©゙’ doubtnut

 India's Number 1 Education App
PHYSICS

BOOKS - BITSAT GUIDE

ATOMIC STRUCTURE

Practice Exercise

1. Alpha-particles are projectied towards the nuclei of the following metals with the same
kinetic energy. Towards which metal, the distance of closest approach is minimum?
A. $C u(Z=29)$
B. $\operatorname{Ag}(Z=47)$
C. $A u(Z=79)$
D. $\operatorname{Pd}(Z=46)$

Answer: A

D Watch Video Solution

2. An alpha-particle accelerated through V volt is fired towards a nucleus. Lts distance of closest approach is r.If a proton accelerated through the same potential is fired towards
the same nucleus, then distance of closest approach of proton will be
A. r
B. $2 r$
C. $r / 2$
D. $r / 4$

Answer: A

D Watch Video Solution

3. The distance oif closest approach of an alpha-particle fired towards a nucleus with momentum p is r. What will be the distance of closest approach when the momentum of alpha-particle is $2 p$?
A. $2 r$
B. $4 r$

C. $r / 2$

D. $r / 4$

Answer: D

- Watch Video Solution

4. Which of the following is incorrect regarding Rutherford's atomic model?
A. Atom contains nucleus
B. Size of nucleus is very small in
comparison to that of atom
C. Nucleus contains about 90° mass of the
atom
D. Electrons revolve around the nucleus
with a uniform speed

Answer: C

- Watch Video Solution

5. In rutherford's experiment, the mumber of
alpha-particles scattered through an angle of
90° is 28 per minute. Then,the number of particles scattered through an angle of 60° per minute by the same nucleus is
A. 28 per minute
B. 112 per minute
C. 12.5 per minute
D. 7 per minute
6. Find the equivalent current due to motion of electron in first orbit of H -atom.
A. $0.7 \times 10^{-3} A$
B. $9 \times 10^{-3} A$
C. $10^{-3} A$
D. None of these

Answer: A
7. If the radius of first Bohr's orbit is x,then debroglie wavelength of electron in 3rd orbit is nearly
A. $2 \pi x$
B. $6 \pi x$
C. $9 x$
D. $x / 3$

Watch Video Solution

8. How many times larger is the spacing between the energy levels with $\mathrm{n}=3$ and $\mathrm{n}=4$,then the spacing between the energy levels with $\mathrm{n}=8$ and $\mathrm{n}=9$ for a hydrogen like atom or ion?
A. 0.71
B. 0.41
C. 2.43
D. 14.82

Answer: B

D Watch Video Solution

9. The circumference of the second orbit of an
atom or ion having single electron, 4×10^{-9}
m.The de-Broglie wavelength of electron revolving in this orbit should be
A. $2 \times 10^{-9} m$
B. $4 \times 10^{-9} m$
C. $8 \times 10^{-9} m$

$$
\text { D. } 1 \times 10^{-9} m
$$

Answer: A

D Watch Video Solution

10. In each of the following atoms or ions,
electronic transition form $n=4 \rightarrow n=1$
take place. Frequency of the radiation emitted out will be minimum for
A. hydrogen atom
B. deuterium atom
C. He^{+}ion
D. $L i^{2+}$ ion

Answer: A

D Watch Video Solution
11. If an electron is revolving is revolving around the hydrogen nucleus at a distance of 0.1 nm,what should be its speed?
A. $2.188 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B. $1.094 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $4.376 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. $1.59 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution
12. The angular speed of an electron revolving around the H -nucleus is proportional to
A. $1 / r$
B. $1 / r^{3 / 2}$
C. $1 / r^{2}$
D. $r^{3 / 2}$

Answer: B

D Watch Video Solution

13. calculate the angular momentum of the electron in third orbit of hydrogen atom,if the
angular momentum in the second orbit of hydrogen atom is L .
A. L
B. $3 L$
C. $\frac{3}{2} L$
D. $\frac{2}{3} L$

Answer: C
(Watch Video Solution
14. If an electron is moving around a nucleus of charge 3θ in a circular orbit of radius 10^{-10} m,then calculate the initial frequency of light emitted by the electron.
A. $4.2 \times 10^{15} \mathrm{~Hz}$
B. $0.36 \times 10^{15} \mathrm{~Hz}$
C. $3.6 \times 10^{15} \mathrm{~Hz}$
D. $4.2 \times 10^{15} \mathrm{~Hz}$

Answer: C
15. An electron of hydrogen atom is revolving in third bohr's orbit $(n=3)$.How many revolutions will it undergo before making a transition to the second orbit ($n=2$).Assume the average life time of an excited state of the hydrogen atom is of the order of $10^{-8} \mathrm{~s}$.
(Given,Bohr radius $=5.3 \times 10^{-12} \mathrm{~m}$)
A. 2.5×10^{6} revolutions
B. 3.5×10^{6} revolutions
C. 4.5×10^{6} revolutions
D. 1.5×10^{6} revolutions

Answer: A

D Watch Video Solution

16. If $\left(\frac{0.51 \times 10^{-10}}{4}\right)$ meter is the radius of smallest electron orbit in hydrogen like atom, then this atom is
A. hydrogen atom
B. $H e^{+}$
C. $L i^{2+}$
D. $B e^{3+}$

Answer: D

- Watch Video Solution

17. How many different wavelengths may be observed in the spectrum form a hydrogen sample, if the atoms are excited to third excited state?
A. 3
B. 4
C. 5
D. 6

Answer: D

D Watch Video Solution

18. Find the maximum number of photons number of photons emitted by an H -atom, if
atom is excited to atates with principal quantum number four.
A. 4
B. 3
C. 2
D. 1

Answer: B
(Watch Video Solution
19. In (Q.18)problem, the minimum number of photons emitted by the H -atom is
A. 1
B. 2
C. 3
D. 4

Answer: A

- View Text Solution

20. The kinetic energy of an electron in hydrogen atom is 3.40 eV . The minimum energy required to ionise the hydrogen atom is
A. -3.40 eV
B. 6.40 eV
C. -6.80 eV
D. 3.40 eV

Answer: D
21. Two H atoms in the ground state collide in elastically. The maximum amount by which their combined kinetic energy is reduced is
A. 10.20 eV
B. 20.40 eV
C. 13.6 eV
D. 27.2 eV

Answer: A
22. Calculate the ratio of the frequencies of the long wavelength limits of the Balmer and

Lyman series of hydrogen.
A. $27: 5$
B. $5: 27$
C. $4: 1$
D. 1: 4

Answer: A
23. For a certain atom, there are energy levels
A, B, C corresponds to energy values
$E_{A}<E_{B}<E_{C}$. Choose the correct option if
$\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the wavelength of rediations corresponding to the transition from C to B, B to A and C to A respectively.

$$
\text { A. } \lambda_{3}=\lambda_{1}+\lambda_{2}
$$

$$
\text { B. } \lambda_{3}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}
$$

$$
\text { C. } \lambda_{1}+\lambda_{2}+\lambda_{3}=0
$$

$$
\text { D. } 3 \lambda_{2}=\lambda_{3}+2 \lambda_{2}
$$

Answer: B

D Watch Video Solution

24. Calculate the energy required to excite an electron in hydrogen atom from the ground
state to the next higher state, if the ionsation energy for the hydrogen atom is 13.6 eV .
A. 3.4 eV
B. $10.2 e \mathrm{~V}$
C. 12.1 eV
D. 1.3 eV

Answer: B

D Watch Video Solution

25. Find the wavelength of the emitted radiation, if electron in hydrogen atom jumps
from third orbit to second orbit.
A. $\lambda=\frac{36}{5 R}$
B. $\lambda=\frac{5 R}{36}$
C. $\lambda=\frac{5}{R}$
D. $\lambda=\frac{R}{6}$

Answer: A

- Watch Video Solution

26. Any radiation in the ultraviolet region of hydrogen spectrum is able to eject photoelectrons from a metal. What should be
the maximum value of threshold frequency for the metal?

A. $3.288 \times 10^{15} \mathrm{~Hz}$
B. $2.466 \times 10^{15} \mathrm{~Hz}$
C. $4.594 \times 10^{14} \mathrm{~Hz}$
D. $8.220 \times 10^{14} \mathrm{~Hz}$

Answer: B

- Watch Video Solution

27. Balmer given an equation for wavelength
of visible radiation of H -spectrum as
$\lambda=\frac{k n^{2}}{n^{2}-4}$.The value of k in terms of
Rydbrum constant R is
A. R
B. $4 R$
C. $R / 4$
D. $4 / R$

Answer: D
28. When an electron jumps from higher orbit to the second orbit in He^{+}ion, the radiation emitted out will be in $\left(R=1.09 \times 10^{7} m^{-1}\right)$
A. ultraviolet region
B. visible region
C. infrared region
D. X-ray region

Watch Video Solution

29. Deuterum atoms in the ground state are radiated by photons of energy 12.8 eV What will be the energy of induced radiation of longest wavelength? Lonisation energy of deuterium is 14.4 eV .
A. 12.8 eV
B. 10.8 eV
C. 1.6 eV
D. 2.00 eV

Answer: D

- Watch Video Solution

30. Calculate the ionisation energy of $L i^{2+}$ atom in ground state.
A. $13.6 \times 9 e V$
B. $13.6 J$
C. 13.6 erg
D. 13.6×10^{-19}

D Watch Video Solution

31. The first excitation potential of a given atom is 10.2 V , then the ionisation potential is
A. 10.2 V
B. 13.6 V
C. 30.6 V
D. 20.4 V

Answer: B

D Watch Video Solution

32. For a single ionised helium atom, the longest wavelength in ground state will absorb
A. $912 \AA$
B. $304 \AA$
C. $606 \AA$
D. $1216 \AA$

Answer: B

- Watch Video Solution

33. If an electron drops from 4th orbit to 2 nd orbit in an H -atom, then
A. it gains 2.55 eV of potential energy
B. it gains $2.55 e V$ of total energy
C. it emits a 2.55 eV electron
D. it emits a $2,55 \mathrm{e} V$ photon

Answer: D

D Watch Video Solution

34. 29 electrons are removed from Zn -atom
($Z=30$)by certain means. The minimum energy needed to remove the 30th electron, will be
A. 12.24 keV
B. 408 eV
C. 0.45 eV
D. None of these

Answer: A

D Watch Video Solution

35. An electron of kinetic energy E_{0} is scattered by an atomic hydrogen sample in ground state. Find the minimum value of E_{0} ,so that a photon of wavelength 656.3 nm may be emitted by H -atom.
A. 12.09 eV
B. $13.6 \mathrm{eV}^{\prime}$
C. 14.6 eV
D. None of these

Answer: A

D Watch Video Solution

36. A H-atom moving with speed v makes a head on collision with a H -atom in rest. Both
atoms are in ground state. Find the minimum
value of velocity v for which one of atom may excite.
A. $6.25 \times 10^{4} \mathrm{~m} / \mathrm{s}$
B. $8 \times 10^{4} \mathrm{~m} / \mathrm{s}$
C. $7.25 \times 10^{4} \mathrm{~m} / \mathrm{s}$
D. $13.6 \times 10^{4} \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution
37. A photon of energy 15 eV collision, H -atom gets ionised. The maximum kinetic energy of emitted electron is
A. 1.4 eV
B. 5 eV
C. 15 eV
D. 13.6 eV

Answer: A

D Watch Video Solution
38. Find the minimum frequency of light which
can ionise a hydrogen atom.
A. $3.28 \times 10^{15} \mathrm{~Hz}$
B. $5 \times 10^{15} \mathrm{~Hz}$
C. 91.1 Hz
D. None of these

Answer: A

D Watch Video Solution
39. In the case of Compton effect, which of the following is applicabel?
A. energy conservation
B. Momentum conservation
C. Charge conservation
D. All of these

Answer: B

D Watch Video Solution
40. The number of orbitals in 3rd orbit are
A. 3
B. 10
C. 18
D. None of these

Answer: D

D Watch Video Solution

Bitsat Archives

1. In hydrogen atom, an electron jumps from bigger orbit to smaller orbit, so that radius of
smaller orbit is one-fourth of radius of bigger orbit. If speed of electron in bigger orbit was v,then speed in smaller orbit is
A. $\frac{v}{4}$
B. $\frac{v}{2}$
C. v
D. $2 v$

Answer: D

D Watch Video Solution
2. In hydrogen atom, if $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are shortest wavelengths in Lyman, Balmer and Paschen series respectively, then $\lambda_{1}: \lambda_{2}: \lambda_{3}$ equals
А. $1: 4: 9$
B. $9: 4: 1$
C. $1: 2: 3$
D. $3: 2: 1$

Answer: A

3. If lambda is the wavelength of hydrogen
atom from the transition $n=3 \rightarrow n=1$
,then what is the wavelength for doubly ionised lithium ion for same transition?
A. $\frac{\lambda}{3}$
B. 3λ
C. $\frac{\lambda}{9}$
D. 9λ

Answer: C

- Watch Video Solution

4. In Bohr's atom model,
A. the nucleus is of infinite mass and is at
rest
B. electrons in a quantised orbit will not
radiate energy
C. mass of electron remains constant
D. All of the above

- Watch Video Solution

