©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

NULECUS

Pratice Exercise

1. The radius of $N a^{23}$ nucleus is
A. $3.125 \times 10^{-15} m$

> B. $23 \times 10^{-15} m$
> C. $11 \times 10^{-15} m$
> D. $1.1 \times 10^{-15} m$

Answer: A

- Watch Video Solution

2. A heavy nucleus (mass number $=A$) splits
into two new nuclei, whose mass numbers are in the ratio $3: 2$. The ratio of radii of these new nuclei is
A. $3: 2$
B. 2:3
C. $3^{1 / 3}: 2^{1 / 3}$
D. $2^{1 / 3}: 3^{1 / 3}$

Answer: C

- Watch Video Solution

3. Find the rest mass energy of electron.
A. 0.8 MeV

B. 1.66 amu

C. 0.519 MeV
D. None of these

Answer: A

- Watch Video Solution

4. Find the mass of electron in atmoic mass unit.
B. 0.5119
C. 0.5498
D. None

Answer: C

- Watch Video Solution

5. The atomic mass of $A l^{27}$ is 26.9815 amu . The
mass of electron is 0.0005498 amu . The rest mass energy of $A l^{27}$ nucleus is
A. 1862 MeV
B. 25119.78 MeV
C. 25113.12 MeV
D. None of these

Answer: A

D Watch Video Solution

6. The atomic mass of B^{10} is 10.811 amu . Find
the binding energy of B^{10} nucleus. The mass
of electron is 0.0005498 amu . The mass of
proton is $m_{p}=1.007276 \mathrm{amu}$. The mass of neutron is $m_{n}=1.008665 \mathrm{amu}$.
A. 186.54 MeV
B. 678.932 MeV
C. 378.932 MeV

D. None of these

Answer: A

- Watch Video Solution

7. Find the binding energy of $N a^{23}$. Atomic mass of $N a^{23}$ is 22.9898 amu and that of,\ldots, , is
1.00783 amu . The mass of neutron $=1.00867$ amu.
A. 931 MeV
B. 186.54 MeV
C. 5.38 MeV
D. None of these

Answer: B
8. The binding energy per nucleon are 53 Mev , 6.2 MeV and 7.4 MeV for the nucleus with mass number , 3,4 and 5 respectively. If one nucleus of mass number 3 combines with one nucleus of mass number 5 to give two nuclei of mass number 4, then
A. 0.3 MeV energy is absorbed
B. 0.3 MeV energy is released
C. 28.1 MeV energy is absorbed

D. 3.3 MeV energy is absorbed

Answer: D

D Watch Video Solution

9. What is the binding energy per nucleon of _ (6) C^{12} nucleus?

Given , mass of $C^{12}\left(m_{c}\right)_{m}=12.000 \mathrm{u}$
Mass of proton $m_{p}=1.0078 \mathrm{u}$
Mass of neutron $m_{n}=1.0087 \mathrm{u}$
and $1 \mathrm{amu}=931.4 \mathrm{MeV}$
A. 5.26 MeV

B. 10.11 MeV

C. 15.65 meV
D. 7.68 MeV

Answer: D

D Watch Video Solution

10. $O^{19}:-F^{19}+\mathrm{e}+\mathrm{v}$

In this decay, the rest mass energy of O^{19} and
F^{19} are 17692.33 MeV and 17687.51 MeV

respectively. The Q factor of the dacay is

A. 4.82 MeV
B. 7 MeV
C. 17.69 MeV
D. None of these

Answer: A

- Watch Video Solution

11. The binding energy expressed in MeV is given for the following nuclear reactions

- (2) $\mathrm{He}^{3}+{ }_{0} n^{1} \rightarrow_{2} \mathrm{He}^{4}+20 \mathrm{MeV}$
- (2) $\mathrm{He} \mathrm{e}^{4}+{ }_{0} n^{1} \rightarrow_{2} \mathrm{He}^{5}+0.9 \mathrm{meV}$

Which of the following conclusion is correct ?
A. - (2) $H e^{4}$ is less stable than both

$$
-(2) H e^{3} \text { and } \quad-(2) H e^{5}
$$

B. $-(2) H e^{4}$ is less stable than $-(2) H e^{3}$
but more stable than _ (2) $H e^{5}$.
C. ${ }_{-}(2) H e^{4}$ is less stable than ${ }_{-}(2) H e^{3}$
D. $-(2) H e^{4}$ is more stable than both

$$
-(2) H e^{4} \text { and } \quad(2) H e^{5}
$$

Answer: A

D Watch Video Solution

12. Calculate the energy of the reaction,
$L i^{7}+p \rightarrow 2_{2} H e^{4}$
If the binding energy per nucleon in $L i^{7}$ and $H e^{4}$ nuclei are 5.60 MeV and 7.06 MeV , respectively.
A. 19.6 MeV
B. 2.4 MeV
C. 8.4 MeV
D. 17.28 MeV

Answer: D

D Watch Video Solution

13. A sample contains $1 \mathrm{~kg} O^{19}$ nuclei. The sample decays according to following equation
$O^{19} \rightarrow F^{19}+e+\bar{v}$

The mass of sample after one half-life period is
A. lesser than $1 / 2 \mathrm{~kg}$
B. equal to $1 / 2 \mathrm{~kg}$
C. slightly less than 1 kg
D. equal to 1 kg

Answer: C

D Watch Video Solution
14. The number of C^{14} atoms in a sample is 100. The half- life period of C^{14} is 5730 year .

The number of C^{14} atoms in the sample after 5730 year.
A. must be equal to 50
B. must be equal to 100
C. may be equal to 90
D. must be equal to 90

Answer: C

15. Half-life of an element A is 25 days. After 25
days, three atoms of A become
A. 1
B. 2
C. 3
D. all may be

Answer: D

- Watch Video Solution

16. The half-life of $T c^{99}$ is 6 h . The activity of
$T c^{99}$ in a patient, 60 h after receiving an
injection conataining this radiosotope is at least $0.125 \mu \mathrm{Ci}$. What was the minimum activity
(in $\mu \mathrm{ci}$) of the sample injected?
A. $1.25 \mu \mathrm{Ci}$
B. $12.5 \mu \mathrm{Ci}$
C. $128 \mu \mathrm{Ci}$
D. $125 \mu \mathrm{Ci}$

Answer: C

D Watch Video Solution

17. A radioactive sample has an initial activity
of $50 \mathrm{dpm}, 20$ minute later, the activity is 25
dpm . How many atoms of the radioactivity nuclide were there originally?
A. 20
B. 1000
C. 1443

D. 2

Answer: C

D Watch Video Solution

18. A radioactive sample has a disintegration rate of 36×10^{50} disintegration per minute.

The sample itself consisting of $10^{-5} \mu$ mole of the active nuclei. The disintegration constant,
λ is given by

$$
\text { A. } 6 \times 10^{-7} s^{-1}
$$

B. $6 \times 10^{15} s^{-1}$
C. $6 \times 10^{9} s^{-1}$
D. $10^{-8} s^{-1}$

Answer: D

D Watch Video Solution

19. A radioactive element undergoes two different types of radioactive disintegration, one with disintegration constant λ_{1} and the
other with λ_{2}. The half-life of the element is
A. $\begin{array}{r}\frac{0.693}{\lambda_{1}+\lambda_{2}} \\ 0.693\end{array}$
B. $\frac{\left(\lambda_{1}+\lambda_{2}\right) / 2}{}$
C. $(0.693) \cdot \frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
D. $\frac{0.693 \lambda_{1} \lambda_{2}}{2\left(\lambda_{1}+\lambda_{2}\right)}$

Answer: A

D Watch Video Solution

20. Half-life period of a given radioactive sample is τ. Its average life would be
A. $\tau \ln 2$
B. $\tau / \ln 2$
C. $1 / \tau$
D. $\ln 2 / \tau$

Answer: B
(D) Watch Video Solution
21. Choose the correct option. If $\underset{n}{T}$ and $\underset{m}{T}$ denotes the half-value period and the meanvalue period, respectively of a radioactive element.
A. ${ }_{n}=\underset{m}{T}$
B. ${ }_{n}$ gt ${ }_{m}^{T}$
C. ${ }_{n}$ It ${ }_{m}^{T}$
D. ${ }_{b} \geq \underset{m}{T}$

Answer: C

22. The half-life of radium is 1600 years

Calculate the number atoms that will decay from 1 g sample of radium per second (given, atomic weight of radium $=226$)
A. 3.6×10^{10}
B. $7.2 \mathrm{xx} \mathrm{10}{ }^{\wedge}(10)^{\wedge}$
C. 4.2×10^{10}
D. 14.6×10^{10}

- Watch Video Solution

23. At certain time, the activity of three radioactive materials are in the ratio of $3: 4: 5$

What will be the mark ratio of their activities at any further date?
A. $1: 2: 3$
B. 2:3:4
C. 3:4:5
D. $5: 6: 8$

D Watch Video Solution

24. 20% of a radioactive substances decay in

10 days. Calculate the amount of the original material left after 30 days.
A. 0.512
B. 0.628
C. 0.15
D. 0.2127

D Watch Video Solution

25. Calculate in how many months, $\left(\frac{3}{4}\right)^{\text {th }}$ of the substance will dacay, If half-life of the radioactive substance is 2 months.
A. 4 months
B. 6 months
C. 8 months

D. 14 months

Answer: A

- Watch Video Solution

26. The half-life of a freely prepared radioactive sample is 2 hours. If the sample emits radiation of intensity which is 32 times the permissible safe level, then calculate the minimum time taken after which it would be possible to work safely with source .
A. 8 h
B. 10 h
C. 16 h
D. 2 h

Answer: B

D Watch Video Solution
27. Calculate the ratio of half-life to the mean
life of a radioactive sample. If λ be the decay
constant of a radioactive sample.
A. 0.693
B. 0.746
C. 1/0.693
D. $(0.693)^{2}$

Answer: A

D Watch Video Solution

28. Calculate the number of β particles, If a radioactive element $-(90) X^{238}$ dacays into $-(83) \gamma^{222}$.
A. 4
B. 6
C. 2
D. 1

Answer: D

D Watch Video Solution

29. A radiaoactive nucleus (initial mass number
A and atomic number Z emits 3α - particles
and 2 positrons The ratio of number of
neutrons to that of proton in the final nucleus
will be

$$
\begin{aligned}
& \text { A. } \frac{A-Z-B}{Z-4} \\
& \text { B. } \frac{A-Z-4}{Z-8} \\
& \text { C. } \frac{A-Z-12}{Z-4} \\
& \text { D. } \frac{A-Z-4}{Z-2}
\end{aligned}
$$

Answer: B
30. How long will it take for 75% of the atoms
of a certain radioactive element, originally present to disintegrate ? The half-life of the element is 10 days.
A. 240 days
B. 3.6 days
C. 15.6 days
D. 4.15 days

Answer: D

31. For measuring the activity of a radioactive sample, a count rate meter is used. At certain observation, count rate meter 5050 counts per minute but after 10 minute later, the count rate showed 2300 counts per minute .

Calculate the disintegration constant (λ)
A. 0.065 per min
B. 0.078 per min
C. 0.24 per min

D. 0.868 per min

Answer: B

D Watch Video Solution

32. Consider $x \xrightarrow{-\alpha} y \xrightarrow{-\alpha} z$, where half-lives of x andy are z year and one month, the ratio of atoms of x and y when transient equilibrium
$\left[T_{1 / 2}(x)>T_{1 / 2}(y)\right]$ has ben established is
A. $1: 2$
B. 1: 26
C. 26: 1
D. 23:1

Answer: D

- Watch Video Solution

33. Analysis of potassium and argon atoms in
a moon rock sample by a mass spectrometer
shows that the ratio of the number of stable
$A r^{40}$ atoms present to the number of
radioactive K^{40} atoms is $7: 1$. Assume that all
the argon were produced by the decay of potassium atoms, with a half-life of 1.25×10^{9} year. How old is the rock?
A. $1.25 \times 10^{9} y r$
B. $3.75 \times 10^{9} \mathrm{yr}$
C. $8.75 \times 10^{9} \mathrm{yr}$
D. $1.00 \times 10^{10} \mathrm{yr}$

Answer: B
34. A radiactive sample decays by two different processes .Half - life for the first process is t_{1} and for the second process is t_{2}. The effective half-life is
A. $\left(t_{1}+t_{2}\right)$
B. $\left(t_{1}-t_{2}\right)$
C. $\left(t_{1}+t_{2}\right) / 2$
D. $\frac{t_{1} t_{2}}{t_{1}+t_{2}}$

Watch Video Solution

35. The alongside is a plot of binding energy per nucleon E_{b},against the nuclear mass M,A,B,C,D,E,F correspond to different nuclei.

Consider four reactions.
(i) $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\varepsilon$ (ii) $\mathrm{C} \rightarrow \mathrm{A}+\mathrm{B}+\varepsilon$
(iii) $\mathrm{D}+\mathrm{E} \rightarrow \mathrm{F}+\varepsilon$ (iv) $\mathrm{F} \rightarrow \mathrm{D}+\mathrm{E}+\varepsilon$ where ε
is the energy released. In which reactions, is ε positive?
A. (i) and (iv)
B. (i) and (iii)
C. (ii) and (iv)
D. (ii) and (iii)

Answer: A

D Watch Video Solution

36. If reactor takes 30 day to consume 4 kg of fuel and each fission gives 185 MeV of usable energy, then calculate the power output.
A. $2.75 \times 10^{10} \mathrm{~W}$
B. $0.012 \times 10^{10} \mathrm{~W}$
C. $3.5 \times 10^{10} \mathrm{~W}$
D. $7.63 \times 10^{10} \mathrm{~W}$

Answer: B

D Watch Video Solution
37. Calculate the total energy released during
a fission reaction .

The resulting fission fragements are unstable hence, decay into stable and products and by sucessive emission of β-particles . Take mass of neutron $=1.0087 \mathrm{amu}$, mass of $=236.0526$ amu, mass of $=97.9054 \mathrm{amu}$ and mass of $=135.9170 \mathrm{amu}$.
A. 198 MeV
B. 220 MeV
C. 185 MeV
D. 230 MeV
38. Calculate the energy released per nucleon of the reactant, in the thermonuclear reaction
$3_{1} H^{2} \rightarrow_{2} \mathrm{He}^{4} \rightarrow_{2} \mathrm{He}^{4}+{ }_{1} H^{1}+{ }_{0} n^{1}+21.6$

MeV
A. 21.6 MeV
B. 7.2 MeV
C. 3.6 MeV
D. 1.8 MeV

Answer: C

- Watch Video Solution

Bitsat Archives

1. Let binding energy per nucleon of nucleus is
denoted by $\underset{b n}{E}$ and radius is denoted as r. If mass number of nuclei A, B are 64 and 125 respectively, then

2. Half-lives of elements A and B are $1 h$ and $2 h$

respectively. Which of the following is correct?

A. Element A decays slower
B. Decay consist of A is smaller.
C. If initial number of nuclei are same, than
activity of A is more

D. Mean-life of A is more

Answer: C

3. If a radioactive substance reduces to $\frac{1}{16}$ of its original mass in 40 days, what is its half-life ?
A. 10 days
B. 20 days
C. 40 days
D. None of these

Answer: A

- Watch Video Solution

4. If the total binding energies of
${ }_{\cdot 1} H^{2},{ }_{2} H e^{4},{ }_{26} F e^{56}$ and ${ }_{92} U^{235}$ nuclei are
$2.22,28.3,492$ and 1786 MeV respectively, identify the most stable nucleus out of the following

D Watch Video Solution

5. Fusion raction takes place at high temperature because
A. KE is high enough to overcome
repulsion between nuclei
B. nuclei are most stable at this
temperature
C. nuclei are unstable at this temperature
D. None of these

Answer: A

D Watch Video Solution

6. Two nucleons are at a separation of $1 \times 10^{-15} \mathrm{~m}$. The net force between them is
F_{1}, if both are neutrons, F_{2} if both are protons and F_{3} if one is a proton and other is a neutron. In such a case.
A. $\underset{1}{F}=\underset{2}{F}$ gt $\underset{3}{F}$
B. $\underset{1}{F}=\underset{2}{F}=\underset{3}{F}$
C. $\underset{1}{F}$ It $\underset{2}{F}$ It $\underset{3}{F}$
D. $\underset{1}{F} \operatorname{gt} \underset{2}{F} \operatorname{gt} \underset{3}{F}$

7. Mean life of a radioactive sample is 100 s .

Then, its half-life (in min) is
A. 0.693
B. 1
C. 10^{-4}
D. 1.155

Answer: D
8. Consider two nuclei of the same radioactive nucclide. One of the nuclei was created in a supernova explsion 5 billions year ago . The probability of decay during the next time is
A. different for each nuclei
B. nuclei created in explosion decays first
C. nuclei created in the reactor decays first
D. Independent of the time of creation

Answer: D

D Watch Video Solution

