

PHYSICS

BOOKS - BITSAT GUIDE

GAUSS LAW AND ELECTRIC POTENTIAL THEORY

Practive Exercise

1. A surface $s = 10\hat{j}$ is kept in an electric field. $E = 2\hat{i} + 4\hat{j} + 7\hat{k}$. How must electric flux will come out through the surface ?

A. 40 units

B. 50 units

C. 30 units

D. 20 units

Answer:

A. $E_0\pi R^2h$

 $\mathrm{B.}\, 2E_0\pi R^2h$

C. $3E_0\pi R^2h$

D. $4E_0\pi R^2h$

Answer:

3. A point charge Q is placed at the centre of a hemisphere. Find the electric flux passing through flat surface of hemisphere.

A.
$$\frac{Q}{\varepsilon_0}$$

B. Zero

$$\mathsf{C}.\,\frac{Q}{2}\varepsilon_0$$

D. None of these

Answer:

4. A point charge Q is placed at the centre of a hemisphere. Find the ratio of electric flux passing through curved andplane surface of the hemisphere.

A.1:1

B.1:2

 $\mathsf{C.}\,2\pi\!:\!1$

D. $4\pi: 1$

Answer:

Watch Video Solution

5. If a point charge q is placed at one corner of a cube, what is the flux linked with the cube?

A.
$$\frac{q}{\varepsilon_0}$$

B. $\frac{q}{2}\varepsilon_0$

C.
$$\frac{q}{3}\varepsilon_0$$

D. $\frac{q}{8}\varepsilon_0$

Answer:

Watch Video Solution

6. An electric dipole is placed at the centre of a sphere. Find the electric flux passing through the sphere.

A.
$$\frac{1}{\varepsilon_0}$$

B. $\frac{2}{\varepsilon_0}$

C. Zero

D. None of these

Answer:

7. A point charge $q=2 \times 10^{-7}$ C is placed at the centre of a spherical cavity of radius 3 cm in a metal place. A and B are at distances 1.5 cm and 4.5 cm respectively from the centre of cavity.

A. $8 imes 10^6$ N/C and zero

- B. zero and zero
- C. zero and $8.9 imes 10^5$ N/C
- D. None of these

Answer:

8. In the given figure, two point chrges q_1 and q_2 are placed at distances a and b from centre of a metallic sphere having charge Q.Find electric felds due to the metallic sphere at the point P.

D. None of these

Answer:

9. Find the minimum surface denstily of charge on the plate, so that a body of mass 2 kg/m^2 may just be lifted.

A. $2.84 imes10^{-9}C/m^2$

B. $2.25 imes10^{-9}C/m^2$

C. $1.86 imes 10^{-9}C/m^2$

D. None of these

Answer:

Watch Video Solution

10. Find the surface density of electric charge at a place on the earth's surface, where the rate of fall of potential is 2.5 V.

A. $2.0 imes10^{-9}C\,/\,m^2$

B. $2.21 imes 10^{-9}C/m^2$

C. $3.36 imes 10^{-9} C \, / \, m^2$

D. $3.5 imes10^{-9}C/m^2$

Answer:

Watch Video Solution

11. Four point charges q_1, q_2, q_3 and q_4 are placed at the corners of the squares of side a, as shown in figure. Calculate the potential at the centre

of the square.

(Given,

 $q_1 = 1 \times 10^{-8}C, q_2 = -2 \times 10^{-8}C, q_3 = 3 \times 10^{-8}C, q_4 = 2 \times 10^{-8}C$ a) A. 507 V B. 607 V C. 550 V D. 650 V Answer:

Watch Video Solution

12. Over a thin ring of radius R a charge q is distributed none-uniformly. Calculate the work done of the force field in displacing a point charge q' from centre of the ring to infinity.

A.
$$\frac{qq'}{4\pi\varepsilon_0 R}$$

B.
$$\frac{qq'}{2\pi\varepsilon_0 R}$$

C.
$$\frac{qq'}{\pi\varepsilon_0 R}$$

D. None of these

Answer:

13. Two drop of water each with a charge of 3×10^{-9} C having surface potential 500 V form a single drop. What is the surface potential of the new drop?

A. 794 v

B. 1000 v

C. 250 v

D. 750 v

Answer:

14. Calculate the earth's potential. Assume earth has a surface charge density of 1ectron/metre^2 .(Given,the electronic charge = $-1.6 \times 10^{-19}C$, earth's radius = $6.4 \times 10^6 m$, $e_0 = 8.9 \times 10^{-12}c^2/Nm$) A. -0.115VB. 0.215 vC. -0.225vD. 0.185 v

Answer:

Watch Video Solution

15. An electron is released from rest at one point in uniform field and moves a distance of 10c cm in 10^{-7} s. What is the voltage between the points?

A. 10 v

B. 7 v

C. 11.4 v

D. 8 v

Answer:

 $\mathsf{B}.\,\frac{qd}{r}$

$$\mathsf{C}.-rac{qr}{d}$$

Answer:

17. At the eight corners of a cube of side 10 cm, equal charge each of value

10 C are placed. Calculate the potebtial at the centre of the cube.

A. $83.14 imes10^{11}v$

B. $16.62 imes10^{11}v$

C. $1.66 imes 10^{11} v$

D. $166.7 imes 10^{11} v$

Answer:

18. Calculate the work required to bring a unit positive charge from infinity to a mid-point between two charges $20\mu C$ and $10\mu C$ separated by a distance of 50 m.

A. $10.8 imes10^4 J$

B. `10.8xx10^(3)J

C. `10.8xx10^(8)J

D. `0.54xx10^(5)J

Answer:

Watch Video Solution

19. Two charge _q and -3q are placed at a distance of 1 m apart.Find out the points on the line joing two charges, where electric potential is zero.

A. 0.25 m, 0.5 m

B. 1 cm, 0.50 m

C. 0.35 cm, 24 cm

D. None of these

Answer:

Watch Video Solution

20. Two point are at distance r_1 and $r_2(r_1 < r_2)$ from a long string having charge per unit length σ . The potential difference between the points is proportional to

Α. σ

B. $\log\left(\frac{r_2}{r_1}\right)$ C. $\frac{1}{\sigma}$ D. $\frac{r_2}{r_1}$

Answer:

21. A semicirxular wire of radius a having λ as charge per unit length Is shown in the figure. Find the electric potential at the centre of the semicircular wire.

D. none of these

Answer:

22. If a charge particle starts from rest from one conductor and reaches the other conductor with a velocity of $10^9 cm/s$, then calculate the potential differnce between the two conductor. The mass of the charge particle is 9×10^{-28} g and charge is 4.8×10^{-10} asu.

A. 0.94 stat volt

B.1 stat volt

C. 1.2 stat volt

D. 0.2 stat volt

Answer:

Watch Video Solution

23. A charge Q is uniformly distributed over the surface of two conducting concentric spheres of radii R and r (Rgtr). Then, potential at common centre of these spheres is

A.
$$rac{KQ(R+r)}{Rr}$$

B. $rac{KQ(R+r)}{R^2+r^2}$
C. $rac{KQ}{\sqrt{R}^2+r^2}$
D. $KQigg(rac{1}{R}-rac{1}{r}igg)$

Answer:

24. If a chargedd particle states from rest from one conductor and reaches the other condutor with a velocity 10^9 cm/s, if the potential difference between the two conductors is 0.94 stat volt, then calcualte the charge of the charged particle.

(Given, mass of charged particle= $9 imes 10^{-28}$ g)

A. $5.8 imes 10^{-10}$ esu

B. $4.8 imes 10^{-10}$ esu

C. $3.8 imes 10^{-10}$ esu

D. $2.75 imes 10^{-10}$ esu

Answer:

25. Calculate the potential of the big drop, if eight charged of 10^{-10} C merge into a single drop.

A. 3200 v

B. 4000 v

C. 3600 v

D. 4200 v

Answer:

26. A charge $q = 2\mu C$ is moved by same external force from infinity to a point where electric potential is 10^4 V .Calculate the work done by external force.

A. $1 imes 10^{-2}J$ B. $2 imes 10^{-2}J$ C. $0.2 imes 10^{-2}J$ D. $12 imes 10^{-2}J$

Answer:

Watch Video Solution

27. Find the electric protential energy of electron-proton system of hydrogen atom.(Given, the radius of electron orbit =0.53 A, electronic charge = 1.6×10^{-19C})

 ${\rm A.}-24.17 eV$

 $\mathrm{B.}-20.18 eV$

C. 36.55 eV

D. None of these

Answer:

Watch Video Solution

28. Three charges Q, 2Q, 8Q are to be placed on a line whose length is R metre. Lacate the positive where these charges should be placed such that the potential energy of the system is minimum.

A.
$$\frac{R}{3}$$

B. $\frac{2R}{3}$
C. $\frac{3R}{2}$
D. $\frac{4R}{3}$

Answer:

29. A particle of mass 0.002kg and a charge $1\mu C$ is held at rest on a frictionless horizontal surface at a distance of 1m from a fixed charge of 1mC. If the particle is released, it will be repelled. The speed of the particle when it is at a distance of 10m from the fixed charge is -

A. 100 m/s

B. 90 m/s

C. 60 m/s

D. 45 m/s

Answer:

30. At the corners of an equilateral tringle of side a =1 m, three point charge are placed (each of 0.1 C). If this system is supplied energy at the


```
A. 50 h
```

B. 60 h

C. 48 h

D. 54 h

Answer:

31. If Q charge is given to a sphere of radius R, the energy of the system is

A.
$$\frac{Q^2}{8\pi\varepsilon_0 R}$$

B.
$$\frac{Q}{4\pi\varepsilon_0 R}$$

C.
$$\frac{Q^2}{15\pi\varepsilon_0 R}$$

D. None of these

Answer:

Watch Video Solution

32. Two balls with charges $5\mu C$ and $10\mu C$ are at a distance between

them to 0.5 m, the amount of work to be performed is

A. 45 J

 ${
m B.}\,0.45 imes10^{-6}J$

C. $1.2 imes 10^{-4}J$

D. 0.45 J

Answer:

C.
$$rac{3q^2}{8\piarepsilon_0 a}$$

D. None of these

Answer:

Watch Video Solution

34. Due to a charge inside a cube the electric field is $E_x = 600x^{1/2}, E_y = 0, E_z = 0$. The charge inside the cube is (approximately):

A. $600 \mu C$

B. $60\mu C$

C. $7 imes 10^{-6} \mu C$

D. $6\mu C$

Answer:

Watch Video Solution

35. What is the wlwctric field intensity at point at a distance 20 cm on line making an angle of 45° with the axis of the dipole of moment 10C-m?

A. $1.77 imes 10^{13}$ V/m

 $\mathrm{B.}\,0.177\times10^{13}\,\mathrm{V/m}$

C. $17.7 imes 10^{13}$ V/m

D. $177 imes 10^{13}$ V/m

Answer:

36. What is the electric potential at a point distance 100 cm from the centre of an electric dipole of moment $2 \times 10^{-4}C - m$ on a line laking an angle of 60° ?

A. $7 imes10^5V$ B. $8 imes10^5V$ C. $9 imes10^5V$ D. $10 imes10^5V$

Answer:

Watch Video Solution

37. Two point charge $q_1=~-10 imes 10^{-6}C~~{
m and}~~q_2=15 imes 10^{-6}$ are 40

cm apart as shown in figure. Find the potential difference between the

point P and Q.

A. $-945 imes 10^3$ V

- $\mathrm{B.}-1000\times10^3\,\mathrm{V}$
- ${\sf C.}-880 imes10^3~{\sf V}$
- D. None of these

Answer:

38. An electric dipole made up of a positive and negative charge, each of 1 mC and placed at a distance 2 cm apart . If the dipole is placed in an electric field of 10^5 N/C, then calculate the minimum torque which the field can exert can exert on the dipole , if it is turn from a positive $\theta = 0^{\circ}$ to $\theta = 180^{\circ}$.

A. 2×10^{-3} N-m B. 3×10^{-3} N-m C. 4×10^{-3} N-m D. $2.8 imes 10^{-3}$ N-m

Answer:

39. What work must be done to rotate an electric dipole thurgh an angle θ with the electric field, if an electric dipole of moment P is placed in an uniform electric field E with P parallel to E ?

A.
$$W = pE(1 - \cos heta)$$

B.
$$W = pE(1 + \cos \theta)$$

 $\mathsf{C}.W = 2pE(1-\cos\theta)$

D. None of these

Answer:

40. (Figure 3.118) shows two dipole moments parallel to each other and placed at a distance x apart. What is the magnitude of force of interaction ? What is the nature of force, attractive or repulsive ?

Answer:

41. Electric dipole mament of combination shown in the figure is

A.
$$qa+qa\sqrt{2}+qa$$

 $\mathrm{B.}\,2\sqrt{2}qa$

- $\mathsf{C}.\sqrt{2}qa$
- D. $\left(\sqrt{2}+1
 ight)qa$

Answer:

1. The electric field in a region is given by $\overrightarrow{E} = \left(\frac{A}{x^3}\right)\overrightarrow{I}$. Write a suitable SI unit for A. Write an experssion for. the potential in the region assuming the potential at. infinity to be zero.

A.
$$\frac{M}{2x^2}$$

B. Mx^2
C. $\frac{M}{3x^4}$

М

D. None

Answer:

2. A charge (-q)and anther charge (+Q) are kept at two point A and B respectively, keeping the charge (+Q) fixed at B, the charge (-q)at A is

moved to another points C, such that ABC forms an equilateral triangle of side I. The net work done in moving the charge(-q) is

A.
$$\frac{1}{4\pi\varepsilon_0} \frac{Qq}{l}$$

B.
$$\frac{1}{4\pi\varepsilon_0} \frac{Qq}{l^2}$$

C.
$$\frac{1}{4\pi\varepsilon_0} Qql$$

D. zero

Answer:

Watch Video Solution

3. Two charge +aq and -q are kept apart. Then , at any point on the right

bisector of line joining the two charge

A. the electric field strength is zero

- B. the electric potential is Zero
- C. both electric potential and electric field strength are zero

D. None of these

Answer:

4. The work done in carrying a charge q once round a circle of radius r with a charge Q at the centre is

A.
$$\frac{qQ}{4\pi\varepsilon_0 r}$$
B.
$$\frac{qQ}{4\pi\varepsilon_0^2 r}$$
C.
$$\frac{qQ}{4\pi\varepsilon_0 r^2}$$

D. none of the above

Answer: