đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

ELECTROMAGNETIC INDUCTION

1. Lenz's law of electromagnetic induction
A. law of conservation of change
B. law of conservation of energy
C. law of conservation of momentum
D. law of conservation of angular
momentum

Answer: B

- Watch Video Solution

2. A toroidal solenoid with an air core has an average radius of 15 cm , area of cross-section $12 \mathrm{~cm}^{2}$ and 1200 turns . Ignoring the field variation across the cross-section of the toroid the self-inductance of the toroid is
A. 4.6 mH
B. 6.9 mH
C. 2.3 mH
D. 9.2 mH
3. A coil of inductance L is carrying a steady
current I . what is the nature of its stored energy?
A. Magnetic
B. Electrical
C. Both magnetic and electrical
D. Heat
4. If emf induced in a coil is 2 V by changing the current in it from 8 A to 6 A in $2 \times 10^{3} \mathrm{~s}$. Then ,the coefficient of self -induction is
A. $2 \times 10^{-3} H$
B. $10^{-3} \mathrm{H}$
C. $0.5 \times 10^{-3} \mathrm{H}$
D. $4 \times 10^{-3} \mathrm{H}$

Answer: A
5. If in a triode valve amplification factor is 20
and plate resistance is $10 k \Omega$, then its mutual conductance is
A. 2 milli mho
B. 20 milli mho
C. (1/2) milli mho
D. 200 milli mho
6. The induction coil works on the principle of
A. self-induction
B. mutual induction
C. Ampere's rule
D. Fleming's right hand rule

Answer: B

Others

1. The magnetic flux ϕ (in waber) in a closed circult of resting 10Ω varies with t (in second) according to equation $\phi=6 t^{2}-5 t+1$. The magnitude of induced at $t=0.25 \mathrm{~s}$.
A. $1.2 A$
B. $0.8 A$
C. $0.6 A$
D. $0.2 A$

Answer: D

- Watch Video Solution

2. A metaillic circular loop of radius r is placed in unfirom magnetic field B acting perpendicular to the plane of the loop . A naughty boy pulls dimetrically oppsite corner so that after sometime, the loop changes into an ellipse of major and minor radius a and b.

It total resistance of loop is R and it remains
constant during the puilling . Find average change flowing through loop during pulling.

$$
\begin{aligned}
& \text { A. } \frac{B(\pi a b)}{R} \\
& \text { B. } \frac{B\left(\pi a b-\pi r^{2}\right)}{R} \\
& \text { C. } \frac{B \pi r^{2}}{R} \\
& \text { D. } \frac{B \pi r b}{R}
\end{aligned}
$$

Answer: B

3. Three resistances of magniute R each are connected in the from of an equilateral traingle of side a. The combinates is placed in
a magnetic field $B=B_{0} e^{-\lambda t}$ perpendicular to
the plane. The induced current in the circuIt is given by.

$$
\begin{aligned}
& \text { A. }\left(\frac{a^{2} \lambda}{2 \sqrt{3 R}} B_{0}\right) e^{-\lambda t} \\
& \text { B. }\left(\frac{a^{2} \lambda}{4 \sqrt{(3) R}} B_{0}\right) e^{-\lambda t} \\
& \text { C. }\left(\frac{a^{2} \lambda}{\lambda 4(\sqrt{3} R)} B_{0}\right) e^{-\lambda t}
\end{aligned}
$$

D. $\left(\frac{a^{2} B_{0} R}{\lambda 4(\sqrt{3}) B_{0}}\right) e^{-\lambda t}$

Answer: B

D Watch Video Solution

4. A helicopter rise verticaly with a speed of $10 \mathrm{~ms}^{-1}$. If helicopter has a length of 10 m and the horizontal component of the earth's magentic field is $1.5 \times 10^{-3} \mathrm{Wbm}^{2}$, the emf induced between the tip of the nose and the tail of the helicopter, is
A. 0.15 V
B. 125 V
C. 130 V
D. 5 V

Answer: A

D Watch Video Solution

5. An air- conred solectioid with length 30
cm ,area of cross-section $25 \mathrm{~cm}^{2}$ and number of turns 500, carries a curent is suddenly
switched off in a brief time of $10^{-3} s$. How much is the average back emf induced across the ends of the opne switch in the circuit ? Ignore the variation inmagnetic field near the of the solenoid.
A. 6.5 V
B. 7.4 V
C. 8.2 V
D. 9.3 V

Answer: A
6. A fan blade of length 2 a rotates with frequency f cycle' per second perpendicular to magnetic field B . Then, potenial difference between centre and end of blade is
A. $\pi B a^{2} f$
B. $4 \pi B a f$
C. $4 \pi a^{2} B f$
D. $2 \pi a B f$

Answer: A

D Watch Video Solution

7. A mental rod $A B$ of length I is rotated with a constant angular velocity ω about an axis passing through O and normal to its length . Potenial difference between ends of rod in absence of external magnetic field (Where, e
= electric change)

A. zero
B. $\frac{m \omega^{2} l^{2}}{4 e}$
C. $\frac{m \omega^{2} l^{2}}{2 e}$
D. $\frac{m \omega^{2} l^{2}}{8 e}$

Answer: B
8. A wire is sliding as shown in Figure. The angle between the acceleration and the velocity of the wire is

A. 30°
B. 40°
C. 120°

D. 90°

Answer: C

D Watch Video Solution

9. A fan blade of length $1 / \sqrt{\pi}$ metre rotates
with frequncy 5 cycle per second perpendicular to a magnetic field 10 tesla.

What is potential diffrence between the centre and the end of blade?

$$
\text { A. }-50 \mathrm{~V}
$$

B. +50 V
C. -2.0 V
D. +0.02 V

Answer: A

D Watch Video Solution

10. A coil has an area of $0.05 \mathrm{~m}^{2}$ and has 800 turns. After placing the coil in a magnetic field of strenght $4 \times 10^{-5} \mathrm{Wbm}^{-2}$, perpendicualar
to the field, the coils id rotated by 90° in 0.1 s
. The value of average emf induced is
A. zero
B. 0.016 V
C. 0.01 V
D. 0.032 V

Answer: B

D Watch Video Solution
11. In Fig. a coil of single turn is wound on a sphere of radius r and mass m. The plane of
the coil is parallel to the inclined plane and
lies in the equatorial plane of the sphere. If
the sphere is in rotational equilibrium, the
value of B is [Current in the coil is i]

A. $\frac{m g}{\pi l r}$
B. $\frac{m g \sin \theta}{\pi l}$
C. $\frac{m g r \sin \theta}{\pi l}$
D. none of these

Answer: A

D Watch Video Solution

12. The loop $A B C D$ is moving with velocity
' v ' towards right. The magnetic field is $4 T$.

The loop is connected to a resistance of 8Ω. If steady current of $2 A$ flows in the loop then value of ' v ' if loop has a resistance of 4Ω, is :
(Given $A B=30 \mathrm{~cm}, A D=30 \mathrm{~cm}$)

A. $\frac{50}{3} m / s$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $\frac{100}{3} \mathrm{~m} / \mathrm{s}$

Answer: D
13. Calcualte the self-inducatance of the air cored solined of length 80 cm and has 500 turns and its cicular cross- section has diamter of 2 cm .
A. $150.6 \mu H$
B. $162.2 \mu \mathrm{H}$
C. $123.3 \mu H$
D. $102.5 \mu H$

Answer: C
14. The inductance per unit length of a double tape line as shown in the figure

A. $\frac{\mu_{0} h}{b}$
B. $\frac{b}{\mu_{0} h}$
C. $\frac{\mu_{0} b}{h}$
D. $\frac{h b}{\mu_{0}}$

Answer: A

- Watch Video Solution

15. What is the mutual inductance of coil and solenid if a has a radius 4 cm and coil of 700 turns is would on the middle part of the solenoid?
A. 44.17 mH
B. 48.94 mH
C. 34.34 mH
D. 36.73 mH

Answer: A

D Watch Video Solution
16. When the current changes from $+2 A$ to
$-2 A$ in $0.05 s$, and emf of $8 B$ is induced in a
coil. The coefficient of self-induction of the coil is
A. 0.1 H
B. 0.2 H
C. 0.4 H
D. 0.8 H

Answer: A

D Watch Video Solution
17. A closed circuit consits of a source of constant and E and a choke coil of inductance
L connected in series. The active resistance of
the whole circuit is equal to R. At the moment
$t=0$ the choke coil inductance was decreased
abrupty η times. FInd the current in the circuit as a function of time t.
A. zero
B. E / R
C. $\frac{n E}{R}$
D. $\frac{E}{n R}$

Answer: C

D Watch Video Solution

18. Three pure inductors each of 2 H are connected as shown in the figure. The equivalent inductance of the circuit is

A. $8 \mathrm{H} / 6$
B. 6 H
C. 2 H
D. none of these

Answer: A

D Watch Video Solution
19. The sum and difference of self-inductances
of two coils are 13 mH and 5 mH respectively.

What is the maximum value of mutual inductance (im milli henry) of the two coil ?
A. 6 H
B. 5 H
C. $\sqrt{65} H$
D. 18 H

Answer: A
(Watch Video Solution
20. In the figure, the steady state current through the inductor will be

A. zero
B. 1A
C. 1.25A
D. Cannot be determined

Answer: C

- Watch Video Solution

21. Determine thte valur of time constan for
the given circuit

A. $\frac{L}{R_{1}+r+R_{2}}$
B. $\frac{L}{\left(R_{1}+r\right)}$
C. $\frac{L\left(R_{1}+R_{2}+r\right)}{\left(R_{1}+r\right) R_{2}}$
D. none of these

Answer: C

D Watch Video Solution

22. The time constant for the given circuit is

A. 4 s
B. $1 / 4 \mathrm{~s}$
C. 2 s
D. $1 / 2 \mathrm{~s}$
23. With usual notations, the energy dissipation in an ideal inductor is given by
A. LI
B. $\frac{1}{2} L I$
C. $\frac{1}{2} L I^{2}$
D. none of these

Answer: D
24. A non-conducting ring of radius r has charge per unit length λ. A magnetic field perpendicular to plane of the ring changes at rate $\mathrm{Db} / \mathrm{dt}$. Torque experienced by the ring is

A. $\lambda \pi r^{3} \frac{d B}{d t}$
B. $\lambda 2 \pi r^{3} \frac{d B}{d t}$
C. $\lambda^{2}(2 \pi r)^{2} \frac{d B}{d t}$
D. zero

Answer: A

D Watch Video Solution

25. Figures show a uniform magnetic field B
condfirned to ta cylinderical bolume of radius
R. If B is increasing aty constant rate of $0.01 \mathrm{~T} / \mathrm{s}$.

Instantaneous acceleration experienced by electron at $\mathrm{r}=10 \mathrm{~cm}$ (ltR) as shown in the figure.

$$
\begin{aligned}
& \text { A. } 8.79 \times 10^{-12} \mathrm{~m} / \mathrm{s}^{2} \\
& \text { B. } \mathrm{v} 8.79 \times 10^{-11} \mathrm{~m} / \mathrm{s}^{2} \\
& \text { C. } 8.79 \times 10^{-10} \mathrm{~m} / \mathrm{s}^{2} \\
& \text { D. } 8.79 \times 10^{-09} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

26. Find the energy stored in the magnetic field if current of 5 A produces a magnetic flux of $2 \times 10^{-3} \mathrm{~Wb}$ through a coil of 500 turns.
A. 2.5J
B. 0.25J
C. 250J
D. 1.5J

Answer: A

- Watch Video Solution

27. The inductance of a coil in which a current
of 0.1 A increasing at the rate of $0.5 \mathrm{~A} / \mathrm{s}$
represents a power flow of $\frac{1}{2}$ watt, is
A. 2 H
B. 8 H
C. 20 H
D. 10 H

Answer: D

D Watch Video Solution

