
time for which the dry cell will continue to give current of 2 milliampere, is
A. 25.675 day
B. 51.35 day
C. 12.8 day
D. 6.423 day

Answer: B

- Watch Video Solution

13. The standard potential of the reaction
$\mathrm{H}_{2} \mathrm{O}+e^{-} \rightarrow\left(\frac{1}{2}\right) \mathrm{H}_{2}+\mathrm{OH}^{-} \quad$ at $298 \quad \mathrm{~K} \quad$ by using
$k_{w}\left(H_{2} O\right)=10^{-14}$, is:
A. $E^{\circ}=\frac{R T}{F} \ln K_{w}$
B. $E^{\circ}=\frac{R T}{F} \ln \left[p_{H_{2}}\right]^{1 / 2}\left[O H^{-}\right]$
C. $E^{\circ}=\frac{R T}{F} \ln \frac{\left[p_{H_{2}}\right]^{1 / 2}}{\left[H^{+}\right]}$
D. $E^{\circ}=-\frac{R T}{F} \ln K_{W}$

Answer: A

- Watch Video Solution

