びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

CURRENT ELECTRICITY

Practice Exercise

1. Two uniform wires A and B of same metal
and have equal masses, the radius of wire A is
twice that of wire B. The total resistance of A and B when connected in parallel is
A. 4Ω, when resistance of wire A is 4.25Ω
B. 5Ω, when the resistance of wire A is 4Ω
C. 4Ω, when the resistance of wire B is
4.25Ω
D. 5Ω, when the resistance of wire B is 4Ω

Answer: A

2. A battery of e.m.f. 10 V and internal resistance $0.5 o h m$ is connected across a variable resistance R. The value of R for which the power delivered in it is maximum is given by
A. 2Ω
B. 0.25Ω
C. 1Ω
D. 0.5Ω

- Watch Video Solution

3. If R_{1} and R_{2} are respectively the filament resistances of a 200 watt bulb and 100 watt bulb designed to operate on the same voltage, then
A. $R_{1}=2 R_{2}$
B. $R_{2} 2 R_{1}$
C. $R_{2}=4 R_{1}$
D. $R_{1}=4 R_{2}$

Answer: B

- Watch Video Solution

4. Two electric bulbs rated P_{1} and P_{2} watt at V volt are connected in series across V volt mains then their total power consumption P is
A. $P_{1}+P_{2}$
B. $\sqrt{P_{1} P_{2}}$
C. $P_{1} P_{2} /\left(P_{1}+P_{2}\right)$
D. $\frac{P_{1}+P_{2}}{P_{1} P_{2}}$

Answer: A

D Watch Video Solution

5. In Bohr's model of H_{2} atom, the electrons move around the nucleus in a circular orbit of radius $5 \times 10^{-11} \mathrm{~m}$. Its time period is $1.5 \times 10^{-16} \mathrm{~s}$, the current associated with electron motion is
A. zero
B. $1.6 \times 10^{-19} \mathrm{~A}$
C. 0.17 A
D. $1.07 \times 10^{-3} \mathrm{~A}$

Answer: D

D Watch Video Solution

6. A $5^{\circ} C$ rise in the temperature is observed in a conductor by passing some current. When
the current is doubled, then rise in temperature will be equal to
A. $20^{\circ} C$
B. $16^{\wedge}(@) C^{`}$
C. $12^{\circ} C$
D. $10^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution
7. A uniform wire when connected directly across a 220 V line produces heat H per second. If wire is divided into n parts and all
parts are connected in parallel across a 200 V
line, then the heat produced per second will be
A. H_{s}
B. $n H_{s}$
C. $n^{2} H_{s}$
D. H_{s} / n^{2}

Answer: C

D View Text Solution
8. A wire of 50 cm long, $1 \mathrm{~mm}^{2}$ in cross-section carries a current of 4 A , when connected to a 2 V battery, the resistivity of wire is

$$
\begin{aligned}
& \text { A. } 2 \times 10^{-7} \Omega-m \\
& \text { B. } 5 \times 10^{-7} \Omega-m \\
& \text { C. } 4 \times 10^{-6} \Omega-m \\
& \text { D. } 1 \times 10^{-6} \Omega-m
\end{aligned}
$$

Answer: D

9. Three equal resistors connected in series
across a source of emf together dissipate 10W of power. What would be the power dissipated
if te same resistors are connected in parallel across the same source of emf?
A. 10 W
B. 30 W
C. 90 W
D. $(10 / 3) W$
10. Reciprocal of specific resistacne is
A. conductive resistance
B. specific conductance
C. conductive reactance
D. plate resistance

Answer: B
11. A heating coil is labelled $100 \mathrm{~W}, 220 \mathrm{~V}$, the coil is cut in half and two pieces are joined in parallel to the same source. t /he energy now liberated per second is
A. 200 J
B. 400 J
C. 25 J
D. 50 J
12. Two resistors of 6Ω and 9Ω are connected in series to a 120 V source. The power consumed by the 6Ω resistor is
A. 384 W
B. 576 W
C. 1500 W
D. 1800 W

Answer: A
13. A $100 \mathrm{~W}, 200 \mathrm{~V}$ bulb is connected to a 160 V
supply. The power consumption would be
A. 64 W
B. 80 W
C. 100 W
D. 150 W

Answer: A
14. The thermistors are usually made of
A. metals with low temperature coefficient of resistivity
B. metals with high temperature coefficient of resistivity
C. metal oxides with high temperature coefficient of resistivity

D. semiconducting materials having low

 temperature coefficient of resistivity
Answer: C

D Watch Video Solution

15. Two wires of same material have lengths, L and 2 L and cross-sectional area 4 A and A , respectively. The ratio of their resistances would be
A. $1: 1$
B. 1:8
C. $8: 1$
D. 1:2

Answer: B

D Watch Video Solution

16. Assertion : If three identical bulbs are connected in series as shown in figure then on closing the switchs. Bulb C short circuited and
hence illumination of bulbs A and B decreases.

Reason : Voltage on A and B decreases

A. both A and B will glow more brightly
B. both A and B will glow less brightly than
before
C. A will glow less brightly and B more brightly
D. None of the bulbs will glow

Answer: C

D Watch Video Solution

17. Two wires of the same metal have the same
length, but their cross-sections are in the ratio
of $3: 1$. They are joined in series. The
resistance of the thicker wire is 10Ω. The total resistance of the combinations will be
A. 40Ω
B. $40 / 3 \Omega$
C. $5 / 2 \Omega$
D. 100Ω

Answer: A
(Watch Video Solution
18. Three copper wires of length and crosssectional areas are (L,A) $\left(2 L, \frac{A}{2}\right),(L / 2,2 A)$, resistance is
A. minimum in wire of cross-sectional area
$\frac{A}{2}$
B. minimum in wire of cross-sectional area

A
C. minimum in wire of cross-sectional area

2A
D. same in all three cases

Answer: C

- Watch Video Solution

19. Threre is a current of 1.344 a in a copper wire whose area of cross-sectional normal to
the length of wire is $1 \mathrm{~mm}^{2}$. If the number of
free electrons per cm^{2} is $8.4 \times 10^{28} \mathrm{~m}^{3}$, then
the drift velocity would be

$$
\text { A. } 1 m m / s
$$

B. $1 \mathrm{~mm} / \mathrm{s}$
C. $0.1 \mathrm{~mm} / \mathrm{s}$
D. $0.01 \mathrm{~mm} / \mathrm{s}$

Answer: C

- Watch Video Solution

20. In given figure, the potentiometer wire $A B$ has a resistance of 5Ω and length 10 m . The
balancing length AM for the emf of 0.4 V is

A. 8 m
B. 0.8 m
C. 4 m
D. 0.4 m

- Watch Video Solution

21. In the following figure, the reading of an ideal voltmeter V is zero. Then, the relation between R, r_{1} and r_{2} is

$$
\text { A. } R=r_{2}-r_{1}
$$

$$
\text { B. } R=r_{1}-r_{2}
$$

C. $R=r_{1}+r_{2}$
D. $R=\frac{r_{1} r_{2}}{r_{1}+r_{2}}$

Answer: B

D Watch Video Solution

22. Three equal resistors, each equals to r are connected as shown in figure. Then, the equivalent resistance between points A and B
A. r
B. $3 r$
C. $\frac{r}{3}$
D. $\frac{2 r}{3}$

Answer: C

D View Text Solution

23. When a resistance of 2Ω is connected across the terminals of a cell, the current is 0.5
A. When resistance is increased to 5Ω, the current is 0.25 A . the emf of the cell is
A. 1 V
B. 1.5 V
C. 2 V
D. 2.5 V

Answer: B
(Watch Video Solution
24. The potential difference between points A and B from the figure is

A. $2 / 3 V$
B. $8 / 9 \mathrm{~V}$
C. $4 / 3 \mathrm{~V}$
D. 2 V

Answer: A

- Watch Video Solution

25. The 80Ω galvanometer deflects full scale
for a potential of 20 mV . A voltmeter deflecting
full scale of 5 V is to made using this galvanometer. We must connect
A. a resistance of $19.92 k \Omega$ parallel to the galvanometer
B. a resistance of $19.92 k \Omega$ in series with
the galvanometer
C. a resistance of $20 k \Omega$ parallel to the galvanometer
D. a resistance of $20 k \Omega$ in series with
galvanometer

Answer: B

- Watch Video Solution

26. Consider the circuit shown in figure, the current l_{3} is equal to

A. $5 A$
B. $3 A$
C. $-3 A$
D. $-\frac{5}{6} A$

Answer: D

D Watch Video Solution

27. Two cells having an internal resistance of
0.2Ω and 0.4Ω are connected in parallel, the voltage across the battery is 1.5 V . If the emf of one cell is 1.2 V , then the emf of second cell is
A. 2.1 V
B. 2.7 V
C. 3 V

D. 4.2 V

Answer: A

D Watch Video Solution

28. On a six fold increase in external resistance
of a circuit the voltage across the terminals of
the battery has increased from 5 V to 10 V . The emf of battery is
A. 15 V
B. 18 V
C. 12.5 V
D. 11 V

Answer: C

D Watch Video Solution

29. In figure, $A B$ is a potentiometer wire, length

10 m and resistance 2Ω with open the balancing length is 5.5 m . However, on closing key K the balancing length reduces to 5 m . The
initial resistance of the cell E_{1} is

A. 0.01Ω
B. 0.1Ω
C. 0.2Ω
D. 1Ω

Answer: B

- Watch Video Solution

30. A battery of emf E and internal resistance r is connected to a variable resistor R as shown in figure. Which one of the following is true ?

A. Potenital difference across the terminals
of the battery is maximum, when $\mathrm{R}=\mathrm{r}$
B. Power delivered to the resistor is maximum when $\mathrm{R}=\mathrm{r}$
C. Current in the circuit is maximum when
$R=r$
D. Current in the circuit is maximum when
$R \gg r$

Answer: C

D Watch Video Solution
31. The voltmeter in figure has a resistance of 200Ω. The reading of voltmeter is

A. 2 V
B. 1 V
C. 1.5 V
D. 3 V

Answer: C

D Watch Video Solution

32. For the circuit, the galvanometer G shows
zero deflection. If the batteries A and B have negligible internal resistance, the value of the resistor R will be
A. 200Ω
B. 100Ω
C. 500Ω

D. 1000Ω

Answer: B

D Watch Video Solution

33. For a potenitometer experiment, the emf of a battery in the primary circuit is 20 V and its internal resistance is 5Ω. There is a resistance box in series with the battery and the potentiometer wire, whose resistance can be varied from 120Ω to 170Ω. Resistance of
the potentiometer wire is 75Ω. The following
potential differences can't be measured using this potentiometer
A. 5 V
B. 6 V
C. 7 V
D. 8 V

Answer: D

D Watch Video Solution
34. A 6 V battery is connected to the terminals
of a 3 m long wire of uniform thickness and
resistance of 100Ω. The difference of potential
between two points on the wire separated by a distance of 50 cm will be
A. 2 V
B. 3 V
C. 1 V
D. 15 V

- Watch Video Solution

35. A cell has emf of 2.2 V , when connected to a resistance of 5Ω, the potential difference between the terminals of the cell becomes 2.1 V , the internal resistance for the cell is
A. 0.12Ω
B. 0.48Ω
C. 0.24Ω
D. 0.50Ω

Answer: C

D Watch Video Solution

36. A uniform wire of 16Ω resistance is made into the form of a square. Two opposite corners of square are connected by a wire of resistance 16Ω. The effective resistance between the other two opposite corners is
A. 32Ω
B. 16Ω
C. 8Ω
D. 4Ω

Answer: D

(Watch Video Solution

37. For the circuit shown in figure. The point F
is grounded. Which of the following is wrong

statement?

A. D is at 5 V

B. E is at zero potential
C. The current in the circuit will be 0.5 A
D. None of the above

Answer: A

- Watch Video Solution

38. The figure shows a network of currents.

The magnitude of currents is shwon here. The
magnitude of current I will be

A. $3 A$
B. $13 A$
C. $23 A$
D. $-3 A$

Answer: C

D Watch Video Solution

39. Two wires having resistance R and $2 R$ are connected in parallel, the ratio of heat generated in $2 R$ and R is
A. $1: 2$
B. 2:1
C. 1: 4
D. $4: 1$

Answer: B

D Watch Video Solution

40. If the deflection of galvanometer in Wheatstone circuit is zero, the value of
resistance will be

A. 2Ω
B. 4Ω
C. 6Ω
D. 8Ω

Answer: C

- Watch Video Solution

41. In which property of free electrons causes
increase in the resistance of a conductor with
rise in temperature?
A. Number density
B. Relaxation time
C. Mass
D. None of these

Answer: B

D Watch Video Solution

42. In an electroplating experiment, mg of
silver is deposited when 4 A of current flows
for 2 min . The amount of silver (in g) deposited by 6 A of current for 40 s will be
A. 4 m
B. $m / 2$
C. $-m / 4$
D. $2 m$

Answer: B

D Watch Video Solution

43. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are identical bulbs. How does the
brightness of A and B change when the switch

S is closed ?

A. The brightness of A increases and that
of B decreases
B. The brightness of A does not change
and that of B decreases
C. The brightness of both A and B decreases
D. The brightness of A increases and that of B does not change

Answer: A

D Watch Video Solution

44. For a thermocouple, T_{c}, T_{n} and T_{i} denote the temperatures of cold junction, the neutral temperature and the temperatures of
inversion respectively. Which one of the following relation is correct ?

$$
\begin{aligned}
& \text { A. } T_{i}=\frac{T_{c}+T_{n}}{2} \\
& \text { B. } T_{i} 2 T_{n}-T_{c} \\
& \text { С. } T_{i}=\frac{T_{n}-T_{c}}{2} \\
& \text { D. } T_{i}=T_{n}-T_{c}
\end{aligned}
$$

Answer: B

- Watch Video Solution

45. If nearly $10^{5} \mathrm{C}$ liberate 1 g equivalent of aluminium, then the amount of aluminium (equivalent wt. 9) deposite through electrolysis is 20 min current of 50 A will A
A. 0.6 g
B. 10.8 g
C. 0.09 g
D. 5.4 g

Answer: D

46. For the network shown in figure, points A, B and C are at potentials of 70 V , zero and 10 V respectively

A. point D is at a potential of 40 V
B. the currents in the sections AD, DB and

DC are in the ratio $4: 3: 2$
C. the current in the sections $A D, D B$ and

DC are in the ratio 1:2:3
D. the network draws a total power of 100

W

Answer: A

D Watch Video Solution
47. When copper voltmeter is connected with
a battery of emf $12 \mathrm{~V}, 2 \mathrm{~g}$ of copper is deposited in 30 min . If the same voltmeter is connected across a 6 V battery, then the mass
of copper deposited in 45 min would be
A. 1 g
B. 1.5 g
C. 2 g
D. 2.5 g

Answer: B
48. The emf in a thermooelectric circuit with one junction at $0^{\circ} C$ and other at $t^{\circ} C$ is given by $E=A t-B t^{2}$, the neutral temperature is, then
A. A / B
B. $-A / 2 B$
C. $-B / 2 A$
D. $A / 2 B$

Answer: D

- Watch Video Solution

49. For the adjoining circuit diagram, the readings of ammeter and voltmeter are 2 A and

120 V respectively. If the value of R is 75Ω, then
the voltmeter resistance will be

А. 100Ω
B. 150Ω
C. 300Ω
D. 75Ω

Answer: C

D Watch Video Solution
50. An electric heater rated as (500 W and 200
V) raises the temperature of 1 kg water from
$15^{\circ} \mathrm{C}$ to its boiling point in 15 min . the heat effeciency of the heater is
A. 0.79
B. 0.97
C. 0.69
D. 0.96

Answer: A
(Watch Video Solution

51. The same mass of copper is drawn into two

wires 2 mm and 3 mm thick. The two wires are connected in series and current is passed through them. The ratio of heat produced in the two wires is

$$
\begin{aligned}
& \text { A. } \frac{9}{4} \\
& \text { B. } \frac{3}{2} \\
& \text { C. } \frac{2}{3} \\
& \text { D. } \frac{81}{16}
\end{aligned}
$$

52. An electric bulb rated 500 W at 100 V is
used in a circuit having a 200 V supply. What
resistance R must be put in series with the bulbs so that the bulb delivers 500 W ?
A. 20Ω
B. 40Ω
C. 10Ω
D. 5Ω

Answer: A

D Watch Video Solution

53. Two heater coils made of the same material are connected in parallel across the mains : the length and the diameter of one coil is double that of the other. Which of them will produce more heat?
A. Thinner coil
B. Thicker coil
C. Both produce same heat.
D. None of these

Answer: B

D Watch Video Solution

54. Cell of emf 1 V is connected across a potentiometer, balancing length is 600 cm .

What will be the balancing length for 25 V ?
A. 400 cm
B. 600 cm

C. 1500 cm

D. 1200 cm

Answer: C

- Watch Video Solution

55. A moving coil galvanometer has a resistance of 9.8Ω and gives a full scale deflection when a current of 10 mA is passed through it. The value of the shunt required to
convert it into a milliameter to measure

currents upto 500 mA is

A. 0.02Ω
B. 0.2Ω
C. 2Ω
D. 0.4Ω

Answer: B

D View Text Solution
56. The total electrical resistance between the
points A and B of the circuit shown, is

A. 9.23Ω
B. 15Ω
C. 30Ω
D. 100Ω

Answer: A
57. A wire when connected to 220 V mains
supply has power dissipation P_{1}. Now, the wire is cut into two equal pieces which are connected in parallel to same supply. Power dissipation in this case is P_{2}. Then, $P_{1}: P_{2}$ is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

58. The resistance of a 50 cm long wire is 10Ω.

The wire is stretched of uniform wire of length

100 cm . The resistance now will be
A. 15Ω
B. 30Ω
C. 20Ω
D. 40Ω

Answer: D

- Watch Video Solution

59. For the given circuit, the potenital difference across P and Q will be nearest to

A. 9.6 V
B. 6.6 V
C. 4 V
D. 3.2 V

Answer: D

D Watch Video Solution

60. A voltmeter having resistance of 1800Ω is
employed to measure the potential difference across 200Ω resistance which is connected to

DC power supply of 50 V and internal resistance 20Ω. What is the percentage change in potential difference across 200Ω resistance as a result of connecting voltmeter across it ?
A. 0.01
B. 0.05
C. 0.1
D. 0.2

Answer: A
61. In an experiment to measure the internal
resistance of a cell by a potentiometer, it is
found that the balance point is at a length of
$2 m$ when the cell is shunted by a 5Ω resistance and is at a length of $3 m$ when the cell is shunted by a 10Ω resistance, the internal resistance of the cell is then
A. 12Ω
B. 8Ω

C. 16Ω

D. 1Ω

Answer: B

- Watch Video Solution

62. The V-I graph for a conductor at temperatures T_{1} and T_{2} are as shown in the
figure. The term $T_{2}-T_{1}$ is proportional to

A. $\cos 2 \theta$
B. $\sin 2 \theta$
C. $\cot 2 \theta$
D. $\tan 2 \theta$

Answer: C

- Watch Video Solution

63. The reading of ammeter shown in figure is

A. 6.56 A
B. 3.28 A
C. 2.18 A
D. 1.09 A

Answer: C

D Watch Video Solution

Bitsat Archives

1. Ohms law says
A. $V=I R$
B. $V / l=$ constant
C. Both a and b are correct
D. Both a and b are incorrect

Answer: C

D Watch Video Solution
2. A current 4.0 A exist in a wire of crosssectional area $2.0 \mathrm{~mm}^{2}$. If each cubic metre of
the wire contains 12.0×10^{28} free electrons,
then the drift spped is

> A. $2 \times 10^{-8} \mathrm{~m} / \mathrm{s}$
> B. $0.5 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
> C. $1.04 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
D. None of these

Answer: C
(Watch Video Solution
3. What will be the value of current I in the circuit shown?

A. 0.67 A
B. $1 A$
C. 0.32 A
D. None of these

Answer: A

- Watch Video Solution

4. In the given circuit (as shown in figure), each
capacitor has a capacity of $3 \mu F$. What will be the net charge on each capacitor ?

A. $48 \mu C$
B. $24 \mu C$
C. $12 \mu C$
D. None of these

Answer: C

D Watch Video Solution
5. Three bulbs X, Y and Z are connected as shown in figure. The bulbs Y and Z are

A. Both X and Y will glow more brightly

B. Both X and Y will glow less brightly

C. X will glow less brightly and Y will glow more brightly
D. X will glow more brightly and Y will glow less brightyly

Answer: C

D Watch Video Solution
6. In the circuit shown, the value of I in ampere is

A. 1
B. 0.60
C. 0.4
D. 1.5

- Watch Video Solution

7. In the circuit shown below, the ammeter reading is zero. Then, the value of the resistance R is

A. 50Ω

B. 100Ω

C. 200Ω
D. 400Ω

Answer: B

D Watch Video Solution

8. A steady current flow in a metallic conductor of non-uniform cross-section. The quantity/quantities remaining constant along the whole length of the conductor is /are.
A. current, electric field and drift speed
B. drift speed only
C. current and drift speed
D. current only

Answer: D

D Watch Video Solution
9. Two bulbs which consume powers
P_{1} and P_{2} are connected in series. The power consumed by the combination is
A. $P_{1}+P_{2}$
B. $\sqrt{P_{1} P_{2}}$
C. $\frac{P_{1} P_{2}}{P_{1}+P_{2}}$
D. $\frac{2 P_{1} P_{2}}{P_{1}+P_{2}}$

Answer: A

D Watch Video Solution

10. Three conductors draw respectively
currents of $1 \mathrm{~A}, 2 \mathrm{~A}$ and 4 A when connected in
turn across a battery. If they are connected in
series across the same battery, the current drawn will be
A. $\frac{2}{7} A$
B. $\frac{3}{7} A$
C. $\frac{4}{7} A$
D. $\frac{5}{7} A$

Answer: C
(Watch Video Solution
11. 24 identical cells, each of internal resistance
0.5Ω, are arranged in a parallel combination of
n rows, each row containing m cells in series.
The combination is connected across a
resistor of 3Ω. In order to send maximum
current through the resistor, we should have
A. $m=12, n=2$
B. $m=8, n=3$
C. $m=2, n=2$
D. $m=3, n=8$

Answer: A

- Watch Video Solution

12. A wire is stretched as to change its
diameter by 0.25%. The percentage change in
resistance is
A. 4.0%
B. 2.0%
C. 1.0%
D. 0.5%

Answer: C

D View Text Solution

13. If in the circuit shown below, the internal
resistance of the battery is 1.5Ω and V_{P} and
V_{Q} are the potential at P and Q respectively, what is the potential difference between the
point P and Q ?

A. Zero
B. $4 V\left(V_{P}>V_{Q}\right)$
C. $4 V\left(V_{Q}>V_{P}\right)$
D. $2.5 V V\left(V_{Q}>V_{P}\right)$

Answer: D

- Watch Video Solution

14. When the potential difference applied across a solid conductor is increased, the rate of flow of electrons
A. remains same
B. decreases
C. increase
D. decreases sharply

- Watch Video Solution

15. A box with two terminals is connected in series with a 2 V battery, an ammeter and a switch. When the switch is closed the needle of the ammeter moves quickly across the scale and drops back to zero. The box contains
A. 20Ω resistor
B. a strip of copper
C. a diode

D. a short length of fuse wire

Answer: D

D Watch Video Solution

16. A current of 2 A flows in an electric circuit
as shown in figure. The potential difference
$\left(V_{R}-V_{S}\right), \quad$ in volts $\left(V_{E}\right.$ and V_{S} are
potenitals at R and S respectively) is

A. -4
B. +2
C. +4
D. -2

- Watch Video Solution

17. When a battery connected across a resistor of 16Ω, the voltage across the resistor is 12 V .

When the same battery is connected across a resistor of 10Ω, voltage across it is 11 V . The internal resistance of the battery (in ohm) is
A. $\frac{10}{7}$
B. $\frac{20}{7}$
C. $\frac{25}{7}$
D. $\frac{30}{7}$

Answer: B

D Watch Video Solution

18. If a rod has resistance 4Ω and if rod is
turned as half circle, then the resistance along
diameter is
A. 1.56Ω
B. 2.44Ω
C. 4Ω
D. 2Ω

Answer: C

D Watch Video Solution

19. In the circuit, the potential difference across PQ will be nearest to

A. 9.6 V
B. 6.6 V
C. 4.8 V
D. 3.2 V

Answer: D

D Watch Video Solution

20. Each resistance shown in figure is 2Ω. The equivalent resistance between A and B is

A. 2Ω
B. 4Ω
C. 8Ω
D. 1Ω

Answer: A
21. A cell of constant emf first connected to a resistance R_{1} and then connected to resistance R_{2}. If power deliverd in both cases is same, then the internal resistance of the cell is
A. $\sqrt{R_{1} R_{2}}$
B. $\sqrt{\frac{R_{1}}{R_{2}}}$
C. $\frac{R_{1}-R_{2}}{2}$
D. $\frac{R_{1}+R_{2}}{2}$

Answer: A

D Watch Video Solution

22. Ampere- hour is the unit of
A. quantity of charge
B. potential
C. energy current
D.

Answer: A

D Watch Video Solution

23. A 5.0 amp current is setup in an external
circuit by a 6.0 volt storage battery for 6.0
minutes. The chemical energy of the battery is
reduced by
A. $1.08 \times 10^{4} J$
B. $1.08 \times 10^{-4} J$
C. $1.8 \times 10^{4} J$

D. $1.8 \times 10^{-4} J$

Answer: A

D Watch Video Solution

24. The current in a simple series circuit is 5.0
A. When an additional resistance of 2.0Ω is inserted, the current drops to 4.0 A . The original resistance of the circuit in ohms was
A. 1.25
B. 8
C. 10
D. 20

Answer: B

D Watch Video Solution

25. Two resistances are connected in tow gaps
of a Meter bridge. The balance point is 20 cm
from the zero end. A resistance of 15Ω is
connected in series with the smaller of the
two. The null point shifts to 40 cm . The value of the smaller resistance in ohms is
A. 3
B. 6
C. 9
D. 12

Answer: C
(Watch Video Solution
26. By using only two resistance coils-singly, in
series, or in parallel one should be able to
obtain resistances of $3,4,12$ and 16 ohms. The separate resistances of the coil are
A. 3 and 4
B. 4 and 12
C. 12 and 16
D. 16 and 3

Answer: B

