©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

RAY OPTICS

Others

1. A hair dresser stand with her nose 20 cm
infront of a lane mirror. For what distance
must she focus her eyes in order to see her nose in the mirro?
A. 40 cm
B. 50 cm
C. 30 cm
D. 60 cm

Answer:

D View Text Solution
2. Two plane mirrors each 1.6 m long, are facing each other. The distance between the mirrors is

20 cm . A light incident on one end of one of the mirrors at an angle of incidence of 30°.

How many times is the ray reflected before it reaches the other end?
A. There are 15 reflections counting the
first one
B. There are 13 refelections counting the
first one
C. There are 12 reflections counting the
first one
D. None of the above

Answer:

- Watch Video Solution

3. A pole $5 m$ high is situated on a horizontal
surface. Sun rays are incident at an angle 30°
with the vertical. The size of shadow on horizontal surface is

A. $5 m$

$$
\begin{aligned}
& \text { B. } \frac{5}{\sqrt{3}} m \\
& \text { C. } \frac{10}{\sqrt{3}} m
\end{aligned}
$$

D. none of these

Answer:

D View Text Solution

4. A beautiful girl with two normal eye wants to see full width of her face by a plane mirror.

The eye to eye and ear to ear distances of her face are 4 inch and 6 inch respectively. Find the minimum width of the required mirror.

A. 1 inch

B. 2 inch

C. 3 inch
D. 4 inch

Answer:

- Watch Video Solution

5. A ray of light falls on a plane mirror. When the mirror is turned, about an axis at right angle to the plane of the mirror through 20°,
the angle between the incident ray and new
reflected ray is 45°. Find the angle between
the incident ray and original reflected ray.
A. 15°
B. 30°
C. 45°
D. 60°

Answer:
(Watch Video Solution
6. The shortest height of a vertical mirror
required to see the entire image of a man, will be
A. one -third the man's height
B. half the man's height
C. two-third the man's height
D. data insufficient

Answer: B

D Watch Video Solution

7. Two plane mirrors are perpendicular to each

 other. A ray after suffering reflection from the two mirror will beA. perpendicular to the original ray
B. parallel to the first ray
C. parallel to the first mirror
D. at 45° to the original ray

Answer:

- Watch Video Solution

8. A vessel consists of two plane mirrors at right angles (as shown in figure). The vessel is
filled with water. The total deviation in incident ray is

A. 0°
B. 90°
C. 180°

D. None of the above

Answer:

D View Text Solution

9. A light ray is incident on a horizontal plane mirror at an angle of 45°. At what angle should a second plane mirror be placed in order that the refelcted ray finally be reflected horizontally form the second mirror, as shown

A. $\theta=30^{\circ}$
B. $\theta=24^{\circ}$
C. $\theta=22.5^{\circ}$
D. $\theta=67.5^{\circ}$

Answer:
10. If two adjacent walls and the ceilling of a rectangular room are mirror surfaced, then how many images of himself, a man can see?
A. 3
B. 5
C. 6
D. 9

Answer:

11. A convex mirror of focal length 10 cm is
shown in figure. A linear object $A B=5 \mathrm{~cm}$ is
placed along the optical axis. Point B is at distance 25 cm from the pole of mirror. The size of image of $A B$ is

$$
\text { A. } \frac{100}{14} \mathrm{~cm}
$$

10
B. $\frac{10}{7} \mathrm{~cm}$
C. $\frac{5}{14} \mathrm{~cm}$
D. none of these

Answer: C

D Watch Video Solution

12. If u represents object distance from pole of spherical mirror and V represents image distance from pole of mirror and f is the focal
length of the mirror, then a straight line $u=v$ will cut u versus v graph at
A. (f, f)
B. $(2 f, 2 f)$
C. $(f, 2 f)$
D. $(0,0)$

Answer:
(Watch Video Solution
13. A short linear object of length l lies on the
axis of a spherical mirror of focal length f, at a distance x from the mirror. Then, the length of the image (P) so obtained will be

A. $\frac{I f}{(x-f)}$
B. $\frac{I f^{2}}{(x-f)^{2}}$
C. $\frac{I f}{x}$
D. $\frac{I(x-f)}{x}$

Answer:

D View Text Solution

14. A rear view mirror of a vehicle is cylindrical
having radius of curvature 10 cm and length of arc of curved surface is 10 cm . Find the field of
view in radian, if it is assume that the eye of
the drive is at a large distance from the mirror.
A. 0.5
B. 1
C. 2
D. 4

Answer:

D View Text Solution

15. In the figure $A B$ and $B K$ represents incident and reflected rays. If angle $B C F=\theta$
then $\angle B F P$ will equal to

A. θ
B. 2θ
C. 3θ
D. 3.5θ

Answer:
16. Find the position of 1 cm tall object which
is plced 8 cm infront of a concave mirror of
radius is curvature 24 cm .
A. 24 cm
B. 25 cm
C. 26 cm
D. 27 cm

Answer:

D View Text Solution
17. A convex driving mirror of focal length

20 cm , is fitted in a motor car. If the second car
$2 m$ broad and $1.6 m$ hight is $6 m$ away from
first car and overtake the first car at a relative speed of $15 \mathrm{~m} / \mathrm{s}$, then how fast will the image he moving?
A. $0.016 m / s$
B. $0.0257 m / s$
C. 0.162 cm

D. $0.0073 m / s$

Answer:

D View Text Solution

18. When an object is placed at a distance of

25 cm from a mirror, the magnification is m_{1}.

The object is moved 15 cm farther away with respect to the earlier position, and the magnification becomes m_{2}. If $m_{1} / m_{2}=4$, then calculate the focal length of the mirror.
A. 20 cm convex
B. 20 cm , concave
C. 10 cm , convex
D. 10 cm concave

Answer:

D Watch Video Solution

19. Two object A and B when placed in turns infront of a concave mirror, give images of equal size. The focal length of the concave
mirror is 7.5 cm and size of object A is three
times the size of object B from the mirror, if
A is placed 30 cm from the mirror.
A. 18 cm
B. 15 cm
C. 20 cm
D. 25 cm

Answer:

D View Text Solution
20. An object of height 5 cm is placed in midway between a concave mirror of radius of
curvature 30 cm and a convex mirror of placed opposite to each other and are 60 cm apart.

Find the position of the image formed by reflection at convexd mirror.
A. 10 cm
B. 20 cm ,
C. 15 cm
D. 13 cm

Answer:

D View Text Solution

21. The focal length of plano-convex lens, the convex surface of which is silvered is $0.3 m$, if μ of the lens is $7 / 4$, the radius of curvature of the convex surface is
A. 0.45 m
B. 1.05 m
C. $3 m$

D. $0.9 m$

Answer:

D Watch Video Solution

22. The magnification of a compound microscope is 30 and the focal length of its eye piece is 5 cm . Calculate the magnification produced by the objective, when the image is to be formed at least distance to distinct vision (25 cm)
A. 5
B. 6
C. 8
D. 10

Answer:

D View Text Solution

23. A convergent doublet of separated lens
correct for spherical aberration, are separated
by $2 m$ and has an equivalent focal lenth of

10 cm . Calculate the focal length of its component lenses.
A. $f_{1}=18 \mathrm{~cm}, f_{2}=10 \mathrm{~cm}$
B. $f_{1}=20 \mathrm{~cm}, f_{2}=28 \mathrm{~cm}$
C. $f_{1}=20 \mathrm{~cm}, f_{2}=18 \mathrm{~cm}$
D. $f_{1}=24 \mathrm{~cm}, f_{2}=18 \mathrm{~cm}$

Answer:

D Watch Video Solution

24. A ray of light falls on a transparent glass
slab of refractive index 1.62. What is the angle of incidence if the reflected ray and refracted ray are mutually perpendicular?
A. $\tan ^{-1}(1.62)$
B. $\tan ^{-1}\left(\frac{1}{1.162}\right)$
C. $\frac{1}{\tan ^{-1}(1.62)}$
D. none of these

Answer:

25. A ray of light travelling in glass
$\left(\mu_{g}=3 / 2\right)$ is incident on a horizontal glass-
air surface at the critical angle θ_{C}. If a thin
layer of water $\left(\mu_{w}=4 / 3\right)$ is now poured on
the glass-air surface. At what angle will the ray
of light emerges into water at glass-water
surface?
A. 180°
B. 0°
C. 90°
D. 45°

Answer:

D Watch Video Solution

26. In a medium of refractive index n_{1}, a monochromatic light of wavelength λ_{1} is travelling. When it enters in a denser medium of refractive index n_{2}, the wavelength of the light in the second medium is

> A. $\lambda_{1}\left(\frac{n_{1}}{n_{2}}\right)$
> B. $\lambda_{1}\left(\frac{n_{2}}{n_{1}}\right)$
> C. $\frac{\lambda_{1}\left(n_{2}-n_{1}\right)}{n_{2}}$
> D. $\frac{\lambda_{1}\left(n_{2}-n_{1}\right)}{n_{1}}$

Answer:

D View Text Solution

27. A ray of light is incident on the surface of separation of a medium at an angle 45° and is
refracted in the medium at an angle 30°.

What will be the speed of light in the medium?

> A. $1.96 \times 10^{8} \mathrm{~ms}^{-1}$
> B. $2.12 \times 10^{8} \mathrm{~ms}^{-1}$
> C. $3.18 \times 10^{8} \mathrm{~ms}^{-1}$
> D. $3.33 \times 10^{8} \mathrm{~ms}^{-1}$

Answer:

D View Text Solution

28. The optical path of a monochromatic light
is same if, it goes thoruhg 4.0 cm of glass or
4.5 cm of water. If the refractive inded of glass
is 1.53 , the refractive index of the water is
A. 1.30
B. 1.36
C. 1.42
D. 1.46

Answer:

29. A small coin is resting on the bottom of a beaker filled with a liquid. A ray of light from the coin travels up to the surface of the liquid and moves along its surface (see figure).

How fast is the light travelling in the liquid ?

$$
\text { A. } 1.8 \times 10^{8} m s^{-1}
$$

B. $2.4 \times 10^{8} m s^{-1}$
C. $3.0 \times 10^{8} \mathrm{~ms}^{-1}$
D. $1.2 \times 10^{8} \mathrm{~ms}^{-1}$

Answer:

D Watch Video Solution

30. If c is the velocity of light in vacuum, then find the time taken by the light to travel through a glass plane of thickness t and having refractive index μ.
A. $\left(\frac{t}{\mu c}\right)$
B. $t \mu c$
C. $\frac{\mu t}{c}$
D. $\frac{t c}{\mu}$
μ

Answer:

D View Text Solution
31. Considering normal incident of ray, find equivalent refractive index of combination of
two slabs shown in figure.

A. 1.8
B. 1.43
C. 2
D. none of these

Answer:

32. A tank contains two different liquids which do not mix with each other. The lower and upper liquid are at depth h_{1} and h_{2} respectively and of refractive indices μ_{1} and μ_{2} . An object O is located at the bottom, when see vertically from above. Locate the position of image of the object O as seen from above.

> A. $\frac{h_{1}}{\mu_{1}}-\frac{h_{2}}{\mu_{2}}$
> B. $\frac{h_{1}}{\mu_{1}}+\frac{h_{2}}{\mu_{2}}$
> C. $\frac{h_{1}}{\mu_{1}}+\frac{h_{2}}{\mu_{1}}$
> D. $\frac{h_{1}}{\mu_{2}}-\frac{h_{2}}{\mu_{1}}$

Answer:

- Watch Video Solution

33. A fish rising up vertically toward the surface of water with speed $3 m s^{-1}$ observes a
bird diving down vertically towards it with
speed $9 m s^{-1}$. The actual velocity of bird is

A. $9.2 m / s$
B. $4.5 \mathrm{~m} / \mathrm{s}$
C. $9.0 \mathrm{~m} / \mathrm{s}$
D. $3.2 m / s$

- Watch Video Solution

34. A compound microscope has a eyepiece of focal length 10 m and an objective of focal length 4 cm . Calculate the magnification if an object is kept at a distance of 5 cm from the objective then final image is formed at the least distance of distinct vision.
A. 10
B. 11
C. 12

D. 13

Answer:

D View Text Solution

35. A simple microscope consists of a concave
lens of power $-10 D$ and convex lens of power
$+20 D$ in contact. If the image formed at infinity, then calculate the magnifying power $(D=25 \mathrm{~cm})$
A. 2.5
B. 3.5
C. 2.0
D. 3.0

Answer:

D View Text Solution

36. A telescope consists of two lenses of focal lengths 10 cm and 1 cm . Calculate the length of the telescope, when an object is kept at a distance of 60 cm from the objective, and the
final image is formed at least distance of distinct vision.
A. 15.05 cm
B. 12.96 cm
C. 13.63 cm
D. 14.44 cm

Answer:
(Watch Video Solution
37. Calculate the limit of resolution of microscope if the numerical apperture of microscopo is 0.12 and the wavelength of light used is 600 cm
A. $0.3 \mu m$
B. $1.2 \mu \mathrm{~m}$
C. $2.3 \mu m$
D. $3 \mu m$

Answer:

38. An equilateral deviates a ray through 45°
for the two angle of incidence differing by 20°
. The angle of incidence is
A. 60°
B. 40°
C. 120°
D. none of these

Answer:
39. Find the refractive index of the material of
prism if a thin prism of angle $A=6^{\circ}$ produces a deviation $\delta=3^{\circ}$.
A. 1.5
B. 1.2
C. 1.1
D. 1.25

Answer:

D View Text Solution

40. A glass prism of refractive index 1.5 is immersed in water (refractive index 4/3). A light beam incident normally on the face $A B$ is totally reflected to reach on the face $B C$ if.

A. $\sin \theta \geq \frac{8}{9}$
B. $\sin \theta \geq \frac{2}{3}$
C. $\sin \theta=\frac{\sqrt{3}}{2}$
D. $\frac{2}{3}<\sin \theta<\frac{8}{9}$

Answer:

D Watch Video Solution

41. Find the power and type of the lens by which a person can see clearly the distant objects, if a person cannot see objects beyond 40 cm
A. $-2.5 D$ and concave lens
B. $-2.5 D$ convex lens
C. $-3.5 D$ and concave lens
D. $-3.5 D$ and convex lens

Answer:

D View Text Solution

42. If the resolution limit of the eye is 1 minute and at a distance $x \mathrm{~km}$ from the eye, two persons stands with a lateral separation of $3 m$
, then calculate x for which the twok persons can be just resolved by the nacket eye.
A. 10 km
B. 15 km
C. 20 km
D. 30 km

Answer:

- Watch Video Solution

43. The prism shown in the figure has one side silvered. The angle of the prims is 30° and $\mu=\sqrt{2}$. What should be the angle of incidence, if the incidence ray retraces its initial path?

A. 50°
B. 45°
C. 60°
D. 75°

Answer:

D View Text Solution

44. If a crown glass prims of refracing angle
10° have refractive indices for red and violet
rays 1.514 and 1.523 respectively then find the dispersion caused by a crown glass prism.
A. 0.07°
B. 0.08°
C. 0.09°
D. 0.10°

Answer:

- View Text Solution

45. A thin prism of angle 6° made of glas of recfractive index 1.5 is combined with another prism made of glas of $\mu=175$ to produce dispersion without deviation. The angel of second prism is
A. 7°
B. 4.67^{2}
C. 9°
D. 5°
46. A small object is enclosed in a sphere of solid glass 8 cm in radius. It is situated 2 cm
from the centre and is viewed from the side of
which it is nearer. Where will it appear to be if μ of glass $=1.5 /$
A. 6 cm from the centre
B. 4 cm from the nearer surface
C. $3 \frac{1}{5} \mathrm{~cm}$ from the nearer surface
D. $3 \frac{2}{3} \mathrm{~cm}$ from the centre

Answer:

D View Text Solution

47. In a glass sphere, there is a small bubble
$2 \times 10^{-2} m$ from its centre, if the bubble is
viewed along a diameter of the sphere, from
the side on which it lies, how far from the
surface will it appear, the radius of glass
sphere is $5 \times 10^{-2} m$ and refractive index of glass is $1.5 ?$
A. $2.5 \times 10^{-2} m$
B. $3.2 \times 10^{-2} m$
C. $6.5 \times 10^{-2} m$
D. $0.2 \times 10^{-2} m$

Answer:

D View Text Solution
48. A ray incident at a point at an angle of incidence of 60° enters a glass sphere with refractive index $\sqrt{3}$ and it is reflected and refracted at the farther surface of the sphere.

The angle between the reflected and refracted rays at this surface is:
A. 50°
B. 90°
C. 60°
D. 40°

Answer:

D Watch Video Solution

49. The focal length of a thin convex lens for red and violet colour are 44.6 cm and 42.5 cm .

Calculate focal length for the mean colour and dispersive power of the lens.
A. Focal length $=43.53 \mathrm{~cm}$ dispersive

$$
\text { power }=0.048
$$

B. Focal length $=28.53 \mathrm{~cm}$ dispersive
power $=0.048$
C. Focal length $=63.53 \mathrm{~cm}$, dispersvie
power $=8.48$
D. Foca length $=30.43 \mathrm{~cm}$, dispersive power $=4.8$

Answer:
(D) View Text Solution
50. A wiere mesth consisting of very small squares is viewed at a distances of 8 cm through a magnifying lens of fcoal length 10 cm , kept close to the eye. The magnification produced by the lens is
A. 5
B. 8
C. 10
D. 20
51. A double convex lens made of glass
(refractive index $n=1.5$) has the radii of curvature of both the surfaces as 20 cm . Incident light rays parallel to the axis of the lens will converge at a distance L such that
A. $L=20 \mathrm{~cm}$
B. $L=10 \mathrm{~cm}$
C. $L=40 \mathrm{~cm}$

$$
\text { D. } L=\frac{20}{3} \mathrm{~cm}
$$

Answer:

D View Text Solution

52. An object appraches a convergent lens from the left of the lens with a uniform speed $5 \mathrm{~m} / \mathrm{s}$ and stops at the focus. The image
A. moves away from the lens with a uniform speed $5 m / s$
B. moves away from the lens with a uniform acceleration
C. moves away from the lens with a nonuniform acceleration
D. moves towards the lens with a nonuniform acceleration

Answer:

D Watch Video Solution

53. A concave lens and a convex lens have
same focal length of 20 cm and both put in
contact this combination is used to view an
object 5 cm long kept at 20 cm from the lens
combination. As compared to object the image
will be
A. magnifide and inverted
B. diminished and erect
C. of the same size and erect
D. of the same sizer and inverted

Answer:

D Watch Video Solution

54. A source of light lies on the angle bisector of two plane mirrors inclined at angle θ. The
value of θ, so that the light reflected from one mirror does not reach the other mirror will be.
A. $\theta \geq 120^{\circ}$
B. $\theta \geq 90^{\circ}$
C. $\theta \leq 120^{\circ}$
D. $\theta<30^{\circ}$

Answer:

D Watch Video Solution

55. On the axis of a spherical mirror of focal length f a short linear object of length L lies on the axis at a distance μ from the mirror. Its image has an axial length L^{\prime} equal to
A. $L\left[\frac{f}{(\mu-f)}\right]^{1 / 2}$
B. $\left.L \frac{(\mu+f)}{f}\right]^{1 / 2}$
C. $L\left[\frac{(\mu-f)}{f}\right]^{2}$
D. $L\left[\frac{f}{(\mu-f)}\right]^{2}$

Answer:

D Watch Video Solution

56. The radius of curvature of the face of plano-convex lens is 12 cm and its refractive index is 1.5 . If the plane surface of the lens is
now silvered, then find the focal length of the
lens.
A. 26 cm
B. 22 cm
C. 24 cm
D. 2 cm

Answer:
(D) View Text Solution
57. The speed at which the image of the luminous point object is moving, if the
luminous point object is moving at speed v_{0} towards a spherical mirror, along its axis is
(Given, $R=$ radius of curvature $u=$ object distance)

$$
\begin{aligned}
& \text { A. } v_{l}=-v_{o} \\
& \text { B. } v_{l}=-v_{o}\left[\frac{R}{2 u-R}\right]^{2} \\
& \text { C. } v_{l}=-v_{o}\left(\frac{2 u-R}{R}\right) \\
& \text { D. } v_{l}=-v_{o}\left(\frac{R}{2 u-R}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

58. A thin convergent glass lens $\left(\mu_{g}=1.5\right)$ has a power of $+5.0 D$. When this lens is immersed in a liquid of refractive index μ_{1}, it acts as a divergent lens of focal length 100 cm . The value of μ_{1} is
A. $4 / 3$
B. $5 / 3$
C. $5 / 4$

$$
\text { D. } 6 / 5
$$

Answer:

D Watch Video Solution

59. Find the change in the focal lengthof the
lens, if a convex lens of focal length 20 cm and
refractive index 1.5 , is immersed in water having refractive index 1.33.
A. 62.2 cm
B. 5.82 cm
C. 58.2 cm
D. 6.22 cm

Answer:

D View Text Solution

60. The reflective surface is given by
$y=2 \sin x$. The reflective surface is facing positive axis. What is the least value of
coordinate of the point where a ray parallel to
positive x-axis becomes parallel to positive y axis after reflection?
A. $\left(\frac{\pi}{3}, \sqrt{3}\right)$
B. $\left(\frac{\pi}{2}, \sqrt{2}\right)$
C. $\left(\frac{\pi}{3}, \sqrt{2}\right)$
D. $\left(\frac{\pi}{4}, \sqrt{3}\right)$

Answer:

D Watch Video Solution
61. An object is placed at the focus of convex mirror. The image will be at
A. c
B. f
C. infinity
D. none of these

Answer:

62. A 4.5 cm needle is placed 12 cm away from a convex mirror of focal length 15 cm . Given the location of the image and the magniftication.
A. $6.7 \mathrm{~cm}, 5 / 9$
B. $7.5 \mathrm{~cm}, 5 / 9$
C. $6.7 \mathrm{~cm}, 9 / 5$
D. $7.5 \mathrm{~cm}, 9 / 5$

Answer:

D View Text Solution
63. With a concave mirror, an object is placed
at a distance x_{1} from the princiipal focus, on
the principal axis. The image is formed at a distance x_{2} from the principal focus. The focal length of the mirror is
A. $x_{1} x_{2}$
B. $\frac{x_{1}+x_{2}}{2}$
C. $\sqrt{\frac{x_{1}}{x_{2}}}$
D. $\sqrt{x_{1} x_{2}}$

- Watch Video Solution

64. An electromagnetic radiation of frequency
v , wavelength λ, travelling with velocity c in air,
enters a glass slab of refractive index μ. The
frequency, wavelength and velocity of light in
the glass slab will be respectively.

$$
\begin{aligned}
& \text { A. } \frac{n}{\mu}, \frac{\lambda}{\mu}, \frac{v}{\mu} \\
& \text { B. } n, \frac{\lambda}{\mu}, \frac{v}{\mu} \\
& \text { С. } n, \lambda, \frac{v}{\mu}
\end{aligned}
$$

D. $\frac{n}{\mu}, \frac{\lambda}{\mu}, v$

Answer:

D Watch Video Solution

65. When a glass slab is placed on a cross
made on a sheet, the cross appears to be
raised by 1 cm . The thickness of the glass is

3 cm . The critical angle for glass is

$$
\text { A. } \sin ^{-1}(0.33)
$$

> B. $\sin ^{-1}(0.5)$
> C. $\sin ^{-1}(0.67)$
> D. $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Answer:

D Watch Video Solution

66. A layered lens is made of materials indicated by shades in the figure. The number
of images formed is

A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

67. Resolving power of a telescope will be more, $f i$ the diameter (a) of the objective is
A. larger
B. smaller
C. resolving poer does not depend on a
D. None of the above

Answer:

D Watch Video Solution

68. A glass piece is dipped in a liquid of refractie index $4 / 3$, it gets dissappeared in the
liquid. The refractive index of the glass piece is
A. $\frac{3}{4}$
B. $\frac{5}{3}$
C. $\frac{4}{5}$
D. $\frac{4}{3}$

Answer:

D View Text Solution

69. If the bio-convex lens is cut as shown in the
figure, the new foacal length f^{\prime} is

A. $2 f$
B. f
C. $f / 2$
D. infinite

Answer:

D View Text Solution

70. Refractive index of a medium depends

A. on the medium only
B. on the incident light only
C. on both the conditions given in options

a and b

D. None of the above

Answer:

D View Text Solution

71. A point object is placed at the focus of a

convex mirror, the image will be formed at

A. infinity

B. cente of curvature

C. at focus itself

D. none of these

Answer:

D View Text Solution

72.

A point object is placed at the focus of the bioconved lens. What should be the value of X, so the final image forms at infinity?
A. 10 cm
B. 20 cm
C. 15 cm
D. none of these

Answer:

- Watch Video Solution

73. The image formed by a concave spherical mirro
A. is always virtual
B. is always real
C. is always inverted
D. may be erect

Answer:

D View Text Solution

74. A ray of light is incident on the interface between water and glass at an angle i and refracted parallel to the water surface, then
value of μ_{g} will be

Glass
A. $(4 / 3) \sin i$
B. $\frac{1}{\sin i}$
C. $\frac{4}{3}$
D. 1

Answer:

D Watch Video Solution

75. In the Young's double slit experiment, a mica slip of thickness t and refractive index μ
is introduced in the ray from first source S_{1}.

By how much distance fringes pattern will be displaced ? ($\mathrm{d}=$ distance between the slits and
D is the distance between slits and screen)

$$
\begin{aligned}
& \text { A. } \frac{d}{D}(\mu-1) t \\
& \text { B. } \frac{D}{d}(\mu-1) t \\
& \text { C. } \frac{d}{(\mu \cdot 1) D} \\
& \text { D. } \frac{D}{d}(\mu-1)
\end{aligned}
$$

Answer:

D Watch Video Solution

76. The refractive index of water is $4 / 3$ and that of glas is $5 / 3$. What will be the critical angle for the ray of light entering water form the glass?

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{4}{5}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{5}{4}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{1}{2}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{2}{1}\right)
\end{aligned}
$$

Answer:

77. A film projector magnifies a $100 \mathrm{~cm}^{2}$ film strip on a screen. If the linear magnification is

4, the area of the magnified film on the screen
is
A. $1600 \mathrm{~cm}^{2}$
B. $400 \mathrm{~cm}^{2}$
C. $800 \mathrm{~cm}^{2}$
D. $6400 \mathrm{~cm}^{2}$

- Watch Video Solution

78. A convex lens makes a real image 4 cm long on a screen. When the lens is shifted to a new position without disturbing the object, we again get a real image on the screen which is

16 cm tall. The length of the object must be
A. $\frac{1}{4} c m$
B. 8 cm
C. 12 cm
D. 20 cm

Answer:

D Watch Video Solution

79. Rays of light fall on a glass slab $(\mu>1)$ as
shwon in figure. If μ at A is maximum and at B
it is minimum, then what will happen to these

A. They will tilt towards A
B. They will tilt towards B
C. They will not deviate
D. There will be total internal reflection

Answer:

80. The maximum value of index of refraction of a material of a prism which allows the passage of light through it when the refracting angle of prism is A is
A. $\sqrt{1+\sin \left(\frac{A}{2}\right)}$
B. $\sqrt{1+\cos \left(\frac{A}{2}\right)}$
C. $\sqrt{1+\tan ^{2}\left(\frac{A}{2}\right)}$
D. $\sqrt{1+\cot ^{2}\left(\frac{A}{2}\right)}$

Answer:

- Watch Video Solution

81. The focal lengths of objective and the eyepiece of a compound microscope are f_{o} and f_{e} respectively. Then,
A. $f_{o}=f_{e}$
B. $f_{o}<f_{e}$
C. $f_{o}=f_{e}$
D. None

Answer: B

- Watch Video Solution

82. The refractive index of a material of a
plane-concave lens is $5 / 3$ the radius of curvature is 0.3 m . The focal length of the lens in air is

$$
\begin{aligned}
& \text { A. }-0.45 \mathrm{~m} \\
& \text { B. }-0.6 \mathrm{~m} \\
& \text { C. }-0.75 \mathrm{~m}
\end{aligned}
$$

$$
\text { D. }-1.0 \mathrm{~m}
$$

Answer:

D View Text Solution

83. The optical path of a monochromatic light
is same if it goes through 4.0 cm of glass of
4.5 cm of water. If the refractive index of glas is
1.53 , the refractive index of the water is
A. 1.30
B. 1.36
C. 1.42
D. 1.46

Answer:

D View Text Solution

84. What is the refractive index of a prism
whose angle $A=60^{\circ}$ and angle of minimum
deviation $d_{m}=30^{\circ}$?
A. $\sqrt{2}$
B. $\frac{1}{\sqrt{2}}$
C. 1
D. $\frac{1}{\sqrt{3}}$

Answer:

D View Text Solution

85. An object is placed at a distance 20 cm
from the pole of a convex miror of focal length
20 cm . The image is produced a
A. 13.3 cm
B. 20 cm
C. 25 cm
D. 10 cm

Answer:

D View Text Solution

86. The plano-convex lens of focal length 20 cm and 30 cm are placed together to form a double convex lens. The final length will be
A. 12 cm
B. 60 cm
C. 20 cm
D. 30 cm

Answer:

D View Text Solution

87. Which mirror is to be used to obtain a paralel beam of light from a small lamp?
A. Plane mirror
B. Convex mirror
C. Concave mirror
D. Any one of these

Answer:

- View Text Solution

88. Which of the following is a wrong statement?
A. $D=1 / f$, where f is the focal length
and D is called the refractive power of a
lens
B. Power is expressed ina diopter when f is
in metres
C. Power is expressed in diopter and does
not depend on the system of unit used
top measure f
D. D is positive for convergent lens and negative for divergent lens

Answer:

- Watch Video Solution

