© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

GENERAL ORGANIC CHEMISTRY

Illustration

1. Determine the F. C on each atom in :
(a) HOBr
(b) $\stackrel{\oplus}{N} H_{4}$
(c) $\mathrm{H}_{2} \mathrm{O}: \mathrm{BBr}_{3}$.

- Watch Video Solution

2. (a) Draw Lewis structures for:
(i) Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$
(ii) $\mathrm{Br} N O$
(iii) $H O C N$
(iv) $\mathrm{NH}_{2} \mathrm{OH}$ (Kydroxylamine).
(b) Give an isomeric structure for $\mathrm{NH}_{2} \mathrm{OH}$ and explain which structure is more stable.

- Watch Video Solution

3. With the help of F. C. Explain which Lewis structure is more stable for the following molecules:
(a) $N_{2} O:(i):^{\Theta} \ddot{N}=\stackrel{2+}{O}=\ddot{N}:{ }^{\Theta}$ or $(i i): N \equiv \stackrel{\oplus}{N}-\ddot{O}:^{\Theta}$

$\mathrm{HNO}_{3}(i) \mathrm{H}-\mathrm{O}-\stackrel{\oplus}{\stackrel{+}{N}}=\ddot{\mathrm{O}}:$ or $(i i) H-O-\stackrel{+2}{N}-\ddot{\mid}-\stackrel{O}{O}:^{\Theta}$
(d). $C I_{2} O:(i): \ddot{C} I-\ddot{O}-\ddot{C} I:$ or $(i i): \ddot{O}-\ddot{C} I-\ddot{C} I$:

(D) Watch Video Solution

4. Determine F. C on each atom in
(a) carbocation $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
(b) carbanion $\mathrm{H}_{3} \mathrm{C}^{\text {® }}$
(c) free radical $\mathrm{H}_{3} \mathrm{C}$.
(d) carbene $\mathrm{H}_{2} \mathrm{C}$: .

- Watch Video Solution

5. Explain whether oxidation, reductio, or neither occurs in the following reactions:
(a) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
(b) $\mathrm{HC} \equiv \mathrm{CH} \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{O}$
(c) $\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
(d) $\mathrm{H}_{2} \mathrm{CBr}_{2} \rightarrow \mathrm{H}_{2} \mathrm{C}=\mathrm{O}$
II. Give the structural formula for the simplest hydrocarbon in which C has a zero $O . N$.

(D) Watch Video Solution

6. Explain :
(i) $\mathrm{\mu ofNH}_{3}>\mathrm{NF}_{3}$
(ii) $\mathrm{\mu ofCH}_{3} \mathrm{C} 1>\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
(iii) $\mu o f \mathrm{CO}_{2}$ is zero, nut $\mu \mathrm{ofSO} O_{2} \neq 0$
(iv) Why the lone pair of \bar{e} 's has no effect on the μ of PH_{3}. The bond angle in $P H_{3}$ is 92°.
(v) $\mu o f \mathrm{CH}_{2} \mathrm{C1}_{2}>\mathrm{CHC1}_{3}$.

- Watch Video Solution

7. Describe heterolytic (polar) bond cleavage of :
(i) $A g l$,
(ii) $H_{3} \stackrel{\oplus}{N} \stackrel{\ominus}{B} F_{3}$,
(iii) $\left[\mathrm{Cu}\left(\mathrm{OH}_{2}\right)_{4}\right]^{2 \oplus}$
(b) Name the reverse of heterolytic cleavage.
(c) Describe homolytic bond cleavage of $\mathrm{CH}_{3}-\mathrm{Co}-\mathrm{Co}-\mathrm{CH}_{3}$.
(d) Compare the relative energies of singlet and triplet carbenes.
(e) Of X_{C} : (singlet) and $X_{2} C$: (triplet), which is stable ?
(f) Of $F_{2} C$:,$C 1_{2} C$: , $B r_{2} C$:,$I_{2} C$: (singlet), which is more stable?
(g) Compare and explain the difference in the $I E$ and $E A$ of $\cdot \mathrm{CH}_{3}$.

- Watch Video Solution

8. Give the decreasing order of the stabilities of the following :
a. i.

ii.
 iii.

b. i.

ii.

iii.

- Watch Video Solution

9. Classify the following species as
(a) nuclephile,
(b) electrophile,
(c) both, or
(d) neither.
(1) $\stackrel{\oplus}{N} O_{2}$
(2) $\mathrm{RCH}=0$
(3) H_{2}
(4) $S n F_{4}$
(5) $R-C \equiv \ddot{N}$
(6) CH_{4}
(6) $C r^{4}$
(7) $C r^{3}$
(8) $B e F_{2}$
(9) NH_{3}
(10) I^{\ominus}
(11) RCOO^{\ominus}
(12) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\ominus}$
(13) $B C 1_{3}$
(14) $B r^{\oplus}$
(15) $B r_{2} C$:
(16) $\mathrm{SiC1}_{4}$
(17) $M e_{3} \ddot{P}$
(18) $\mathrm{Me}_{2} \mathrm{CH}^{\oplus}$
(19) $\mathrm{CH}_{2}=\mathrm{CH}_{4}$
(20) $H C 1$
(21) $M e_{3} C^{\ominus}$.

- Watch Video Solution

10. Name the intermediate species formed in the following reactions :
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\underset{\oplus}{\mathrm{N}} \equiv \underset{\sim}{N} \rightarrow \mathrm{I}+: \mathrm{N} \equiv \mathrm{N}$:
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}+\stackrel{\oplus}{\mathrm{K}} \stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2} \rightarrow \mathrm{II}+\mathrm{NH}_{3}$
(c) $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{Me}+\mathrm{HBr} \rightarrow \mathrm{III}+\mathrm{Br}^{\ominus}$
(d) $\mathrm{Ph}-\stackrel{\mathrm{Ph}}{\stackrel{\mathrm{I}}{\mathrm{C}}} \underset{\substack{\mathrm{OH}}}{\mathrm{CH}_{3}}+\mathrm{H}^{\oplus} \rightarrow \mathrm{IV}+\mathrm{H}_{2} \mathrm{O}$
$(\mathrm{e}) \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O} \mathrm{H} \xrightarrow{-\bar{e}} V \rightarrow V I+. \mathrm{CH}_{3}$
(f) $\mathrm{CH}_{3}-\ddot{N}=\ddot{N}-\mathrm{CH}_{3} \xrightarrow{\Delta} V I I I+Z n I_{2}$
(h) $\mathrm{PhCH}_{2} \mathrm{C} 1+A 1 C 1_{3} \rightarrow I X+[A 1 C 1]^{\ominus}$
(i) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH} H_{3}+L i \underset{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{\text { liq. } \mathrm{NH}_{3}} X+L i^{\oplus}$.

- Watch Video Solution

11. Designate the species (A) and (B) as electrophile (E) or nucleophile (Nu) in the following reactions :
(a) $B E t_{3}+M e_{2} \stackrel{\ddot{O}}{:} \rightarrow M e_{2} \stackrel{\oplus}{O}-\stackrel{\ominus}{B E t_{3}}$
(b) $\mathrm{CH}_{2}=\mathrm{O}+: \stackrel{\stackrel{\Theta}{\mathrm{S}} \mathrm{Sisulphite} \mathrm{ion}}{\underset{\text { B }}{\mathrm{S}} \mathrm{O}} \underset{O^{\Theta}}{\mathrm{CH}} \mathrm{H}_{2}-\mathrm{SO} \mathrm{O}_{3} H$
(c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C} 1+: \mathrm{CH}:^{\ominus} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}-C N+C 1^{\ominus}$

$$
\left.\begin{array}{c}
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+: \ddot{\mathrm{C}} 1-\ddot{\mathrm{C}} \mathrm{:} \\
\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\underset{\mid}{\mathrm{CH}_{2}}+\mathrm{Cl} \stackrel{\ominus}{4}
\end{array}\right]
$$

(d)

Cl

(f) $: \stackrel{\oplus}{N} H_{2}+C H_{3}-C \equiv C H \rightarrow C H_{3}-C \equiv C^{\ddot{\Theta}}+N H_{3}$

D Watch Video Solution

12. Give the decreasing order of acidic character.
(1) $\mathrm{NO}_{2} \mathrm{CH}_{2} \mathrm{OH}$,
(b) $\mathrm{ClCH}_{2} \mathrm{COOH}$,
(c) HCOOH ,
(d) $\mathrm{CH}_{3} \mathrm{COOH}$,
(e) $\mathrm{CH}_{3} \mathrm{OH}$
(2) (a) RCOOH
(b) ROH
(c) $\mathrm{H}_{2} \mathrm{O}$
(d) NH_{3}
(e) $C H \equiv C H$
(f) $R H$
(3) (a) HCOOH
(b) PhOH
(c) $\mathrm{CH}_{3} \mathrm{OH}$
(d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(e) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$
(f) $C H \equiv C H$,
(g) NH_{3}
(4) (a) $\mathrm{CH}_{3} \mathrm{COOH}$
(b) $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
(c) $\mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
(e) NH_{3}
(f) $\mathrm{CH} \equiv \mathrm{CH}$
(g) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(h) CH_{4}
(i) $C_{2} H_{6}$.
(5) (a) $\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{CH}_{3} \mathrm{OH}$
(c) $R C \equiv C H$
(d) H_{2}
(e) NH_{3}
(f) $R H$
(g) ROH
(6) Basic character of conjugate base of Problem 5.

- Watch Video Solution

13. Arrange the following :
(a) In decreasing order of $p K_{b}$ values
(I) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
(II) PhNHMe
(III) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
(IV) PhNH_{2}
(b) In increasing order of basic strength
(I) PhNH_{2}
(II) $P h N M_{e_{2}}$
(III) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
(IV) MeNH_{2}
(c)Increasing order of basic strngth (I) PhNH_{2}
(II) p - Nitroaniline
(III) p - Toluidine
(d) (I) PhNH_{2}
(II) PhNHMe
(III) $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$
(e) In decreasing order of basic strength in gas phase.
(I) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
(II) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
(III) $\left(C_{2} H_{5}\right)_{3} N$ (IV) NH_{3}.

- Watch Video Solution

14. Arrange the following in decreasing order of basicities:
a. I. $\mathrm{Me} \rightarrow \mathrm{NH}_{2}$
$\mathrm{II} . \mathrm{HO} \sim \mathrm{NH}_{2}$ III. $\mathrm{HO} \longrightarrow \mathrm{NH}_{2} \mathrm{IV} . \mathrm{OH} \longrightarrow \mathrm{NH}_{2}$
b. I. EtNH_{2}
II. MeCONH_{2}
III. PhCONH_{2}
c. I. PrNH_{2}
II. $\mathbf{H C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{NH}_{2}$
III. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{NH}_{2}$
d. I. $\mathbf{P h C H}_{2} \mathbf{N H}_{2}$
II. $\square-\mathrm{CH}_{2} \mathrm{NH}_{2}$
III. $\mathrm{O}_{2} \mathrm{~N}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{NH}_{2}$
e. I.

II. $\mathbf{P h}_{2} \mathbf{N H}$
III. $\mathbf{P h N H}_{\mathbf{2}}$
(f) Write the conjugate base and conjugate acid of (I) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$.

- Watch Video Solution

15. Which of the following pairs do not constitute resonance structures ?
a. $\mathrm{Me}-\stackrel{\oplus}{N}_{\mathrm{N}^{\ominus}}^{\mathrm{O}}$ and $\mathrm{Me}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
b. $\mathrm{Me}-\mathrm{C}=0$ O:

c. $\begin{gathered}\mathrm{Me} \\ \mathrm{Me}\end{gathered}>=\mathrm{O}$

d. $\mathrm{Me} \mathrm{CH}=\mathrm{CH} \mathrm{Me}$ and $\mathrm{Me} \mathrm{CH} 2 \mathrm{CH}=\mathrm{CH}_{2}$

- Watch Video Solution

16. Arrange the following resonating structures in the order of decreasing stability :
(a)

$$
\begin{align*}
& C H_{2}=C H-\ddot{C} I: \leftrightarrow: \stackrel{\ominus}{C} H_{2}-C H=\stackrel{\oplus}{C} I: \leftrightarrow \stackrel{\oplus}{C} H_{2}-C H=\ddot{C} I^{\Theta} \\
& \text { (I) } \tag{III}\\
& \text { (II) } \\
& \text { (Vinyl chloride) }
\end{align*}
$$

b.

(c) Write the resonating structure of phenol in order of decreasing stability.

- Watch Video Solution

17. (a) Write the resonance structures of NO_{2}^{Θ} (nitrite) and $\mathrm{NO}_{3}^{\ominus}$ (nitrate ion) in terms of :
(i) outer shell \bar{e}, s with formal charges
(ii) overlapping atomic orbitals.
(c) Compare the resonance (delocalisation) energy adn stabilities of $\mathrm{NO}_{2}{ }^{\ominus}$ and $\mathrm{NO}_{3}^{\ominus}$.
(b) (i) Write the resonance contributing and hybrid structures of (I) $\mathrm{N}_{2} \mathrm{O}$
(II) $\mathrm{H}_{2} \mathrm{C}-\mathrm{N}_{2}$ (diazomethane).
(ii) Give the hybridised state of each atom in each structure.
(iii) Discuss their bond length in each resonance contributing structure and compare with those in hybrid structures.

- View Text Solution

18. (a) Which N of guanidine (I) is more basic and is more likely to be protonated ?
(b) Why guanidine is the strongest organic $N-b a s e\left(K_{b} \cong 1\right)$?
(c) Why amides (III) are weakly basic (amphoteric), whereas phthalimide (IV) is an acid ?

Watch Video Solution

19. Compare the stabilities of the following pairs of resonance contributing structures and explain how the hybrid structure is related to the structures.
(a) $R-\underset{(I)}{\oplus}=\ddot{O}: \leftrightarrow R-C=\stackrel{\oplus}{\ddot{O}}:(\underset{(I I)}{(\operatorname{acylium} \text { ion })}$

(c) $M e_{2} C=\underset{\mid}{C} \begin{gathered}M e \\ (V)\end{gathered} \stackrel{\stackrel{\oplus}{O}}{\stackrel{O}{O}}: \leftrightarrow M e_{2} \stackrel{\oplus}{C}-\underset{M}{C}=\stackrel{\oplus}{\stackrel{M}{O}}:$
(d) $H_{2} C \underset{(V I I)}{=} \ddot{O}: \leftrightarrow \underset{(V I I)}{H_{2} \stackrel{\oplus}{C}}-\ddot{O}:^{\ominus}$

(f).

$$
\begin{equation*}
\underset{(X I)}{C H_{2}-C H_{2}} \leftrightarrow \underset{(X I I)}{\stackrel{\oplus}{H} H_{2}}-\stackrel{\oplus}{C} H_{2} \tag{g}
\end{equation*}
$$

$R-\quad \underset{ }{\mid} \begin{aligned} C & \stackrel{\oplus}{O} H\end{aligned} \leftrightarrow R-\underset{\cdots}{C}-\ddot{O} H$

- Watch Video Solution

20. (a) Give the decreasing order of stabilities of the following alkenes:
(i) Ethene,
(ii) Propene,
(iii) cis - 2 - butene
(iv) trans-2-Butene
(v) 2 - Methy1-2-butene,
(vi) 2, 3 - Dimethy1-2-butene
(b) Give the decreasing order of reactivity of the above alkenes.
(c) Give the product of the following reaction :
$\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \underset{\mathrm{Conc}_{2} \mathrm{SO}_{4}\left(160-170^{\circ} \mathrm{C}\right)}{\text { Dehydration }} \underset{-\mathrm{H}_{2} \mathrm{O}}{A}$
21. (a) Give the resonance structure of the conjugate bases of the following :
I. II. $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{Ph}$ III. $\mathrm{O}_{2} \mathrm{~N}$
(b) Compare the stabilities of their bases and the acidites of the parent compounds.

- Watch Video Solution

22. Give the decreasing order of acidities of :
(a) (I) $\mathrm{H}_{3} \mathrm{C}-\stackrel{\stackrel{\text { II }}{\mathrm{C}}-\mathrm{OMe} \text { (II) } \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{O} .}{ }$
(III) $\mathrm{H}_{3} \mathrm{C}-\stackrel{\stackrel{\oplus}{N}}{\stackrel{+}{\mid}}=\mathrm{O}$ and explain.
(b) Give the factors that affect relative basicities.

Solved Example

1. Which of the following is the most stable resonance structure?
a. $\mathrm{H}_{2} \mathrm{C}$

A.
B.

C. c. $\mathrm{H}_{2} \mathrm{C}$

D.

Answer:

- Watch Video Solution

2. Which of the following is a most likely product from the reaction as shown below?

A.

C.

d.

D.

Answer:

3. Give the stability of the following resonance structures
(a) $H_{2} C=\stackrel{\oplus}{N}=\stackrel{\ominus}{N}$
(b) $H_{2} \stackrel{\oplus}{C}-N=\stackrel{\ominus}{N}$
(c) $H_{2} \stackrel{\ominus}{C}-\stackrel{\oplus}{N} \equiv N$
(d) $H_{2} \stackrel{\ominus}{C}-N=\stackrel{\oplus}{N}$.
A. $a>c>b>d$
B. $a>b>c>d$
C. $a>b>d>c$
D. $c>b>d>a$

Answer: A

- Watch Video Solution

4. Write the correct resonance structure of the given compound.

- View Text Solution

5. Give the correct stability order of the following species :

(I)

6. Explain the following :
(a) Why $\mathrm{MeNH} \stackrel{\oplus}{C} \mathrm{H}_{2}$ (I) is more stable more than $\mathrm{MeCH} \mathrm{H}_{2} \stackrel{\oplus}{C} \mathrm{H}_{2}$ (II) when both are 1° carbocations?
(b) Which of the following intermediate is unstable ?

(I)

(II)
(c) Why allylic free radical $\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right)(I)$ is more stable than propy1 free radical $\left(\dot{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)(\mathrm{II})$, when both are 1° free radicals?
(d) Arrange the following in the decreasing order of their stabilities:
(I)

(II)

(III)

(IV)

(e) Which of the following resonance structures of p - nitro phenoxide is not feasible?
(I)

(IV)

(f) Which of the more stable carbocation ?
(I)

(II)

- Watch Video Solution

7. Give decreasing order of the stabilities of the following :
a. (1)

(4)

b. (1)

(2)

(3)

(4)

(5)

c.

(3)

OMe
(5)

(1)

Cl
CH_{2}

f.
(1)

(3)

(4)

(5)

 OMe
g. (1)

(6)

H
(4) Me NO_{2}

(5)

- View Text Solution

8. Arrange the following compounds in the order of increasing boiling points:
(i) $\mathrm{CH}_{3} \mathrm{COC} 1$
(ii) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(iii) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(iv) $\mathrm{CH}_{3} \mathrm{COOH}$.
9. Arrange the compounds of each of the following sub-questions:
(a) In decreasing order of boiling points.
(b) In the decreasing order of solubility in water.
(i) (1) Ethanol
(2) Propane
(3) Pentanol
(ii) (1) Butane
(2) 1,2,3,-Pentanetriol
(3) Buty1 alcohol (iii) (1) Pentane
(2) Pentanol
(3) $1-$ Hexanol.

- Watch Video Solution

10. Arrange the following in the decreasing order of boiling points :
(i) (1) $C_{3} H_{8}$
(2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(3) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
(4) $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$
(ii) (1) 3 - Pentanol
(2) 'n-pentane

- Watch Video Solution

11. Arrange the following alcohols :
(a) In the decreasing order of their boiling points.
(b) In the decreasing order of their solubility in water.
(1) $n-$ Buty1alcohol
(2) sec - Buty1alcohol
(3) tert - Buty1alcohol.

- Watch Video Solution

12. Arrange the following alcohols in the decreasing order of reactivity towards
(a) Lucas reagent

Sodium metal
(1) 1-Butano1
(2) sodium metal
(3) 2-Methy1-2-propanol.

- Watch Video Solution

13. Arrange the following alchols in the decreasing order of their reactivity with $H R r$:
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHOH}$
(3) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{COH}$
(4) $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$
(5) $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$.

- Watch Video Solution

14. Arrange the following in the decreasing order of acidity :
(i) (1) n - Butanol
(2) Methy1 alcohol
(3) sec-Butanol
(4) rert-Butanol
(ii) (1) HCOOH
(2) $\mathrm{CH}_{3} \mathrm{COOH}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
(5) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
(6) $\mathrm{CH}_{2} \mathrm{C} 1 \mathrm{COOH}$
(iii) (1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHC1COOH}$
(3) $\mathrm{CH}_{3} \mathrm{CHC1CH} \mathrm{H}_{2} \mathrm{COOH}$
(4) $\mathrm{CH}_{2} \mathrm{C1CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(iv) (1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) $\mathrm{CH}_{2} \mathrm{C} 1 \mathrm{COOH}$
(3) $\mathrm{CHC1}_{2} \mathrm{COOH}$
(4) $\mathrm{CC1}_{3} \mathrm{COOH}$
(v) (1) $\mathrm{CH}_{3} \mathrm{BrCOOH}$
(2) $\mathrm{CH}_{2} \mathrm{C} 1 \mathrm{COOH}$
(3) $\mathrm{CH}_{2} \mathrm{FCOOH}$
(4) $\mathrm{CH}_{2} \mathrm{ICOOH}$
(vi) (1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
(2) $p-\mathrm{OHC}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(3) $\mathrm{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(4) $p-\mathrm{C1C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(5) $p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(6) $p-\mathrm{BO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(vii) (1) o-Hydroxybenzoic acid
(2) p-Hydroxybenzoic acid
(3) 2, 6 - Dihydroxybenzoic acid.
(viii) (1) HCOOH
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(4) HC 1
(ix) RCOOH
(2) ROH
(3) $R H$
(4) NH_{3}
(5) HOH
(6) $\mathrm{CH} \equiv \mathrm{CH}$
(x) (1) Phenol
(2) p-Chlorophenol
(3) p-Nitrophenol
(4) m-Cresol
(xi) (1) Phenol
(2) m-Chlorophenol
(3) m-Nitrophenol
(4) m-Cresol
(xii) (1) Phenol
(2) Benzoic acid
(3) p-Nitrophenol
(4) Carbonic acid
(xiii) (1) Phenol
(2) Benzyl alcohol
(3) Benzene sulphonic acid
(4) Benzoic acid
(xiv) (1) Phenol
(2) p-Chlorophenol
(3) 2,4,-Dichlorophenol
(4) 2,4,6-Trichlorophenol
(xv) (1) Nitroform $\mathrm{HC}\left(\mathrm{NO}_{2}\right)_{3}$
(2) Cyanoform $H C(C N)_{3}$
(3) $\mathrm{CHC1}_{3}$
(xvi) (1) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{CH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{NO}_{2}$
(xvii) (1) $\mathrm{CH}_{3} \mathrm{BO}-\mathrm{O}^{\ominus}$
(2) $\mathrm{CH}_{3} \mathrm{CHO}$
(3) $\mathrm{CH}_{3} \mathrm{COOR}$.

- View Text Solution

15. Arrange the following in the order of decreasing basic character :
(a) (1) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(2) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
NH_{3}
(b) (1) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(2) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(3) $\left.\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(c) (1) NH_{3}
(2) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(4) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
(5) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
(d) (1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(2) $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$
(3) $m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$
(4) $p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$
(e) (1) p - Toluidine
(2) N, N - Dimethy1-p-toluidine
(3) p - Nitroaniline
(4) Aniline
(f) (1) Methulamine
(2) Dimethylamine
(3) Aniline
(4) N - Methylaniline
(g) (1) $R C N$
(2) RNH_{2}
(3) $R N=C H R$
(h) (1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
(2) $\left(i s o-C_{3} H_{7}\right)_{3} N$
(3) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(4) $\mathrm{CH}_{3} \stackrel{\ominus}{\mathrm{~N}} \mathrm{HNa} a^{\oplus}$
(i) (1) $\stackrel{\ominus}{N} H_{2}$
(2) $H C \equiv C^{\ominus}$
(3). ${ }^{\ominus} \mathrm{OH}$
(4). ${ }^{\ominus} O R$
(5) R^{\ominus}
(6) RCOO^{\ominus}
(j) (1) H^{\ominus}
(2) $C 1^{\ominus}$
(3) $\mathrm{NH}_{2}{ }^{\ominus}$
(4) RCOO^{\ominus}
(5) $R O^{\ominus}$
k. (1)

H
(3)

(2)

H
(4)

16. Arrange in decreasing order of basicity.
(1) $m-\mathrm{BO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(3) $p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$
(4) $o-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$
(b) Acidic character of :
(1) $3-$ Butenoicacid(2)3-Butynoic acid
(c) (1) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(2)

(3) $\mathrm{CH}_{3}-\mathrm{C} \equiv N$
(d) Acidic character of :
(I)

(2)

(3)
OH

(e) Basic character of :
(1) MeNH_{2}
(3)

(2)

(4)

(f) Basic character at a, b, and $c: H_{2} \stackrel{a}{N}$

(g) Acidic Character : $o-, m-$, and $p-a$ min obenzoic acid and benzoic acid.
(h) Acidic character of $p-c h l$ or o, bromo, ido, and fluor phenols and phenol.
(i) Give the decreasing order of acidic character at a, b, c and d.

(II)

(III)

17. Compare the acidities of amide $\binom{R-\underset{O}{C}-\mathrm{NH}_{2}}{O}$ and sulphonamide $\left(\begin{array}{c}o \\ R \\ R-S \\ \underset{S}{\|}-N H_{2} \\ O\end{array}\right)$

- Watch Video Solution

18. Which of the following pairs would have higher boiling points ?

c. (I)

(II) F^{\sim}
d. (I)

(II)

e. (I)
(II)

f. (I) $\mathrm{Me}_{\substack{ \\\sim_{0}}}^{\mathrm{Me}}$ (II) $\mathrm{Me} \sim \sim \mathrm{OH}$

h. (I) $\mathrm{Me}^{\mathrm{OH}}$ (II) $\mathrm{Me}^{\mathrm{Me}}$
i. (I) Heptane
(II) Decane

- View Text Solution

1. Give the decreasing order of acidic character of the following :
(a) (1) Benzene
(2) $\mathrm{CH}_{3} \mathrm{OH}$
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{CH}_{3} \mathrm{SH}$
(b) (1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
(2) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(3) $\mathrm{C1CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(4) $\mathrm{O}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

(c)
(d) (1) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(2) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(3) $\left[A 1\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(4) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(e) (1) HCHO
(2) $\mathrm{CH}_{3} \mathrm{CHO}$

PhCHO

(4) $\mathrm{CH}_{3}-\stackrel{O}{\mathrm{C}}-\mathrm{CH}_{3}(5) \stackrel{O}{\mathrm{I}} \mathrm{R}-\stackrel{+}{\mathrm{C}}-\mathrm{CI}$
(6) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2}$
(7) $(R C O O R)$
(8) RCONH_{2}.
2. Give the decreasing order of basic character at a, b, c, d in the following compounds :

II.

$\underset{\mathrm{Me}^{-} \mathrm{Me}}{\stackrel{\mathrm{N}}{\mathrm{N}} \mathrm{N}_{2}}$

3. Why cyanoanilinium ion $\left(C_{6} H_{4}(C N) \stackrel{\oplus}{N} H_{3}\right)(I)$ is a stronger acid than anilinium ion (II) ?

- Watch Video Solution

4. Give the order of acidic character, $o-, p-$, and $m-$ cyanoanilinium ions.

- Watch Video Solution

5. Give the order of acidic character of the following :
(i) (a) p-Nitrobenzoic acid
(b) 2, 4 - dinitrobenzoic acid
(c) 2, 4, 5 - Trimethylbenzoic acid
(d) 2, 3, 4 - Trinitrobenzoic acid
(ii) (a) $\mathrm{Ph}_{3} \mathrm{CH}$
(b) $\mathrm{Ph}_{2} \mathrm{Ch}_{2}$
(c) PhCH_{3}
(iii) 2, 6-Di-tert-butyl phenol is a much weaker acid than phenol.
(iv) (a) Phenol
(b) Cyclohexanol
(c) p-Bromophemol
(d) p-Methoxy phenol

(vi) (a) Benzoic acid
(b) p - tert-Butylbenzoic acid
(c) p-Nitrobenzoic acid.

- View Text Solution

6. Give the order of the stabilities of the following :
(i) (a) $\mathrm{PhCH}_{2}{ }^{\oplus}$
(b) $P h_{2} C \stackrel{\oplus}{H}$
(c) $M e_{2} C h^{\oplus}$
(d) $M e_{3} C^{\oplus}$
(e) $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\oplus}$
(f) $C h_{3}^{\oplus}$
(ii) (1) $\mathrm{PH}_{3} \mathrm{C}$
(b) PhCH_{2}
(c) $M e_{3} C$
(d) $\mathrm{C}_{2} \mathrm{H}_{5}$
(e) $\dot{C} H_{3}$
(iii) (a)
b) $P h_{3} C^{\ominus}$
(c) $M e_{2} C H^{\ominus}$
(d) $\stackrel{\ominus}{C} H_{3}$
(e) $\stackrel{\ominus}{C_{2}} H_{5}$
(f) $M e_{3} C^{\ominus}$.
7. Why pyridine is a much weaker base than aliphatic amines ?

- Watch Video Solution

8. Give the decreasing order of the stabilities of the following free radicals :
(a) $\mathrm{Ph} \dot{\mathrm{C}} \mathrm{HPh}$
(b) $\mathrm{Ph} \dot{\mathrm{C}} \mathrm{HCH}=\mathrm{CH}_{2}$
(c) MeCHMe
(d) $\mathrm{Ph} \dot{\mathrm{C}} \mathrm{HMe}$
(e) $\mathrm{MeCH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$
(f) $E t-\dot{C}-M e_{2}$.

- Watch Video Solution

9. Give the decreasing order of acidic strength of the following :
(a) CH_{4}
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) $H F$
(d) NH_{3}
(e) $L i H$
(f) BeH_{2}.

- Watch Video Solution

10. Which is a stronger base towards a proton $\stackrel{\ominus}{P} H_{2}$ or $\stackrel{\ominus}{N} H_{2}$?

- Watch Video Solution

11. Give the decreasing order of basic strength of the following :
(a) NH_{3}
(b) $\mathrm{NH}_{2} \mathrm{OH}$
(c) $\mathrm{NH}_{2}-\mathrm{NH}_{2}$.

- Watch Video Solution

1. Using the curved-arrow notation, show the formation of reactive intermediates when the following convalent bonds undergo heterolytic cleavage :
(a) $\mathrm{CH}_{3}-\mathrm{S}-\mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3}-\mathrm{CN}$
(c) $\mathrm{CH}_{3}-\mathrm{Cu}$.

- Watch Video Solution

2. Categorise the following molecules/ions ad nucleophile or electrophile.
(1) $H S^{\ominus}$
(2) $B F_{3}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{\ominus}$
(4) $\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\ddot{N}}{ }$
(5) $C 1^{\ominus}$
(6) $\mathrm{CH}_{3}-\stackrel{\oplus}{C}=\mathrm{O}$
(7) : NH_{2}
(8) $\stackrel{\oplus}{N} O_{2}$.

Watch Video Solution

3. Identify electrophilic centre in the following :
(1) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{O}$
(2) $\mathrm{CH}_{3}-\mathrm{CN}$
(3) $\mathrm{CH}_{3} \mathrm{I}$.

- Watch Video Solution

4. Which bond is more polar in the following pairs of molecules ?
(a) $\mathrm{H}_{3} \mathrm{C}-\mathrm{H}, \mathrm{H}_{3} \mathrm{C}-\mathrm{Br}$,
(b) $\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{2}, \mathrm{H}_{3} \mathrm{C}-\mathrm{OH}$
(c) $\mathrm{H}_{3} \mathrm{C}-\mathrm{OH}, \mathrm{H}_{3} \mathrm{C}-\mathrm{SH}$.

- Watch Video Solution

5. In which $(C-C)$ bond of $\left(H_{3} \stackrel{3}{C}-\stackrel{2}{C} H_{2}-\stackrel{1}{C} H_{2}-B r\right)$, the inductive effect is expected to be the least?
A. 1
B. 2
C. 3
D. 2 and 3

Answer: C

Watch Video Solution

6. Write the resonance structures of $(1) \mathrm{CH}_{3} \mathrm{COO}^{\ominus}$ and (2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$. Indicate the relative stability of the contributing structures.

D Watch Video Solution

7. Explain why the following two structures (I) and ($I I$) cannot be the major contributors to the real structures of $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$.

- Watch Video Solution

8. Explain why $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{\oplus}$ is more stable than $\mathrm{CH}_{3} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$ and $\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{3}$ is less stable.

Watch Video Solution

9. Draw the complete structures of bromomethane, bromethane, 2bromopropane, and tert-butylbromide. Arrange them in the order of increasing steric hindrance.
10. Which is expected to be more stable,
(I) $\mathrm{O}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-}$or
(II) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$any why ?

- Watch Video Solution

11. Draw the resonance structures for the following compounds. Show the electron shift using curved-arrow notation.
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
(c) $C_{6} H_{5} \stackrel{\oplus}{C} H_{2}$
(d) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$
(e) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
(f) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(g) $\mathrm{CH}_{2}=\mathrm{CHOCH}_{3}$.

- View Text Solution

12. Explain why alky1 groups act as electron donors when attacted to a π - system.

- Watch Video Solution

13. Classify the reagents shown in bonds in the following equations as nucleophilies or electrophiles. Use curved-arrow notation to show the electron movement.
(a) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HO}^{\ominus} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{NC}^{\ominus} \rightarrow \mathrm{CH}_{3} \mathrm{C}(\mathrm{CN}) \mathrm{OHCH}_{3}$
(c) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \stackrel{\oplus}{\mathrm{C}} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$.

- Watch Video Solution

14. Classify the following in one of the reaction type studied.
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{HS}^{\ominus} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}+\mathrm{Br}^{\ominus}$
(b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{HC1} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} 1 \mathrm{C}-\mathrm{CH}_{3}$
(c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{HBr} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CBrCH}_{2} \mathrm{CH}_{3}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{HO}^{\ominus} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}$.

- Watch Video Solution

15. What is the relationship between the members of the following pairs of structures gt Are they indentical, structural, or geometrical isomers, or resonance contributors?
a.

b. $\mathrm{H}-\mathrm{C}-\mathrm{OH}$

c.

- Watch Video Solution

16. For the following bond cleavages, use curved-arrow to show the electron flow and classify each as homolysis or heterolysis. Identify intermediate products as free radical, carbocation, and carbanion.
(a) $\mathrm{CH}_{3} \mathrm{O}-\mathrm{OCH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{OCH}_{3}$

- Watch Video Solution

Comprehension

1. An organic reaction occurs by using reagents called electrophiles and nucleophiles via the formation of some reactive intermediates called carbocations, carbanions, free radicals, carbenes, nitrenes, radical cations,
and radical anions.
Which of the following contains nucleophiles only ?
A. $\mathrm{PH}_{3}, \mathrm{ROH}, \mathrm{CH}_{2}=\mathrm{CH}_{2}$
B. $\mathrm{SnF}_{4}, \mathrm{BeF}_{2}, \mathrm{NH}_{3}$
C. $\mathrm{Cr}^{3+}, \stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$
D. $: C C l_{2}, I^{\ominus}, H^{\ominus}$

Answer: A

- Watch Video Solution

2. An organic reaction occurs by using reagents called electrophiles and nucleophiles via the formation of some reactive intermediates called carbocations, carbanions, free radicals, carbenes, nitrenes, radical cations, and radical anions.

Which of the following contains electrophiles only ?
A. $\mathrm{Br}^{\oplus}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{NO}_{2}^{\oplus},: \mathrm{CBr}_{2}, \mathrm{SO}_{3}$
C. $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{A1Br} r_{3}$
D. $A 1 C 1_{3}, \mathrm{CH}_{2}=\mathrm{CH}_{2}, \mathrm{SO}_{3}$

Answer: B

- Watch Video Solution

3. An organic reaction occurs by using reagents called electrophiles and nucleophiles via the formation of some reactive intermediates called carbocations, carbanions, free radicals, carbenes, nitrenes, radical cations, and radical anions.

The most stable carbanion is :
A. $\mathrm{PhCH}_{2} \stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}$
B. $P h \stackrel{\ominus}{C} H_{2}$
c. $\mathrm{O}_{2} \mathrm{~N}-\mathrm{O}-\stackrel{\mathrm{C}_{2}}{\mathrm{C}}$
C.
D.
d. MeO

Answer: C

- Watch Video Solution

4. An organic reaction occurs by using reagents called electrophiles and nucleophiles via the formation of some reactive intermediates called carbocations, carbanions, free radicals, carbenes, nitrenes, radical cations, and radical anions.

The most stable carbocation is :
A. $P h \stackrel{\oplus}{C} H_{2}$
B.

C.

D.

- Watch Video Solution

5. An organic reaction occurs by using reagents called electrophiles and nucleophiles via the formation of some reactive intermediates called carbocations, carbanions, free radicals, carbenes, nitrenes, radical cations, and radical anions.

The most stable free radical is :
A. $\mathrm{PhCH} \mathrm{H}_{2} \dot{\mathrm{C}} \mathrm{H}_{2}$
B. $\mathrm{MeCH} \mathrm{H}_{2}$
C. $M e_{2} \dot{C} H$
D. $\mathrm{Ph} \dot{\mathrm{C}} H M e$

Answer: D

6. An organic reaction occurs by using reagents called electrophiles and nucleophiles via the formation of some reactive intermediates called carbocations, carbanions, free radicals, carbenes, nitrenes, radical cations, and radical anions.

The least stable carbocation is :
A.

B.

C.

D.
d. $\mathrm{MeO}-\square \stackrel{\oplus}{\mathrm{C}}_{\mathrm{H}}^{2}$

Answer: A

- Watch Video Solution

7. Carbene intermediates are produced by the photolysis of diazomethane $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ or kenene $\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right)$. They are also produced by the reaction of CHX_{3} with base or by Simmons-Smith
reaction. There are two types of carbenes, singlet and triplet. They are so called due to their spin state.

Spin state of carbene is determined by using the formula :
where S is the sum of all electron spin numbers.
A. $S+2$
B. $2 S+1$
C. $2 S+2$
D. $S+1$

Answer: B

D Watch Video Solution

8. Carbene intermediates are produced by the photolysis of diazomethane $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ or kenene $\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right)$. They are also produced by the reaction of $C H X_{3}$ with base or by Simmons-Smith reaction. There are two types of carbenes, singlet and triplet. They are so
called due to their spin state.
Singlet and triplet carbene are same in :
A. Types of hybridisation
B. Number of unshared \bar{e} pairs (or $L P \bar{e}, s$)
C. Number of σ - bonds
D. Bond angle

Answer: C

- Watch Video Solution

9. Carbene intermediates are produced by the photolysis of diazomethane $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ or kenene $\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right)$. They are also produced by the reaction of CHX_{3} with base or by Simmons-Smith reaction. There are two types of carbenes, singlet and triplet. They are so called due to their spin state.

In which reaction, the insertion of methylene increases potential energy ?
A. $\mathrm{CH}_{2}=\mathrm{CH}_{2}+: \mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{H} \mathrm{H} \quad \mathrm{H}$
C. $\mathrm{Me}-\mathrm{Ch}=\mathrm{CH}_{2}+: \mathrm{CH}_{2} \rightarrow \mathrm{Me}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
D.

Answer: B

- Watch Video Solution

10. Carbene intermediates are produced by the photolysis of diazomethane $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ or kenene $\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right)$. They are also produced by the reaction of CH_{3} with base or by Simmons-Smith reaction. There are two types of carbenes, singlet and triplet. They are so called due to their spin state.

Which carbene is produced in the following reactions ?

A. : $C C l B r$
B. : $C B r I$
C. : $C C l I$
D. All

Answer: A

- Watch Video Solution

11. Carbene intermediates are produced by the photolysis of diazomethane $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ or kenene $\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right)$. They are also produced by the reaction of CH_{3} with base or by Simmons-Smith reaction. There are two types of carbenes, singlet and triplet. They are so called due to their spin state.

An optically active alkene (I) with lowest molecular mass on hydrogenation gives optically inactive alkene, but on insertion of methylene carbene (: CH_{2}) in (I), it gives optically active compound
$(I I)$. The compounds (I) and $(I I)$ are :
I.
P. Me

II.

Q. Me

S.

A. P
B. P,R
C. P,Q,
D. P, Q, R
12. Consider the following reaction :

Me

Me

C.

The compound D is an ortho-isomer and E is a p-isomer. Thecompounds D and E^{\prime}, respectively, are :
A. Phthalic and isophthalic acids
B. Isophthalic and phthalic acids
C. Terephthalic and phthalic acids
D. Phthalic and terephthalic acids.

Answer: D

- Watch Video Solution

13. Consider the following reaction :

A.

B.

The m - isomer of D and E is called :
A. Phthalic acid
B. Isophthalic acid
C. Terephthalic acid
D. None

Answer: B

14. Consider the following reaction :

Me

[O]
$\mathrm{KMnO}_{4} / \mathrm{H}^{\oplus}$
$(\mathrm{D})+(\mathrm{E})$

Me
C.

The decreasing order of acidic strengths of (I) phthalic $(I I)$ terephthalic, and (III) isophthalic acids is:
A. $I>I I>I I I$
B. $I>I I I>I I$
C. $I I I>I I>I$

```
D. II> III > I
```


Answer: A

- Watch Video Solution

15. Consider the following reaction :

Me

Me
C.

Which of the above three acids, $I, I I$, and $I I I$ forms anhydribe on heating ?
A. 1
B. II
C. III
D. All

Answer: A

- Watch Video Solution

16. Consider the Hofmann ammonolysis reaction :

$$
R-X+\ddot{N} H_{3} \rightarrow \underset{1^{\circ} a \min e}{X}+R N H_{2} \xrightarrow[373 K]{R-X}
$$

$\mathrm{R} \quad \mathrm{X} \mid \ddot{\mathrm{N}}_{3} \mathrm{H}_{3} \rightarrow \boldsymbol{\rightarrow} \rightarrow \mathrm{HX}+\mathrm{RNH}_{2} \xrightarrow[373 \mathrm{~K}]{\mathrm{R}-\mathrm{X}}$ 1° amine

$$
\begin{aligned}
& \begin{array}{r}
\|^{\|} \mathrm{\nabla}_{4} \stackrel{\oplus}{\mathrm{~N}} \stackrel{\ominus}{\mathrm{X}}
\end{array} \\
& 4^{\circ} \text { salt }
\end{aligned}
$$

If $R=\mathrm{CH}_{3}$, the correct order of basic character of 1° amine, 2° amine, 3° amine, and NH_{3} in aqueous medium is :
A. $1^{\circ}>2^{\circ}>3^{\circ}>\mathrm{NH}_{3}$
B. $2^{\circ}>3^{\circ}>1^{\circ}>\mathrm{NH}_{3}$
C. $2^{\circ}>1^{\circ}>3^{\circ}>\mathrm{NH}_{3}$
D. $2^{\circ}>1^{\circ}>\mathrm{NH}_{3}>3^{\circ}$

Answer: C

17. Consider the Hofmann ammonolysis reaction :
$R-X+\ddot{N} H_{3} \rightarrow \underset{1^{\circ} \text { a mine } e}{H X}+\underset{373 K}{R-X}$
$\mathrm{R} \quad \mathrm{X} \mid \ddot{\mathrm{N}}_{3} \xrightarrow{\cdots} \rightarrow 1 \mathrm{XX}+\mathrm{RNH}_{2} \xrightarrow[373 \mathrm{~K}]{\mathrm{R}-\mathrm{X}}$
1° amine

If $R=C_{2} H_{5}$, the correct of basic character of the above amines in aqueous medium is :
A. $2^{\circ}>3^{\circ}>1^{\circ}>\mathrm{NH}_{3}$
B. $2^{\circ}>1^{\circ}>3^{\circ}>\mathrm{NH}_{3}$
C. $3^{\circ}>2^{\circ}>1^{\circ}>\mathrm{NH}_{3}$
D. $N H_{3}>1^{\circ}>2^{\circ}>3^{\circ}$

D Watch Video Solution

18. Consider the Hofmann ammonolysis reaction :

$$
R-X+\ddot{N} H_{3} \rightarrow H X+\underset{1^{\circ} a \min e}{R N} H_{2} \underset{373 K}{R-X}
$$

$$
\mathrm{K} \quad \mathrm{X} \ddot{\mathrm{~N}}_{3} \quad \cdots \mathrm{HX}_{3}+\mathrm{RNI}_{2} \xrightarrow[373 \mathrm{~K}]{\mathrm{K}-\mathrm{X}}
$$

$$
1^{\circ} \text { amine }
$$

$$
\begin{array}{rr}
\mathrm{HX}+\mathrm{R}_{2} \mathrm{NH} & \mathrm{R} \frac{X}{2^{\circ} \text { amine }} \quad .373 \mathrm{k}
\end{array} \mathrm{R}_{3} \mathrm{~N}+\mathrm{HX}
$$

If $R=M e_{2} C H-(i s o \propto y l)$, the correct order of basic character of the above amines in aqueous medium is:
A. $3^{\circ}>2^{\circ}>1^{\circ}>\mathrm{NH}_{3}$
B. $N H_{3}>1^{\circ}>2^{\circ}>3^{\circ}$
C. $1^{\circ}>2^{\circ}>\mathrm{NH}_{3}>3^{\circ}$
D. $1^{\circ}>\mathrm{NH}_{3}>2^{\circ}>3^{\circ}$

Answer: D

- Watch Video Solution

19. Consider the Hofmann ammonolysis reaction :
$R-X+\ddot{N} H_{3} \rightarrow \underset{1{ }^{\circ}{ }^{\circ} \min e}{\mathrm{R}} \mathrm{R} H_{2} \underset{373 K}{R-X}$
$\mathrm{K} \quad \mathrm{X} \mid \ddot{\mathrm{N}}_{3} \mathrm{H}_{3} \rightarrow \boldsymbol{\rightarrow} \rightarrow \mathrm{HX}+\mathrm{RNH}_{2} \xrightarrow[373 \mathrm{~K}]{\mathrm{R}-\mathrm{X}} \rightarrow$
1° amine

If $R=M e_{3} C-(t-b u t y l)$, the correct order of basic character of the above amines in aqueous medium is :
A. $N H_{3}>1^{\circ}>2^{\circ}>3^{\circ}$
B. $3^{\circ}>2^{\circ}>1^{\circ}>\mathrm{NH}_{3}$
C. $1^{\circ}>2^{\circ}>\mathrm{NH}_{3}>3^{\circ}$
D. $1^{\circ}>\mathrm{NH}_{3}>2^{\circ}>3^{\circ}$

Answer: A

- Watch Video Solution

20. Consider the Hofmann ammonolysis reaction :
$R-X+\ddot{N} H_{3} \rightarrow \underset{1^{\circ} a \min e}{H X}+\underset{373 K}{R-X}$
$\mathrm{R} \quad \mathrm{X} \mid \ddot{\mathrm{N}}_{3} \mathrm{H}_{3} \rightarrow \boldsymbol{\rightarrow} \rightarrow \mathrm{HX}+\mathrm{RNH}_{2} \xrightarrow[373 \mathrm{~K}]{\mathrm{R}-\mathrm{X}} \rightarrow$ 1° amine

$$
\begin{aligned}
& \underset{2^{\circ} \text { amine }}{\mathrm{R}_{2} \mathrm{NHX}} \underset{373 \mathrm{~K}}{\mathrm{R}^{2}} \stackrel{\mathrm{X}}{\mathrm{~B}^{\circ} \text { amine }} \\
& \downarrow^{\mathrm{R}_{4} \stackrel{\oplus}{N} \stackrel{\ominus}{\mathrm{X}}} \\
& 4^{\circ} \text { salt }
\end{aligned}
$$

For any value of R, the correct order of basic character of the above amines in gaseous phase of nonpolar solvent is :
A. $3^{\circ}>2^{\circ}>\mathrm{NH}_{3}>1^{\circ}$
B. $3^{\circ}>2^{\circ}>1^{\circ}>\mathrm{NH}_{3}$
C. $2^{\circ}>3^{\circ}>\mathrm{NH}_{3}>1^{\circ}$
D. $1^{\circ}>2^{\circ}>3^{\circ}>\mathrm{NH}_{3}$

Answer: B

1. Which of the following statement is correct ?
A. Dipole moment :

B. Stability of free radical :

C. Basic strength : $\mathrm{CH}_{3} O^{\ominus}>\stackrel{\ominus}{\mathrm{O}} \mathrm{H}>R \mathrm{~S}^{\ominus}$
D. Basic and nucleophilic strength : $I^{\ominus}>B r^{\ominus}>C 1^{\ominus}>F^{\ominus}$

Answer: A: B

- Watch Video Solution

2. In which of the following ΔG decreases if there can be some intramolecular rearrangement?
a.

A.
B.
Me Me
b. Me

Me
c.

d.

Answer: A::B::C

- Watch Video Solution

3. Which of the following statement is/are correct ?
A. Dipole moment of :
B. Dipole moment of : $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{C} 1>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
C. Dipole moment of : $\mathrm{NH}_{3}>\mathrm{NF}_{3}$
D. Dipole moment of : $\mathrm{CH}_{3} \mathrm{C1}>\mathrm{CH}_{2} \mathrm{C1}_{2}>\mathrm{CHC1}_{3}>\mathrm{CC1}_{4}$

Answer: A::C::D

- Watch Video Solution

4. Which of the following is a hard acid ?
A. $B r_{2}$
B. $C d^{2+}$
C. CO_{2}
D. Fe^{3+}

Answer: C::D

- Watch Video Solution

5. Which of the following statement is/are correct ?
A. $p K_{a 1}$ of meleic acid is less than $p K_{a 1}$ of fumaric acid.
B. $p K_{a 2}$ of maleic acid is greater than $p K_{a 2}$ of fumaric acid.
C. Phthalic acid is a stronger acid than isophthalic acid.
D. Isopthalic acid is a stronger acid than terephthalic acid.

Answer: A::B::C

- Watch Video Solution

6. Which of the following statement (s) is/are correct ?
A. Inductive effect is permanent shifting of $\sigma \bar{e}$'s towards more $E N$ element.
B. Mesomeric effect is delocalisation of $L P \bar{e}, s$ with $\pi \bar{e}, s$ in conjugation.
C. Hyperconjugation is simultaneous shift of σ and $\pi \bar{e}, s$ at 1,3 - position without the movement of H atom from its position.
D. Tautomerism is simultaneous shift of σ and $\pi \bar{e}$'s at $1,3-$ position with the movemet of H atom from its position.

Answer: A::B::C::D

- Watch Video Solution

7. Which of the following group (s) is/are o - and p -directing ?
A. $-C N$
B. $-\mathrm{SO}_{3} \mathrm{H}$
C. $-\mathrm{NH}_{2}$
D. $-O-\stackrel{O}{\|}-{ }^{\|}-R$

Answer: C::D

8. Which of the following group (s) is/are m-directing ?
A. $-C l$
B. $\mathrm{PhCH}=\mathrm{CH}_{2}$
C. -CHO
D. -COOH

Answer: C::D

- Watch Video Solution

9. Which of the following are nucleophiles ?
A. PH_{3}
B. F^{\ominus}
C. $P h_{3} S^{\ominus}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: A::B::C::D

- Watch Video Solution

10. Which of the following are electrophiles ?
A. BeCl_{2}
B. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
C. HCl
D. BCl_{3}

Answer: A::B::C

- Watch Video Solution

11. Which of the following have $+M$ effect (\bar{e} - donating mesomeric effect) ?
A. $-N O$
B. -COOH
C. $-\mathrm{NH}_{2}$
D. $-S R$

Answer: C::D

- Watch Video Solution

12. Which of the following have $-M$ effect ($\bar{e}-$ withdrawing mesomeric effect) ?
A. $\mathrm{C}=\mathrm{O}$
B. $-\mathrm{SO}_{3} \mathrm{H}$
C. $-O R$
D. $-B r$

Answer: A::B

- Watch Video Solution

13. Which of the following statement (s) is/are correct ?
A. HCOOH is stronger acid than PhCOOH
B. Oximes ($\mathrm{R}_{2} \mathrm{C}=\mathrm{N}-\mathrm{OH}$) are more acidic than hydroxyl-amine
($\mathrm{NH}_{2} \mathrm{OH}$)
C. $R_{3} \mathrm{SiCH}_{2} \mathrm{COOH}$ is more acidic than $\mathrm{R}_{3} \mathrm{CCH}_{2} \mathrm{COOH}$.
D. Highly branched carboxylic acids are less acidic than unbranched acids.

Answer: A: B::D

14. Which of the following statemenet (s) is/are correct ?
A. 3,5-Dimethy1-4-nitrophenol (I)

is less acidic than the isomeric $2,6-$ demthy-4-nitrophenol (II)

B. (I) is more acidic than (II)
C. I is less acidic than $(I I)$ due to steric inhibition of resonance of two (Me) groups with $\left(\mathrm{NO}_{2}\right)$ group.
D. (I) is more acidic than $(I I)$ due to less $+I$ effect of two (Me) groups in (I)

Answer: C

15. Which of the following statement is/are correct ?
A. 3,3-Dimethyl-4-cyanophenol (I)

is more acidic than the
(II)
isomeric 2,6-dimethyl-4-cyanophenol (II)
B. $(I I)$ is more acidic than (I)
C. (I) is more acidic than $(I I)$ due to no steric inhibition of the two
$M e$ groups with $(C N)$ groups, since $(-C N)$ group is linear.
D. Acidic character of (I) and $(I I)$ is determines by $+I$ effect of twp
$M e$ groups in (I) and $+I$ and H. C effects of two $M e$ groups in
(II)

Answer: A

16. Which of the following statement (s) is/are correct ?
A. $3,4,5$ - Trinitroaniline (I)
 than 4-cyano-3,5dinitroaniline (II)

B. (II) is more basic than (I)
C. (I) is more basic than ($I I$) due to steric inhibition of resonance in
(I)
D. There is no steric inhibition resonance in (II)

Answer: A

- Watch Video Solution

17. Which benzene sulphuric acid and p - nitrophenol are treated with NaHCO_{3}, the gases released, respectively are :
A. $\mathrm{SO}_{2}, \mathrm{NO}_{2}$
B. $\mathrm{SO}_{2}, \mathrm{NO}$
C. $\mathrm{SO}_{2}, \mathrm{CO}_{2}$
D. $\mathrm{CO}_{2}, \mathrm{CO}_{2}$

Answer: D

- Watch Video Solution

18. The decreasing order of $p K_{a}$ value of the following is:
(I) $\mathrm{CH} \equiv \mathrm{CH}$
(II)

I. $\mathrm{CH} \equiv \mathrm{CH} \quad$ II.

A. $I I I>I>I I$
B. $I I>I>I I I$
C. $I>I I I>I I$
D. $I>I I \equiv I I I$

Answer: B

- Watch Video Solution

19. Among the following which is correct ?
A. Both cyclopentadienyl anion and benzene are aromatic and have the same stability.
B. Benzene is aromatic and more stable than cyclopentadienyl anion and it is nonaromatic.
C. Both cyclopentadienyl anion and benzene are aromatic, but benzene is more stable than cyclipentadienyl anion.
D. Cycloptentadienyl anion is more stable than benzene althrough both are aromatic.

Answer: C

- Watch Video Solution

 20.

Which one (s) is/are true ?
A. (I) and ($I I I$) are modest Bronsted bases whereas ($I I$) is not.
B. $\ln (I I I) N^{a}$ is more basic than N^{b}.
C. When (II) is protonated in the presence of a strong acid, protonation occurs at $C-2$.
D. All the nitrogen present in $(I),(I I)$, and $(I I I)$ is $s p^{2}$ hybridised.

Answer: A

Watch Video Solution

21.

H
21.

(IV)

Which of the following statement is/are correct ?
A. (I) and (II) are aromatic and have equal basic strength.
B. (I) is aromatic and (II) is anti-aromatic, but $(I I)$ is stronger base than (I)
C. The order of basicity of the above compounds is

$$
(I V)>(I I I)>(I I)>(I) .
$$

D. The conjugate acid of $(I V)$ is more stabilised than the conjugate acid of (II).

Answer: C

- Watch Video Solution

22. What is the decreasing order of strengths of the following bases ?
\ominus
$\stackrel{\ominus}{O} H, N H_{2}^{\ominus}, H-C \equiv C^{\ominus}$, and $C H_{3}-C H_{2}^{\ominus}$.
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}^{\ominus}>\mathrm{NH}_{2}^{\ominus}>H-C \equiv C^{\ominus}>\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
B. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{\ominus}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{\ominus}>\mathrm{NH}_{2}^{\ominus}>\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
c. $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}>\mathrm{NH}_{2}{ }^{\ominus}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{\ominus}>\mathrm{CH}_{3}-\mathrm{CH}_{2}{ }^{\ominus}$
D. $\mathrm{NH}_{2}^{\ominus}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{\ominus}>\stackrel{\ominus}{\mathrm{O}} \mathrm{H}>\mathrm{CH}_{3}-\mathrm{CH}_{2}{ }^{\ominus}$

Single Correct

1. The decreasing order of acidic character of the following is :
(I) $\mathrm{CH}_{3} \mathrm{SH}$
(II) $\mathrm{CH}_{3} \mathrm{OH}$
(III) $\mathrm{H}_{2} \mathrm{O}$
(IV) EtOH .
A. $I>I I>I I I>I V$
B. $I V>I I I>I I>I$
C. $I>I I I>I I>I V$
D. $I I I>I>I I>I V$

Answer: A

2. The decreasing basic character of the following is :
(I) PhO^{\ominus}
(II) $C H_{3} S^{\ominus}$
\ominus
(III) OH
(IV) MeO^{\ominus}.
A. $I>I I>I I I>I V$
B. $I I I>I V>I I>I$
C. $I V>I I I>I I>I$
D. $I>I I>I V>I I I$

Answer: B

- Watch Video Solution

3. The decreasing nucleophilicity of the following is :
(I) $C H_{3} S^{\ominus}$
(II) $\mathrm{CH}_{3} \mathrm{O}^{\ominus}$
(III) $\stackrel{\ominus}{O} H$
(IV) $E t O^{\ominus}$.
A. $I V>I I I>I I>I$
B. $I>I I>I I I>I V$
C. $I V>I I I>I>I I$
D. $I I>I>I I I>I V$

Answer: C

- Watch Video Solution

4. Arrange the following in their decreasing order of acidity.

(I)

(III)
(IV) NH_{3}.
A. $I I I>I V>I>I I$
B. $I>I I>I I I>I V$
C. $I V>I I I>I I>I$
D. $I I>I I I>I>I V$

Answer: A
5. Which of the following carbocations is least stable ?
A. $P h \stackrel{\oplus}{C} H_{2}$
B. $\stackrel{C}{H}=C H_{2}$
C. $M e_{2} \stackrel{\oplus}{C} H$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\stackrel{\mathrm{C}}{\mathrm{H}}}{2}$

Answer: B

- Watch Video Solution

6. Which of the following carbocations is most stable ?
A. a. $\mathrm{Me}^{\text {Me }}$
B. b. Me Me
C.

.

d. $\overbrace{\mathrm{Me}^{\mathrm{Me}}}^{\mathrm{Me}}$
 D.

Answer: A

- Watch Video Solution

7. The compound which would give the most stable carbcation on dehydration is:
A.

[^0]
Me
C.
c. $\mathrm{Me} \underset{\mathrm{Me}}{\underbrace{}_{\mathrm{Me}}} \mathrm{OH}$
D.

D Watch Video Solution

8. In the following graph, stability of different carbocations have been shows:

I.

II.

III.

Reaction coordinates

Match the potential energy curve with carbocation.
A. $\begin{array}{lll}I & I I & I I \\ A & B & C\end{array}$

I	$I I$	$I I$

B. $B A C$
C. I II II
$C \quad B \quad A$
D. $\begin{array}{ccc}I & I I & I I \\ C & A & B\end{array}$

Answer: C

- Watch Video Solution

9. The decreasing order of stabilities of the following carbanions is :
(I) $P h_{3} \stackrel{\ominus}{C}$
(II) $P h_{2} \stackrel{\ddot{C}}{\mathrm{CH}_{2}}$

ӫ
(III) PhCH_{2}.
A. $I>I I>I I I$
B. $I I>I>I I I$
C. $I I I>I I>I$
D. $I I I>I>I I$

Answer:

D Watch Video Solution

10. Which of the following is a soft base ?
A. NH_{3}
B. $R_{2} S$
C. $C u^{+}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer:

11. Which of the following is a soft base ?
A. $C O$
B. CO_{3}^{2-}
C. $C 1^{3+}$
D. Pb^{2+}

Answer: A

- Watch Video Solution

12. Which of the following is least stable ?
A. $\mathrm{Me}-\mathrm{O}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}$
B.
b.

c. $\mathrm{PhC} \stackrel{\ominus}{\mathrm{H}_{2}}$

Answer: A

- Watch Video Solution

13. Which of the following species is most stable ?
A. $C H_{2}=\dot{C} H$
B. $\mathrm{Ph} \dot{\mathrm{C}} \mathrm{H}_{2}$
C. $M e_{3} \dot{C}$
D. $M e_{2} \dot{C} H$

Answer: B

- Watch Video Solution

14. The decreasing order of $-I$ effect of the following is :
(I) R_{4}^{\oplus}
(II) NO_{2}
(III) $C N$
(IV) $\mathrm{SO}_{3} \mathrm{H}$
(v) COOH .
A. $I>I I>I I I>I V>V$
B. $I I>I>I I I>I V>V$
C. $I>I I>I I I>V>I V$
D. $I I>I>V>I V>I I I$

Answer: A

15. The decreasing order of $-I$ effect of the following is:
(I) COOH
(II) F
(III) $O R$
(IV) NH_{2}
(v) OH
(IV) $\mathrm{Ph}-$.
A. $I>I I>I I I>I V>V>V I$
B. $I I>I>I I I>I V>V>V I$
C. $I>I I>V>I I I>I V>V I$
D. $I I>I>V>I I I>I V>V I$

Answer: C

16. The decreasing order of $+I$ effect of the following is :
(I) $-O^{\ominus}$
(II) $M e-$
(III) $E t-$
(IV) $\mathrm{Me}_{2} \mathrm{CH}-$
(V) $M e_{3} C-$.
A. $I>I I>I I I>I V>V$
B. $V>I V>I I I>I I>I$
C. $I>V>I V>I I I>I I$
D. $I I>I I I>I V>V>I$

Answer: C

Watch Video Solution
17. The decreasing order of $-I$ effect of the orbitals is :
(I) $s p$
(II) $s p^{2}$
(III) $s p^{3}$.
A. $I>I I>I I I$
B. $I I I>I I>I$
C. $I>I I I>I I$
D. $I I>I I I>I$

Answer: A

- Watch Video Solution

18. Give the decreasing order of hyperconjugative effect of R in R-CH $=\mathrm{CH}_{2}$, where R is :
(I) $M e-$
(II) $E t-$
(III) $\mathrm{Me}_{2} \mathrm{CH}-$
(IV) $M e_{3} C-$.
A. $I>I I>I I I>I V$
B. $I V>I I I>I I>I$
C. $I I>I>I I I>I V$
D. $I V>I I I>I>I I$

Answer: A

- Watch Video Solution

19. The decreasing order of the acidic character is :
I. $\mathrm{HOOC}-\equiv-\mathrm{H}$ II. HOOC III. HOOC Me
A. $I>I I>I I I$
B. $I I I>I I>I$
C. $I I>I>I I I$
D. $I I I>I>I I$
20. The decreasing order of boiling points of the following is:
(I) RCOCl
(II) $(\mathrm{RCO})_{2} \mathrm{O}$
(III) RCONH_{2}
(IV) RCOOH .
A. $I>I V>I I>I I I$
B. $I I I>I I>I V>I$
C. $I V>I I I>I>I I$
D. $I I>I>I I I>I V$

Answer:

- Watch Video Solution

21. The decreasing order of basic character of the following is :
I.

II.

III.

A. $I I I>I V>I>I I$
B. $I I>I>I V>I I I$
C. $I V>I I I>I I>I$
D. $I>I I>I I I>I V$

Answer:

- Watch Video Solution

22. The decreasing order of acidic character of the following is :
(I) $\mathrm{CH}=\mathrm{CH}$
A. $I>I I>I I I$
B. $I I>I>I I I$
C. $I I I>I I>I$
D. $I>I I I>I I$

Answer: B

- Watch Video Solution

23. The decreasing order of acidic character of the following is :
(I) p-Nitrophenol
(II) o-Nitrophenol
(III) m-Nitrophenol
(IV) Phenol.
A. $I>I I>I I I>I V$
B. $I I>I>I I I>I V$
C. $I>I I>I V>I I I$
D. $I I>I>I V>I I I$

Answer:

- Watch Video Solution

24. The decreasing order of basic characters of the following is :
(I) Aniline
(II) o-Nitroaniline
(III) m-Nitroaniline
(IV) p-Nitroaniline.
A. $I>I I>I I I>I V$
B. $I V>I I I>I I>I$
C. $I>I I I>I V>I I$
D. $I>I I I>I I>I V$

Answer:

D Watch Video Solution

25. The increasing order of $p K_{b}$ value of the following is :
(I) $H C \equiv C^{\ominus}$
H^{\ominus}
\ominus
NH_{2}
(IV) $\mathrm{C}_{\mathrm{C}}^{\mathrm{H}_{3}}$.
A. $I V<I I I<I I<I$
B. $I<I I<I I I<I V$
C. $I V<I I<I I I<I$
D. $I<I I I<I I<I V$

Answer: A

1. Alkene $A\left(\mathrm{Me}_{2} \mathrm{C}=\mathrm{CMe}_{2}\right)$ is more stable than alkene $B\left(E t_{2} C=C e t_{2}\right)$.

Baker-Nathan effect.
A. If both (A) and (R) are true and (R) is the correct explanation of (A).
B. If both (A) and (R) are true but (R) is not correct explanation of (A).
C. If (A) is true but (R) is false.
D. If (A) is false but (R) if true.

Answer: A

- Watch Video Solution

2. Methylene has a sextet of \bar{e} ' s.

Methylene behaves as a nucleophile.
A. If both (A) and (R) are true and (R) is the correct explanation of (A).
B. If both (A) and (R) are true but (R) is not correct explanation of (A).
C. If (A) is true but (R) is false.
D. If (A) is false but (R) if true.

Answer: C

- Watch Video Solution

3. Assertion(A):p-methyl benzyl carbocation (I) is more stable than benzyl carbocation (II).

Reason(R) Heterovalent or no bond resonance.
A. If both (A) and (R) are true and (R) is the correct explanation of (A).
B. If both (A) and (R) are true but (R) is not correct explanation of (A).
C. If (A) is true but (R) is false.
D. If (A) is false but (R) if true.

Answer: A

4. Assertion(A): $M e_{3} \bar{C}$ is more stable than $\bar{C} H_{3}$.

The $+I$ effect of the three $M e$ groups in $M e_{3} \bar{C}$ tends to make it more stable than $\overline{\mathrm{C}} \mathrm{H}_{3}$.
A. If both (A) and (R) are true and (R) is the correct explanation of (A).
B. If both (A) and (R) are true but (R) is not correct explanation of (A).
C. If (A) is true but (R) is false.
D. If (A) is false but (R) if true.

Answer: D

- Watch Video Solution

5.

$p K_{a}$
value

(I) is more
than
the
$p K_{a}$
value
to

(II).

Nonaromatic compounds are more stable than anti-aromatic compounds.
A. If both (A) and (R) are true and (R) is the correct explanation of (A).
B. If both (A) and (R) are true but (R) is not correct explanation of (A).
C. If (A) is true but (R) is false.
D. If (A) is false but (R) if true.

- Watch Video Solution

Archives

1. Polarisation of electrons in acrolein may be written as :
A. $\stackrel{-\delta}{C} H_{2}=C H-\stackrel{+\delta}{C}=O$
B. ${ }^{-}{ }^{\delta} H_{2}=C H-C H=\stackrel{+\delta}{O}$
c. ${ }_{C}^{-\delta} H_{2}=\stackrel{+\delta}{C} H-C H=O$
D. ${ }^{-}{ }^{\delta} H_{2}=C H-C H=O^{-\delta}$

Answer: D
2. The compound which would give the most stable carbcation on dehydration is :

C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{3}-\stackrel{\mathrm{OH}}{\mathrm{C}} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Answer: B

- Watch Video Solution

3. Which of the following hydrocarbons has the lowest dipole moment ?

A.

b.
B.

C. $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: B

4. Among the following, the molecule with the highest dipole moment is :
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. CHCl_{3}
D. CCl_{4}

Answer: A

5. Arrange in the order of increasing acidic strengths.

A. $X>Z>Y$
B. $Z<X>Y$
C. $X>Y>Z$
D. $Z>X>Y$

Answer: A

- Watch Video Solution

6. Which of the following resonating structures of 1-methoxy-1,3butadiene is least stable?
A. $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\stackrel{\oplus}{\mathrm{O}}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}=\stackrel{\oplus}{\mathrm{O}}-\mathrm{CH}_{3}$
c. $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{\oplus}{\mathrm{C}} \mathrm{G}-\mathrm{CH}=\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{3}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{\ominus}{\mathrm{C}} \mathrm{H}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{O}-\mathrm{CH}_{3}$

Answer: C

Watch Video Solution

7. Among the following, the least stable resonance structure is :
a.
A.

b.

C.

O
D.

Answer: A

- Watch Video Solution

8. Hyperconjugation involves the overlapping of the following orbitals :
A. $\sigma-\sigma$
B. $\sigma-p$
C. $p-p$
D. $\pi-\pi$

Answer: B

9. The correct of stability for the following species is:

(II)

(III)

(IV)
A. $(I I)>(I V)>(I)>(I I I)$
B. $(I)>(I I)>(I I I)>(I V)$
C. $(I I)>(I)>(I V)>(I I I)$
D. $(I)>(I I I)>(I I)>(I V)$
10. In the following carbocation, $\mathrm{H} / \mathrm{CH}_{3}$ that is most likely to migrate to the positively charged carbon is :
A. $\mathrm{CH}_{3} a t C-4$
B. $\mathrm{HatC}-4$
C. $\mathrm{CH}_{3} \mathrm{atC}-2$
D. $\mathrm{HatC}-2$

Answer:

11. The correct of acidities of the following is:

I

Cl
II

III

COOH

CH_{3}
IV
A. $I I I>I V>I I>I$
B. $I V>I I I>I>I I$
C. $I I I>I I>I>I V$
D. $I I>I I I>I V>I$

Answer: A

- Watch Video Solution

12. The correct order of stabilities of the following resonance structures is
:
(I) $H_{2} C=\stackrel{\oplus}{N}=\stackrel{\ominus}{N}$
(II) $H_{2} \stackrel{\oplus}{C}-N=\stackrel{\ominus}{N}$
(III) $H_{2} \stackrel{\ominus}{C}-\stackrel{\oplus}{N} \equiv N$
(IV) $H_{2} \stackrel{\ominus}{C}-N=\stackrel{\oplus}{N}$.
A. $I>I I>I V>I I I$
B. $I>I I I>I I>I V$
C. $I I>I>I I I>I V$
D. $I I I>I>I V>I I$

Answer: B

- Watch Video Solution

Fill In The Blanks

1. Among the given cations,........is most stable (sec-bytyl carbonium ion, tert-butyl carbonium ion, n-butyl carbonium ion).

- Watch Video Solution

2. The shape of $\left(\mathrm{CH}_{3}\right)^{\oplus}$ is \qquad

Watch Video Solution

3. The bond dissociation energy needed to form the benzyl radical from toluence is........... Than the formation of the methyl radical from methane.
A. Lesser
B. Higher
C. Equal
D. Insufficient data

Answer: A

4. The kind of delocalisation involving sigma bond orbitals is called

- Watch Video Solution

Analytical And Descriptive

1. Arrange the following in the increasing order of their basicities.
(I) p - Toluidine
(II) N, N - Dimethyl-p-toluidine
(III) p - Nitroaniline`
(IV) Aniline.

[^0]: a.

