© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

ALTERNATING CURRENT AND EM

WAVE

Practice Exercise

1. An Ac source of volatage $\mathrm{V}=100 \sin 100 \pi t$ is
rsm value of current through resistor is
A. 10 A
B. $\frac{10}{\sqrt{2}} A$
C. $\frac{5}{\sqrt{2}} A$
D. non of these

Answer:

2. An Ac source of volatage $\mathrm{V}=100 \sin 100 \pi t$ is

connected to a resistor of ressistance 20Ω The rsm value of current through resistor is average value of current for half cycle is
A. zero
B. $\frac{5}{\sqrt{2}} A$
C. $10 A$
D. non of these

Answer:

3. An Ac source of volatage $\mathrm{V}=100 \sin 100 \pi t$ is

connected to a resistor of ressistance 20Ω The rsm value of current through resistor is the averge value for half cycle is
A. $\frac{10}{\pi} A$
B. $\frac{5}{\pi} A$
C. zero
D. non of these

Answer:

D Watch Video Solution

4. An Ac source of volatage $\mathrm{V}=100 \sin 100 \pi t$ is
connected to a resistor of ressistance 20Ω The
rsm value of current through resistor is total
charge transferred through resistor in long
time is
A. zero
B. $\frac{2 l_{0}}{\pi}$
C. $\frac{l_{0}}{25 \pi}$
D. non of these

Answer:

D Watch Video Solution

5. An Ac source of volatage $\mathrm{V}=100 \sin 100 \pi t$ is
connected to a resistor of ressistance 20Ω The
rsm value of current through resistor is ,total
charge transferred in $1 / 100$ second is
A. $\frac{1}{10 \pi} C$
B. $\frac{1}{5 \pi} C$
C. zero
D. non of these

Answer:

D Watch Video Solution
6. An Ac source of volatage $\mathrm{V}=100 \sin 100 \pi t$ is connected to a resistor of ressistance 20Ω The
rsm value of current through resistor is ,total heat generated in one cycle is
A. $\sqrt{2} J$
B. 5 J
C. $4 \sqrt{2} J$
D. zero

Answer:
(Watch Video Solution

7. An Ac source of volatage $\mathrm{V}=100 \sin 100 \pi t$ is

connected to a resistor of ressistance 20Ω The rsm value of current through resistor is , power factor is
A. 1
B. 0
C. $\frac{1}{2}$
D. non of these

Answer:

8. A metallic square loop $A B C D$ is moving in its own plane with velocity v in a uniform magnetic field perpendicular to its plane as shown in the figure. An electric field is induced

A. in $A D$,but not in $B C$
B. in $B C$,but not in $A D$
C. neither in AD nor in $B C$
D. in both AD and BC

Answer:

D Watch Video Solution

9. A flexible wire bent in the form of a circle is
place in a uniform magnetic field perpendicularly to the plane of the coil. The radius of the coil changes as shown in Figure.

The graph of magnetude of induced emf in the coil is represented by

a.

b.

c.

C.

Answer:

D Watch Video Solution

10. A uniform but time-varying magnetic field
$B(t)$ exists in a circular region of radius a and is directed into the plane of the paper, as shown. The magnitude of the induced electric
field at point P at a distance r from the centre
of the circular region

A. is zero
B. decreases as $1 / r$
C. increases as r
D. decreases as $\frac{1}{r^{2}}$

Answer:

- Watch Video Solution

11. Caluculate the peak and rms value of current in AC circuit. The current is represented by the eqution $\mathrm{i}=5$ "sin"(300t(pi)/4),where t is in second and I in ampere.
A. 5 A, 3.535 A
B. $5 \mathrm{~A}, 5.53 \mathrm{~A}$
C. 3 A,3.53 A
D. $6.25 \mathrm{~A}, 5.33 \mathrm{~A}$

Answer:

D Watch Video Solution

12. The average value for half cycle in a 200 V

AC source is
A. 180 V
B. 200 V
C. 220 V
D. none

Answer:

- Watch Video Solution

13. Two alternating current are given by
$l_{1}=l_{0} \quad \sin \omega t a n d$ I $I_{-}(2)=l_{-}(0) \cos$ (omega
+phi)

The ratio of rms value is
A. 0.042361111111111
B. 1: ϕ
C. 0.043055555555556

D. non of these

Answer:

D Watch Video Solution

14. A current $\mathrm{I}=3+8 \sin 100 t$ is passing through
a resistor of resistance 10Ω.The effective value
of current is
A. $5 A$
B. 10 A
C. $4 \sqrt{2} A$
D. $3 \mathrm{sqrt2} \mathrm{~A}$

Answer:

- Watch Video Solution

15. An alternative voltage
$V=30 \sin 50 t+40 \cos 50 t$ is applied to a resitor of resistance 10Ω. Time rms value of current through resistor is

> A. $\frac{5}{\sqrt{2}}$
> B. $\frac{10}{\sqrt{2}}$
> C. $\frac{7}{\sqrt{2}}$
> D. $7 A$

Answer:

D Watch Video Solution

16. An alternating voltage $\mathrm{V}=140 \sin 50 \mathrm{t}$ is applied to a resistor of resistance 10Ω. This
voltage produces $\triangle H$ heat in the resistor in
time $\triangle t$. To produce the same heat in the same time, rquired DC current is
A. 14 A
B. about 20 A
C. about 10 A
D. None of these

Answer:
(Watch Video Solution
17. An Ac voltage is represented by $e=220$ sin
(100π) t volt and is applied over a resistance
of 110 ohm. Calculate the heat produced in 7
min.
A. $11 \times 10^{3} \mathrm{cal}$
B. $22 \times 10^{3} \mathrm{cal}$
C. $33 \times 10^{3} \mathrm{cal}$
D. $25 \times 10^{3} \mathrm{cal}$

Answer:

18. What is the reactance of a capacitor connected to a constant $D C$ source?
A. zero
B. ∞
C. 1Ω
D. None of these

Answer:

D Watch Video Solution
19. The reactance of an inductor connected with DC voltage is
A. zero
B. ∞
C. 1Ω
D. None of these

Answer:

D Watch Video Solution
20.

An
AC
voltage
$e=e_{0} \sin 50 t-e_{0} \cos 100 \pi t$ is connected in
series with a resistor and capacitor. The steady
state current through circuit is found to be
$I=I_{0} \sin g(50 \pi t+\phi)+I_{0}{ }^{\prime} \cos \left(100 \pi t+\phi_{2}\right)$
Then, the ratio of $\frac{I_{0}}{I_{0}{ }^{\prime}}$ is
A. greater than 1
B. equal to 1
C. less than 1
D. None of these

Answer:

D Watch Video Solution

21. An alternating voltage $V=V_{0} \sin \omega t$ is connected to a capacitor of capacity C_{0} through an AC ammeter of zero resistance.

The reading of ammeter is

$$
\begin{aligned}
& \text { A. } \frac{V_{0}}{\sqrt{2}} \\
& \text { B. } \frac{V_{0}}{\omega C(\sqrt{2})} \\
& \text { C. } \frac{V_{0} \omega C}{\sqrt{2}}
\end{aligned}
$$

D. None of these

Answer:

D Watch Video Solution

22. Calculate the maximum current in the circuit, if a capacitor of capacitance $1 \mu F$ is charged to a potential of 2 V and is connceted in parallel to an inductor of inductance $10^{-3} H$.

$$
\text { A. } \sqrt{4000} \quad m A
$$

B. $\sqrt{2000} m A$
C. $\sqrt{1000} m A$
D. $\sqrt{5000} m A$

Answer:

D Watch Video Solution

23. In a circuit consisting of inductor (L),
capacitor (C) and resistor (R) are in series, if
$\omega L<\frac{1}{\omega C}$, then the emf
A. leads the current
B. lags behind the current
C. is in phase with current
D. is zero

Answer:

D Watch Video Solution
24. Find the resonant frequency of a series circuit consist of an inductance $200 \mu H$, a
capacitance of $0.0005 \mu F$ and a resistance of 10Ω.
A. 480 kHz
B. 503 kHz
C. 406 kHz
D. 607 kHz

Answer:
(Watch Video Solution
25. Find the frequency of voltage for an $A C$ circuit. The equation of alternating voltage is $V=200 \sin 314 t$.
A. 50 Hz
B. 60 Hz
C. 55 Hz
D. 65 Hz

Answer:

D Watch Video Solution
26. An Ac circuit with $\mathrm{f}=1000 \mathrm{~Hz}$ consists of a cail of 200 mH and negligible resistance.

Calculate the voltage across the coil, if the effective current of 5 mA is flowing.
A. $7.64 \vee(\mathrm{rms})$
B. 7.452 V (rms)
C. 6.28 V (rms)
D. $74.62 \mathrm{~V}(\mathrm{rms})$

Answer:

27. Find the average power per unit area at distance of 2 m from a small bulb, if the bulb emits 20 W of electromagnetic radiation uniformly in all directions.
A. $0.69 \quad W / m^{2}$
B. $0.56 \quad W / m^{2}$
C. $0.78 \quad W / m^{2}$
D. $0.39 \quad W / m^{2}$

Answer:

D Watch Video Solution

28. If a circuit made up of a resistance 1Ω and inductance 0.01 H , an alternating emf of 200
voit at 50 Hz is connected, then find the phase difference between the current and the emf in the circuit.

$$
\begin{aligned}
& \text { A. } \tan ^{-1}(\pi) \\
& \text { B. } \tan ^{-1}\left(\frac{\pi}{2}\right)
\end{aligned}
$$

C. $\tan ^{-1}\left(\frac{\pi}{4}\right)$
D. $\tan ^{-1}\left(\frac{\pi}{3}\right)$

Answer:

- Watch Video Solution

29. choose the correct option. If speed of gamma rays, X-rays and microwaves are V_{g}, V_{x} and V_{m}.
A. $V_{g}<V_{x}<V_{m}$
B. $V_{g}>V_{x}>V_{m}$
C. $V_{g}>V_{x}<V_{m}$
D. $V_{g}=V_{x}=V_{m}$

Answer:

D Watch Video Solution

30. A condenser of capacitance of $2.4 \mu F$, is used in a transmitter to transmit a λ wavelength. If the inductor of $10^{-8} \mathrm{H}$ is used for resonant circuit, then value of λ is
A. 292 m
B. 400 m
C. 334 m
D. 446 m

Answer:

D Watch Video Solution
31. If a dry cell of emf=1.5 V is connected across
the primary of a step-up transformer of turn
ratio 3:5, then calculate the voltage developed across the secondary.
A. 30 V
B. 5 V
C. zero
D. None of these

Answer:
(Watch Video Solution
32. If at a certain instant, the magnetic induction of the electromagnetic wave in vacuum is $6.7 \times 10^{-12} \mathrm{~T}$, then the magnitude of of electric field intensity will be
A. $2 \times 10^{-3} \quad N / C$
B. $3 \times 10^{-3} \quad N / C$
C. $4 \times 10^{-3} \quad N / C$
D. $1 \times 10^{-3} \quad N / C$

Answer:

33. Find the energy of photon of electromagnetic radiation of wavelength 200

Å.
A. $1.76 \times 10^{-18} J$
B. $0.99 \times 10^{-18} J$
C. $0.54 \times 10^{-18} J$
D. $0.63 \times 10^{-18} J$

Answer:
34. Find the speed of light in air, if an electromagnetic wave is travelling in air whose dielectric constant is $K=1006$.

$$
\begin{aligned}
& \text { A. } 3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { B. } 3.88 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { C. } 2.5 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { D. } 4.6 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- Watch Video Solution

35. An object is placed at some distance from a
radio station. If the interval between
transmission and reception of pulses is
$2.66 \times 10^{-2} \mathrm{~S}$, then find the distance.
A. 4000 km
B. 2000 km
C. 3000 km
D. 2500 km

Answer:

D Watch Video Solution

36. Calculate the wavelength of a radio wave of frequency of 1 MHz .
A. 400 m
B. 300 m
C. 350 m
D. 200 m

Answer:

D Watch Video Solution

37. The electric in an electromagetic wave is given by $\mathrm{E}=(100 \mathrm{~N} / \mathrm{C}) \sin \omega\left(t-\frac{X}{C}\right)$.

If the energy contained in a cylinder of cosssection $10 \mathrm{~cm}^{2}$ and length 50 cm along the X axis is $4.4 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{3}$, then find intensity of the wave.
A. $12.4 W / m^{3}$
B. $13.2 W / m^{3}$
C. $15.7 W / m^{3}$
D. $11.9 \mathrm{~W} / \mathrm{m}^{3}$

Answer:

D Watch Video Solution

Bitsat Archives

1. A radio wave of intensity / isn reflcted by a surface. Find intersity (I), if pressure exerted
on the surface is $2 \times 10^{-8} \mathrm{~N} / \mathrm{m}^{2}$.
A. $3 N / m^{2}$
B. $4 N / m^{2}$
C. $6 N / m^{2}$
D. $7 N / m^{2}$

Answer:
2. A TvV tower has a height of 100 m . Find the
area covered by the TV broadast, if radius of
the earth is 6400 km .
A. $380 \times 10^{7} m^{2}$
B. $402 \times 10^{7} \mathrm{~m}^{2}$
C. $595 \times 10^{7} \mathrm{~m}^{2}$
D. $440 \times 10^{7} \mathrm{~m}^{2}$

Answer:

D Watch Video Solution
3. An electromagnetic wave with pointing
vector $5 W / m^{2}$ is absorbed by a surface of
same area. If the force on the surface is 10^{-7}

N , then area is
A. $6 m^{2}$
B. $3 m^{2}$
C. $60 m^{2}$
D. $4 m^{2}$

Answer:

4. Voltage V and current I in $A C$ circuit are given by $\mathrm{V}=50 \sin (50 \mathrm{t})$ volt, $\mathrm{I}=50 \sin \left(50 t+\frac{\pi}{3}\right.$
) mA

The power dissipated in the ciruit is
A. 5.0 W
B. 2.5 W
C. 1.25 W
D. zero

Answer:

D Watch Video Solution

5. The produced rays in sonography are
A. microwaves
B. infrared waves
C. sound waves
D. ultrasound
6. The ratio of secondary and primary turns of step-up transformer is $4: 1$.If a current of 4 A is applied to the primary , the induced current in secondary will be
A. 8 A
B. 2A
C. 1A
D. 0.5 A

Answer:

- Watch Video Solution

7. The impedance of a circuit consister of 3Ω
resistance and 4Ω reactance. The power factor of the circuit is
A. 0.4
B. 0.6
C. 0.8
D. 1

Answer:

D Watch Video Solution

8. The time taken by the current to rise to 0.63
of its maximum value in a DC circuit containing inductance (L) and resistance ${ }^{\circledR}$ depends on
A. L only
B. R only
C. $\frac{L}{R}$
D. LR

Answer:

D Watch Video Solution

9. Figure represents two bullbs B_{1} and B_{2} resister R and inductor L . When the switch S in

A. both B_{1} and B_{2} die out promptly
B. both B_{1} and B_{2} die out with some
selay
C. B_{1} dies out promptly but B_{2} with some

D. B_(2) dies out promptly but B_{1} with

some delay

Answer:

D Watch Video Solution

10. An AC source is connected in parallel with
an L-C-R circuit as shown.Let
l_{s}, l_{L}, l_{C} and l_{R} denote the currents
through and V_{s}, V_{L}, V_{C} and V_{R} the voltage
across the corresponding componts.Then,

A. $l_{S}=l_{L}+L_{C}+l_{R}$
B. $V_{S}=V_{L}+V_{C}+V_{R}$
C. $\left(l_{L}, l_{C}, l_{R}\right)<l_{S}$
D. l_{L}, l_{C} may be greater than l_{S}

Answer:

11. The number of turns in primary and secondary coils of a transformer is 50 and 200 , respectively. If the current in the primary coil is 4 A , then current in the secondary coil is
A. $1 A$
B. 2A
C. 4 A
D. 5 A

Answer:

- Watch Video Solution

12. An inductor of 2 H and a resitance of 10Ω are conncts in series with a bttery of 5 V . The intial rate of change of current is
A. $0.54 \mathrm{~A} / \mathrm{s}$
B. $2.0 \mathrm{~A} / \mathrm{s}$
C. $2.5 \mathrm{~A} / \mathrm{s}$
D. $0.25 \mathrm{~A} / \mathrm{s}$
13. The transformation ratio in the step -up transformer is
A. 1
B. greater than one
C. less than one
D. the ratio greater or less than sepenods
on the other factors

Answer:

D Watch Video Solution

14. In a stap-up transformer, if ratio of turns of
primary to secondary is $1: 10$ and primary
voltage is 230 V . If the load current is 2 A , then
currect in primary is
A. 20A
B. 10A
C. 2A
D. 1A

Answer:

D Watch Video Solution

15. The squre root of the prioduct of indutance

and capacitance has the dimension of
A. length
B. mass
C. time

D. no dimersion

Answer:

- Watch Video Solution

