

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

PHYSICS FOR GASEOUS STATE

Practice Exercise

1. In an ideal gas without preferred direction

of motion of molecules,

A.
$$V_x = V_y = V_z$$

B.
$$V_x^2 = V_y^2 = V_z^2$$

C.
$$\overline{V}_x^2 = \overline{V}_y^2 = \overline{V}_z^2$$

D. None of the above

Answer: C

2. Two perifect gases at absolute temperatures T_1 and T_2 are mixed. The absolute temperature of the mixture is T. there is no

loss of energy. If m_1 and m_2 are masses of molecules and n_1 and n_2 are number of molecules, then

A.
$$T=rac{T_1+T_2}{2}$$

B. $T=rac{n_1T_1+n_2T_2}{n_1+n_2}$
C. $T=rac{n_1T_1+n_2T_2}{T_1+T_2}$

Answer: B

3. In troposhere, temperature varles linearly with elevation as $T = T_0 - ay$, where T_0 is the temperature at the earth's surface, then A. the pressure does not change with elevation in troposhere B. the variation of pressure with elevation is linear C. the dimension of a is $\left[M^{\circ}L^{-1} heta
ight]$ D. the pressure is independent of variation with temperature in the given situation

Answer: B,C

4. A vessel contains a mixture of nitrogen of mass 7 g and carbon dioxide of mass 11 g at temperature 290 K and perssure 1 atm.Find the density of the mixture.

A. 1.1g/L

B. 1.2g/L

 $\mathsf{C.}\,1.515g\,/\,L$

D. 1.6g/L

Answer: C

Watch Video Solution

5. 12 g of gas occupy a volume of $4 \times 10^{-3}m^3$ at a temperature of $76^{\circ}C$.after the gas is heated at constant pressure, its density becomes $6 \times 10^{-4}g/cm^3$.What is the temperature to which the gas was heated?

A. 1000 K

B. 1400 K

C. 1200 K

D. 800 K

Answer: B

Watch Video Solution

6. A closed vessel with a capacity of $1m^3$ contains 0.9 kg of water and 1.6 kg of O_2 .Find the pressue in the vessel at a temperture of

 $500\,^\circ\,C$ at which all the water will be converted

into steam.

A. $3.2 imes 10^5 N/m^2$

B. $6.4 imes10^5N/m^2$

C. `1.6xx10^(5)N//m^(2)

D. `9.6xx10^(5)N//m^(2)

Answer: B

7. The pressure of a gas kept in an isothermal container is 200 K pa. If half the gas is removed from it, the pressure will be

A. 100 kPa

B. 200 kPa

C. 400 kPa

D. 800 kPa

Answer: A

8. The pressure inside a tyre is 4 atm at $27^{\circ}C$.If the tyre bursts suddenly, its final temperature will be

Answer: D

9. A uniform tube is shown in figure, Which is open at one en and closed at the other . To enclose a column of air inside the tube, a pellet of mercury is introduced If the length of air column at $27^{\circ}C$ is 18 cm, at what temperature its length will be 21.6?

A. $87^\circ C$

B. $91^{\circ}C$

C. $85^{\circ}C$

D. $97^{\circ}C$

Answer: A

Watch Video Solution

10. Pressure of an ideal gas is increased by

keeping temperature constant.What is its

effect on kinetic energy of molecules?

A. Increase

B. decrease

C. No change

D. Cannot be determined

Answer: C

Watch Video Solution

11. How many cylinders of hydrogen at atmospheric pressure are required to fill a ballon whose volume is 500m6(3) if hydrogen

is stored in cylinders of volume 0.05 m^3 at an

absolute presure of $15 imes 10^5$ Pa?

A. 700

B. 675

C. 605

D. 710

Answer: B

12. Two identical containers A and B have frictionaless pistons. They contain the same volume of an ideal gas at the same temperature. The mass of the gs in A is m_A and that B is m_B . The gas in each cylinder is now allowed to expand isothermally to double the intial volume. The chages in the pressure in A and B are fopund to be Δ and $1.5\Delta p$ respectively.

A.
$$4m_A=9m_B$$

B.
$$2m_A=3m_B$$

 $\mathsf{C.}\, 3m_A=2m_B$

 $\mathsf{D}.\,9m_A=4m_B$

Answer: C

13. The figure shown, the p-V diagram of two

different masses m_1 and m_2 drawn at

A. $m_1 > m_2$

- $\mathsf{B}.\,m_2>m_1$
- $\mathsf{C}.\,m_1=m_2$

D. insufficient data

Answer: B

14. Figure shows graphs of pressure vs density

for an ideal gas at two temperature

 T_1 and T_2 . Which of the following is correct?

A.
$$T_1 > T_2$$

 $\mathsf{B}.\,T_1=T_2$

 $\mathsf{C}.\,T_1 < T_2$

D. any three is possible

Answer: A

15. A gas at the temperature 250 K is contained in a closed vessel. If the gas is heated through 1K, then the percentage increase in its pressure will be

A. 0.004

B. 0.006

C. 0.008

D. 0.01

Answer: A

Watch Video Solution

16. If the intermolecules forces vanish away, the volume occupied by the molecules contained in 4.5kg water at stantard temperature and pressure will be given by

A.
$$5.6m^3$$

 $\mathsf{B.}\,4.5m^3$

 $C. 11.2m^3$

 $\mathsf{D.}\,5.6L$

Answer: A

Watch Video Solution

17. Find the pressure exerted by 6×10^{23} hydrogen molecules which will strike per second a wall of area $10^{-4}km^2$ at 60° with normal.The mass ofhydrogen molecules and

speed are $3.32 imes 10^{-27}$ kg and 10^{-27} kg and

 $10^3 m/s$ respectively.

A. $19.92 imes 10^3 N/m^2$

B. $18.2 imes10^3N/m^2$

C. $1.992 imes 10^3 N/m^2$

D. $0.1992 imes 10^3 N/m^2$

Answer: A

18. Four molecules of ags have speeds 1,2,3 and 4 km/s. The volue of the root mean square speed of the gas molecules is

A.
$$rac{1}{2}\sqrt{15}km/s$$

B. $rac{1}{2}\sqrt{10}km/s$

C.
$$2.56 km/s$$

D.
$$\sqrt{rac{15}{2}} km/s$$

Answer: D

19. The temperature of H_2 at which the rms velocity of its molecules is seven times the rms velocity of the molecules of nitrogen at 300 K

is

A. 2100 K

B. 1700 K

C. 1350 K

D. 1050 K

Answer: D

20. For gas at a temperature T the root-meansquare speed v_{rms} , the most probable speed v_{mp} , and the average speed v_{av} obey the relationship

A.
$$V_{mp} > V_{av} > V_{ms}$$

B. $V_{ms} > V_{av} > V_{mp}$
C. $V_{av} > V_{mp} > V_{ms}$
D. $V_{mp} > V_{ms} > V_{av}$

Answer: B

21. The average kinetic energy of gas molecule at $27^{\circ}C$ is $6.21 imes 10^{-21}$ J. Its average kinetic energy at $127^{\circ}C$ will be

A. $12.2 imes10^{-21}J$

B. $8.28 imes 10^{-21}J$

C. $10.35 imes10^{-21}J$

D. $11.35 imes10^{-21}J$

Answer: B

22. Most probable speed, c_{mp} , average speed, c_{av} and root mean square speed c_{rms} of gas molecules are related as

A.
$$\sqrt{3}: \sqrt{2}: \sqrt{\frac{8}{\pi}}$$

B. $2: \sqrt{3}: \sqrt{\frac{\pi}{8}}$
C. $\sqrt{2}: \sqrt{3}: \sqrt{\frac{8}{\pi}}$
D. $\sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3}$

Answer: D

23. Five gas molecules chosen at random are found to have speeds of 500,600m,700,800 and 900 $m\,/\,s$ Then,

A. the rms speed and the average speed

are the same

B. the rms speed is 14m/s higher than the

average speed

C. the rms speed is 14m/s higher than the

average speed

D. the rms speed is $\sqrt{14}m/s$ lower that

the average speed

Answer: B

Watch Video Solution

24. In case of molecules of an ideal gas, which

of the following , average velocities cannot be

zero?

$$egin{array}{lll} {\sf A.} &< \overline{V}l> \ {\sf B.} &< \overline{V}^3> \ {\sf C.} &< \overline{V}^4> \ {\sf D.} &< \overline{V}^5> \end{array}$$

Answer: C

25. Choose the correct relation between the rms speed (V_{rms}) of the gas molecules and the velocity of sound in that gas (V_s) in

temperature.

A.
$$V_{ms}\,=\,V_s$$

B.
$$V_{ms} = \sqrt{\left(rac{3}{\gamma}
ight)^{v_s}}$$
C. $C. \ V_{rms} = \sqrt{\left(rac{\gamma}{3}
ight)^{v_s}}$

Watch Video Solution

D.
$$\gamma v_{rms} = 3V_s$$

Answer: B

26. At what temperature is the "effective" speed of gaseous hydrogen molecules (molecular weight = 2) equal to that of oxygen molecules (molecular weight = 32) at $47^{\circ}C$?

A. 50 K

B. 20 K

C. 40 K

D. 100 K

Answer: B

27. Volume versus temperature graphs for a given mass of an ideal gas are shown in Fig. at two different values of constant pressure. What can be inferred about relation between P_1 and P_2 ?

A. $P_1 > P_2$

 $\mathsf{B}.\,P_1 < P_2$

$$\mathsf{C}.\,P_1=P_2$$

D. Data is insufficient

Answer: A

Watch Video Solution28. Given is the graph between $\frac{PV}{T}$ and P for1 gm of oxygen gas at two differenttemperatures T_1 and T_2 Fig. Given, density of

oxygen $= 1.427 kgm^{-3}$. The value of $\left(PV
ight)/(T)$ at the point A and the relation between T_1 and T_2 are respectively :

A. $0.256 J K^{-1}$ and $T_1 < T_2$

B. 8.314 $Jmol^{-1}K^{-1}$ and $T_1 < T_2$

C. $0.256 J K^{-1}$ and $T_1 > T_2$

D. $4.28 J K^{-1}$ and $T_1 < T_2$

Answer: C

29. Which of the following quantities is zero on an average for the molecules of an ideal gas in equilibrium?

A. Kinetic energy

B. Momentum

C. Density

D. Speed

Answer: B

30. Some gas at 300K is enclosed in a container. Now the container is placed on a fast moving train. While the train is in motion, the temperature of the gas

A. rises above 300 K

B. falls below 300 K

C. remains unchangede

D. becomes unsteady

Answer: A

Watch Video Solution

31. If at a pressure of $10^6 dy \neq /cm^2$, one gram mole of nitrogen occupies 2×10^4 cc volume, the calculate the average energy of a nitrogen molecules in erg.(Given avogadro's number $= 6 \times 10^{23}$)

A. $14 imes 10^{-13}$

B. $10 imes10^{-12}$

 $C. 10^{6}$

D. $2 imes 10^6$

Answer: A

View Text Solution

32. At what temperature does the average translational kinetic energy of molecule in a gas become equal to kinetic energy of an electron accelerated from rest through a

$\left(K = 1.38 imes 10^{-23} J \, / \, k ight)$

- A. T = 7729K
- B. T = 8879K
- C.T = 7.72K
- D. T = 772.9K

Answer: A

33. In a crude model of a rotating diatomic molecule of chlorine (Cl_2) , the two (Cl) atoms are $2.0 \times 10^{-10}m$ apart and rotate about their centre of mass with angular speed $\omega = 2.0 \times 10^{12} \text{rad}/s$. What is the rotational kinetic energy of one molecule of Cl_2 , Which has a molar mass of 70.0g/mol?

A. $2.32 imes 10^{-20}J$

B. $2.32 imes 10^{-21}J$

C. $2.32 imes 10^{-19}J$

D. $2.32 imes 10^{-22}J$

Answer: B

Watch Video Solution

34. At $20^{\circ}C$ temperature, an argon gas at atmospheric pressure is confined in a vessel with a volume of $1m^3$ The effective hard spere

diameter of argon atom is $3.10 imes 10^{-10}$ m.

determine mean free path.

A. 100 nm

B. 90 nm

C. 93.6 nm

D. 95 nm

Answer: C

Watch Video Solution

35. In the case of satureated vapour,

A. pressure depends upon volume at constant temperature B. pressure varles non linerarly with temperature at constatn volume C. pressure becomes less than one atmosphere at bolling point D. pressure varles linearly with temperture at constant volume

Bitsat Archives

1. Two ballons are filled, one with pure He gas and other by air, repectively. If the pressure and temperature of these ballons are same then the number of molecules per unit volume is: A. more in He filled ballon

B. same in both balloons

C. more in air filled ballon

D. in the ratio 1:4

Answer: B

Watch Video Solution

2. A vessel containing 1 mole of O_2 gas (molar mass 32) at tempeature T. The pressure of the gas is P.An identical vessel containing onle

mole of He gas (molar mass 4) at temperature

2 T has a pressure of [2013]

A. P/8

B. P

C. P

 $\mathsf{D.}\,8P$

Answer: C

3. The temperature of an ideal gas is increased from $27^{\circ}C \rightarrow 127^{\circ}C$, the percentage increase in V_{rms} is [2013] A. 0.37 B. 0.11

C. 0.33

D. 15.5%

Answer: D

4. The ratio of the adiabatic bulk modulus to the isothermal bulk modulus of a perfect gas with f degrees of freedom is [2010]

Answer: C

5. If V is the molecular speed and / is the mean free path of molecule of gas, then the collision frequency is" "[2010]

D.
$$\sqrt{Vl}$$

Answer: B

6. From the following V-T diagram, what is true

about pressure?" "[2009]

A. $P_1 < P_2$

B. $P_1 > P_2$

 $\mathsf{C}.\,P_1=P_2$

D. Cannot predict

Answer: A

7. One litre of oxygen at a pressure of 1 atm and two litres of nitrogen at a pressure of 0.5 atm are introduced into a vessel of volume 1 litre. If there is no change in temperature, the final pressure of the mixture of gas (in atm) is A. 1.5

B. 2.5

C. 2

D. 4

Answer: C

8. The ratio of velocity of sound in hydrogen

and oxygen at STP is " "[2005]

A. 16:1

B. 8:1

C. 4:1

D. 2:1

Answer: C

Watch Video Solution