©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

ELECTRIC CAPACITOR

Practice Exercise

1. In which form of the following, the energy is
stored in the capacitor?
A. Charge
B. Magnetic field
C. Capacitance
D. Electric potential energy

Answer: D

D Watch Video Solution

2. A sheet of aluminium foil of negligible thickness is placed between the plates of a capacitor of capacitance C as shown in the
figure, the capacitance of capacitor becomes

$d / 2$

Foil

A. 2 C
B. C
C. $\frac{C}{2}$
D. zero

Answer: B
3. Calculate the ratio of capacitance of two capacitors of same dimension of same dimensions but of different values K and $\frac{K}{4}$ arranged in two ways as shown in Fig. (i) and (ii).

A. $5: 2$
B. $25: 16$
C. 5: 4
D. 2:5

Answer: B

D Watch Video Solution
4. A conducting sphere of radius 10 cm is given
a charge of $+2 \times 10^{-8} C$. What will be its
potential?
A. $0.03 k V$
B. $0.9 k V$
C. 1.8 kV
D. $3.6 k V$

Answer: C

D Watch Video Solution

5. If n identical drops of mercury are combined to form a bigger drop then find the capacity of
bigger drop, if capacity of each drop of mercury is C .
A. $n^{1 / 3} \mathrm{C}$
B. $n^{2 / 3} \mathrm{C}$
C. $n^{1 / 4} \mathrm{C}$
D. nC

Answer: A
(Watch Video Solution
6. Two spherical conductors A_{1} and A_{2} of radii
r_{1} and r_{2} are placed concentrically in air. The
two are connected by a copper wire as shown
in figure. Then, the equivalent capacitance of
the system is

D. $4 \pi \varepsilon_{0} r_{1}$

Answer: C

D Watch Video Solution

7. Calculate amount of charge flow, when a conducting sphere of radius R and carrying a charge Q , is joined to an uncharged conducting sphere of radius $2 R$.

$$
\text { A. } \frac{Q}{4}
$$

B. $\frac{Q}{3}$
C. $\frac{Q}{2}$
D. $\frac{2 Q}{3}$

Answer: D

- Watch Video Solution

8. Find the electric field in region II as shown in

figure.

A. zero
B. $\frac{\sigma}{4 \pi \varepsilon_{0}}$
C. $\frac{\sigma}{\varepsilon_{0}}$
D. Infinite

Answer: C
9. Two capacitors A and B having capacitances
$10 \mu f$ and $20 \mu F$ are connected in series with a
12 V battery. The ratio of the charge on A and
B is
A. 0.5: 1
B. 1:1
C. 2:1
D. 2:4

Answer: B

- Watch Video Solution

10. A $6 \times 10^{-4} \mathrm{~F}$ parallel plate air capacitor is
connected to a 500 V battery. When air is
replaced by another dielectric material,
$7.5 \times 10^{-4} \mathrm{C}$ charge flows into the capacitor.
The value of the dielectric constant of the material is
A. 1.5
B. 2.0

C. 1.0025

D. 3.5

Answer: C

D Watch Video Solution

11. The 90 pF capacitor is connected to a 12 V
battery. How many electrons a transferred
from one plate to another?
A. 1.1×10^{9}
B. 6.7×10^{9}
C. 4×10^{19}
D. 5×10^{19}

Answer: B

D Watch Video Solution

12. In the given figure the capacitor of plate area A is charged upto charge q. The ratio of elongations (neglect force gravity) in springs
C and D at equilibrium position is.

A. $\frac{k_{1}}{k_{2}}$
B. $\frac{k_{2}}{k_{1}}$
C. $k_{1} k_{2}$
D. None of these

- Watch Video Solution

13. A potential difference of 500 V is applied across a paralle plate capacitor. The separation between the plates is $2 \times 10^{-3} \mathrm{~m}$.

The plates of the capacitor are vertical. An electron is projected vertically upwards between the plates with a velocity of $10^{5} \mathrm{~m} / \mathrm{a}$ and it moves undeflected between the plates.

The magnetic field acting perpendicular to the electric field has magnitude of
A. $1.5 W b / m^{2}$
B. $2.0 \mathrm{~Wb} / \mathrm{m}^{2}$
C. $2.5 W b / m^{2}$
D. $3.0 \mathrm{~Wb} / \mathrm{m}^{2}$

Answer: C

D Watch Video Solution

14. Two capacitors C_{1} and C_{2} are connected in a circuit as shown in figure. The potential
difference $\left(V_{A}-V_{B}\right)$ is

A. 8 V
B. $-8 V$
C. 12 V
D. 12 V

Answer: B
15. In the given figure, the equivalent capacitance between A and B is

A. $3 C$
B. $\frac{C}{3}$
C. $\frac{3}{2 C}$
D. infinity

Answer: D

- Watch Video Solution

16. For the circuit, the equivalent capacitance
between P and Q is

A. $6 C$
B. $4 C$
C. $\frac{3 C}{2}$

D. $\frac{6 C}{11}$

Answer: D

D Watch Video Solution

17. A parallel plate capacitor is connected to a battery of constant emf. Let the electric field at a given point between the plate be E_{0}, when there is no medium between the plates.

The new electric field at the point, If a medium
of dielectric constant A is intoduced between
them, is

> A. $\frac{E_{0}}{4}$
> B. $\frac{E_{0}}{2}$
> C. E_{0}
> D. $4 E_{0}$

Answer: C
(Watch Video Solution
18. Force acting upon charged particle kept between the plates of a charged condenser is
F. If one of the plates of the condenser is removed, force acting on the same particle will become.
A. 0
B. $\frac{F}{2}$
C. F
D. $2 F$

Answer: B
19. A parallel plate capacitor has two layers of
dielectrons as shown in figure. This capacitor is connected across a battery, then the ratio of potential difference across the dielectric layers is
A. $\frac{4}{3}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{3}{2}$

Answer: D

- Watch Video Solution

20. A parallel plate capacitor of plate area A and plate separation d is charged to potential difference V and then the battery is disconnected. A slab of dielectric constant K is
then inserted between the plates of the capacitor so as to fill the space between the
plates. If Q, E and W denote respectively, the magnitude of charge on each plate, the electric field between the plates (after the slab is inserted), and work done on the system, in question, in the process of inserting the slab, then

$$
\begin{aligned}
& \text { А. } Q=\varepsilon_{0} \frac{A V}{d} \\
& \text { В. } W=\varepsilon_{0} \frac{A V^{2}}{2 d}\left(1-\frac{1}{K}\right) \\
& \text { С. } C=\frac{V}{K d}
\end{aligned}
$$

D. All of these

- Watch Video Solution

21. A capacitor of capacitance $10 \mu F$ is charged by connecting through a resistance of 200 mga and battery of 20 V . What is the energy supplied by the battery?

A. Less than 2 mJ
B. Equal to 2 mJ
C. More than 2 mJ
D. Cannot be predicted

Answer: C

D Watch Video Solution

22. A capacitor of capacitance C is charged to a potential difference V_{0}. The charged battery is disconnected and the capacitor is connected
to a capacitor of unknown capacitance C_{x}. The potential difference across the combination is
V. The value of C_{x} should be

$$
\begin{aligned}
& \text { A. } \frac{C\left(V_{0}-V\right)}{V} \\
& \text { B. } \frac{C\left(V-V_{0}\right)}{V} \\
& \text { C. } \frac{C V}{V_{0}} \\
& \text { D. } \frac{C V_{0}}{V}
\end{aligned}
$$

Answer: A

D Watch Video Solution
23. A parallel plate capacitor is made of two dielectric blocks in series. One of the blocks has thickness d_{1} and dielectric constant K_{1} and the other has thickness d_{2} and dielectric constant K_{2} as shown in figure. This arrangement can be through as a dielectric slab of thickness $d\left(=d_{1}+d_{2}\right)$ and effective dielectric constant K. The K is.

$$
\text { A. } \frac{K_{1} d_{1}+K_{2} d_{2}}{d_{1}+d_{2}}
$$

> B. $\frac{K_{1} d_{1}+K_{2} d_{2}}{K_{1}+K_{2}}$
> C. $\frac{K_{1} K_{2}\left(d_{1}+d_{2}\right)}{K_{1} d_{1}+K_{2} d_{2}}$
> D. $\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}$

Answer: C

D Watch Video Solution

24. A copper plate of thickness b is placed inside a parallel plate capacitor of plate distance d and area A as shown in figure. The

capacitance of capacitor is

A. $\frac{A \varepsilon_{0}}{d}$
B. $\frac{A \varepsilon_{0}}{b}$
C. $\frac{A \varepsilon_{0}}{d-b}$
D. ∞

Answer: D

D Watch Video Solution

25. For the circuit shown below, capacitors A
and B have identical geometry, but a material
of dielectric constant 3 is present between the plates of B. The potential difference across A
and B are respectively

A. $2.5 \mathrm{~V}, 7.5 \mathrm{~V}$
B. $2 V, 8 V$
C. $7.5 \mathrm{~V}, 2.5 \mathrm{~V}$
D. $8 \mathrm{~V}, 2 \mathrm{~V}$

Answer: A

- Watch Video Solution

26. In the net work three identical capacitors are connected as shown. Each of them can withstand to a maximum 100 V potential difference. What is the maximum voltage that can be applied across A and B so that no capacitor gets spoiled.

A. 150 V
B. 120 V
C. 180 V
D. 0.200 V

Answer: B

D Watch Video Solution

27. Calculate the work done against the electric force, if the separation of the
capacitor of area S is increased from x_{1} to x_{2}.

Assume charge q on the capacitor is constant.

$$
\begin{aligned}
& \text { A. } W=\frac{q^{2}}{\varepsilon_{0} S}\left(x_{2}-x_{1}\right) \\
& \text { B. } W=\frac{q}{\varepsilon_{0} S}\left(x_{2}-x_{1}\right) \\
& \text { C. } W=\frac{q^{2}}{2 \varepsilon_{0} S}\left(x_{2}-x_{1}\right) \\
& \text { D. } W=\frac{q^{2}}{4 \varepsilon_{0} S}\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

28. Five identical plates are connected across a battery as follows: If the charge on plate 1 be $+q$, then the charges on the plates $2,3,4$ and 5 are

$$
\begin{aligned}
& \text { A. }-q,+q,-q,+q \\
& \text { B. }-2 q,+2 q,-2 q,+q
\end{aligned}
$$

$$
\text { C. }-q,+2 q,-2 q,+q
$$

D. None of these

Answer: B

D Watch Video Solution

29. The equivalent capacitance of the combination of three capacitors each of capacitance C between A and B as shown in
figure is

A. C
B. $2 C$
C. $C / 2$
D. $3 C$

Answer: B

Bitsat Archives

1. Three capacitors $X=1 \mu F, Y=2 \mu F$ and
$Z=3 \mu F$ are connected as shown in figure,
then the equivalent capacitance between
points A and B is

A. $6 \mu F$
B. $12 \mu F$
C. $3 \mu F$
D. None of these

Answer: A

- Watch Video Solution

2. A capacitor of capacity $0.1 \mu F$ connected in series to a resistor of $10 M \Omega$ is charged to a certain potential and then made to discharge through resistor. The time in which the
potential will take to fall to half its original value is (Given, $\log _{10} 2=0.3010$)
A. $2 s$
B. 0.693 s
C. 0.5 s
D. 1.0 s

Answer: B
(Watch Video Solution
3. The work done in placing a charge of 8×10^{-18} coulomb on a condenser of capacity 100 micro-farad is
A. $32 \times 10^{-32} \mathrm{~J}$
B. 16×10^{-32} J
C. $3.1 \times 10^{-26} \mathrm{~J}$
D. $4 \times 10^{-10} \mathrm{~J}$

Answer: A

- Watch Video Solution

4. Two identical air filled parallel plate capacitors are charged to the same potential in the manner shown by closing the switch S . If now the switch S is opened and the space between the plates is filled with a dielectric of relative permittivity ε_{t}, then

A. the potential difference as well as
charge on each capacitor goes up by a
factor ε_{r}
B. the potential difference as well as the
charge on each capacitor goes down by
a factor ε_{r}
C. the potential difference across A
remains constant and the charge on B
remains unchanged
D. the potential difference across B
remains constant, while the charge on A
remains unchanged

Answer: C

D Watch Video Solution

5. Which of the following is discontinuous across a charged conducting surface?
A. Electric potential
B. Electric intensity
C. Both electric potential and intensity
D. None of the above

Answer: B

D Watch Video Solution

6. Capacitance of a capacitor made by a thin metal foil is $2 \mu F$. If the foil is foilded with paper of thickness 0.15 mm , dielectric constant
of paper is 2.5 and width of paper is 400 mm , the length of foil will be
A. 0.34 m
B. 1.33 m
C. 13.4 m
D. 33.9 m

Answer: D
(D) View Text Solution

