# ©゙" doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - BITSAT GUIDE

## SEMICONDUCTOR DEVICES AND

## LOGIC GATES

Practice Exercise

1. If the resistivity of copper is $1.7 \times 10^{-6} \Omega c m$
, then the mobility of electrons in copper, if
each atom of copper contributes one free electron for conduction, is [The amomic weight of copper is 63.54 and its density is $8.96 g / c c]:$
A. $23.36 \mathrm{~cm}^{2} / \mathrm{Vs}$
B. $503.03 \mathrm{~cm}^{2} / \mathrm{Vs}$
C. $43.25 \mathrm{~cm}^{2} / \mathrm{Vs}$
D. $88 \mathrm{~cm}^{2} / \mathrm{Vs}$

## Answer: C

2. The conductivity of a semiconductor increases with increase in temperature because
A. Number density of free current carries increases
B. relaxation time increases
C. both number density of carriers and relaxation time increases
D. number density of current carriers
increases, relaxation time decreases but
effect of decreases in relaxation time is
much less than increase in number density.

## Answer: D

## D Watch Video Solution

3. In a $n$-type semiconductor, which of the following statement is true?
A. Electrons are majority charge carriers and triavalent atoms are the dopants.
B. Electrons are minority charge carriers and pentavaent atoms are the dopants.
C. Holes are minority charge carriers and pentavalent atoms are the dopants

## D. Holes are majority carriers and trivalent

 atoms are the dopants.
## Answer: C

## D Watch Video Solution

4. Application of a forward biase to a $p-n$
junction:
A. Increases the number of donors on the n-side
B. Increase the electric field in the depletioin zone
C. Increase the potential difference across
the depletion zones.
D. widens the depletion zone

Answer: A

## D Watch Video Solution

5. In a three phase full-wave rectifier of 50 Hz ,
the ripple frequency is
A. 300 Hz
B. 50 Hz
C. 400 Hz
D. 600 Hz

Answer: A
( Watch Video Solution
6. What is the dimensional formula of $\sqrt{L C}$ ?
A. $(s)^{2}$
B. volt-s/amp
C. amp-s/volt
D. s

Answer: D
( Watch Video Solution
7. Given, $\beta=49$ and $l_{e}=2 \mathrm{ma}, l_{c}$ for a BJT is
A. 2 mA
B. 1.96 mA
C. 98 mA
D. $\frac{2}{49} \mathrm{~mA}$

Answer: B

## D Watch Video Solution

8. A single ended class A transformer coupled amplifier delivers a power of 50 mW , [Math Processing Error] = 10 volts. Assuming ideal
conditions, the reflected primary resistance is

## given by

A. $2000 \Omega$
B. $1000 \Omega$
C. $500 \Omega$
D. $200 \Omega$

Answer: B

D Watch Video Solution
9. In a vaccume diode, when the plate voltage
is 40 V , the plate current is 10 mA . For a plate
voltage of 160 V , the plate current is
A. 20 mA
B. 40 mA
C. 80 mA
D. 160 mA

Answer: C

D Watch Video Solution
10. A triode is operating at $E_{c}=-4 V, E_{b}=$

175 V and $l_{b}=10 \mathrm{~mA}$. Around this operating point, the plate characteristics are linear and the parameter values are $\mu=20, g_{m}=2.5 \mathrm{~mA} / \mathrm{v}$.

If $E_{c}$ is changed to -6 V with $E_{b}=175 \mathrm{~V}$, the value of $l_{b}$ is given by
A. 10 mA
B. 20 mA
C. 15 mA
D. 5 mA

## Answer: D

## - Watch Video Solution

11. Given the following set of values for a triode, the value of $g_{m}$ and $\mu$ are given below in the table.
A. $1.25 \mathrm{~mA} / \mathrm{V}$ nad 8
B. $0.8 \mathrm{~mA} / \mathrm{V}$ and 8
C. $1.25 \mathrm{~mA} / \mathrm{V}$ and 10

## D. $8 \mathrm{~mA} / \mathrm{V}$ and 10

## Answer: C

## D Watch Video Solution

12. The table values of $E_{b}, E_{c}, I_{b}$ for a triode

The value of $r_{p}$ in $\mathrm{k} \Omega$ and $g_{m}$ in $\mathrm{mA} / \mathrm{V}$ are given by
A. 50 and 0.1

## B. 10 and 3.0

C. 5 and 1.5
D. 3.33 AND 1.5

## Answer: D

## - Watch Video Solution

13. A Triode is operating at $E_{c}=-4 \mathrm{~V}, E_{b}=175 \mathrm{~V}$ and $l_{b}=10 \mathrm{~mA}$. Around this operating point, the plate characteristics are linear and the parameters are $\mu=20, r_{p}=8 \Omega$. E is changed top
$-6 V$. To obtain the same plate current the value of $E_{b}$ should be
A. 40
B. 135
C. 191
D. 215

Answer: D
( Watch Video Solution
14. A triode has $r_{p}=10 \Omega$ and $\mu=20$. Table gives the operating point with blanks.

The values of $E_{b 1}$ and $E_{c 1}$ are
A. $290 \mathrm{~V},-6 \mathrm{~V}$
B. $210 \mathrm{~V},-10 \mathrm{~V}$
C. $290 \mathrm{~V},-10 \mathrm{~V}$
D. $210 \mathrm{~V},-6 \mathrm{~V}$

Answer: D
15. For a vacuum triode, the values of $E_{c}, E_{b}$
and $l_{b}$ are given as under
R

The values of $\mu$ and $r_{p}$ are given by

$$
\begin{aligned}
& \text { A. } \mu=12, r_{p}=10 k \Omega \\
& \text { B. } \mu=12, r_{p}=20 k \Omega \\
& \text { C. } \mu=10, r_{p}=20 k \Omega \\
& \text { D. } \mu=20, r_{p}=10 k \Omega
\end{aligned}
$$

## Answer: D

## - Watch Video Solution

16. The temperature ( T ) dependence of
resistivity (rho) of a semiconductor is
represented by :
A.

R
B.
c.
D. 2

## Answer: C

## D Watch Video Solution

17. In Fig. $V_{0}$ is the potential barrier across a $p-n$ junction, when no battery is connected across the junction :

A. 1 and 3 both correspond to forward bias
of junction
B. 3 corresponds to forward bias of
junction and 1 corresponds to reverse
bias of junction
C. 1 corresponds to forward bias and 3
corresponds to reverse bias of junction.

## D. 3 and 1 both correspond to reverse bias

of junction.
18. In BJT, maximum current flows in which of the following?
A. Emitter region
B. Base region
C. Collector region
D. Equal in all the regions

Answer: A
19. A tungsten emitter works at 2500 K . To increase the emission current density by $20 \%$, how much change in the work function is required (Given, $\log 2=0.3, \log 3=0.477$ )
A. 0.016 eV
B. 0.039 eV
C. 2.54 eV
D. 0.254 eV

Answer: B

## D Watch Video Solution

20. In an unbiased p-n junction electrons diffuse from n -region to p -region because :-
A. free electrons in the $n$-region attract
them
B. they move across the junction by the potential difference
C. hole concentration in p-region is more as compared to $n$-region.
D. All of the above

## Answer: C

## D Watch Video Solution

21. Zener breakdown in a semi-conductor diode occurs when
A. forward current exceeds certain value
B. reverse bias exceeds certain value
C. forward bias exceeds certain values.
D. potential barrier is reduced to zero

Answer: B

- Watch Video Solution

22. The voltage gain of an amplifier state is
23. The gain expressed in db is
A. 100
B. 20
C. 40
D. 10

## Answer: C

## D View Text Solution

23. If $A=B=1$, then in terms of Boolean algebra the value of $A . B+A$ is not equal to.
A. B. $A+B$
B. $B+A$
C. B
D. None

Answer: D

- Watch Video Solution

24. The Boolean equation for the circuit given
in figure is
R
A. $\mathrm{Y}=\bar{A} \cdot \mathrm{~B}+\mathrm{C}$
B. $\mathrm{Y}=\bar{A}.) \bar{B}+\bar{C})$
C. $Y=\bar{A} \cdot(B+\bar{C})$
D. $Y=\bar{A} \cdot(B+C)$

Answer: D

## D Watch Video Solution

25. In the above circuit, if the polarity is reversed of battery, the current flowing would be
A. 0 mA
B. 2 mA
C. 5 mA
D. 10 mA

Answer: A

## D View Text Solution

26. The given figure shows a rectifier of alternating current ( $\mathrm{f}=50 \mathrm{c} / \mathrm{s}$ ), the number of

## pulses of rectified current obtained in 1 s is

A. 50
B. 25
C. 100
D. 200

Answer: C
( Watch Video Solution

# 27. In sample of pure silicon $10^{13}$ atom $/ \mathrm{cm}^{3}$ is 

mixed of phosphorus. If all doner atoms are
active then what will be resistivity at $20^{\circ} \mathrm{C}$ if mobility of electron is $1200 \mathrm{~cm}^{2} /$ Volt sec :-
A. $0.5209 \Omega-\mathrm{cm}$
B. $5.209 \Omega-\mathrm{cm}$
C. $52.09 \Omega-\mathrm{cm}$

D. $520.9 \Omega-\mathrm{cm}$

## Answer: D

28. For the given combination of gates, if the
logic states of inputs $A, B, C$, are as follows
$A=B=C=0 \quad$ and $\quad A=B=1, C=0$ then the logic states of output $D$ are

A. 0,0
B. 0,1
C. 1,0

## D. 1,1

## Answer: D

## D Watch Video Solution

29. The plate voltage of a triode is increased
from 225 V to 250 V , the grid voltage is changed from 4 to -4.7 V to maintain plate current constant. The amplification factor of the tube is
A. 35.7
B. 2
C. 70
D. 20

## Answer: A

## D Watch Video Solution

30. In a triode amplifier, the load resistance is
equal to the plate resistance $r_{p}$. If $\mu$ is the amplification factor, the stage gain of the amplifier is
A. $\frac{\mu}{2}$
B. $\mu$
C. $2 \mu$
D. $\frac{\mu}{4}$

Answer: A

D Watch Video Solution
31. The triodes $P$ and $Q$ have the same amplification factor 40. Their plate resistances
are $4 k \Omega$ and $8 k \Omega$, respectively. If an amplifier
circuit is designed using anyone of them and a
load resistance is of $8 k \Omega$, the ratio of the voltage gain obtained from them will be
A. $2: 3$
B. $4: 3$
C. $3: 1$
D. 1:2

Answer: B

D Watch Video Solution
32. When the plate voltage of a triode is 150 V , its cut-ff voltage is $-5 V$. On increasing the plate voltate to 200 V , the cut-off voltage can be

$$
\begin{aligned}
& \text { A. }-4.5 \mathrm{~V} \\
& \text { B. }-5.0 \mathrm{~V} \\
& \text { C. } 2.3 \mathrm{~V} \\
& \text { D. }-6.66 \mathrm{~V}
\end{aligned}
$$

Answer: D

- Watch Video Solution

33. In a diode vaccum tube, the plate currentis 5 mA , when the plate voltage is 160 V , a grid is introduced between the plate and cathode and a voltage of -2 V is applied to it. The plate current will becomes
(if $g_{m}=5 \times 10^{-3} \Omega^{-1}$
A. 20 mA
B. 10 mA
C. 4 mA
D. 7.5 mA

## Answer: C

## - Watch Video Solution

34. In common emitter amplifier, the $\frac{l_{c}}{l_{e}}$ is 0.98 , then the value of $\beta$ is
A. 98
B. 0.98
C. 49
D. None of these

## Answer: C

## - Watch Video Solution

35. For the given circuit of p-n junction diode, which of the following statement is correct?
A. In forward biasing the voltage across $R$
is $V$
B. In forward biasing the voltage acros $R$ is

2V
C. In reverse biasing the voltage acorss $R$ is

## V

D. In reverse biasing the voltage across $R$ is

2V

Answer: A

D Watch Video Solution
36. When forward bias is applied to a $P-N$
junction, then what happence to the potential
barrier $V_{B}$, and the width of charge depleted region $x$ ?
A. $V_{B}$ increases, x decreases
B. $V_{B}$ increases, x increases
C. $V_{B}$ increases, x increases
D. $V_{B}$ decreases, x decreases

## Answer: D

## D Watch Video Solution

37. Carbon, silicon and germanium atoms have
four valence electrons each. Their valence and conduction bands are separated by energy band gaps represented by $\left(E_{g}\right)_{C},\left(E_{g}\right)_{S i}$ and $\left(E_{g}\right)_{G e}$, respectively. Which one of the following relationship is true in their case?
A. $\left(E_{g}\right)_{c}>\left(E_{g}\right)_{s i}$
B. $\left(E_{g}\right)_{C}=\left(E_{g}\right)_{S i}$
C. $\left(E_{g}\right)_{C}<\left(E_{g}\right)_{G e}$
D. $\left(E_{g}\right)_{C}<\left(E_{g}\right)_{S i}$

Answer: A

## - Watch Video Solution

38. What is the plate current in a diode valve under the space charge limited operation, when the plate potential is 60 V ? In a diode valve, the plate current is 320 mA , then the plate potential is 240 V .
A. 30 mA
B. 20 mA

## C. 40 mA

## D. 10 mA

## Answer: C

## D Watch Video Solution

39. In the following common emitter
configuration, and n-p-n transistor with
current gain $\beta=100$ is used. The output voltage of the amplifier will be
A. 10 mV
B. 0.1 V
C. 1.0 V
D. 10 V

Answer: C

- Watch Video Solution

40. In the case of forward biasing of p-n
junction, which one of the following figures
correctly depicts the directioin of the flow of charge carriers?
A.
B.
C.
D. None of these

Answer: C
( Watch Video Solution
41. In a forward biased p-n junction diode, the potential barrier in the depletion region will be of the form
A.
B.
C.
D.

Answer: D

D Watch Video Solution
42. The input resistance of a common emitter transistor amplifier, if the output resistance is $500 k \Omega$, the current gain $\alpha=0.98$ and the power gain is $6.0625 \times 10^{6}$ is
A. $198 \Omega$
B. $300 \Omega$
C. $100 \Omega$

D. $400 \Omega$

Answer: A
43. In a figure given alongside assuming the diodes to be ideal
A. $D_{1}$ is forward biased and $D_{2}$ is reverse biased and hence, current flows from A to B

B. $D_{2}$ is forward biased and $D_{1}$ is reverse

biased and hence, no current flows from

# C. $D_{1}$ and $D_{2}$ are both forward biased and 

 hence current flows from $A$ to $B$D. $D_{1}$ and $D_{2}$ are both reverse biased and

hence no current flows from $A$ to $B$ and
vice-versa

## Answer: B

## D Watch Video Solution

44. In the circuit shown in figure, if the diode forward voltage drop is 0.3 V , then the voltage difference between $A$ to $B$ is,
A. 1.3 V
B. 2.3 V
C. zero
D. 0.5 V

Answer: B
45. the exclusive -OR of $A, B$ is represented by
$A \oplus B$. An equivalent form is
A. $A B+\bar{A} \bar{B}$
B. $A B+\overline{A+B}$
C. $A \bar{B}+\bar{A} B$
D. None of these

Answer: C

# 46. Given the truth table relating Y to $\mathrm{A}, \mathrm{B}$. 

The outpur Y is
A. $A+B$
B. $A B$
C. $\bar{A} B$
D. $\overline{A+B}$

## Answer: D

47. Given the followig truth table, where $A, B$ are inputs and $Y$ the output
A. $A \bar{B}$
B. $\bar{A} B$
C. $A B$
D. $\bar{A} B$

Answer: D

D Watch Video Solution
48. What will be the input $A$ and $B$ for the Boolean expression $(\overline{A+B}) \cdot(\overline{A . B})=1$ ?
A. 0,0
B. 0,
C. 1,0
D. 1,

Answer: A

- Watch Video Solution

49. Which of the following gates will have an output of 1 ?
A.
B.
C.
D.

Answer: C
50. Current in the circuit will be
A. $5 / 40$
B. $5 / 50$
C. $5 / 10$
D. $5 / 20$

Answer: B

D Watch Video Solution
51. Find the value of $V_{A B}$.
A. 10 V
B. 20 V
C. 30 V
D. None of these

Answer: A

- Watch Video Solution

52. A two volt battery forward biased and a diode. However, there is a drop of 0.5 V across the diode which is independent of current.

Also, a current greater than 10 mA produces
large joule loss and damages diode. If diode is
to be operated at 5 mA , then the series resistance to be put is
A. $3 \mathrm{k} \Omega$
B. $300 \mathrm{k} \Omega$
C. $300 \Omega$

## D. $200 \mathrm{k} \Omega$

## Answer: C

## D Watch Video Solution

53. Which of the following statements concerning the depletion zone of an unbiased p-n junction is (are) true?
A. The width of the zone is independent of the densities of the dopants (impurities).
B. The widthof the zone is dependent on
the densities of the dopants
C. The electric field in the zone is produced
by ionised dopant atoms
D. The electric field in the zone is provided
by electrons in the conduction band and
the holes in the valence band

## Answer: B

54. The circuit shown in figure below will act as
A. OR gate
B. AND gate
C. XOR gate
D. None of these

Answer: A

- Watch Video Solution

55. The circuit shown below will act as
A. AND gate
B. OR gate
C. NAND gate
D. XOR gate

Answer: A

- Watch Video Solution

56. In Boolean algebra, $A+B=Y$ implies that
$A$. sum of $A$ and $B$ is $Y$
B. $Y$ exists when $A$ exists or $B$ exists or both
$A$ and $B$ exist
C. $Y$ exists only when $A$ and $B$ both exist
D. $Y$ exist when $A$ or $B$ exist but not when
both $A$ and $B$ exist

## Answer: D

## 57. In the Boolean algebra, the following one is

## wrong

A. $1+0=1$
B. $0+1=1$
C. $1+1=1$
D. None of these

Answer: A
58. The output of a 2-input OR gate is fed to a

NOT gate, the new gate obtained is
A. OR gate
B. NOT gate
C. NOR gate
D. XOR gate

Answer: C
( Watch Video Solution
59. Digital circuit can be made by the repetitive use of
A. OR gate
B. AND gate
C. NOT gate
D. NAND gate

Answer: D

D Watch Video Solution

# 1. The circuit is equivalent to 

A. AND gate

B. OR gate

C. NOT gate
D. None of these

Answer:

D Watch Video Solution
2. Active state of $n-p-n$ transistor, in circuit is achieved by
A. low input voltage
B. high input voltage
C. both a and b
D. Neither a nor b

## Answer: D

3. If a semiconductor has an intrinsic carrier concentration of $1.41 \times 10^{16} / \mathrm{m}^{3}$ when doped with $10^{21} / \mathrm{m}^{3}$ at room temperature will be
A. $2 \times 10^{21}$
B. $2 \times 10^{11}$
C. $1.41 \times 10^{10}$
D. $1.41 \times 10^{16}$

Answer: D

- Watch Video Solution

4. Two identical capacitors eachof capacitance

C are charged to the same potential $V$ and are connected in two circuits (i) and (ii) at $\mathrm{t}=\mathrm{O}$ as shown. The charges on the capacitor at $t=C R$ are

$$
\text { А. } \frac{C V}{e}, \frac{C V}{e}
$$

B. CV, CV
C. $\frac{V C}{e}, V C$
D. $V C, \frac{V C}{e}$

## Answer: C

## D Watch Video Solution

5. A transistor is preferable to a triode valve when used in amplifier because it
i) Can withstand large changes in tempratures
ii) has a higher input impedance
iii)can handle larger powers
(iv) does not require powers

Which of the above statements is correct?
A. Only (i), (ii), and (iii) are correct
B. Only (i), and (iii) are correct
C. Only (ii) and (iv) are correct
D. Only (vi) is correct.

Answer: D

- Watch Video Solution

