d'doubtnut

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

IONIC EQUILIBRIUM

Solved Examples

1. Write the conjugate bases for the following Brddotonsted acids
(a) HF (b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (c) $\mathrm{HCO}_{3}^{\Theta}$

- Watch Video Solution

2. Wirte the conjugate acids for the following Brdddotosted bases:
Θ
a. NH_{2} b. NH_{3} c. HCOO^{Θ}
3. The species $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{\Theta}, \mathrm{HSO}_{4}^{\Theta}, \mathrm{NH}_{3}$ can act both as Brddotosted acis and bases. For each case give the corresponding conjugate acid and conjugate base.

- Watch Video Solution

4. Classify the following species into Lewis acid and Lewis base and show how these act as such.
Θ
a. $O H$ b. F^{Θ} c. H^{\oplus} d. $B C I_{3}$

- Watch Video Solution

5. In the reaction of BeF_{2} with $2 \mathrm{~F}^{\Theta}$ to form BeF_{4}^{-2}, which reactant is the Lewis acid and which is the Lewis base?

- Watch Video Solution

6. Write the conjugate bases of the following acids:
\oplus
a. HCN b. $\mathrm{N}_{2} \mathrm{H}_{5}$ c. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

- Watch Video Solution

7. Write the conjugate acids of the following bases:
\oplus
a. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ b. $\mathrm{N}_{2} \mathrm{H}_{5}$

(Watch Video Solution

8. Liquid NH_{3}, like water, is an amphiprotic solvent. Write the equaiton for the auto-ionisation of NH_{3}.

- Watch Video Solution

9. Aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ is a organic base in aqueous solution. Suggest a solvent in which aniline would become a weak base.
10. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH ?

- Watch Video Solution

11. Calculate the pH of the following solutions:
a $10^{-2} \mathrm{MHCI}$
b $10^{-3} \mathrm{MH}_{2} \mathrm{SO}_{4}$
c $0.2 \times 10^{-2} \mathrm{MNaOH}$
d $0.3 \times 10^{-3} \mathrm{MCa}(\mathrm{OH})_{2}$

Watch Video Solution

12. Calculate the concentration of hydrogen ion in the acidic solution with pH
a. 4.3 b. 5.8239
c. 3.155
13. Calculate the concentration of OH in the solution of base with pH
a. 10.4771
b. 12.301
c. 11.8451

- Watch Video Solution

14. Calculate the $p H$ of the following mixtires of strong acids, strong bases, and combination of both:
a. 500 mL of $0.1 \mathrm{MHCI}+200 \mathrm{~mL}$ of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+300 \mathrm{~mL}$ of $0.2 \mathrm{MHNO}_{3}$
b. 100 mL of $0.1 \mathrm{MHCI}+100 \mathrm{~mL}$ of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}+100 \mathrm{~mL}$ of $0.1 \mathrm{MHNO}_{3}$ and 700 mL of $\mathrm{H}_{2} \mathrm{O}$
c. 500 mL of $0.1 \mathrm{MNaOH}+100 \mathrm{~mL}$ of $0.1 \mathrm{MCa}(\mathrm{OH})_{2}+400 \mathrm{~mL}$ of 0.2 MKOH
d. 100 mL of $0.1 \mathrm{MNaOH}+200 \mathrm{~mL}$ of $0.1 \mathrm{NCa}(\mathrm{OH})_{2}+200 \mathrm{~mL}$ of 0.1 MKOH and 500 mL of $\mathrm{H}_{2} \mathrm{O}$
e. 100 mL of $0.1 \mathrm{MHCI}+300 \mathrm{~mL}$ of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+100 \mathrm{~mL}$ of $0.3 \mathrm{MBa}(\mathrm{OH})_{2}$ and volume was made to $1 L$ by adding water
f 500 mL of $0.1 \mathrm{MHCI}+100 \mathrm{~mL}$ of $0.1 \mathrm{NH}_{2} \mathrm{SO}_{4}+400 \mathrm{~mL}$ of $0.1 \mathrm{MCa}(\mathrm{OH})_{2}$
g 8 g of $\mathrm{NaOH}+680 \mathrm{~mL}$ of $\mathrm{MHCI}+10 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$, (specific gravity 1.2, $49 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ bu mass). The total volume of the solution was made to $1 L$ with water.
h. 37.0 g of $\mathrm{Ca}(\mathrm{OH})_{2}+360 \mathrm{~mL}$ of $1 \mathrm{MHCI}+10 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (density
$=1.4,49 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass). The total volume of the solution was made to $1 L$ with water.

- View Text Solution

15. a. What amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ must be dissolved in 500 mL of solution to have a pH of 2.15?
b. What amount of KOH must be dissolved in 200 mL of solution to have a pH of 12.3?
c. What amount of $\mathrm{ca}(\mathrm{OH})_{2}$ must be dissolved in 100 mL of solution to have a pH of 13.85 ?

- Watch Video Solution

16. Calculate the pH of solution made by mixing equal volume of :
a. Two solutions having $p H=1.5$ and 2.5.
b. Three solutions having $p H=15,2.5$, and 3.5.
c. Two solutions having $\mathrm{pH}=8$ and 9 .
d. Three solutions having $\mathrm{pH} 8,9$, and 10 .
e. Two solutions having $p H=2$ and 4 .
f. Three solutions having $p H=2,4$, and 6 .

- View Text Solution

17. While calculate the pH of $10^{-7} \mathrm{MHCI}$, the common ion effect of HCI on water is considered. Why the common ion effect of water on HCI is not considered?

- Watch Video Solution

18. What is the pH of the following solutions:
a. $10^{-8} \mathrm{MHCI}$ b. $5 \times 10^{-8} \mathrm{MHCI}$
c. $5 \times 10^{-10} \mathrm{MHCI}$ d. $10^{2} \mathrm{MHCI}$

- Watch Video Solution

19. What is the pH of the following solutions:
a. $10^{-7} \mathrm{MNaOH}$ b. $10^{-8} \mathrm{MNaOH}$
c. $10^{2} \mathrm{MNaOH}$

- Watch Video Solution

20. Calculate the percent error in the $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ made by neglecting the ionisation of water in $10^{-6} \mathrm{MNaOH}$ solution.

- Watch Video Solution

21. The value of K_{w}, at the physiological temperature $37^{\circ} \mathrm{C}$ is 2.4×10^{-14}.

What is the pH at the neutral point of water at this temperature where there are equal numbers of H^{+}and OH^{-}ions?
22. A solution of $H C I$ has $\mathrm{pH}=5$. If 1 mL of it is diluted to $1 L$ what will be the pH of resulting solution?

- Watch Video Solution

23. The ionisation constant of $H F$ is 3.2×10^{-4}.
a. Calculate the dergee of dissociation of aall species present M solution.
b. Calculate the concentration of all species present $\left(\mathrm{H}_{3} \mathrm{O}^{\oplus}, F^{\Theta}\right.$ and $\left.H F\right)$ in the solution.
c. Calculate method:

- Watch Video Solution

24. The $p H$ of 0.1 M monobasic acid is 4.50 . Calculate the concentration of species, H^{\oplus}, A^{Θ}, and $H A$ at equilibrium. Also determine the value of K_{a} and $p K_{a}$ of the monobasic acid.

(D) Watch Video Solution

25. Calculate the pH of 0.08 solution of HOCI (hydrochlorous acid). The ionisation constant of the acid is 2.5×10^{-5}. Determine the percent dissociation of HOCI.

- Watch Video Solution

26. The pH of 0.004 M hydrazine $\left(\mathrm{NH}_{2} . \mathrm{NH}_{2}\right)$ solution is 9.7 . Calculate its ionisation constant K_{b} and $p K_{b}$.

- Watch Video Solution

27. Determine the dergee of dissociation of $0.05 M N H_{3}$ at $25^{\circ} \mathrm{C}$ in a solution of $\mathrm{pH}=11$.
$K_{b}=1.77 \times 10^{-5}\left(p K_{b}=4.75\right)$
28. Calculate the ionic constant of the conjugate acid of NH_{3}.

- Watch Video Solution

29. Prove that the dergee of dissociation of weak acid is given by:
$\alpha=\frac{1}{1+10^{p K_{a}-p H}}$
where K_{a} is its dissociation constant of the weak acid.

- Watch Video Solution

30. Calculate $\left[H^{\oplus}\right]$ in a soluton that is 0.1 MHCOOH and $0.1 \mathrm{MHOCN} . K_{a}(\mathrm{HCOOH})=1.8 \times 10^{-4}, K_{a}(\mathrm{HoCN})=3.3 \times 10^{-4}$.

- Watch Video Solution

31. Calculate $\left[H^{\oplus}\right],\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}^{\Theta}\right]$, and $\left[\mathrm{PhO}^{\Theta}\right]$ in a solution that is
$0.03 \mathrm{M}\left(\begin{array}{c}O \\ \text { I। } \\ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}-\mathrm{O-O-H}\end{array}\right)$ and $0.1 \mathrm{MPhOH} ? \mathrm{~K}_{a}$ values for $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{H}$ and PhOH are 1.48×10^{-4} nad 1.05×10^{-10} respectively.

- Watch Video Solution

32. What is the $p H$ of $7.0 \times 10^{-8} \mathrm{M}$ acetic acid. What is the concentration of un-ionsed acetic acid. K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$.

- Watch Video Solution

33. The K_{a} for formic acid and acetic acid are 2.1×10^{-4} and 1.1×10^{-5}, respectively. Calculate relative strength of acids

- Watch Video Solution

34. What is the pH of the solution when 100 mL of 0.1 MHCl is mixed with 100 mL of $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$.

- Watch Video Solution

35. Calculate $\left[H^{\oplus}\right]$ and $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$ in $10^{-3} \mathrm{M}$ solution of monobasic acid which is 4.0% ionised. What is the $p H, K_{a}$ and $p K_{b}$ of the acid.

- Watch Video Solution

36. calculate $\left[H^{\oplus}\right]$ and $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$ in a $0.1 M$ solution of weak monoacitic base which is 2.0% ionised. What is the pH of solution.

- Watch Video Solution

37. The pH of pure water at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ are 7 and 6 , respectively.

Calculate the heat of formation of water from H^{\oplus} and OH .
38. The pH of 0.05 M aqueous solution of diethy1 amine is 12.0 . Caluclate K_{b}.

- Watch Video Solution

39. What is the pH of 1 M solution of acetic acid ? To what volume one litre of this solution be diluted so that pH of the resulting solution will be twice of the original value ? $\left(K_{a}=1.8 \times 10^{-5}\right)$

- Watch Video Solution

40. Calculate the pH of $0.1 \mathrm{MNH}_{3}$ solution.

- Watch Video Solution

41. Calculate the pH after 50.0 mL of this solution is treated with 25.0 mL of 0.1MHCI
K_{b} for $\mathrm{NH}_{3}=1.77 \times 10^{-5}\left(p K_{b} \approx 4.76\right)$.

- Watch Video Solution

42. What is the pH of a solution containing $0.01 \mathrm{molHCIL}^{-1}$?

- Watch Video Solution

43. Calculate the change in pH if $0.02 \mathrm{molCH}_{3} \mathrm{COONa}$ is added to 1.0 L of this solution. ItbRgt K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$.

- Watch Video Solution

44.0.1 MNH_{3} solution is found to have a $\left[\begin{array}{l}\Theta \\ \mathrm{OH}\end{array}\right]$ of $.133 \times 10^{-3} \mathrm{M}$.
a. What is the pH of the solution?
b. What will be the pH of the solution after 0.1 MNaOh is added to it?
c. Calculate K_{b} and $p K_{b}$ for NH_{3} ?
d. How will NaOh added to the solution affect the extent of dissociation of NH_{3} ?

- Watch Video Solution

45. The self ionisation constant for pure
$\mathrm{HCOOH}, \mathrm{K}=\left[\mathrm{HCOOH}_{2}\right]\left[\mathrm{HCOO}^{\Theta}\right]$ is 10^{-6} at room temperature. What percentage of HCOOH molecules are converted to HCOO^{Θ} ions. The density of HCOOH iws $1.22 \mathrm{gcm}^{-3}$.

- Watch Video Solution

46. Liquid NH_{3} ionises to a slight extent. At $-50^{\circ} \mathrm{C}$, its ionic product
$K_{N H_{3}}=\left[\begin{array}{l}\Theta \\ N h_{4}\end{array}\right]\left[\begin{array}{l}\Theta \\ N H_{2}\end{array}\right]$ is 10^{-30}. How many amide ions, $\stackrel{\oplus}{N H_{2}}$ are present per mm^{3} of pure liquid NH_{3} ?
47. Find the concentration of $\mathrm{H}^{\oplus}, \mathrm{HCO}_{3}^{\Theta}$, and CO_{3}^{-2} in a 0.01 M solution of carbonic acid if the pH of solution is 4.18 .
$K_{1}=4.45 \times 10^{-7}, K_{2}=4.69 \times 10^{-11}$

- Watch Video Solution

48. K_{1} and K_{2} for dissociation of $H_{2} A$ are 4×10^{-3} and 1×10^{-5}. Calculate concentration of A^{2-} ion in $0.1 M \mathrm{H}_{2} A$ solution. Also report $\left[\mathrm{H}^{+}\right]$and pH .

- Watch Video Solution

49. Calculate the concentration of all species of significant concentrations

$$
\begin{array}{lccl}
\text { presents } & \text { in } & 0.1 \mathrm{MH}_{3} \mathrm{PO}_{4} & \text { solution. } \\
K_{1}=7.5 \times 10^{-3}, K_{2}=6.2 \times 10^{-8}, K_{\#}=3.6 \times 10^{-13}
\end{array}
$$

50. A solution contains $0.1 \mathrm{MH}_{2} \mathrm{~S}$ and 0.3 MHCI . Calculate the conc.of S^{2-} and HS^{-}ions in solution. Given $K_{a_{1}}$ and $K_{a_{2}}$ for $H_{2} S$ are 10^{-7} and 1.3×10^{-13} respectively.

- Watch Video Solution

51. Which of the following combinations of solute would result in the formation of a buffer solution.
a. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$ in
i. 1:1 mol ratio
ii. 2:1 mol ratio
iii. 1:2 mol ratio
b. $\mathrm{NH}_{4} \mathrm{CI}=\mathrm{NH}_{3}$ in
i. 1:1 mol ratio
ii. 2:1 mol ratio
iii. 1:2mol ratio
c. $\mathrm{HCI}+\mathrm{NaCI}$
d. $\mathrm{HCI}+\mathrm{CH}_{3} \mathrm{COOH}$
e. $\mathrm{NaH}+\mathrm{HCI}$

- Watch Video Solution

52. Calculate the $p H$ of a solution made by mixing $0.1 M N H_{3}$ and
$0.1 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot\left(p K_{b}\right.$ of $\left.\mathrm{NH}_{3}=4.76\right)$

- View Text Solution

53. How much volume of 0.1 MHac should be added to 50 mL of 0.2 MNaAc solution to have a pH 4.91 ?

- Watch Video Solution

54. i At what pH will the mixture of HCOOH and HCOONa given buffer solution of higher capacity?
ii Calculate the ratio of $\frac{[H C O O N a]}{[H C O O H]}$ in a buffer of $p H 4.25$. $\left(K_{a}\right.$ of $\mathrm{HCOOH}=1.8 \times 10^{-4}$)

- Watch Video Solution

55. How much of $0.3 \mathrm{MNH}_{4} \mathrm{OH}$ should be mixed with 30 mL of 0.2 M solution of $\mathrm{NH}_{4} \mathrm{CI}$ to given butter solution of pH 8.65 ?

- Watch Video Solution

56. Calculate the $p H$ of the following mixtures given $K_{a}=1.8 \times 10^{-5}$ and $K_{b}=1.8 \times 10^{-5}\left(p K_{a}=p K_{b}=4.7447\right)$.
a. $50 \mathrm{~mL} 0.05 \mathrm{MNaOH}+50 \mathrm{~mL}$ of $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$
b. $50 \mathrm{mLO} .1 \mathrm{MNH}_{4} \mathrm{OH}+50 \mathrm{~mL}$ of 0.05 MHCI

- Watch Video Solution

57. What volume of strong monobasic acid of normality 10 is needed to prepare 1 L of a butter solution of $\mathrm{pH9}$, using 1 mol of NH_{3} and as much of strong acid needed. $\left(K_{b}\right.$ for $\left.\mathrm{NH}_{3}=1.8 \times 10^{-5}\right)\left(p K_{b}=4.7477\right)$

- Watch Video Solution

58. 40 mL sample of 0.1 M solution of nitric acid is added to 20 mL of 0.3 M aqueous ammonia. What is the pH of the resulting solution?

- Watch Video Solution

59. The base imidazole has a K_{b} of 8.1×10^{-8}.
a. In what amounts should 0.02 MHCI and 0.02 M imidazole be mixted to make 100 mL of a buffer at pH 7 ?
b. If the resulting solution is diluted to $1 L$, what is the $p H$ of the diluted solution?
60. In the titration of a solution of a weak acid HX with NaOH , the pH is 5.8 after 10 mL of NaOH solution has been added and 6.40 after 20 mL of the NaOH has been affed. What is the ionisation constant of the acid $H X$?

- Watch Video Solution

61. A definite volume of an aqueous $N / 20$ acetic acid $\left(p K_{a}=4.74\right)$ is titrated with a strongs base. It is found that 75 equal-sized drops of NaOH added from a burette effect the complete neutralisation. Find the $p H$ when an acid solution is neutralised to the extent of $20 \%, 40 \%$, and 80%, respectively.

- Watch Video Solution

62. How many moles of NaOH can be added to 0.1 L of solution of $0.1 \mathrm{MNH}_{3}$ and $0.1 \mathrm{MNH}_{4} \mathrm{CI}$ without changing pOH by more than pne unit $\left(p K_{a}{ }^{\mathrm{ofNH}} \mathrm{H}_{3}=4.75\right)$?
63. How many moles of HCI can be added to 1.0 L of solution of $0.1 \mathrm{MNH}_{3}$ and $0.1 \mathrm{MNH}_{4} \mathrm{CI}$ without changing pOH by more than one unit? $\left(p K_{b} o f \mathrm{NH}_{3}=4.75\right)$

- Watch Video Solution

64. A buffer solution of pH value 4 is to be prepared, using $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$.How much amount of sodium acetate is to be added to 1.0 L of $M / 10$ acetic acid? $\left(K_{a}=2.0 \times 10^{-5}\right)$

- Watch Video Solution

65. What will be the $p H$ if 0.01 mol of HCI is dissolved in the above buffer solution? Find the change in pH value.
66. How will the pH be affected if 1.5 L of $\mathrm{H}_{2} \mathrm{O}$ is added to the above buffer?

- Watch Video Solution

67. Calculate the pH of a buffer by mixing 0.15 mole of $\mathrm{NH}_{4} \mathrm{OH}$ and 0.25 mole of $\mathrm{NH}_{4} \mathrm{CI}$ in a 1000 mL solution K_{b} for $\mathrm{NH}_{4} \mathrm{OH}=2.0 \times 10^{-5}$

- Watch Video Solution

68. To 0.1 L of a decimolar solution of acetic acid, how much dry sodium acetate be added (in moles) so as to decrease the concentration of H^{\oplus} ion to $1 / 10$ th of its previous value? $K_{a}=2.0 \times 10^{-5}$.

- Watch Video Solution

69. The equivalent point in a titration of 40.0 mL of a sodium of a weak monoprotic acid occurs when 35.0 mL of a 0.10 MNaOH solutio has been added. The pH of the solution is 5.5 after the addition of 20.0 mL of NaOH solution. What is the dissociation constant of the acid?

- Watch Video Solution

70. Consider a buffer solution containing 0.1 mol each of acetic and sodium acetate in 1.0 L of solution, 0.01 mol of NaOH is gradully added to this buffer solution. Calculate the average buffer capcity of the solution and as well as initial and final buffer capcity. $\left[K_{a}=2 \times 10^{-5}\right] p K_{a}=4.7$

- Watch Video Solution

71. The ph of blood stream is maintained by a proper balance of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} concentrations. What volume of $5 \mathrm{MNaHCO}_{3}$ solution, should be mixed with 10 mL sample of blood which is 2 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in order to maintain a pH of 7.4. K_{a} for $\mathrm{H}_{2} \mathrm{CO}_{3}$ in blood is 4.0×10^{-7} ?

- View Text Solution

72. Calculate the degree of hydrolysis of a mixture of aniline and acetic acid each of them being $0.01 M . K_{a}$ of acetic acid $=1.8 \times 10^{-5}$ and $K_{a}($ aniline $)=4.5 \times 10^{-10}$. Also calculate $p H$ of the mixture.

- Watch Video Solution

73. 2.5 mLof $2 / 5 M$ weak mono-acidic base $\left(K_{b}=1 \times 10^{-12}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ is titrated with $2 / 15 M H C I$ in water at $25^{\circ} \mathrm{C}$. Find the concentration of H^{\oplus} ions at equivalence point. $\left(K_{w}=1 \times 10^{-14} a t 25^{\circ} \mathrm{C}\right)$
a. $3.7 \times 10^{-13} \mathrm{M}$ b. $3.2 \times 10^{-7} \mathrm{M}$
c. $3.2 \times 10^{-2} M$ d. $2.7 \times 10^{-2} M$
74. The $p K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ and $p \mathrm{~K}_{a}$ of $n \mathrm{H}_{4} \mathrm{OH}$ is 4.76 and 4.75 , respectively. Calculate the hydrolysis constant of ammonium acetate $\left(\mathrm{CH}_{3} \mathrm{COONH}_{4}\right)$ at 298 K and also the drgree of hydrolysis and pH of its (a) 0.01 M and (b) $0.04 M$ solutions.

- Watch Video Solution

75. Calculate the drgee of hydrolysis and pH of 0.02 M ammonium cyanide $\left(\mathrm{NH}_{4} \mathrm{CN}\right) \quad$ at $\quad 298 \mathrm{~K} . \quad\left(K_{a} \quad\right.$ of $\quad \mathrm{HCN}=4.99 \times 10^{-9}, K_{b} \quad$ for $\mathrm{NH}_{4} \mathrm{OH}=1.77 \times 10^{-5}$)

- Watch Video Solution

76. Calculate the pH of the solutions when following conditions are provided:
a. 20 mL of $\mathrm{M} / 10 \mathrm{CH}_{3} \mathrm{COOH}$ solution is titrated with $\mathrm{M} / 10$ solution of NaOH .
i. No titration is carried out.
ii. When 10 mL of NaOH is added.
iii. When 20 mL of NaOH is added.
iv. When 30 mL of NaOH is added. $\left(p \mathrm{~K}_{a}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{COOH}=4.74\right)$
b. 20 mL of $\mathrm{M} / 10 \mathrm{NaOH}$ solutions sio titrated with $M / 10$ solution of $\mathrm{CH}_{3} \mathrm{COOH}$.
i. No titration is carried out.
ii. When 18 mL of $\mathrm{Ch}_{3} \mathrm{COOH}$ is added.
iii. When 20 mL of $\mathrm{CH}_{3} \mathrm{COOH}$ is added.
iv. When 40 mL of $\mathrm{CH}_{3} \mathrm{COOH}$ is added.
c. 10 mL of $\mathrm{M} / 10 \mathrm{NH}_{4} \mathrm{OH}$ solution is titrated with $\mathrm{M} / 10$ solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
i. No titration is carried out.
ii. When $4 m L$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added.
iii. When 5 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added.
iv. When 10 mL of $\mathrm{H}_{2} \mathrm{So}_{4}$ is added. pK_{a} of $\mathrm{NH}_{4} \mathrm{OH}=4.76$
d. 10 mL of $\mathrm{M} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is titrated with $\mathrm{M} / 10$ solution of $\mathrm{NH}_{4} \mathrm{OH}$.
i. No titration is carried out.
ii. When 10 mL of $\mathrm{NH}_{4} \mathrm{OH}$ is added.
iii. When 20 mL of $\mathrm{NH}_{4} \mathrm{OH}$ is added.

When 40 mL of $\mathrm{NH}_{4} \mathrm{OH}$ is added.
77. Calculate the $p H$ of the following mixtures given $\left(p K_{a}=p K_{b}=4.7447\right)$:
a. $50 \mathrm{~mL} 0.1 \mathrm{MNaOH}+50 \mathrm{~mL} 0.1 \mathrm{MCH}_{3} \mathrm{COOH}$
b. $50 \mathrm{~mL} 0.1 \mathrm{mNaOH}+50 \mathrm{~mL} 0.05 \mathrm{MCH}_{3} \mathrm{COOH}$
c. $50 \mathrm{mLL} 0.05 \mathrm{MNaOH}+50 \mathrm{mLO} .1 \mathrm{MCH}_{3} \mathrm{COOH}$
d. $50 \mathrm{mLO} .1 \mathrm{MNH}_{4} \mathrm{OH}+50 \mathrm{~mL} 0.05 \mathrm{MHCI}$
e. $50 \mathrm{mLL} 0.05 \mathrm{MNH}_{4} \mathrm{OH}+50 \mathrm{mLO} .1 \mathrm{MHCI}$
f. $50 \mathrm{mLO} 0.05 \mathrm{MNH}_{4} \mathrm{OH}+50 \mathrm{mLO} .05 \mathrm{MCH}_{3} \mathrm{COOH}$

- Watch Video Solution

78. Which of the following ions or compounds in a solutions tends to produe an acidic, a basic, or a neutral solution.
a. i. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{\Theta}$ ii. $\mathrm{Na}{ }^{\oplus}$ iii. So_{3}^{2-} iv. F^{Θ} v. $N H_{4}^{\oplus}$
b. i. $\mathrm{CH}_{3} \mathrm{COONa}$ ii. ZnCI_{2} iii. KNO_{3} iv. $\mathrm{NH}_{4} \mathrm{CI}$
c. i. NaCN ii. $\mathrm{K}_{2} \mathrm{CO}_{3}$ iii. $\mathrm{H}_{3} \mathrm{PO}_{4}$ iv. NaF
d. i. $\mathrm{NH}_{4} \mathrm{NO}_{3}$ ii. $\mathrm{Ba}_{2} \mathrm{CO}_{3}$ iii. NaHSO_{4} iv. NaOCI v. HOCI vi. $\mathrm{AI}\left(\mathrm{NO}_{3}\right)_{3}$

- Watch Video Solution

79. Arrange the following bases in order of decreasing basicity:
$\mathrm{S}^{2-}, \mathrm{CH}_{3} \mathrm{COO}^{\Theta}, \mathrm{CH}^{\Theta}, \mathrm{NH}_{3}, \mathrm{~F}^{\Theta}$

- Watch Video Solution

80. Classify each of the folowing as a strong acid, string base, weak acid, and weak base:
i. NaOH ii. HF iii. NH_{4}^{\oplus} iv. NH_{3} v. F^{Θ} vi. HI

- Watch Video Solution

81. Arrange the following 0.1 M solutions in order of icreasing pH :
$\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HBr}, \mathrm{HI}, \mathrm{NH}_{3}, \mathrm{KCN}, \mathrm{NaOH}, \mathrm{NH}_{4} \mathrm{Br}$

(Watch Video Solution

82. Why the following compounds will produce acidic solution in water
i. $\mathrm{H}_{3} \mathrm{PO}_{4}$
ii. CO_{2}
iii. HNO_{2}
iv. AICI_{3}

- Watch Video Solution

83. Write equaitons to explain why the following species act as weak bases in water solution.
i. $\mathrm{CH}_{3} \mathrm{NH}_{2}$ ii. NO_{2}^{Θ} iii. HPO_{4}^{2-} iv. $\mathrm{CHO}_{2}^{\Theta}$

- Watch Video Solution

84. Which equilibrium constant(s) or ratio of equilibrium contants should be used to calculate the pH of 1.00 L of each of the following solutions?
a. KOH b. NH_{3} c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
d. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ e. $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
f. $0.01 \mathrm{molHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+0.050 \mathrm{molNaOh}$
g. $\mathrm{H}_{2} \mathrm{~S}$ h. $0.01 \mathrm{NH}_{4} \mathrm{CI}+0.50 \mathrm{molNaOH}$
i. $0.010 \mathrm{molHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+0.10 \mathrm{molNaOH}$

Watch Video Solution

85. The salt of which one of the follwing five weak acid will be the most hydrolysed?
a. $H A: K_{a}=1 \times 10^{-8}$ b. $H B: K_{a}=2 \times 10^{-6}$
c. $H C: K_{a}=3 \times 10^{-8}$ d. $H D: K_{a}=4 \times 10^{-10}$
e. $H E: K_{a}=1 \times 10^{-7}$

- Watch Video Solution

86. 500 mL of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 HCI at $25^{\circ} \mathrm{C}$.
a. Calculate the degree of dissociation of acetic acid in the resulting
solution and $p H$ of the folution.
b. If 6 g of NaOH is added to the above solution determine the final pH. $\left[\mathrm{K}_{a}\right.$ of $\mathrm{CH}_{3} \mathrm{COOH}=2 \times 10^{-5}$.

- Watch Video Solution

87. 0.1 MNaOH is titrated with $0.1 \mathrm{M}, 20 \mathrm{mLHA}$ till the point. $K_{a}(H A)=6 \times 10^{-6}$ and degree of dissociation of $H A$ is neglible (small) as compared to unity. Calculate the pH of the resulting solution at the end point [Use $\log 6 \approx 0.8]$

- Watch Video Solution

88. A hydrogen electrode placed in a solution containing sodium acetate and acetic acid in the ratio of $x: y$ and $y: x$, ahs electrode potential values of -1.5 and -0.5 V , respectively. What is the $p K_{a}$ value of acetic acid?

- Watch Video Solution

89. The emf of the following cell is observed to be 0.118 V at $25^{\circ} \mathrm{C}$.
$\left[P t, H_{2}(1 \mathrm{~atm}) \mid H A\left(100 \mathrm{~mL} 0.1 M| | H^{\oplus}(0.1 M)\left|H_{2}(1 \mathrm{~atm})\right| P t\right]\right.$
a. If 30 mL of 0.2 MNaOH is added to the negative terminal of battery, find the emf of the cell.
b. If 50 mL of 0.2 MNaOH is added to the negative terminal of battery, find the emf of teh cell.

- Watch Video Solution

90. The freezing point of 0.20 M solution of weak acid $H A$ is 272.5 K . The molality of the solution is $0.263 \mathrm{~mol} \mathrm{Kg}^{-1}$.
a. Find the pH of the solution on adding 0.25 m solution of acetate of the above solution.
b. Find the pH of the solution on adding 0.20 M solution of NaOH . Given:
K_{f} of water $=1.86 \mathrm{Km}^{-1}$

- Watch Video Solution

91. Methy1 red has a $K_{a}=10^{-5}$. The acid form Hin is red and its conjugate base, $\operatorname{In} d^{\Theta}$ is yellow. Complete the following table:
pH $\begin{array}{lll}3 & 5 & 7\end{array}$
$\left[\right.$ Ind $\left.^{\Theta}\right] /[\mathrm{HIn}] \quad-\quad-\quad$
Colour

- Watch Video Solution

92. There are three acid-base indicators: methy1 orange (end point at $p H=4$), bromothymol blue (end point $p H=7$), and phenolphthalein (end point at $p H=9$). Which of the following would you select for the titrations?
a. $\mathrm{H}_{2} \mathrm{SO}_{4}$ with KOH b. KCN with HCI
c. NH_{3} with HNO_{3} d. HF with NaOH

- Watch Video Solution

93. A solution gives the following colours with different indicators:
a. Methy1 orange \Rightarrow Yellow
b. Methy1 red \Rightarrow Yellow
c. Bromothymol blue \Rightarrow Orange

What is the pH of the solution?

- Watch Video Solution

94. What indicators will be suitable for the following acid-base titrations:
a. HCOOH against NaOH
b. HBr against KOH
c. $\mathrm{NH}_{4} \mathrm{OH}$ with HNO_{3}

- Watch Video Solution

95. Calculate the $p H$ at which an acid indicator with $K_{a}=1.0 \times 10^{-5}$ changes colour when the indicator is $1.00 \times 10^{-3} \mathrm{M}$.
96. At what $p H$ will a $1.0 \times 10^{-3} \mathrm{M}$ solution of an indicator with $K_{b}=1.0 \times 10^{-10}$ changes colour?

- Watch Video Solution

97. What indicator should be used for the titration of $1.0 \mathrm{MKH}_{2} \mathrm{BO}_{2}$ with

1.10MHCI?

- View Text Solution

98. Calcualte the pH at which an indicator with $p K_{b}=4$ changes colour.

- Watch Video Solution

99. Bromophenol blue is an indicator with a K_{a} value of 5.84×10^{-5}. What is the percentage of this indicator in its basic form at a pH of 4.84 ?

(D) Watch Video Solution

100. An acid-base indicator has a K_{a} of 3.0×10^{-5}. The acid form of the indicator is red and the basic form is blue. (a) By how much must the pH change in order to change the indicator from 75% red to 75% blue?

- Watch Video Solution

101. Determine the solubility of (a) AgCI , (b) $\mathrm{Fe}(\mathrm{OH})_{3}$, (c) $\mathrm{Hg}_{2} \mathrm{Br}_{2}$, and (d) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ from their solubility product constants give in table. Calculate the molarities of the individual ions and also the soubities of salts in $g L^{-1}$.

- Watch Video Solution

102. Calcualte the solubility of $M_{2} X_{3}$ in pure water, assuming that neither kind of ion reacts with $\mathrm{H}_{2} \mathrm{O}$. The solubility product of $M_{2} X_{3}, K_{s p}=1.1 \times 10^{-23}$.

- Watch Video Solution

103. The values of Ksp of two sparingly soluble salts $\mathrm{Ni}(\mathrm{OH})_{2}$ and AgCN are 2.0×10^{-15} and 6.0×10^{-17} respectively. Which salt is more soluble. Explain

- Watch Video Solution

104. a. A solution of caF_{2} is found to contain $10^{-4} \mathrm{MF}^{\Theta}$ ions. What is the $K_{s p}$ of caF_{2} ?
b. A solution of calcium phoshate contains $2 \times 10^{-5} \mathrm{MPO}_{4}^{3-}$ ions. What is $K_{s p}$ of $c a_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
c. A solution of $C a_{3}\left(\mathrm{PO}_{4}\right)_{2}$ contains $6 \times 10^{-5} \mathrm{Mca}^{2+}$ ions. What is the $K_{\text {sp }}$ of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
d. A solution of $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ constains $8 \times 10^{-5} \mathrm{MPO}_{4}^{3-}$ ions. what is the $K_{s p}$ of $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}$?
e. A solution of $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ contain $3 \times 10^{-5} \mathrm{MZr}^{4+}$ ions. What is the $K_{s p}$ of $\mathrm{Zr}_{3}\left(\mathrm{PO}_{4}\right)_{4}$?

(D) Watch Video Solution

105. Let the solubilities of Agbr in water and in $0.01 \mathrm{McaBr}_{2}, 0.01 \mathrm{MKBr}$, and $0.05 \mathrm{MAgNO}_{3}$ be S_{1}, S_{2}, S_{3} and S_{4}, respectively. Give the decreasing order of the solubilities.

- Watch Video Solution

106. The $K_{s p}$ of AgCI at $25^{\circ} \mathrm{C}$ is 1.5×10^{-10}. Find the solubility (in $g^{-1} L^{-1}$) in an aqueous solution containing $0.01 \mathrm{MAgNO}_{3}$.

- Watch Video Solution

107. The solubility of BaSO_{4} in water is $2.33 \mathrm{~g} 100 \mathrm{~mL}^{-1}$. Calculate the percentage loss in weight when 0.2 g of BaSo_{4} is washed with
a. $1 L$ of water
b. 1 L of $0.01 \mathrm{NH}_{2} \mathrm{SO}_{4} \cdot\left[\mathrm{Mw}_{\mathrm{BaSO}_{4}}=233 \mathrm{gmol}^{-1}\right]$
108. When 15 mL of $0.05 \mathrm{MAgNO}_{3}$ is mixed with 45.0 mL of $0.03 \mathrm{MK}_{2} \mathrm{CrO}_{4}$, predict whether precipitation of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ occurs or not? $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}=1.9 \times 10^{-12}$

- Watch Video Solution

109. The concentration of Ni^{+2} ions in a given NiS solution is $2.0 \times 10^{-6} \mathrm{M}$. Find the minimum S^{2-} ions necessary to cause precipitation of $N i S . K_{s p}$ of $N i S=1.4 \times 10^{-14}$.

- Watch Video Solution

110. A solution contains 0.1 M each of CaCI_{2} and $\mathrm{SrCI}_{2} \cdot A 0.005 \mathrm{M}$ solution of SO_{4}^{2-} is slowly added to the given solution.
a. Which substance beings to precipiate first?
b. If $\mathrm{H}_{2} \mathrm{SO}_{4}$ is continuosult added, determine when will other salt be
precipitated?
c. When second salt starts to precipitate, find the concentration of cation of first salt. Assume that CaCI_{2} and SrCI_{2} are 100% ionised and volume of the solution remains constant.

$$
K_{s p} o f S r S_{4}=3.2 \times 10^{-7} \text { and } K_{s p} o f \mathrm{CaSO}_{4}=1.3 \times 10^{-4}
$$

- Watch Video Solution

111. How much the concentration of $A g^{\oplus}$ ions in a saturted solution of AgCI diminish if such an amount of $H C I$ is added to it that the concentration of $C I^{\Theta}$ ions in the solution becomes equal to $0.03 M$? Also find the amount of AgCI precipitated at the given concentration. $K_{s p}$ of $A g C I=1.8 \times 10^{-10}$.

- Watch Video Solution

112. Calculate the maximum possible concentration of Mn^{2+} in water that is saturated with $\mathrm{H}_{2} \mathrm{~S}$ (which is 0.1 M at 300 K) and maintained at $\mathrm{pH}=3$ with $H C I$. The equilibrium constant (s) for dissociation of $H_{s} S$ are:
$H_{2} S \Leftrightarrow H^{\oplus}+H S^{\Theta}, K_{1}=9 \times 10^{-8}$
$H S^{\Theta} \Leftrightarrow H^{\oplus}+S^{2-}, K_{2}=1 \times 10^{-12}$ and
$K_{s p}$ of $M n S=3 \times 10^{-22}$

(Watch Video Solution

113. Two weak monobasic organic acids $H A$ and $H B$ have dissociation constans as 3.0×10^{-5} and 1.5×10^{-5}, respectively, at $25^{\circ} \mathrm{C}$. If 500 mL of $1 M$ solutions of each of these two acids are mixed top product $1 L$ of mixed acid solution, what iws the pH of the resulting solutions?

(Watch Video Solution

114. Calculate the simultaneous solubilities of AgSCN and AgBr .
$K_{s p}(A g S C N)=1.0 \times 10^{-12}, K_{s p}(A g B r)=5.0 \times 10^{-13}$
(Watch Video Solution
115. How much AgBr could dissolve in 1.0 L of $0.4 \mathrm{MNH}_{3}$? Assume that $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{\oplus}$ is the only complex formed. Given: the dissociation constant for
$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{\oplus} \Leftrightarrow \mathrm{Ag}{ }^{\oplus} \times 2 \mathrm{NH}_{3}$,
$K_{d}=6.0 \times 10^{-8}$ and $K_{s p}(A g B r)=5.0 \times 10^{-13}$.

D Watch Video Solution

116. The solubility of silver benozate (PhCOOAg) is $\mathrm{H}_{2} \mathrm{O}$ and in a buffer solution of $p H=4,5$ and 6 are S_{1}, S_{2}, S_{3}, and S_{4}, respectively. Given the decreasing order of their solubilities.

- Watch Video Solution

117. The ionisation constant of benzoic acid (PhCOOH) is 6.46×10^{-5} and $K_{s p}$ for silver benzoate is 2.5×10^{-3}. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility is pure water?

- Watch Video Solution

118. Write equations showing all of the equilibrium reactions occuring in aqueous solutions containing each of the following sets of reagents:
a. NaCI
b. NaOH
c. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
d. $\mathrm{Na}_{2} \mathrm{~S}+\mathrm{CuS}$
e. $\mathrm{NH}_{4} \mathrm{CI}+\mathrm{NH}_{3}+\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$

- Watch Video Solution

119. Calculate the solubility of CoS in $0.1 \mathrm{MH}_{2} \mathrm{~S}$ and $0.15 \mathrm{MH}_{3} \mathrm{O}^{\oplus}\left(\mathrm{K}_{\text {sp }}\right.$ of $\left.\operatorname{CoS}=3 \times 10^{-26}\right)$.
$\left(K_{1} \times K_{2}\left(H_{2} \mathrm{~S}\right)=10^{-21}\right)$
120. Explain why $C o S$ is more soluble than predicted by the $K_{s p}$.

- Watch Video Solution

121. The solubility of CuS in pure water at $25^{\circ} \mathrm{C}$ is $3.3 \times 10^{-4} \mathrm{~g} L^{-1}$.

Calculate $K_{s p}$ of $C u S$. The accurate value of $K_{s p}$ of $C u S$ was found to be 8.5×10^{-36} at $25^{\circ} \mathrm{C}$.

(Watch Video Solution

122. Explain why $C u S$ is more soluble than predicted by the $K_{s p}$.

(Watch Video Solution

123. The solubility of $\mathrm{TI}_{2} \mathrm{~S}$ in pure CO_{2}-free water is $6.3 \times 10^{-6} \mathrm{M}$. Assume that the dissolved S^{2-} ion hydrolyses almost completely to $H S^{\Theta}$ and that the further hydrolysis to $H_{2} S$ is neglected. What is the $K_{s p} \cdot\left(K_{2}\left(H_{2} S\right)=10^{-14}\right)$.

(Watch Video Solution

124. When solid SrCO_{3} is equilibrated with a pH 8.60 buffer, the solution was found to have $\left[\mathrm{Sr}^{2+}\right]=2.2 \times 10^{-4}$. What is the $K_{\text {sp }}$ of SrCO_{3}. $\left(K_{2}\right.$ of $\left.\mathrm{H}_{2} \mathrm{CO}_{3}=4.7 \times 10^{-11}\right)$

- Watch Video Solution

125. Calculate the solubility at $25^{\circ} \mathrm{C}$ of CaCO_{3} in a closed container containing a solution of p H8.60. $\left[K_{\text {sp }}\left(\mathrm{CaCO}_{3}\right)=10^{-8}\right]$

- Watch Video Solution

126. For galvanic cell:
$A g \mid \operatorname{AgCI}(s), K C I(0.2 M| | \operatorname{KBr}(0.001 M), \operatorname{AgBr}(s) \mid A g \quad$ Calculate $\quad E M F$
generated and assign correct polarity to each electorde for spontaneous
process after taking into accunt the celol reaction at $25^{\circ} \mathrm{C}$.
$K_{s p} A g C I=2.8 \times 10^{-10}, K_{s p} A g B r=3.3 \times 10^{-3}$.

- Watch Video Solution

127. At $25^{\circ} \mathrm{C}$, after the addition of 110 mL of 0.1 NaCI solution to 100 mL of $0.1 \mathrm{NAgNO}_{3}$ solution, the reduction potentila of a silver electrode placed in it is 0.36 V . Calculate the $K_{s p}$ of AgCI . (Given: $E^{\Theta} \mathrm{Ag} / \mathrm{Ag}^{\oplus}=-0.799 \mathrm{~V}$).

- Watch Video Solution

Θ

128. Calculate the entropy of $O H$ ion at 298 K . Given: Θ
a. $\mathrm{H}_{2} \mathrm{O} \Leftrightarrow H^{\oplus}+\mathrm{OH}(\Delta H=13.4 \mathrm{kcal})$
b. $K_{\text {eq }}$ for the reaction $=10^{-14}$.
c. $S^{\Theta}\left(H^{\oplus}\right)=0.0$
d. $\mathrm{S}^{\Theta}\left(\mathrm{H}_{2} \mathrm{O}\right)=16.7 \mathrm{cal} / \mathrm{molk}$.

- Watch Video Solution

129. Calculate $K_{\text {sp }}$ for $A g C I$. Given:
$\Delta_{f} H^{\Theta} A g{ }^{\oplus}=25.3 \mathrm{kcalmol}^{-1}$
$\Delta_{f} H^{\Theta} C 1^{\Theta}=-40.0$ kalmol $^{-1}$
$\Delta_{f} H^{\Theta} \mathrm{AgC1}=-30.36 \mathrm{kcalmol}^{-1}$
$S^{\Theta} A g{ }^{\oplus}, S^{\Theta} C 1{ }^{\Theta}$, and $S^{\Theta} \mathrm{AgC1are}$ 17.7, 13.2 and 23.0calmol ${ }^{-1}$

- Watch Video Solution

130. Calculate the minimum mass of NaCI necessary to dissolve $0.01 \mathrm{molAgC1}$ in 100 L solution.
(Assume no change in volume) $\left(K_{f} A g C 11_{2}^{\Theta}=3 \times 10^{5}\right)\left(K_{s p} A G C 1=10^{-10}\right)$

- Watch Video Solution

131. What is the concentration of free Cd^{2+} in $0.005 \mathrm{MCdC1}_{2} ? \mathrm{~K}_{1}$ for chloride complexation of Cd^{2+} is $100, K_{2}$ need not be considered.
132. In the equantitative estimation of $A g^{\oplus}$ ions as $A g C 1$, solution of $\mathrm{NaC1}$ is used as the precipitating reagent. Why a large excess of $\mathrm{NaC1}$ should be avoided?

- Watch Video Solution

133. A solution was made up by $0.01 \mathrm{MCo}\left(\mathrm{NO}_{3}\right)_{2}$ and $.02 \mathrm{MN}_{2} \mathrm{H}_{4}$ and was found to have at equilibrium $\left[\mathrm{Co}^{2+}\right]=0.0062 M$. Calculate K_{1} for the complex formation of $\mathrm{Co}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)^{2+}$.

- Watch Video Solution

134. K_{1}, K_{2} and k_{3} for the complexation of SCN^{Θ} with Fe^{3+} are 130,16 , and 1.0 , respectively. (i) Calculate the overall formation costant of $f e(S C N)_{3}$ from its constituent ions. (ii) Calculate K_{d} (dissociation constant) of Fe) SCN_{3}.
135. Explain why $0.1 \mathrm{MNH}_{3}$ solution:
a. Will precipitate $\mathrm{Fe}(\mathrm{OH})_{2}$ from 0.1 M soluton Fe^{2+}.
b. Will not precipitate $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution which is 0.2 M in $\stackrel{\oplus}{N} H_{4}$ and 0.01 M in Mg^{2+}.
c. Will not precipitate AgOH from a solution which is 0.01 M in $\mathrm{Ag}{ }^{\oplus}$.

- Watch Video Solution

136. K_{a} for $H A$ is 4.9×10^{-8}. After making the necessary approximation, calculate for its decimolar solution,

Θ

a. \% dissociation b. $O H$ concentration
c. pH

- Watch Video Solution

137. Nicotinic acid $\left(K_{a}=1.4 \times 10^{-5}\right)$ si represented by the formula HNiC .

Calculate its percent dissociation in a solution which contains 0.10 moles
of nictinic acid per 2.0 L of solution.

- Watch Video Solution

138. An aqueous solution contains 10% amonia by mass and has a density of $0.99 \mathrm{gcm}^{-3}$. Calculate hydroxy1 and hydrogen ion concentration in this solution K_{a} for $N H_{4}^{\oplus}=5.0 \times 10^{-10} \mathrm{M}$.

- Watch Video Solution

139. Determine degree of dissociation of $0.05 \mathrm{MNH}_{3}$ at $25^{\circ} \mathrm{C}$ in a solution of $p H=11$.

- Watch Video Solution

140. Three suggestion are made for ways to removes silver ions from solution:
a. Make the solution 0.01Min Nal.
b. Buffer the solution at $\mathrm{pH}=13$.
c. Make the solution $0.01 M N a_{2} S$. What will be the equilibrium silver ion concentartion in each case? which course of action is most effective in removing $A g^{\oplus}$ ions?

$$
K_{s p}(A g I)=8.5 \times 10^{-17}, K_{s p}(A g O H)=2 \times 10^{-8}
$$

$K_{s p}\left(A g_{2} S\right)=5.5 \times 10^{-51}$

- Watch Video Solution

141. Calculate the the ratio of conjugate base// weak acid required to prepare an aqueous solution of benzoic acid and sodium benzote with $p H$ of 4.5. The acid dissociation constant of benzoic acid is 6.5×10^{-5}.

- Watch Video Solution

142. A solution is saturated with respect to $\operatorname{SrF}_{2} K_{s p}=7.9 \times 10^{-10}$ and $\mathrm{SrCO}_{3}, K_{\text {sp }}=7.0 \times 10^{-10}$. If the fluoride ion concentration is found to be $4.0 \times 10^{-2} \mathrm{M}$. What is the concentration of carbonates ions.
143. The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in pure water is $9.57 \times 10^{-3} \mathrm{gL} \mathrm{L}^{-1}$. Calculate its solubility (in $\left.g L^{-1}\right)$ in $0.02 \mathrm{MMg}\left(\mathrm{NO}_{3}\right)_{2}$ solution.

- Watch Video Solution

144. Compare the solubility of $\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{~K}_{\text {sp }}=4 \times 10^{-38}\right)$ and $\mathrm{Ni}(\mathrm{OH})_{2} \cdot\left(\mathrm{~K}_{\text {sp }}=2 \times 10^{-16}\right)$ at $\mathrm{pH}=5.0$

- Watch Video Solution

145. What is the pH at which $0.01 \mathrm{MCo}^{2+}$ ions in solution precipiate down as $\mathrm{Co}(\mathrm{OH})_{2} ? \mathrm{~K}_{\text {sp }}$ of $\mathrm{Co}(\mathrm{OH})_{2}$ is 2.5×10^{-16}.

- Watch Video Solution

146. Freshly prepared aluminium and magnesium hydroxides are stirred vigorously in a buffer solution containing 0.25 M of ammonium chloride and $0.05 M$ of ammonium hydroxide. Calculate the concentration of aluminium and magesium ions in solution $\left(K_{b} \mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5}, K_{s p} \mathrm{Mg}(\mathrm{OH})_{2}=6 \times 10^{-10}, K_{s p} \mathrm{A1}(\mathrm{OH})_{3}=6 \times 10^{-32}\right.$

- Watch Video Solution

147. A solution contains a mixture of $\mathrm{Ag}^{+}(0.10 \mathrm{M})$ and $\mathrm{Hg}_{2}^{2+}(0.10 \mathrm{M})$ which are to be separated by selective precipitation. Calculate the miximum concentreation of iodide ion at which one of them gets precipitated almost completely. What $\%$ of that metal ion is precipitated ? $\left(K_{S P} O f A g I=8.5 \times 10^{-17}\right.$ and $K_{S P}$ of $\left.H_{2} I_{2}=2.5 \times 10^{-26}\right)$

- Watch Video Solution

148. A buffer solution containing $0.25 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{NH}_{4} \mathrm{CI}$ and $0.05 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{NH}_{4} \mathrm{OH}$ is in equilibrium with $\mathrm{A1}^{+3}$ and Mg^{2+} ions. Calculate $\left[\mathrm{A1}{ }^{3+}\right]$ and $\left[\mathrm{Mg}^{2+}\right]$ in solution.
$K_{b}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=2.0 \times 10^{-5}, K_{\text {sp }}\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]=6.0 \times 10^{-12}, K_{\text {sp }}\left(\mathrm{A} 1(\mathrm{OH})_{3}\right)=6 \times$

- Watch Video Solution

149. The $K_{S P} O f C a(O H)_{2} i s 4.42 \times 10^{-5} a t 25^{\circ} \mathrm{C}$. A 500 mL of saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is mixed with equal volume of 0.4 MNaOH . How much $\mathrm{Ca}(\mathrm{OH})_{2}$ in mg is preciptated ?

- Watch Video Solution

150. Determine the mass of PbI_{2} that will dissolve in (a) 500 mL water (b) 500 mL of 0.01 MKI solution (c) 500 mL of a solution containing $1.33 \mathrm{gPb}\left(\mathrm{NO}_{3}\right)_{2}, K_{s p}$ of $\mathrm{PbI}=1.4 \times 10^{-8}$.
151. Should a precipitate of barium fluoride be obtained when 100 mL of 0.25 MNaF and 100 mL of $0.015 \mathrm{MBa}\left(\mathrm{NO}_{3}\right)_{2}$ are mixed. $K_{\text {sp }}$ of $B a F_{2}=1.7 \times 10^{-6}$

- Watch Video Solution

152. A saturated solution of silver benzoate, $\mathrm{AgOCOC}_{6} \mathrm{H}_{5}$ has a pH of 8.63, K_{a} for benzoic acid is 6.5×10^{-5}. Estimate $K_{s p}$ for silver benzoate.

- Watch Video Solution

153. For the indicator 'Hin' the ratio $\left(\right.$ Ind $\left.^{\Theta}\right) /(H I n)$ is 7.0 at $p H$ of 4.3 . What is $K_{\text {eq }}$ for the indicator.

- Watch Video Solution

154. Determine $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$ of a 0.050 M solution of ammonia to which sufficient $\mathrm{NH}_{4} \mathrm{CI}$ has been added to make the total $\left[\mathrm{NH}_{4}^{\oplus}\right]$ equal to 0.1 M

- Watch Video Solution

155. $\mathrm{K}_{\text {sp }}$ of $\mathrm{AgC1}$ is 2.8×10^{-10} at $25^{\circ} \mathrm{C}$. Calculate solubility of $\mathrm{AgC1} \mathrm{in}$.
a. Pure water b. $0.1 \mathrm{MAgNO}_{3}$
c. 0.1 MKCI or $0.1 \mathrm{MNaC1}$

- Watch Video Solution

156. $K_{s p}$ of $P b C 1_{2}$ is 10^{-13}. What will be $\left[P b^{2+}\right]$ in a of solution prepared by mixing 100 mL of $0.1 \mathrm{MPb}\left(\mathrm{NO}_{3}\right)_{2}$ of solution 1.0 mL 1 MHCI ?

- Watch Video Solution

157. $K_{s p}$ of PbBr_{2} is 8×10^{-5}. If the salt is 80% dissociated in solution, calculat the solubility of salt in $g L^{-1}$.

- Watch Video Solution

158. Equal volumes of $0.02 \mathrm{MCaC1}_{2}$ and $0.0004 \mathrm{MNa}_{2} \mathrm{SO}_{4}$ are mixed. Will a precipitate from? $\mathrm{K}_{\text {sp }}$ for $\mathrm{CaSO}_{4}=2.4 \times 10^{-5}$?

- Watch Video Solution

159. A solution containing both Zn^{2+} and Mn^{2+} ions at a concentration of 0.01 M is saturated with $\mathrm{H}_{2} \mathrm{~S}$. What is pH at which MnS will form a ppt ? Under these conditions what will be the concentration of Zn^{2+} ions remaining in the solution ? Given $K_{s p}$ of $\mathrm{ZnSis} 10^{-22}$ and $K_{s p}$ of MnS is $5.6 \times 10^{-16}, K_{1} \times K_{2}$ of $H_{2} S=1.10 \times 10^{-21}$.

- Watch Video Solution

160. For the reaction
$A g(C N)_{2}^{\ominus} \Leftrightarrow A g^{\oplus}+2 C N^{\ominus}$, the K_{c} at $25^{\circ} \mathrm{C}$ is 4×10^{-19} Calculate $\left[A g^{\oplus}\right]$ in solution which was originally 0.1 M in KCN and 0.03 M in AgNO_{3}.

- Watch Video Solution

161. A sample of hard water contains 0.05 mol of $\mathrm{CaC1}_{2}$, per litre, What is the minimum concentration of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, which must be added for removing Ca^{2+} ions from this water sample? $K_{s p}$ for CaSO_{4} is $2.4 \times 10^{-5} a t 25^{\circ} \mathrm{C}$.

- Watch Video Solution

162. An aqueous solution of a metal bromide $\mathrm{MBr}_{2}(0.05 M)$ is saturated with $H_{2} \mathrm{~S}$. What is the minimum pH at which MS will precipitate ? $K_{S P}$ for $M S=6.0 \times 10^{-21}$. Concentration of saturqated $H_{2} S=0.1 M, K_{1}=10^{-7}$ and $K_{2}=1.3 \times 10^{-13}$ for $H_{2} S$.
163. Calculate pH of saturated solution $\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{~K}_{\text {sp }}$ for $\mathrm{Mg}(\mathrm{OH})_{2}$ is 8.9×10^{-12}.

- Watch Video Solution

164. 0.1 millie moles of CdSO_{4} are present in 10 ml acid solution of 0.08 NHCI . Now $\mathrm{H}_{2} \mathrm{~S}$ si passed to precipitate all the Cd^{2+} ions. What would be the pH of solution after filtering off percipitate, boilling of $\mathrm{H}_{2} \mathrm{~S}$ and making the solution 100 ml by adding $\mathrm{H}_{2} \mathrm{~S}$?

- Watch Video Solution

165. The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is increased by the addition of NH_{4} ion.

Calculate
a. Kc for the reaction:
$\mathrm{Mg}(\mathrm{OH})_{2}+\stackrel{\oplus}{\mathrm{NH}_{4}} \Leftrightarrow 2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Mg}^{+2}$
$K_{s p} o f \mathrm{Mg}(\mathrm{OH}) 。=6 \times 10^{-12}, K_{b} o f \mathrm{NH}_{3}=1.8 \times 10^{-5}$.
b. Find the solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in a solution containing $0.5 \mathrm{MNH}_{4} \mathrm{C} 1$ before addition of $\mathrm{Mg}(\mathrm{OH})_{2} \cdot$ b

- Watch Video Solution

166. The solubility of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ at $25^{\circ} \mathrm{C}$ is 1.20×10^{-11}. A solution of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ containing 0.15 mol in 500 mL water is mixed with excess of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ till the following equilibrium is established:
$\mathrm{Ag}_{2} \mathrm{CO}_{3}+\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow \mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{K}_{2} \mathrm{CO}_{3}$
At equilibrium, the solution constains 0.03 mol of $\mathrm{K}_{2} \mathrm{CO}_{3}$. Assuming that the degree of dissociation of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to be equal, calculate the solubility product of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. [Take 100% ionisation of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$]

- Watch Video Solution

167. 1.0 L of solution which was in equilibrium with solid mixture of $\mathrm{AgC1}$ and AgCl and $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ was found to contain 1×10^{-4} molofAg ${ }^{\oplus}$ ions, $1.0 \times 10^{-6} \mathrm{~mol}$ of $\mathrm{C1}^{\Theta}$ ions and 8.0×10^{-4} moles of CrO_{4}^{2-} ions. Ag^{\oplus} ions added slowely to the above mixture (keeping volume constant) till $8.0 \times 10^{-7} \mathrm{~mol}$ of $\mathrm{AgC1}$ got precipitated. How many moles of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ were also precipitated?

- Watch Video Solution

168. $K_{s p}$ of $\mathrm{SrF}_{2}=2.8 \times 10^{-9}$ at $25^{\circ} \mathrm{C}$. How much NaF should be added to 100 mL of solution having 0.016 M in Sr^{2+} ions to reduce its concentration to $2.5 \times 10^{-3} \mathrm{M}$?

- Watch Video Solution

169. Calculate the degree of hydrolysis and pH of 0.2 M solution of $\mathrm{NH}_{4} \mathrm{C} 1$ Given K_{b} for $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5}.
170. Calculate for 0.01 N solution of sodium acetate,
a. Hydrolysis constant b. Dergee of hydrolysis
c. $p H$ Given $K_{a}=1.9 \times 10^{-5}$

- Watch Video Solution

171. Calcium lactate is salt of weak acid and represented as $\mathrm{Ca}(\mathrm{LaC})_{2}$. A saturated solution of $\mathrm{Ca}(\mathrm{LaC})_{2}$ contains 0.13 mol of salt in 0.50 L solution. The pOH of this is 5.60 . Assuming complete dissociation of salt, calculate K_{a} of lacetic acid.

- Watch Video Solution

172. The vapour pressur of 0.01 molal solution of weak base $B O H$ in water at $20^{\circ} \mathrm{C}$ is 17.536 mm . Calculate K_{b} for base. Aqueous tension at $20^{\circ} \mathrm{C}$ is 17.540 mm . Assume molatilly and molarity same.
173. Calculate the pH of $0.1 \mathrm{MK}_{3} \mathrm{PO}_{4}$ soln. The third dissociation constant of orthophoshoric acid is 1.3×10^{-12}. Assume that the hydrolysis proceeds only in the first step.

- Watch Video Solution

\oplus

174. The ionization constant of NH_{4} ion in water is 5.6×10^{-10} at $25^{\circ} \mathrm{C}$.

$$
\oplus \quad \theta
$$

The rate constant the reaction of NH_{4} and OH ion to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is $3.4 \times 10^{10} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$. Calculate the rate constant for proton transfer form water to NH_{3}.

- Watch Video Solution

175. Calculate $\left[\mathrm{Ag}^{\oplus}\right]$ in a solution made by dissolving both AgCrO_{4} and $\mathrm{AgC}_{2} \mathrm{O}_{4}$ untill saturation is reached with respect to both salts. Given
$\mathrm{K}_{s p}$ ofAg CrO_{4} and $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ are 9.0×10^{-12} and 6.0×10^{-12}, respectively.

- Watch Video Solution

176. Using $\mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{NO}_{3}$, and $\mathrm{K}_{2} \mathrm{CrO}_{4}$ as the only reagents, devise a qualitative analysis scheme for separating and identifying the following ions, which might all be present in the same mixture: $\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Na}^{\oplus}, \mathrm{Pb}^{2+}$. Assume that each cation present is 0.10 M . Sate the conditions of pH and the reagent concentration which are required in each step.

- View Text Solution

177. Assuming that the only source of perodic group IIA metals is an equimolar mixture of $\mathrm{NaC1}, \mathrm{BaC1}_{2}$ and $\mathrm{mGC1}_{2}$, suggest ways of preparing pure samples of
a. MgSO_{4} b. Ba metal c. $\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$.
178. When a solution of Zn^{2+} was added to a solution of NaOH , a clear solution was obtained. What $\mathrm{NH}_{4} \mathrm{C} 1$ was added to the clear solution, $\mathrm{Zn}(\mathrm{OH})_{2}$, precipitated. Using balanced chemical equation, explain these observations.

- Watch Video Solution

179. Given reagents $\mathrm{NH}_{3}, \mathrm{NaOH}, \mathrm{HC1}$, and $\mathrm{H}_{2} \mathrm{~S}$ which one could be used to separated the ions in each of the following mixtures?
a. Cu^{2+} and Zn^{2+}
b. Cu^{2+} and Al^{3+}
c. Zn^{2+} and Al^{3+}

- Watch Video Solution

180. Estimate the $K_{s p}$ of AgBr . Given $\Delta_{f} H^{\Theta}$ of $\mathrm{Ag}^{\oplus}, \mathrm{Br}^{\Theta}$, and AgBr are 25.31, - 28.9, and -23.8kcal, ΔS^{Θ} of $\mathrm{Ag}^{\oplus}, \mathrm{Br}^{\Theta}$, and AgBr are 17.7, 19.3, and -26.6cal/K.
181. When 40 mL of a 0.1 MN weak base, BOH is titrated with $0.01 M H C 1$, the $p H$ of the solution at the end point is 5.5 . What will be the $p H$ if 10 mL of 0.10 MNaOH is added to the resulting solution ?

(Watch Video Solution

182. Malonic acid is an organic dibasic acid such as $\mathrm{H}_{2} \mathrm{~S}$ having first ionistion constant, $K_{1}=1.42 \times 10^{-3}$ and second ionisation constant, $K_{2}=2.0 \times 10^{-6}$. Compute the divalent molanate ion concentration in:
a. 0.001 M malonic acid.
b. a solution that is $0.0001 M$ in malonc acid and $0.0004 M H C 1$.
c. a solution that is $0.0001 M$ in malonic acid and $0.1 M H C 1$.

- Watch Video Solution

183. What mass of $p b^{2+}$ ions is left in solution, when 50.0 mL of $0.20 \mathrm{MPb}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 50.0 mL of $1.5 \mathrm{MNAC1}$?

- Watch Video Solution

184. It is given that 0.001 mol each of Cd^{2+} and Fe^{2+} ions are contained in
1.0 L of $0.02 \mathrm{MHC1}$ solution. This solutions is now saturated with $\mathrm{H}_{2} \mathrm{~S}$ gas at $25^{\circ} \mathrm{C}$.
a. Determine whether or not each of these ions will be precipitated as sulphide?
b. How much Cd^{2+} ions remains in the solution at equilibrium?

$$
K_{1}\left(H_{2} \mathrm{~S}\right)=1.0 \times 10^{-7}, K_{2}\left(H_{2} \mathrm{~S}\right)=1.0 \times 10^{-14}:
$$

ItbRgt
$K_{s p}(C d S)=8 \times 10^{-27}: K_{s p}(F e S)=3.7 \times 10^{-19}$.

- Watch Video Solution

185. Calculate the $\left[F^{\Theta}\right]$ in a solution saturated with respect ot $M g F_{2}$ and SrF_{2}.
$K_{s p}\left(M g F_{2}\right)=6.0 \times 10^{-9}, K_{s p}\left(S r F_{2}\right)=3.0 \times 10^{-9}$
186. $H N_{3}$ (hydroazic acid) is a weak acid dissociating as: $H N_{3} \Leftrightarrow H^{\oplus}+N_{3}^{\Theta}$. Find the concentration of $A g^{\Theta}$ ions, if excess of solid $A g N_{3}$ is added to a solution maintained at $p H=4$. The ionisation constant K_{a} of $H N_{3}$ is 2.0×10^{-5}. The solubility of $A g N_{3}$ in pure water is found to be 5.4×10^{-3} at $25^{\circ} \mathrm{C}$.

D Watch Video Solution

187. Calculate the solubility of AgCN in a buffer solution of $p H 3.0$. Assume that no cyano complex is formed
$K_{s p} A g C N=2.2 \times 10^{-16}, K_{a} H C N=6.2 \times 10^{-10}$.

- Watch Video Solution

188. Calculate $\left[\begin{array}{l}\oplus \\ \mathrm{NH}_{4}\end{array}\right]$ (derived from $\mathrm{NH}_{4} \mathrm{C}$) needed to prevent $\mathrm{Mg}(\mathrm{OH})_{2}$ from precipitating is 1.0 L of solution which contins $0.01 \mathrm{molNH}_{3}$ and $0.001 \mathrm{molMg}^{2+} . \mathrm{K}_{\text {sp }} \mathrm{Mg}(\mathrm{OH})_{2}=1.2 \times 10^{-11}, K_{b} \mathrm{NH}_{3}=1.8 \times 10^{-5}$.
189. A solution containing $10^{-3} \mathrm{MSr}\left(\mathrm{C1O}_{4}\right)_{2}$ and $0.05 \mathrm{MKNO}_{3}$ was found to have only 75% of its strontium in the uncomplexed Sr^{2+} form, the rest being $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)^{\oplus}$. Calcualate the K_{1} for complexation reaction:
$\mathrm{Sr}^{2+}+\mathrm{NO}_{3}^{\Theta} \rightarrow \mathrm{Sr}\left(\mathrm{NO}_{3}\right)^{\Theta}$

- Watch Video Solution

190. Glycine $\left[\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)$ is basic and acidic due to presence of $-\mathrm{NH}_{2}$ and - COOH group. It acquires a H^{\oplus} to form $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3} \mathrm{COOH}$, which is a diprotic acid with $K_{1}=4.5510^{-3}$ and $K_{2}=1.7 \times 10^{-10}$. In a 0.01 M solution of neutral glycine,
a. What is the pH and
b. What percent of the glycine is in the cationic form at equilibrium?

- Watch Video Solution

191. A 0.01 M aqueous solution of weak acid $H A$ has an osotic pressure 0.293 atm at $25^{\circ} \mathrm{C}$. Another 0.01 M aqueous solution of other weak acid $H B$ has an osmotic pressure of $0.345 a t m$ under the same conditions. Calculate equilibrium constants of two acids for their dissociation.

- Watch Video Solution

192. The salt $\mathrm{ZN}(\mathrm{OH})_{2}$ is involved in the following two equilibria:
Θ
$\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \Leftrightarrow \mathrm{Zn}^{3+}(a q)+2 \mathrm{OH}(a q) K_{s p}=1.2 \times 10^{-17}$
Θ
$\mathrm{Zn}(\mathrm{IH})_{2}(\mathrm{~s})+2 \mathrm{OH} \Leftrightarrow \mathrm{Zn}(\mathrm{OH})_{4}^{2-}(\mathrm{aq}) \mathrm{K}_{f}=0.12$
Calculate $\left|\begin{array}{l}\Theta \\ \mathrm{OH}\end{array}\right|$ at which solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ be a minimum. Also find the solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ at this pH .

- Watch Video Solution

193. A 500 mL of an equilibrium mixture of gaseous $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at
$25^{\circ} \mathrm{C}$ and 753 mm of Hg was allowed to react with enough water to make

250 mL of solution at $25^{\circ} \mathrm{C}$. Assume that all the dissolved $\mathrm{N}_{2} \mathrm{O}_{4}$ is converted to NO_{2} which disproportionates in water yielding a solution of nitrous acid and nitric acid. aAsume further that disproportionation reaction goes to completion and that none of the nitrous acid disproportionates. The equilibrium constant $\left(K_{p}\right)$ for $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) 0.113$ at $25^{\circ} \mathrm{C} . \mathrm{K}_{a}$ for HNO_{2} is 4.5×10^{-4} at $25^{\circ} \mathrm{C}$.
a. Write balanced equation for disproportionation.
b. What is the molar concentration of NO_{2} and pH of the solution?
c. What is osmotic pressure of solution?
d. How many grams of lime (CaO) would be required to neutralise the solution?

- Watch Video Solution

194. A buffer solution of $0.080 \mathrm{MNa}_{2} \mathrm{HPO}_{4}$ and $0.020 \mathrm{MNa}_{3} \mathrm{PO}_{4}$ is prepared.

The electrolytic oxidation of 1.0 mmolRNHOH is carried out in 100 mL buffer to give
$\mathrm{RNHOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{RNO}_{2}+4 \mathrm{H}^{\oplus}+4 e^{-}$

Calculate approximate $p H$ of the solution after oxidation is complete $p K_{a_{2}}, p K_{a_{2}}$, and $p K_{a_{3}}$ of $H_{3} P O_{4}$ are 2.12, 7.20, and 12.0, respectively.

- Watch Video Solution

195. Calculate the pH of $0.05 \mathrm{MKHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$
$\mathrm{H}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{\oplus} p \mathrm{~K}_{a_{1}}=2.94$
$\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{\Theta}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}^{2-} p K_{a_{2}}=5.44$

Watch Video Solution

196. It is found that 0.1 M solution of three sodium salts $\mathrm{NaX}, \mathrm{NaY}$, and

NaZ have Ph 7.0, 9.0 and 11.0, respectively. Arrange the acids (HX, HY, and HZ) in order of increasing acidic character. Calculate dissociation constant of acids.

- Watch Video Solution

197. What is $\left[\mathrm{Cd}^{2+}\right]$ in 1.0 L of solution prepared by dissolving $0.001 \mathrm{molCd}\left(\mathrm{NO}_{3}\right)_{2}$ and 1.5mmol. NH_{3} ? K_{d} for the dissociation of $\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ into Cd^{2+} and $4 \mathrm{NH}_{3}$ is 1.8×10^{-7}. Neglect the amount of Cd in complexes containing fewer than 4 ammonia molecules.

- Watch Video Solution

198. 0.001 mol of solid $\mathrm{NaC1}$ was added to 1.0 L of $0.01 \mathrm{MHg}\left(\mathrm{NO}_{3}\right)_{2}$. Calculate $\left[c 1^{\Theta}\right]$ equilibrated with newly formed $\mathrm{HgCl}^{\oplus} . \mathrm{K}_{1}$ for $\mathrm{HgC1}{ }^{\oplus}$ formation is 5.5×10^{6}, neglect the K_{2} equilibrium.

- Watch Video Solution

199. How much NH_{3} should be added to a solution of $0.01 \mathrm{MCu}\left(\mathrm{NO}_{3}\right)_{2}$ to reduce $\left[\mathrm{Cu}^{2+}\right.$ to 10^{-13}. Neglect the amount of copper in complexes containing fewer than 4 ammonia molecules per copper atom. Given K_{d} for $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}=1.0 \times 10^{-12}$
200. Calculated the minimum amount of $N h_{3}$ which must be added to
1.0 L of solution in order to dissolve $0.1 \mathrm{molAgC1}$ by forming $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}$? $K_{\text {sp }}$ of $\mathrm{AgC1}=1 \times 10^{-10}, K_{f}\left(\mathrm{NH}_{3}\right)_{2}^{\oplus}=1 \times 10^{8}$.

- Watch Video Solution

201. A certain insoluble compound of M^{2+}, when shaken with water, provides an M^{2+} concentration of $1.0 \times 10^{-4} \mathrm{M}$. A ligand is added to the system in a quantify which forms a soluble complex with M^{2+} and leaves $1.0 \times 10^{-6} \mathrm{M}, \mathrm{M}^{2+}$ in solution. Will the insoluble compound tend to dissolve? Explain.

- Watch Video Solution

1. 100 mL of HC 1 gas at $25^{\circ} \mathrm{C}$ and 740 mm pressure is dissolved in 1 L of $\mathrm{H}_{2} \mathrm{O}$. Calculate the pH of solution. Given vapour presure of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is 23.7 mm .

- Watch Video Solution

2. Calculate $\left[C 1^{\Theta}\right],\left[N a^{\oplus}\right],\left[H^{\oplus}\right],\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$, and the $p H$ of resulting solution obtained by mixting 50 mL of $0.6 \mathrm{MHC1}$ and 50 mL of 0.3 MNaOH .

- Watch Video Solution

3. Calculate the pH of solution obtained by mixing 10 ml of 0.1 MHCl and 40 ml of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$

- Watch Video Solution

4. Calculate the pH of a solution which contains 100 mL of $0.1 \mathrm{MHC1}$ and 9.9 mL of 1.0 MNaOH .

Watch Video Solution

5. Calculate the $\left[H^{\oplus}\right]$ and $\left[\begin{array}{l}\Theta \\ \mathrm{OH}\end{array}\right]$ of 0.0315 g of HNO_{3} in 500 mL of water.

Calculate pH and pOH also.

- Watch Video Solution

6. 25.0 mL of 0.1 MNaOh is titred with $0.1 \mathrm{MHC1}$. Calculate pH when:
i. $20 m L$ ii. $24 m L$ of acid is added.

- Watch Video Solution

7. The conjugate acid of NH_{2} is
A. $\mathrm{N}_{2} \mathrm{H}_{4}$
B. NH_{3}
C. $\mathrm{NH}_{2} \mathrm{OH}$
Θ
D. NH_{4}

Answer: B

D Watch Video Solution

8. Which solutionwill have pH closer to 1.0 ?
A. 75 mL of $\mathrm{M} / 5 \mathrm{HC} 1+25 \mathrm{~mL}$ of $\mathrm{M} / 5 \mathrm{NaOh}$
B. 10 mL of $\mathrm{M} / 10 \mathrm{HC} 1+90 \mathrm{~mL}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
C. 55 mL of $\mathrm{M} / 10 \mathrm{HC} 1+54 \mathrm{~mL}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
D. 100 mL of $\mathrm{M} / 10 \mathrm{HC} 1+100 \mathrm{~mL}$ of $\mathrm{M} / 10 \mathrm{NaOH}$

Answer: A

9. An acid solution of $p H=6$ is diluted 100 times. The $p H$ of solution becomes
A. 6.95
B. 6
C. 4
D. 8

Answer: A

D Watch Video Solution

10. The number of H^{\oplus} ions present in $1 m L$ of solution having $p H=13$ is
A. 6.023×10^{10}
B. 6.023×10^{7}
C. 6.023×10^{13}
D. 10^{13}

Answer: B

- Watch Video Solution

11. Equal volumes of two solutions of Hc 1 are mixed. One solution has a $p H=1$, while the other has a $p H=5$. The $p H$ of the resulting solution is
A. <1
B. Between 1 and 2
C. 3
D. Between 4 and 5

Answer: B

- Watch Video Solution

12. For pure water,
A. Both pH and pOH decrease with increase in temperature.
B. Both pH and pOH increase with increase in temperature.
C. pH decreases and pOH increases with increase in temperature.
D. pH increase and pOH decreases with increase in temperature.

Answer: A

- Watch Video Solution

13. The $p H$ of a solution increased from 3 to 6 . Its $\left[H^{\oplus}\right]$ will be
A. Reduced by 1000 times
B. Increased to 1000 times
C. Doubled
D. Reduced to half

D Watch Video Solution

14. The following equilibria is established when $\mathrm{H}_{2} \mathrm{SO}_{4}$ is dissolved in acetic acid:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CH}_{3} \mathrm{COOH} \stackrel{\ominus}{\mathrm{HSO}} \mathrm{O}_{4}+\mathrm{CH}_{3} \mathrm{COO}_{2}{ }_{2}^{\oplus}
$$

The set that characterised the conjugate acid-base pairs is:
A. $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CH}_{3} \mathrm{COOH}\right)$ and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}, \mathrm{HsO}_{4}\right)$
B. $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CH}_{3} \mathrm{COO}^{\mathrm{H}}{ }_{2}\right)$ and $\left(\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{SO}_{4}\right)$
c. $\left(\mathrm{CH}_{3} \mathrm{COO}_{\mathrm{H}_{2}}, \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ and $\left(\stackrel{\ominus}{\mathrm{HsO}_{4}}, \mathrm{CH}_{3} \mathrm{COOH}\right)$
D. $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \stackrel{\ominus}{\mathrm{HsO}_{4}}\right)$ and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}, \mathrm{CH}_{3} \mathrm{COOH}\right)$

Answer: C

15. Which of the following consitute a set of atomspheric species?
A. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{PO}_{3}^{\Theta}, \mathrm{HPO}_{4}^{2-}$
B. $\mathrm{HC}_{2} \mathrm{O}_{4}^{\Theta}, \mathrm{H}_{2} \mathrm{PO}_{4}^{\Theta}, \mathrm{SO}_{4}^{2-}$
C. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HPO}_{4}^{2-}, \mathrm{H}_{2} \mathrm{PO}_{2}^{\Theta}$
D. $\mathrm{H}_{3} \mathrm{O}^{\oplus}, \mathrm{H}_{2} \mathrm{PO}_{4}^{\Theta}, \mathrm{HCO}_{3}^{\Theta}$

Answer: A

- Watch Video Solution

16. One litre of $0.5 M K C 1$ is electrolysed by passing 9650 coulombs of electricity. The ${ }^{`} \mathrm{pH}$ of resulting solution is
A. 1.0
B. 2.0
C. 7.0
D. 13.0

Answer: D

- Watch Video Solution

17. pH of a solution made by mixing 200 mL of $0.0657 \mathrm{MNaOH}, 140 \mathrm{~mL}$ of $0.107 \mathrm{MHC1}$ and 160 mL of $\mathrm{H}_{2} \mathrm{O}$ is
A. 3.04
B. 2.43
C. 2.74
D. 2.27

Answer: B

18. When one drop of a concentrated $H C 1$ is added to $1 L$ of pure water at $25^{\circ} \mathrm{C}$, the pH drops suddenly from 7 to 4 . When the second drop of the same acid is added, the pH of the solution further drops to about
A. 0
B. 1.0
C. 2.0
D. 3.7

Answer: D

- Watch Video Solution

Ex 8.2

1. The dissociation constant of acetic acid is 8×10^{-5} ta $25^{\circ} \mathrm{C}$. Find the pH of
i. $M / 10 \mathrm{ii} . ~ M / 100$ solution of acetic acid.

- Watch Video Solution

2. Calculate the amount of acetic acid presnt in $1 L$ of solution having $\alpha=1 \%$ and $K_{a}=1.8 \times 10^{-5}$.

- Watch Video Solution

3. $0.16 \mathrm{gN}_{2} \mathrm{H}_{4}$ is dissoolved in $\mathrm{H}_{2} \mathrm{O}$ and total volume is made upto 500 mL .

Calculate the percentage of $\mathrm{N}_{2} \mathrm{H}_{4}$ that has reacted with $\mathrm{H}_{2} \mathrm{O}$ in this solution. K_{b} for $N_{2} H_{4}=4.0 \times 10^{-6} M$.

- Watch Video Solution

4. If the pH of $0.26 \mathrm{MHNO}_{2}$ is 2.5 , what will be its dissociation constant.

- Watch Video Solution

5. Find the dissocation constant K_{a} of $H A$ (weak monoabsic acid) which is 3.5% dissociated in anM/20 solution.

- Watch Video Solution

6. Ionic product of water $\left(K_{w}\right.$ is $\left.10^{-14}\right)$ at $25^{\circ} \mathrm{C}$. What is the dissociation constant of water and auto protonation constatn of water?

- Watch Video Solution

7. 2.0 gof dibrona $\left(B_{2} H_{6}\right)$ reacts with water to product 100 mL solution. If K_{a} for $H_{3} B O_{3}$ is 7.3×10^{-10}, calculated the $p H$ of solution.

- Watch Video Solution

8. At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=10^{-6} \mathrm{M}$. What is the value of K_{w} at $90^{\circ} \mathrm{C}$
A. 10^{-6}
B. 10^{-8}
C. 10^{-12}
D. 10^{-14}

Answer: C

- Watch Video Solution

9. HCOOH and $\mathrm{CH}_{3} \mathrm{COOH}$ solutions have equal pH . If K_{1} / K_{2} is 4 , the ratio of their molar concentration will be
A. 0.25
B. 0.5
C. 2
D. 4
10. $2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}+\mathrm{OH}, K_{w}=10^{-14}$ at $25^{\circ} \mathrm{C}$, hence K_{a} is
A. 10^{-7}
B. 5.55×10^{-13}
C. 10^{-14}
D. 18×10^{-17}

Answer: D

D Watch Video Solution

11. Which of the following expression is wrong?
A. $\left[H^{\oplus}\right]=\left[\begin{array}{l}\Theta \\ O H\end{array}\right]=10^{-7}$ for a neutral solution at all temperatures.
B. $\left[H^{\oplus}\right]<\sqrt{K_{w}}$ and $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]>\sqrt{K_{w}}$ for basic solution
c. $\left[H^{\oplus}\right]=\left[\begin{array}{l}\Theta \\ O H\end{array}\right]=\sqrt{K_{w}}$ for a neutral solution
D. $\left[H^{\oplus}\right]>\sqrt{K_{w}}$ and $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]<\sqrt{K_{w}}$ for an acidic solution

Answer: A

12. For a 'C' M concentarted solution of a weak electrolyte $A_{x} B_{y} \alpha$ (degree of dissociation) is
A. $\sqrt{K_{e q} / x y C}$
B. $\left[K_{e q} \cdot C /(x y)\right]^{1 / 2}$
C. $\left(K_{e q} / C^{x+y-1} \cdot x^{x} x^{y}\right)^{\frac{1}{x+y}}$
D. $\left[K_{e q} / C(x+y)\right]^{1 / 2}$

Answer: C

13. K_{b} for $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5}. The $\left[\begin{array}{l}\Theta \\ \mathrm{OH}\end{array}\right]$ of $0.1 \mathrm{MNH}_{4} \mathrm{OH}$ is
A. 5.0×10^{-2}
B. 4.20×10^{-3}
C. 1.34×10^{-3}
D. 1.8×10^{-6}

Answer: C

D Watch Video Solution

14. The dissociation constant of monobasic acids A, B, C and D are $6 \times 10^{-4}, 5 \times 10^{-5}, 3.6 \times 10^{-6}$, and 7×10^{-10}, respectively. The $p H$ values of their 0.1 M aqueous solutions are in the order.
A. $D>C>B>A$
B. $A>B>C>D$
C. $A=B=C=D$
D. None

Answer: A

- Watch Video Solution

15. The molarity of $\mathrm{NH}_{3} \mathrm{OfpH}=12 \mathrm{at} 25^{\circ} \mathrm{C}$ is $\left(K_{b}=1.8 \times 10^{-5}\right)$
A. 11.7 M
B. 5.5 M
C. $0.55 M$
D. 0.01 M

Answer: C

16. K_{a} of $H A$ at 25° is 10^{-5}. If 0.1 mol of this acid is dissolved in 1 L of aqueous solution, the percent dissociation at equilibrium will be closer to
A. 0.1%
B. 1.0 \%
C. 99.0%
D. 99.9 \%

Answer: B

- Watch Video Solution

17. For a polyprotic acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$ its three dissociation constanst K_{1}, K_{2} and K_{3} are in the order
A. $K_{1}=K_{2}>K_{3}$
B. $K_{1}=K_{2}=K_{3}$
C. $K_{1}>K_{2}>K_{3}$
D. $K_{1}<K_{2}<K_{3}$

Answer: C

- View Text Solution

K_{g}
18. Given $H F+H_{\circ} O \Leftrightarrow H_{3} O^{\oplus}+f^{\oplus}$
$\mathrm{F}^{\Theta}+\mathrm{K}_{2} \mathrm{O} \stackrel{\mathrm{K}_{b}}{\Leftrightarrow} \mathrm{HF}+\stackrel{\Theta}{\mathrm{O}} \mathrm{H}$
Which relation is correct?
A. $K_{b}=K_{w}$
B. $K_{a} \times K_{b}=K_{w}$
C. $K_{b}=\frac{1}{K_{w}}$
D. $\frac{K_{a}}{K_{b}}=K_{w}$

Answer: B

19. A certain weak acid has a dissociation constant 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is :
A. 10^{-14}
B. 10^{-9}
C. 10^{-10}
D. 10^{10}

Answer: D

D Watch Video Solution

20. The percentage error in $\left[H^{\oplus}\right]$ provided by $10^{-8} \mathrm{MHC}$, if ionisation of water is not neglected, is
A. 2%
B. 3%
C. 4%
D. 5%

Answer: D

- Watch Video Solution

21. $\mathrm{H}_{3} \mathrm{BO}_{3}$ is :
A. Monobasic and weak Lewis acid
B. Monobasic and weak Brddotosted acid
C. Tribasic and weak Brddotosted acid
D. Monobasic and strong Lewis acid

Answer: A

- Watch Video Solution

22. The enthalpy change for first proton neutralisation of $\mathrm{H}_{2} \mathrm{~S}$ is $-37.1 \mathrm{kJmol}^{-1}$. What is the enthalpy change for first ionisation of $\mathrm{H}_{2} \mathrm{~S}$.
A. 94.2
B. -20.0
C. 20.0
D. -94.2

Answer: C

- Watch Video Solution

23. The factor by which the degree of ionisation of 200 mL of 0.1 M benzoic acid solution $\left(K_{a}=4 \times 10^{-5}\right)$ changes on addition of 100 mL of $0.2 \mathrm{MHC1}$ is:
A. 0.02
B. 0.03
C. 33.33
D. None

Answer: B

- Watch Video Solution

24. The concentration of CO_{2} in atmosphere is $88 p \pm$. If all of the CO_{2} present in $10^{5} \mathrm{~mL}$ of air is dissolved in $1 \mathrm{dm}^{3}$ water, then approximate pOH of solution at $27^{\circ} \mathrm{C}$ will be $\left(K_{a_{1}}=10^{-7}, K_{a_{2}}=10^{-11}\right.$ for $\left.\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
A. 3.2
B. 3.85
C. 10.15
D. None

Answer: C

25. A solution of a weak monoprotic acid has dissociation constant K_{a}. The minimum initial concentration C such that the concentration of the undissociated acid can be equated to C within an error of 1% would be
A. $9900 K_{a}$
B. $10000 K_{a}$
C. $99 K_{a}$
D. K_{a}

Answer: A

- Watch Video Solution

26. Two weak acids $H X$ and $H Y$ have K_{a} values 1.75×10^{-5} and 1.3×10^{-5}, respectively, at a certain temperature. An equimolar solution of mixture of two acids is parially neutralised by NaOH . How is the ratio of the contents of X^{Θ} and Y^{Θ} ions related to the K_{a} values and molarity?
A. $\left[\frac{\alpha}{1-\alpha}\right]=\frac{1.75}{1.3} \times\left[\frac{\alpha^{\prime}}{1-\alpha^{\prime}}\right], 0$, where α and α^{\prime} are ionised fractions of the acids $H X$ and $H Y$ respectively.
B. The ratio is unrelated to the K_{a} values.
C. The ratio is unrelated to the molarity.
D. The ratio is unrelated to the pH of the solution.

Answer: A

- Watch Video Solution

27. $\mathrm{H}_{2} \mathrm{~S}$ behaves as a weak diprotic acid in aqueous solution. Which of the following is the correct explanantion for pH of a solution of $\mathrm{H}_{2} \mathrm{~S}$ in terms of its $p K_{1}, p K_{2},\left[H_{2} S\right]$ and $\left[S^{2-}\right]$
A. $p H=\frac{1}{2}\left(p K_{1}+p K_{2}\right)$
B. $p H=\frac{1}{2}\left(p K_{1}+p K_{2}-\log \frac{\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}\right)$
C. $p H=\frac{1}{2}\left(p K_{1}+p K_{2}+\log \frac{\left[S^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}\right)$
D. $p H=\frac{1}{2}\left(p K_{1}-p K_{2}+\log \frac{\left[\mathrm{H}_{2-} \mathrm{S}\right]}{\left[\mathrm{S}^{2-}\right]}\right)$

Answer: C

- Watch Video Solution

Ex 8.3

1. Calculate the pH of a solution of given mixture.
a. $\left(2 g \mathrm{CH}_{3} \mathrm{COOH}+3 g \mathrm{CH}_{3} \mathrm{COONa}\right)$ in 100 mL of mixture.
b. 5 mL of $0.1 \mathrm{MNH}_{4} \mathrm{OH}+250 \mathrm{mLof} 0.1 \mathrm{MNH}_{4} \mathrm{Cl}$.
c. $\left(0.25 \mathrm{~mol} \mathrm{of} \mathrm{CH}_{3} \mathrm{COOH}+0.35 \mathrm{~mol} \mathrm{ofCH} 3 \mathrm{COONa}\right)$ in 500 mL mixture.
K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\left(p K_{a}=4.7447\right)$
$K_{b} \mathrm{ofNH}_{4} \mathrm{OH}=1.8 \times 10^{-5}\left(p K_{b}=4.7447\right)$
2. How many moles of $\mathrm{NH}_{4} \mathrm{C} 1$ should be added to 200 mL solution of $1.18 \mathrm{MNH}_{4} \mathrm{OH}$ to have a pH of $9.60 . \mathrm{K}_{b}$ of $\mathrm{NH}_{4} \mathrm{OH}=2 \times 10^{-5}$

- Watch Video Solution

3. A buffer solution was made by adding 15.0 g of $\mathrm{CH}_{3} \mathrm{COOH}$ and $20.5 \mathrm{gCH}_{3} \mathrm{COONa}$. The buffer is diluted to 1.0 L .
a. Calculate the pH of solution.
b. What will be the change in $p H$ if 10.0 mL of $1.0 \mathrm{MHC1}$ is added to it.

Given: $p K_{a}$ ofCH $H_{3} \mathrm{COOH}=4.74, \log \left(\frac{13}{12}\right)=0.035$

- Watch Video Solution

4. A buffer solution contains $0.25 \mathrm{MNH}_{4} \mathrm{OH}$ and $0.3 \mathrm{NH}_{4} \mathrm{C}$.
a. Calculate the pH of the solution.
b. How much NaOH should be added to 1 L of the solution to change pH by $0.6 . K_{b}=2 \times 10^{-5}$.
5. Calculate the hydrolysis constant $\left(K_{h}\right)$ and degree of hydrloysis (h) of $\mathrm{NH}_{4} \mathrm{C} 1$ in 0.1 M solution.
$K_{b}=2.0 \times 10^{-5}$. Calculate the $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$ ions in the solution.

Watch Video Solution

6. Calcualte the percentage hydrolysis of $10^{-3} \mathrm{MN}_{2}^{\oplus} \mathrm{H}_{5} \mathrm{C1}^{\Theta}$ (hydrazinium chloride), salt contining acid ion conjugate to hydrazine base $\left(\mathrm{NH}_{2} \mathrm{NH}_{2}\right) \cdot K_{b}$ for $\mathrm{N}_{2} \mathrm{H}_{4}=1.0 \times 10^{-6}$.

- Watch Video Solution

7. Calculate the amount of $\mathrm{NH}_{4} \mathrm{C} 1$ required to dissolve in 500 mL of water to have a $p H=4.5, K_{b}=2.0 \times 10^{-5}$.
8. A 0.25 M solution of pyridinium chloride $\left(\mathrm{C}_{5} \mathrm{H}_{5}{ }^{\oplus} \mathrm{HC1} 1^{\Theta}\right)$ has pH of 2.89
. Calculate $p K_{b}$ for pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$.

Watch Video Solution

9. Which of the following is a buffer solution?
A. A solution of $\mathrm{KC1}$ and KOH
B. A solution of $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
C. A solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ and $\mathrm{NH}_{4} \mathrm{OH}$
D. A solution of PhCOOK nad PhCOOH

Answer: D

- Watch Video Solution

10. Which of the following is not a buffer?
A. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
B. $\mathrm{HCOOH}+\mathrm{HCOONa}$
C. $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{HCOOK}$
D. $\mathrm{NH}_{4} \mathrm{OH}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Answer: A

- Watch Video Solution

11. In an acidic buffer solution, if some $\mathrm{H}_{2} \mathrm{So}_{4}$ is added, its pH will
A. Remain constant
B. Change but cannot be predicted
C. Decrease
D. Increase

Answer: C

- Watch Video Solution

12. Which of the following solutions containing weak acid and salt of its conjugate base has maximum buffer capaity?
A. [Salt] < [Acid]
B. $[$ Salt $]=[$ Acid $]$
C. [Salt] > [Acid]
D. [Salt] + [Acid] is minimum

Answer: B

- Watch Video Solution

13. A weak acid $H A$ has $K_{a}=10^{-6}$. What would be the molar ratio of this acid and its salt with strong base so that pH of the buffer solution is 5 ?
A. $1 / 10$
B. 10
C. 1
D. 2

Answer: B

- Watch Video Solution

14. The addition of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ to $0.1 \mathrm{MH}_{3} \mathrm{PO}_{4}$ will cuase
A. No change in $p H$ value
B. Increases in its $p H$ value
C. Decrease in its $p H$ value
D. Change in $p H$ but cannot be predicted

Answer: B

15. On diluting a buffer solution, its pH
A. Increases
B. Decreases
C. Remains same
D. Cannot be predicted

Answer: C

- Watch Video Solution

16. The pH of a solution containing 0.1 mol of $\mathrm{CH}_{3} \mathrm{COOH}, 0.2 \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{COONa}$, and 0.05 mol of NaOH in $1 \mathrm{~L} .\left(p \mathrm{~K}_{a} o f \mathrm{CH}_{3} \mathrm{COOH}=4.74\right)$ is:
A. 5.44
B. 5.20
C. 5.04
D. 4.74

Answer: A

- Watch Video Solution

17. A weak base $B O H$ is titrated with strong acid $H A$. When 10 mL of $H A$ is added, the $p H$ is 9.0 and when $25 m L$ is added, $p H$ is 8.0 . The volume of acid required to reach the equivalence point is
A. 50 mL
B. 40 mL
C. $35 m L$
D. 30 mL

Answer: D

- Watch Video Solution

18. To 1.0 L solution containing 0.1 mol each of NH_{3} and $\mathrm{NH}_{4} \mathrm{C} 1,0.05 \mathrm{molNaOH}$ is added. The change in $p H$ will be $\left(p K_{a}\right.$ for $\mathrm{CH}_{3} \mathrm{COOH}=4.74$)
A. 0.30
B. -0.30
C. 0.48
D. -0.48

Answer: C

- Watch Video Solution

19. The pH of blood is 7,4 . If the buffer in blood constitute CO_{2} and $\mathrm{HCO}_{3}^{\Theta}$ ions, calculate the ratio of conjugate base of acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ to maintain the pH of blood. Given K_{1} of $\mathrm{H}_{2} \mathrm{CO}_{3}=4.5 \times 10^{-7}$.
A. 11.25
B. 10.0
C. 8.5
D. None

Answer: A

- Watch Video Solution

20. The pH of blood is
A. >10
B. Between 8 and 0
C. Between 7 and 8
D. <6

Answer: C

21. Buffer in blood consists of
A. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and Cl^{Θ}
B. $\mathrm{HC1}$ and $\mathrm{HCO}_{3}^{\Theta}$
C. $H C 1$ and $C 1{ }^{\Theta}$
D. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{HCO}_{3}^{\Theta}$

Answer: D

- Watch Video Solution

22. K_{a} for $H C N$ is $5 \times 10 \wedge(-10)$ at $25^{\circ} \mathrm{C}$. For maintaining a constant $p H$ of 9.0 , the volume of $5 M K C N$ solution required to be added to 10 mL of $2 M H C N$ solution is
A. $9.3 m L$
B. 7.95 mL
C. $4 m L$
D. $2 m L$

Answer: D

- Watch Video Solution

23. 18 mL of mixture of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ required 6 mL of 0.1 MNaOH for neutralisation of the acid 12 mL of 0.1 MHC for reaction with salt, separately. If $p K_{a}$ of the acid is 4.75 , what is the $p H$ of the mixture
A. 4.5
B. 4.6
C. 4.75
D. 5.05

Answer: D

24. The pH of blood is maintained by the balance between $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}. If the amount of CO_{2} in the blood is increased, how will it effect the pH of blood'?
A. $p H$ will remain same.
B. $p H$ wil be 7
C. $p H$ will increases.
D. $p H$ will decrease.

Answer: A

- Watch Video Solution

25. Fixed volume of 0.1 M benzoic acid $\left(p K_{a}=4.2\right)$ solution is added into 0.2 M sodium benzote solution and formed a 300 mL , resulting acidic buffer solution. If $p H$ of the resulting solution is 3.9 , then added volume of banzoic acid is
A. $240 m L$
B. 150 mL
C. 100 mL
D. None

Answer: A

- Watch Video Solution

26. 0.1 mol of $\mathrm{RNH}_{2}\left(K_{b}=5 \times 10^{-5}\right)$ is mixed with 0.08 mol of $\mathrm{HC1}$ and diluted to 1 L . Calculate the $\left[H^{\oplus}\right]$ in the solution.
A. $8 \times 10^{-11} M$
B. $1.6 \times 10^{-11} M$
C. $8 \times 10^{-5} M$
D. $8 \times 10^{-2} M$

Watch Video Solution

27. A weak acid $H X\left(K_{a}=10^{-5}\right)$ on reaction with NaOH gives NaX . For 0.1 M aqueous solution of NaX , the \% hydrolysis is
A. 1%
B. 0.01 \%
C. 0.001 \%
D. 0.15%

Answer: B

- Watch Video Solution

28. The pH of 0.1 M solution of the following salts decreases in the order
A. $\mathrm{HCl}>\mathrm{NaCl}>\mathrm{NH}_{4} \mathrm{Cl}>\mathrm{NaCN}$
B. $\mathrm{HCl}>\mathrm{NaCN}>\mathrm{NH}_{4} \mathrm{Cl}>\mathrm{NaCl}$
C. $\mathrm{NaCN}>\mathrm{NaCl}>\mathrm{NH}_{4} \mathrm{Cl}>\mathrm{HCl}$
D. $\mathrm{NH}_{4} \mathrm{Cl}>\mathrm{NaCN}>\mathrm{NaCl}>\mathrm{HCl}$

Answer: C

- Watch Video Solution

29. The degree of hydrolysis of a salt of W_{A} and W_{B} in its $0.1 M$ solution is 50%. If the molarity of the solution is 0.2 M , the percentage hydrolysis of the salt woukd be
A. 25%
B. 50 \%
C. 75 \%
D. 100%

Answer: B

30. $p H$ of separate solution of four potassium salts, $K W, K X, K Y$ and $K Z$ are $7.0,9.0,10.0$, and 10.5 , respectively. If each solution is $0.2 M$, the strongst acid would be
A. $H W$
B. $H X$
C. $H Y$
D. $H Z$

Answer: A

- Watch Video Solution

31. Which of the following solutions have $\mathrm{pH}<7$.
A. BaI_{2}
B. $\mathrm{AI}\left(\mathrm{NO}_{3}\right)_{3}$
C. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
D. CsI

Answer: B

- Watch Video Solution

32. Which of the following solution have $\mathrm{pH}>7$.
I. $B a F_{2}$ II. $R b I$
III. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$
IV. $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ba}$
A. I
B. I, II, III
C. I, III
D. I, III, IV

Answer: D

33. The expression to calculate pH of sodium acetate solution at $25^{\circ} \mathrm{C}$ is
A. $p \mathrm{H}=7+\frac{1}{2} p K_{b}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)-\frac{1}{2} \log [$ salt $]$
B. $\mathrm{pH}=7+\frac{1}{2} p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)-\frac{1}{2} \log [$ salt $]$
C. $\mathrm{pH}=7+\frac{1}{2} p K_{b}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)+\frac{1}{2} \log [$ salt $]$
D. $\mathrm{pH}=7+\frac{1}{2} p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)+\frac{1}{2} \log [$ salt $]$

Answer: D

- Watch Video Solution

34. The correct order of increasing $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ in the following aqueous solution is
A. $0.01 \mathrm{MH}_{2} \mathrm{~S}<0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}<0.01 \mathrm{MNaC1}<0.01 \mathrm{MNaNO}_{3}$
B. $0.01 \mathrm{MNaC1}=0.01 \mathrm{MNaNO}_{3}<0.01 \mathrm{MH}_{2} \mathrm{~S}<0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}$
C. $0.01 \mathrm{MH}_{2} \mathrm{~S}<0.01 \mathrm{MNaNO}_{3}=0.01 \mathrm{MNaC1}<0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}$
D. $0.01 \mathrm{MH}_{2} \mathrm{~S}<0.01 \mathrm{MNaNO}_{3}<0.01 \mathrm{MNaC1}<0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}$

Answer: B

- Watch Video Solution

35. pH of water is 7 . When a substance Y is dissolved in water, the $p H$ becomes 13 . The substance Y is a salt of
A. Weak acid and weak base
B. Strong acid and strong base
C. Strong acid and weak base
D. Weak acid and strong base

Answer: D

- Watch Video Solution

36. The hydrolysis constang of 0.1 M aqueous solution of sodium acetate if K_{a} of $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$ is
A. 5.5×10^{-10}
B. 4.5×10^{-8}
C. 5.5×10^{-12}
D. None of these

Answer: A

- Watch Video Solution

37. The compound whose 0.1 M solution is basic is
A. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
B. $\mathrm{NH}_{4} \mathrm{Cl}$
C. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{COONa}$

Answer: D

D Watch Video Solution

38. K_{a} for ascorbic acid $(H A S c)$ is 5×10^{-5}. Calculate the $\left[H^{\oplus}\right]$ in an aqueous solution in which the concentration of $A s C^{\Theta}$ ions is $0.02 M$.
A. 2×10^{-6}
B. 2×10^{-7}
C. 5×10^{-9}
D. 5×10^{-10}

Answer: C

1. a. At what pH does indicator change colour if the indicator is a weak acid with $K_{\text {Ind }}=4.0 \times 10^{-4}$.
b. For which of the following neutralisation would the indicator be useful?
i. $\mathrm{HCl}+\mathrm{NaOH}$
ii. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$
iii. $\mathrm{HCl}+\mathrm{NH}_{3}$
c. Name the indicators which can be used for such titration.

- Watch Video Solution

2. The acid from of an acid base indicator is yellow in acid and red in basic from. What is the change in $p H$ in order to change the indicator form 80% yellow to 80% red.

- Watch Video Solution

3. Given that solubility product of BaSO_{4} is 1×10^{-10} will be precipiate from when
a. Equal volumes of $2 \times 10^{-3} \mathrm{MBaC1}_{2}$ solution and $2 \times 10^{-4} \mathrm{MNa}_{2} \mathrm{SO}_{4}$ solution, are mixed?
b. Equal volumes of $2 \times 10^{-8} \mathrm{MBaC1}_{2}$ solution and $2 \times 10^{-3} \mathrm{MNa}_{2} \mathrm{SO}_{4}$ solution, are mixed?
c. 100 mL of $10^{-3} \mathrm{MBaC1}_{2}$ and 400 mL of $10^{-6} \mathrm{MNa}_{2} \mathrm{SO}_{4}$ are mixed.

- Watch Video Solution

4. The $K_{s p}$ of $\mathrm{AgC1}$ at $25^{\circ} \mathrm{C}$ is 1.6×10^{-9}, find the solubility of salt in $g L^{-1}$ in water.

- Watch Video Solution

5. If solutbility of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ in water at $20^{\circ} \mathrm{C}$ is $3.9 \mathrm{gL} \mathrm{L}^{-1}$. Calculate the $K_{s p}$. Given $\mathrm{MwCa}\left(\mathrm{IO}_{3}\right)_{2}=390$.
6. Find the solubility of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ is molL^{-1} in a solution containing 0.1 MCaCl at $25^{\circ} \mathrm{C} . \mathrm{K}_{\text {sp }}$ of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}=6.3 \times 10^{-7}$

- Watch Video Solution

7. The $K_{s p}$ of BaSO_{4} is 1.6×10^{-9}. Find the solubility of BaSO_{4} in gL^{-1} in
a. Pure water
b. $0.1 \mathrm{MBa}\left(\mathrm{NO}_{3}\right)_{2}$

- Watch Video Solution

8. A solution contains $1.4 \times 10^{-3} \mathrm{MAgNO}_{3}$. What concentration of $\mathrm{KC1}$ will be required to initiate the precipitation of $A g C 1$? $K_{s p} A g C 1=2.8 \times 10^{-10}$

- Watch Video Solution

9. If the solubility of CaSO_{4} in $\mathrm{H}_{2} \mathrm{O}$ is $10^{-5} \mathrm{M}$, Calculate the solubility in 0.005 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

10. The concentration of Ag^{\oplus} ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.0 \times 10^{-4} \mathrm{M}$. Calculate the solubility of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in a solution which is 0.01 M in $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$.

- Watch Video Solution

11. 500 mL of $2 \times 10^{-3} \mathrm{MA1C1}_{3}$ and 500 mol of $4 \times 10^{-2} \mathrm{M}$ solution of NaOH are mixed and solution is diluted to $10^{-2} \mathrm{~L}$ with water at room temperature wil a precipiate exist? Given:

$$
K_{s p} \text { of } A 1(\mathrm{OH})_{3}=5 \times 10^{-33} .
$$

- Watch Video Solution

12. You are provided with 500 mL of hard water, containing 0.005 mol of $\mathrm{CaC1}_{2}$ and two $\mathrm{H}_{2} \mathrm{SO}_{4}$ samples of 0.001 M and 0.02 M concentration. Which one or both or none can be used for precipitating Ca^{2+} ions. $K_{s p}$ of $\mathrm{CaSO}_{4}=2.4 \times 10^{-4}$.

Watch Video Solution

13. A lead salts is dissolved in HC1 which si 95% ionised. It is found to have $0.1 \mathrm{MPb}^{2+}$ and $0.28 \mathrm{MH}^{\oplus}$ ions. The solution is satured with $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$. Calculate the amount of Pb^{2+} ions that remains unprecipitated.
$K_{s p}$ of $P b S=4 \times 10^{-29}$,
$K_{\text {sp }}$ of $H_{2} \mathrm{~S}=1.1 \times 10^{-22}$

- Watch Video Solution

14. A solution constains Zn^{2+} ions and Cu^{2+} ions each of 0.02 M . If the solution is made $1 M$ in H^{\oplus}, and $H_{2} S$ is passed untill the solution is satured, should a precipitate be formed? Given: $K_{s p} Z n S=10^{-22}$,
$K_{s p}$ Cus $=8 \times 10^{-37}$.
In satured solution, $K_{s p}\left(H_{2} \mathrm{~S}\right)=10^{-22}$

- Watch Video Solution

15. The following pH range where the indicator shows change in colour are given
i. 4 - 9.7 ii. $7.46-10.0$ iii. 6.5-4

Which of the above pH range represent titration of
I. Strong acid/strong base $\left(S_{A} / S_{B}\right)$,
II. Weak acid/strong base $\left(W_{A} / S_{B}\right)$,
III. Weak base/strong acid $\left(W_{B} / S_{A}\right)$
A. (i) \rightarrow I, (ii) \rightarrow II, (iii) \rightarrow III
B. (iii) \rightarrow I, (ii) \rightarrow II, (i) \rightarrow III
C. (i) \rightarrow I, (iii) $\rightarrow I I,(i) \rightarrow I I I$
D. (i) \rightarrow I, (iii) \rightarrow II, (ii) \rightarrow III
16. The following acid base titration graphs are given:

(I)

Volume of base \longrightarrow
(II)

(I)
(III)

Which of the following graph represents titration of
i. $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{HC1}\left(W_{A} / S_{A}\right)$
ii. $\mathrm{HNO}_{3} / \mathrm{KOH}\left(\mathrm{S}_{\mathrm{A}} / S_{B}\right)$
iii. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} / \mathrm{KOH}\left(W_{A} / S_{B}\right)$

> Graph Titration
A. I. II. III i. ii. iii
B.
I. II. III ii. iii. i

Graph Titration
C.
I. II. III iii. ii. i

Graph Titration
D. I. II. III iii. i. ii

Answer: B

- Watch Video Solution

17. Which indicator is suitable for the titrations:

Titration
Indicator
i. $\mathrm{HCOOH} / \mathrm{NaOH} \quad(A)$ Bromothymol blue or phenolphtalein or methy1 orange o
ii. $\mathrm{HBr} / \mathrm{KOH}$
(B)Methy1 orange or methy1 red or bromocresol green
ii. $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{NHO}_{3}$
(C)Phenolphthalein or thymolphtalein
A. (i) $\rightarrow A$, (ii) $\rightarrow B$, (iii) $\rightarrow C$
B. (i) $\rightarrow A$, (ii) $\rightarrow C$, (iii) $\rightarrow B$
C. (i) $\rightarrow B$, (ii) $\rightarrow C$, (iii) $\rightarrow A$
D. (i) $\rightarrow C$, (iii) $\rightarrow A$, (iii) $\rightarrow B$
18. A solution gives the following colours with different indicators:
a. Methy1 orange \Rightarrow Yellow
b. Methy1 red \Rightarrow Yellow
c. Bromothymol blue \Rightarrow Orange

What is the pH of the solution?
A. >4.5
B. >6.0
C. 6.0 to 6.3
D. 4.5 to 6

Answer: C

19. In the titration of $\mathrm{NH}_{4} \mathrm{OH}$ versus $\mathrm{HC1}$, the pH of the solution at equivalence point is about:
A. 5.5
B. 7
C. 8.5
D. 9.5

Answer: A

- Watch Video Solution

20. The $p H$ indicators are
A. Salts of strong acids and strong bases
B. Salts of weak acids and weak bases
C. Either weak acids or weak bases
D. Either strong acids or strong base

Answer: C

- Watch Video Solution

21. In which of the following acid-base titration, the pH is greater than 8 at the equivalence point?
A. Aceitic acid vs ammonia
B. Acetic acid vs sodium hydroxide
C. Hydrochloric acid vs ammonia
D. Hydrochloric acid vs sodium hydroxide

Answer: B

D Watch Video Solution

22. Strong acids are generally used as standard solution in acid-base titrations because:
A. The $p H$ at the equivalent point will always be 7 .
B. They can be used to titrate both strong and weak bases.
C. Strong acids from more stable soluitons than weak acids.
D. The salts of strong acids do not hydrolyse.

Answer: C

- Watch Video Solution

23. The best indicator for detection of end point in titration of a weak acid and a strong base is
A. Methy1 orange (3 to 4)
B. Methy1 red (5 to 6)
C. Bromotymol blue (6 to 7.5)
D. Phenolphthalein (8 to 9.6)

Answer: D

24. The precipitate of $\operatorname{CaF}_{2}\left(K_{s p}=1.7 \times 10^{-10}\right)$ is obtained when equal volumes of the following are mixed
A. $10^{-2} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{\Theta}$
B. $10^{-4} \mathrm{MCa}^{2+}+10^{-4} \mathrm{MF}^{\Theta}$
C. $10^{-3} \mathrm{MCa}^{2+}+10^{-5} \mathrm{MF}^{\Theta}$
D. $10^{-5} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{\Theta}$

Answer: A

Watch Video Solution

25. The solubility of $A_{2} B_{3}$ is "x mol dm"^(-3). ItsK_(sp)' is
A. $6 x^{4}$
B. $64 x^{4}$
C. $36 x^{5}$
D. $108 x^{5}$

Answer: D

- Watch Video Solution

26. The pH of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 10.6 at $25^{\circ} \mathrm{C} . \mathrm{K}_{\text {sp }}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is
A. $3.2 \times 10^{-12} M^{3}$
B. $3.2 \times 10^{-11} M^{3}$
C. $1.6 \times 10^{-12} M^{3}$
D. $1.6 \times 10^{-11} M^{3}$

Answer: B

27. Solubility of AgI in $0.05 \mathrm{MBaI}_{2}$ solution is $10^{-15} \mathrm{M}$. The solubility of AgI in water is
A. 25×10^{-7}
B. $10^{-7} \mathrm{M}$
C. 5×10^{-8}
D. $10^{-8} \mathrm{M}$.

Answer: D

- Watch Video Solution

28. Solubility of a solute in water is dependent on temperature as given by
$S=A e^{-\Delta H / R T}$, where $\Delta H=$ heat of solution
Solute $+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow$ Solution, $\Delta H= \pm x$
For given solution, variation of $\log \mathrm{S}$ with temperature is shown
graphically. Hence, solution is

A. CaO
B. MgSO_{4}
C. CuSO_{4}
D. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
29. The solubility of CaF_{2} in a solution of $0.1 \mathrm{MCa}\left(\mathrm{NO}_{3}\right)_{2}$ is
A. $\left[\mathrm{Ca}^{2+}\right]$
B. $2\left[F^{\Theta}\right]$
$\left[F^{\Theta}\right]$
C. $\frac{}{2}$
D. $2\left[\mathrm{NO}_{3}^{\Theta}\right]$

Answer: C

- Watch Video Solution

30. The volume of water needed to dissolve 1 mg of $\mathrm{PbSO}_{4}\left(K_{\text {sp }}=1.44 \times 10^{-8}, \mathrm{MwofPbSO}_{4}=303 \mathrm{~g}\right)$ at $25^{\circ} \mathrm{C}$ is
A. 80 mL
B. $43 m L$
C. 27.5 mL
D. 10 mL '

Answer: C

- Watch Video Solution

31. The volume of water needed to prepare a satured solution of Ag^{\oplus} having maximum $\left[A g^{\oplus}\right]$ ion by selecting one out of three slats form:
$\operatorname{AgC1}\left(K_{s p}=2.0 \times 10^{-10}\right), \operatorname{AgBr}\left(K_{s p}=5 \times 10^{-13}\right)$,
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}\left(\mathrm{~K}_{\text {sp }}=2.4 \times 10^{-12}\right)$. whcih compound should be used to have maximum $\left[A g^{\oplus}\right]$?
A. $\mathrm{AgC1}$
B. AgBr
C. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
D. Any one of them

Answer: C

- Watch Video Solution

32. How many grams of KBr can be added to 1 L of 0.12 M solution of AgNO_{3} just to start the precipitation of
$\operatorname{AgBr} .\left(M w o f K B r=120, K_{s p} o f A g B r=10^{-13}\right)$
A. $10^{-10} g$
B. $10^{-9} \mathrm{~g}$
C. $0.5 \times 10^{-10} g$
D. $0.5 \times 10^{-9} g$

Answer: A

- Watch Video Solution

33. The solubility of silver benzoate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOAg}\right)$ in $\mathrm{H}_{2} \mathrm{O}$ and in a buffer solution of $p H=2,3$, and 4 are S_{1}, S_{2}, S_{3} and S_{4} respectively. The decreasing order of solubility is
A. $S_{1}>S_{2}>S_{3}>S_{4}$
B. $S_{4}>S_{3}>S_{2}>S_{1}$
C. $S_{2}>S_{3}>S_{4}>S_{1}$
D. $S_{3}>S_{2}>S_{4}>S_{1}$

Answer: C

- Watch Video Solution

34. The solubility of $\mathrm{CH}_{3} \mathrm{COOAg}$ in a buffer solution with $\mathrm{pH}=4$, whose $K_{s p}=10^{-12}$ and $K_{a}=\frac{10^{-4}}{3}$ is
A. 10^{-6}
B. 0.5×10^{-6}
C. 5×10^{-6}
D. 2×10^{-6}

Answer: D

- Watch Video Solution

35. Refer to above, the ratio of solubility of $\mathrm{CH}_{3} \mathrm{COOAg}$ in a buffer solution with $\mathrm{pH}=4$ and in $\mathrm{H}_{2} \mathrm{O}$ is
A. $1 / 2$
B. 2
C. 1/3
D. 3

Answer: B

36. What is the maximum molarity of Co^{+2} ions in $0.1 \mathrm{MHC1}$ saturated with $0.1 \mathrm{MH}_{2} S .\left(K_{a}=4 \times 10^{-21}\right)$. Given: $K_{s p}$ of $C o S=2 \times 10^{-21}$.
A. 0.10 M
B. 1.00 M
C. $4.48 \times 10^{-11} M$
D. 0.50 M

Answer: D

- Watch Video Solution

37. The following curve shows the change of pH during the course of titration of weak acid $H A$ with a strong base. At which point in the titration curve is the concentration of acid equal to that of its conjugate
base.

A. Point B
B. Point C
C. Point D
D. Point E

Answer: C
38. If the salts $M_{2} X, Q Y_{2}$, and $P Z_{3}$ have the same solubilities $\left(<\frac{4}{27}\right)$, their $K_{s p}$ values are related
A. $K_{s p}\left(M_{2} X\right)=K_{s p}\left(Q Y_{2}\right)>K_{s p}\left(P Z_{3}\right)$
B. $K_{s p}\left(M_{2} X\right)>K_{s p}\left(Q Y_{2}\right)=K_{s p}\left(P Z_{3}\right)$
C. $K_{s p}\left(M_{2} X\right)=K_{s p}\left(Q Y_{2}\right)=K_{s p}\left(P Z_{3}\right)$
D. $K_{s p}\left(M_{2} X\right)>K_{s p}\left(Q Y_{2}\right)>K_{s p}\left(P Z_{3}\right)$

Answer: A

- Watch Video Solution

39. Arrange the following solutions in decreasing order of $\left[\mathrm{Ag}^{\oplus}\right]$ ion:
I. $1 M\left[\operatorname{Ag}(C N)_{2}\right]^{\Theta}$
II. Saturated $\mathrm{AgC1}$
III. $1 M\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus} \in 0.1 \mathrm{MNH}_{3}$
IV. Saturated AgI

$$
\begin{aligned}
& \left(K_{s p} o f A g C 1=10^{-10}, K_{s p} o f A g I=8.3 \times 10^{-17} K_{f}\right. \\
& {\left[A g\left(C N_{2}\right)\right]^{\Theta}=10^{21}, K_{f}\left[\operatorname{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}=10^{8}}
\end{aligned}
$$

A. $I>$ II $>$ III $>$ IV
B. II $>$ III $>I>I V$
C. IV $>$ II $>I I>I$
D. I gt IV gt III gt II'

Answer: B

- Watch Video Solution

Ex 8.5

1. How many moles of NH_{3} must be added to 1.0 L of $0.75 \mathrm{MAgNO}_{3}$ in order to reduce the $\left[\mathrm{Ag}^{\oplus}\right]$ to $5.0 \times 10^{-8} \mathrm{M} . \mathrm{K} \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{\oplus}=1 \times 10^{8}$.
2. Calculate the $\left[\mathrm{Fe}^{2}\right]$ in a solution prepared by mixting 75.0 mL of $0.03 \mathrm{MFeSO}_{4}$ with 125.0 mL of $0.2 \mathrm{M} \mathrm{KCNK} \mathrm{KFe}_{\mathrm{F}}(\mathrm{CN})_{6}^{4-}=1 \times 10^{24}$.

- Watch Video Solution

3. a. Calculate $\left[A g^{\oplus}\right]$ in a solution of $\left[A g^{\oplus}\right]$ in a solution of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{\oplus}\right]$ prepared by adding $1.0 \times 10^{-3} \mathrm{molAgNO}_{3}$ to 1.0Lof1.0MNH 3 solution $\mathrm{Kf} \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{\oplus}=10^{8}$.
b. Calculate $\left[\mathrm{Ag}^{\oplus}\right]$ which is in equilibrium with $0.15 \mathrm{M}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}$ and $1.5 \mathrm{NH}_{3}$.

- Watch Video Solution

4. Calculate the $\left[\mathrm{Fe}^{2+}\right]$ in a solution containing $0.2 \mathrm{M}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $0.1 \mathrm{MCN}{ }^{\Theta} \cdot \mathrm{K}_{f} \mathrm{Fe}(C N)_{6}^{4-}=1 \times 10^{24}$.

- Watch Video Solution

5. Calculate how much $A g B R$ could dissolves in 1.0Lof0.4MNH3. $\mathrm{K} f \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{\oplus}=1.0 \times 10^{8}$.

- Watch Video Solution

6. Calculate K_{f} for the reaction:
$M^{3+}+\operatorname{SCN}^{\Theta} \Leftrightarrow \mathrm{MSCN}^{2+}$,
The $\left[M^{3+}\right]$ in the solution is $2.0 \times 10^{-3} \mathrm{M},\left[S C N^{\Theta}\right]=1.5 \times 10^{-3} \mathrm{M}$ and Free $\left[S C N^{\Theta}\right]=1.0 \times 10^{-5} \mathrm{M}$.

- Watch Video Solution

Exercises Subjective (Weak Acid And Weak Bases)

1. a. Distinguish between acid strength and acid concentration.
b. Distinuish between weak base and an isoluble base.
2. a. Write an equilibriu equation for a solution containing $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$. What effect does $\mathrm{CH}_{3} \mathrm{COONa}$ have on a solution of $\mathrm{CH}_{3} \mathrm{COOH}$?
b. What reagents should be added to a solution to increase
i. $\left[\mathrm{CH}_{3} \mathrm{COO}^{\Theta}\right]$ ii. $\left[\begin{array}{l}\oplus \\ N H_{4}\end{array}\right]$

- Watch Video Solution

3. Which of the reagents listed below could be added to water to make
0.1 M solutions of each of the following ions?
\oplus
a. NH_{4}
b. $\mathrm{CH}_{3} \mathrm{COO}^{\Theta}$
c. $C 1^{\Theta}$
i. NH_{3} ii. $\mathrm{NH}_{4} \mathrm{Cl}$
iii. $\mathrm{CH}_{3} \mathrm{COOH}$
iv. $\mathrm{CH}_{3} \mathrm{COONa}$
v. $H C 1$
vi. $N a C 1$.

- Watch Video Solution

4. Saccharin $\left(K_{a}=2 \times 10^{-12}\right)$ is a weak acid represented by formula HSaC. A 4×10^{-4} mole amount of saccharin is dissolved in $200 \mathrm{~cm}^{3}$ water of pH 3 . Assuming no change in volume. Calculate the soncentration of $S a C^{-}$ions in the resulting solution at equilibrium.

- Watch Video Solution

5. Accety1 salocylic acid (aspirin) ionises in water as:

$\left(K_{a}=2.75 \times 10^{-9}\right)$
If two tablets of aspirin each of 0.32 g is dissolved in water to produce

250 mL solution, calculate

6. Calculate the $\left[\mathrm{CH}_{2} \mathrm{FCOOH}\right]$ (fluoroacetic acid) which is required to get $\left[H^{\oplus}\right]=1.5 \times 10^{-3} M . K_{a}$ of acid $=2.6 \times 10^{-3}$.

- Watch Video Solution

7. Calculate the dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ at 298 k , if ΔH^{Θ} and ΔS^{Θ} for the given changes are as follows:-
$\mathrm{NH}_{3}+\mathrm{H}^{\oplus} \Leftrightarrow \mathrm{NH}_{4}$,
$\Delta H^{\Theta}=-52.2 \mathrm{KJmol}^{-1}, \Delta S^{\Theta}=1.67 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Θ
$\mathrm{H}_{2} \mathrm{O} \Leftrightarrow H^{\oplus}+O H, \Delta H^{\Theta}=56.6 \mathrm{kJmol}^{-1}$.
$\Delta S^{\Theta}=-76.53 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

8. Determine the dergee of dissociation of $0.05 M N H_{3}$ at $25^{\circ} \mathrm{C}$ in a solution of $\mathrm{pH}=11$.
$K_{b}=1.77 \times 10^{-5}\left(p K_{b}=4.75\right)$

- Watch Video Solution

9. In the eqantitative analysis Bi^{3+} is detected precipitation of $[\mathrm{BiO}(\mathrm{OH})(\mathrm{s})]$ [bismuthy1 hydroxide). Calculate the pH when the following equilibria exists:
$\mathrm{BiO}(\mathrm{OH})(\mathrm{s}) \Leftrightarrow \mathrm{BiO}^{\oplus}(\mathrm{aq})+\stackrel{\Theta}{\mathrm{O}} \mathrm{H}(\mathrm{aq})\left(\mathrm{K}=4 \times 10^{-10}\right)$
10. Calculate the $\left[\begin{array}{l}\mathrm{O} \\ \mathrm{OH}\end{array}\right]$ of $\left[\mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{3}\right]^{\oplus}$ and $\left[\mathrm{H}_{3} \mathrm{~N}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{3}\right]^{2+}$ in
$0.15 M$ ethylene diamine (aq) if
$\mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \stackrel{\oplus}{\mathrm{~N}} \mathrm{H}_{3}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}\left(\mathrm{K}_{1}=8.5 \times 10^{-5}\right)$
$\mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \stackrel{\oplus}{\mathrm{~N}} \mathrm{H}_{3}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow\left[\mathrm{NH}_{3} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{3}\right]^{2+}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}\left(\mathrm{K}_{2}=2.7 \times 10^{-8}\right)$

- Watch Video Solution

11. Calculate pH of
a. $0.002 \mathrm{NCH}_{3} \mathrm{COOH}$ having 2.3% dissociation.
b. $0.002 \mathrm{NNH}_{4} \mathrm{OH}$ having 2.3% dissociation.

- Watch Video Solution

12. Calculate $\left[\mathrm{H}^{\oplus}\right]$ and $\left[\mathrm{CHC1}_{2} \mathrm{COO}^{\Theta}\right]$ in a solution that is $0.01 \mathrm{MHC1}$ and $0.01 \mathrm{MCHC1} 1_{2} \mathrm{COOH} . \mathrm{K}_{a}$ for $\mathrm{CHC1}_{2} \mathrm{COOH}$ is 5×10^{-3}.
13. A solution contains $0.09 \mathrm{HC1}, 0.09 \mathrm{MCHC1}_{2} \mathrm{COOH}$, and $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$. The pH of this solution is one. Calculate K_{a} for $\mathrm{CHC1}_{2} \mathrm{COOH}$. (Given $\left.\mathrm{K}_{a} \mathrm{CH}_{3} \mathrm{COOH}=10^{-5}\right)$

- Watch Video Solution

14. What is the concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ which can be added to 0.5 MHCOOH solution so that dissociation of both is same.
$K_{\mathrm{CH}_{3} \mathrm{COOH}}=1.8 \times 10^{-5}, K_{\mathrm{HCOOH}}=2.4 \times 10^{-4}$

- Watch Video Solution

15. What are $\left[H^{\oplus}\right],\left[A^{\Theta}\right.$, and $\left[B^{\Theta}\right]$ in a solution that is 0.3MHA and $0.1 \mathrm{MHB} ? K_{a}$ for $H A$ and $H B$ are 1.38×10^{-4} and 1.05×10^{-10}, respectively.

- Watch Video Solution

Exercises Subjective (Buffer Solutions)

1. Calculate the weight of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ which must be added to 500 mL of $0.2 \mathrm{MNH}_{3}$ to yield a solution of $p H=9.35 . K_{a}$ for $N H_{3}=1.78 \times 10^{-5}$.

- Watch Video Solution

2. a. Calculate the ratio of pH of a solution continaing 1 mol . Of $\mathrm{CH}_{3} \mathrm{COONa}+1 \mathrm{~mol}$ of $\mathrm{HC1}$ per litre and of other solution containing 1 mol of $\mathrm{CH}_{3} \mathrm{COONa}+1 \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ per litre.
b. A 0.1 Msolution of weak acid $H A$ is 1% dissociated at $298 k$. what is its K_{a} ? what will be the new degree of dissociation of $H A$ and $p H$ when $0.2 M$ of $N a A$ is added to it.

- Watch Video Solution

Exercises Subjective (Hydrolysis Of Salt)

1. a. Calculate the percentage hydrolysis of 0.003 M aqueous solution of $\mathrm{NaOH} . \mathrm{K}_{a}$ for $\mathrm{HOCN}=3.3 \times 10^{-4}$.
b. What is the $p H$ and $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$ of $0.02 M$ aqueous solution of sodium butyrate. $\left(K_{a}=2.0 \times 10^{-5}\right)$.

- Watch Video Solution

2. K_{a} for the ionisation of Fe^{3+} to $\mathrm{Fe}(\mathrm{OH})^{2+}$ and H^{\oplus} is 6.5×10^{-3}, what is the maximum $p H$ value which could be used so that at least 95% of the total Fe^{3+} in a dilute solution exists as Fe^{3+} ?

- Watch Video Solution

Exercises Subjective (Polyprotic Acid)

1. Calculate the equilibrium constants for the reactions with water of $\mathrm{H}_{2} \mathrm{PO}_{4}^{\Theta}, \mathrm{HPO}_{4}^{2-}$, and PO_{4}^{3-} as ase. Comparing the relative values of two
equilibrium constants of $\mathrm{H}_{2} \mathrm{PO}_{4}^{\Theta}$ with water, deduce whether solutions of this ion in water are acidic or base, Deduce whether solutions of HPO_{4}^{2-} are acidic or bases. Given K_{1}, K_{2}, and K_{3} for $H_{3} P O_{4}$ are $7.1 \times 10^{-3}, 6.3 \times 10^{-8}$, and 4.5×10^{-13} respectively.

- Watch Video Solution

2. Citric acid $\left(H_{3} A\right)$ is a polyprotic acid with K_{1}, K_{2}, and K_{3} equals to $7.4 \times 10^{-4}, 1.7 \times 10^{-5}$, and 4.0×10^{-7}, respectively. Calculate the $\left[H^{\oplus}\right],\left[H_{2} A^{\Theta}\right],\left[H A^{2-}\right]$, and $\left[A^{3-}\right]$ in $0.01 M$ citric acid.

- Watch Video Solution

Exercises Subjective (Solubility And $K_{S p}$)

1. a. 25 mL of sample of saturated solution of PbI_{2} requires 10 mL of a certain $\mathrm{AgNO}_{3}(a q)$ for its titration. What is the molarity of this $\mathrm{AgNO}_{3}(a q) ? K_{s p}$ of $\mathrm{PbI}_{2}=4 \times 10^{-9}$.
b. $M(\mathrm{OH}) x$ has $K_{s p}=27 \times 10^{-12}$ and solubility in water is $10^{-3} \mathrm{M}$. Calculate the value of x.

- Watch Video Solution

2. a. Equal volumes of $0.02 \mathrm{MCaC1}_{2}$ and $0.04 \mathrm{MNa}_{2} \mathrm{SO}_{4}$ are mixed. Will a precipitate form? $K_{s p}$ of $\mathrm{CaSO}_{4}=2.4 \times 10^{-5}$

- Watch Video Solution

3. What $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$must be maintained in a saturated $\mathrm{H}_{2} \mathrm{~S}$ solution to precipitate Pb^{2+}, but not Zn^{2+} from a solution in which each ion is present at a concetration of 0.01 M ? $\left(K_{S P}\right.$ for $H_{2} S=1.1 \times 10^{-22}, K_{S P}$ for $\left.Z n S=1.0 \times 10^{-21}\right)$

- Watch Video Solution

4. Calculate the solubility of CaF_{2} in a solution buffered at $\mathrm{pH}=3.0 . \mathrm{K}_{a}$ for $H F=6.3 \times 10^{-4}$ and $K_{s p}$ of $C a F_{2}=3.45 \times 10^{-11}$.

Watch Video Solution

5. a. Will a precipitate of $\mathrm{Mg}(\mathrm{OH})_{2}$ be formed in a 0.001 M solution of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ if the pH of solution is adjusted to $9 . K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}=8.9 \times 10^{-12}$.
b. Calculate pH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ begin to precipitae form a solution containing $0.1 \mathrm{MMg}^{2+}$ ions. $\mathrm{K}_{\text {sp }} o f \mathrm{Mg}(\mathrm{OH})_{2}=1 \times 10^{-11}$.
c. Calculate $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$ of a solution after 100 mL of $0.1 \mathrm{MMgC1} 2$ is added to 100 mL of $0.2 \mathrm{MNaOH} . \mathrm{K}_{\text {sp }} \mathrm{Mg}(\mathrm{OH})_{2}=1.2 \times 10^{-11}$.

- Watch Video Solution

6. 0.01 mole of AgNO_{3} is added to 1 litre of a solution which is 0.1 M in $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ and 0.005 M in NaIO_{3}. Calculate the mole of precipitate formed
at equilibrium and the concentrations of $\mathrm{Ag}^{+}, \mathrm{IO}_{3}^{-}$and $\mathrm{CrO}_{4}^{2-} \cdot\left(\mathrm{K}_{s P}\right.$ values of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgIO_{3} are 10^{-8} and 10^{-13} erspectively)

- Watch Video Solution

7. 1.75 g of solid NaOH is added to $0.25 \mathrm{dm}^{3}$ of $0.1 \mathrm{MNiCI}_{2}$ solution.

Calculate:
a. Mass of $\mathrm{Ni}(\mathrm{OH})_{2}$ forms
b. pH if final solution Given $\mathrm{K}_{s p}$ of $\mathrm{Ni}(\mathrm{OH})_{2}=1.6 \times 10^{-14}$

- Watch Video Solution

8. Zn salt is mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ of 0.021 M . What amount of Zn^{2+} will remain uprecipitated in $12 m L$ of the solution? $K_{s p}$ of $\mathrm{ZnS}=4.51 \times 10^{-24}$.

- Watch Video Solution

9. A solution has $0.05 \mathrm{MMg}^{2+}$ and $0.05 \mathrm{MNH}_{3}$. Calculate the concentration of $\mathrm{NH}_{4} \mathrm{CI}$ required to prevent the formation of $\mathrm{Mg}(\mathrm{Oh})_{2}$ in solution. $\mathrm{K}_{S P}$ for $\mathrm{Mg}(\mathrm{OH})_{2}=9.0 \times 10^{-12}$ and ionisation constant of NH_{3} is 1.8×10^{-5}.

- Watch Video Solution

10. A hard water sample has $131 p \pm \mathrm{CaSO}_{4}$. What fraction of the water must be evporated in a container before solid CaSO_{4} begins to deposit. $K_{s p} o f \mathrm{CaSO}_{4}=9.0 \times 10^{-6}$.

D View Text Solution

11. To a solution of $0.01 \mathrm{MMg}^{2+}$ and $0.8 \mathrm{MNH}_{4} \mathrm{CI}$, and equal volume of NH_{3} is added which just gives precipitates. Calculate $\left[\mathrm{NH}_{3}\right]$ in solution.
$K_{s p} o f \mathrm{Mg}(\mathrm{OH})_{2}=1.4 \times 10^{-11}$ and $K_{b} o f \mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5}$.

- Watch Video Solution

12. 10 mL of $0.3 \mathrm{MNa}_{2} \mathrm{SO}_{4}$ are mixed with 20 mL solution having initially $0.1 \mathrm{MCa}^{2+}$ and $0.1 \mathrm{MSr}^{2+}$ in it. Calculate the final $\left[\mathrm{Ca}^{2+}\right],\left[\mathrm{Sr}^{2+}\right]$ and $\left[\mathrm{SO}_{4}^{2-}\right]$ in solution? Given $K_{s p} \mathrm{SrSO}_{4}=7.6 \times 10^{-7}$ and $K_{s p} \mathrm{CaSO}_{4}=2.4 \times 10^{-5}$.

- Watch Video Solution

13. The solubility of CaCO_{3} is $7 \mathrm{mg} / \mathrm{L}$. Calculate the $\mathrm{K}_{s p}$ of BaCO_{3} whne $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added slowely a solution containing equimolar concentration of Ca^{2+} and Ba^{2+} and no precipitate is formed until 90% of Ba^{2+} has beem precipitated as BaCO_{3}.

- Watch Video Solution

14. Calculate the solubility of AgCN in a buffer solution of $p H=3$, Given $K_{s p} o f A g C N=1.2 \times 10^{-16}$ and K_{a} for $H C N=4.8 \times 10^{-10}$.

- Watch Video Solution

15. Equal volumes of $0.02 \mathrm{MAgNO}_{3}$ and 0.01 MHCN are mixed. Calculate $\left[A g^{\oplus}\right]$ in solution after attaining equilibrium. $K_{a} H C N=6.2 \times 10^{-10}$ and $K_{\text {sp }}$ of $A g C N=2.2 \times 10^{-16}$.

- Watch Video Solution

16. Determine the number of mole of AgI which may be dissolved in 1.0 litre of $1 M C N^{-}$solution. $K_{S P}$ for Agl and K_{C} for $\mathrm{Ag}(C N)_{2}^{-}$are $1.2 \times 10^{-17} M^{2}$ and $7.1 \times 10^{19} M^{-2}$ respectively.

- Watch Video Solution

17. 100.0 mL of a saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is added to 250.0 mL of saturated solution of PbCrO_{4}. Will may precipitate form and if so what? Given $\quad K_{s p} \quad$ for $\mathrm{Ag}_{2} \mathrm{SO}_{4}, \mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{PbCrO}_{4}$, and PbSO_{4} are $1.4 \times 10^{-5}, 2.4 \times 10^{-12}, 2.8 \times 10^{-13}$, and 1.6×10^{-8}, respectively.
18. 2 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is boiled in a closed container with excess of CaF_{2}. Very small amount of CaCO_{3} and NaF are formed. If $\mathrm{K}_{\text {sp }}$ of CaCO_{3} is x and molar solubility of CaF_{2} is y, find the molar after cocentration of F^{Θ} in the resulting solution after equilibrium is attained.

- Watch Video Solution

19. How much RaF should be added to 100 mL of solution having $0.016 \mathrm{M} \in \mathrm{Sr}^{2+}$ ions to reduces its concentration to $2.5 \times 10^{-3} \mathrm{M} \mathrm{K}_{\text {Sp }} S r F_{2}=2.8 \times 10^{-9} \mathrm{at} 298 \mathrm{~K}$.

- Watch Video Solution

Exercises Subjective(Coordination Equilibria)

1. $\mathrm{H}_{2} \mathrm{~S}$ is bubbled into a 0.2 MNaCN solution which is 0.02 M each in $A g(C N)_{2}^{\Theta}$ and $\left(C d(C N)_{4}^{2-}\right.$. If $K_{s p}$ of $A g_{2} S$ and $C d S$ are 10^{-50} and
7.1×10^{-28} and K instability for $\left[\mathrm{Ag}(\mathrm{CN})_{2}^{\Theta}\right]$ and $\left[C d(C N)^{2-{ }^{\prime}} 4\right]$ are 1.0×10^{-20} and 7.8×10^{-18}, which sulphide will precipitate first?

- Watch Video Solution

2. Calculate the equilibrium constants of each of the indicated species necessary to reduce an initial $0.2 \mathrm{MZn}^{2+}$ solution to $1.0 \times 10^{-4} \mathrm{Zn}^{2+}$.
a. Nh_{3} and $\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ (assume no partial complexation) Θ
b. OH in equilibrium with $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$.
Θ
c. OH and $\mathrm{Zn}(\mathrm{OH})_{4}^{2-}$.
d. Calculate $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$ which would be produced by each equilibrium concentration of NH_{3} in part (a). Predict whether $\mathrm{Zn}(\mathrm{OH})_{2}$ or $\mathrm{Zn}(\mathrm{OH})_{4}^{2-}$ would form in preference to $\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ upon addition of suficient NH_{3} to produce the equilibrium concentration calculated in part(a).
e. Explain what would be observeed if concentrated NH_{3} solution were added slowely to $0.2 M$ solution of Zn^{2+}.

Given. $\mathrm{K}_{f} \mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}=5 \times 10^{8}$.
$K_{s p} Z N(O H)_{2}=1.8 \times 10^{-14}$.
$\mathrm{K}_{\mathrm{f}} \mathrm{Zn}(\mathrm{OH})_{4}^{2-}=5 \times 10^{14}$.
$K_{b} \mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5}$.

- View Text Solution

Exercises Linked Comprehension

1. $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is a sparingly soluble salt $\left(K_{s p}=2.6 \times 10^{-13}\right)$. To 35 mL of $0.15 \mathrm{MPb}\left(\mathrm{NO}_{3}\right)_{2}$ solution, 15 mL of $0.8 \mathrm{MKIO}_{3}$ solution is added, and a precipiatte of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is formed.

Which is the limiting reactant of teh reaction that takes place in the solution?
A. $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$
B. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
C. KIO_{3}
D. Both (b) and (c).

Answer: B

D Watch Video Solution

2. $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is a sparingly soluble salt $\left(K_{\text {sp }}=2.6 \times 10^{-13}\right)$. To 35 mL of $0.15 \mathrm{MPb}\left(\mathrm{NO}_{3}\right)_{2}$ solution, 15 mL of $0.8 \mathrm{MKIO}_{3}$ solution is added, and a precipiatte of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is formed.

What will be the molarity of $I O_{3}^{\Theta}$ ions in the solution after completion of the reaction?
A. 0.152
B. 0.081
C. 0.41
D. 0.03

Answer: D

3. $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is a sparingly soluble salt $\left(K_{s p}=2.6 \times 10^{-13}\right)$. To 35 mL of $0.15 \mathrm{MPb}\left(\mathrm{NO}_{3}\right)_{2}$ solution, 15 mL of $0.8 \mathrm{MKIO}_{3}$ solution is added, and a precipiatte of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is formed.

What will be molarity of Pb^{2+} ions in the solution after completion of the reactions?
A. 8.4×10^{-10}
B. 1.6×10^{-10}
C. 2.8×10^{-10}
D. 6.1×10^{-10}

Answer: C

- Watch Video Solution

4. Acid-base indicator such as methy1 orange, phenolphthalein, and bromothymol blue ate substances which change colour accroding to the hydrogen ion concentration of the solution to which they are added.

Most indicators are weak acids (or more rarely weak base) in which the undissociated and dissociated forms have different and distinct colours. If methy1 orange is used as the examples and the un-dissociated forms is written as HMO, then dissociation occurs as shown below:
$H M O \Leftrightarrow H^{\oplus}+M O^{\Theta}$
Reaction:
Red Colourless Yellow
The indicator should have a sharp colour change with the equivalence point of the titration. Usually the colour change of the indicator occurs over a range of about two pH units. It should be noted that the eye cannot detect the exact end point of the tiytration. The $p K_{a}$ of the indicator should be near the pH of the solution at the equivalance point.

Which of the following sitution exists at the equivalence point of titration?
A. $\left[H^{\oplus}\right]=10^{-7} M$
B. $\left[H^{\oplus}\right]=\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$
c. $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]=10^{-7} M$
D. $\frac{\left[H^{\oplus}\right]}{}=10^{-14}$

$$
\left[\begin{array}{l}
\Theta \\
O H
\end{array}\right]
$$

Answer: B

D Watch Video Solution

5. Acid-base indicator such as methy1 orange, phenolphthalein, and bromothymol blue ate substances which change colour accroding to the hydrogen ion concentration of the solution to which they are added.

Most indicators are weak acids (or more rarely weak base) in which the undissociated and dissociated forms have different and distinct colours. If methy1 orange is used as the examples and the un-dissociated forms is written as HMO, then dissociation occurs as shown below:

Reaction. $H M O \Leftrightarrow \quad H^{\oplus}+\quad M O^{\Theta}$
Red Colourless Yellow
The indicator should have a sharp colour change with the equivalence point of the titration. Usually the colour change of the indicator occurs over a range of about two pH units. It should be noted that the eye
cannot detect the exact end point of the tiytration. The $p K_{a}$ of the indicator should be near the pH of the solution at the equivalance point.

Given that the K_{a} (methy1 orange) $=4.0 \times 10^{-4}$, a solution at $p H=2$ containing the indicator would be
A. Orange
B. Yellow
C. Colorless
D. Red

Answer: D

- Watch Video Solution

6. Acidic solution is defined as a solution whose $\left[H^{\oplus}\right]>\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$. Base solution has $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]>\left[H^{\oplus}\right]$. During acid-base titrations, $p H$ of the mixture will change depending on the amount base added. This variation
is shown in the form of graph by making plot as titration curves 100 mL of 1.0MH $3_{3} A\left(K_{a_{1}}=10^{-3}, K_{a_{2}}=10^{-5}, K_{a_{3}}=10^{-7}\right)$ is titrated against 0.1 MNaOh . The titration curve is as follows.

What is the pH at point ${ }^{\wedge} \mathrm{A}$?
A. 3
B. 4
C. 5
D. 6

Answer: B

7. Acidic solution is defined as a solution whose $\left[H^{\oplus}\right]>\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$. Base solution has $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]>\left[H^{\oplus}\right]$. During acid-base titrations, $p H$ of the mixture will change depending on the amount base added. This variation is shown in the form of graph by making plot as titration curves 100 mL of $1.0 \mathrm{MH}_{3} A\left(K_{a_{1}}=10^{-3}, K_{a_{2}}=10^{-5}, K_{a_{3}}=10^{-7}\right)$ is titrated against 0.1 MNaOh . The titration curve is as follows.

What would be the pH is more of $\mathrm{NaH}_{2} \mathrm{~A}$ is added to the titration mixture at point C ?
A. 11.0
B. 10.2
C. 9.7
D. 7.7

Answer: C

- Watch Video Solution

8. Acidic solution is defined as a solution whose $\left[H^{\oplus}\right]>\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$. Base solution has $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]>\left[H^{\oplus}\right]$. During acid-base titrations, $p H$ of the mixture will change depending on the amount base added. This variation is shown in the form of graph by making plot as titration curves 100 mL of $1.0 \mathrm{MH}_{3} A\left(K_{a_{1}}=10^{-3}, K_{a_{2}}=10^{-5}, K_{a_{3}}=10^{-7}\right)$ is titrated against 0.1 MNaOh . The titration curve is as follows.

What will be the change in $p H$ from point B to point C ?
A. 2.8
B. 3.2
C. 4.6
D. 0.94

Answer: D

- Watch Video Solution

9. In equalitative analysis, cations of graph II as well as group IV both are precipitated in the form of sulphides. Due to low value of $K_{s p}$ of group II
sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in the presence of dil. HC 1 , and due to high value of $K_{s p}$ of group $I V$ sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in the presence of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{C}$. In a solution containing 0.1 M each of $\mathrm{Sn}^{2+}, \mathrm{Cd}^{2+}$, and Ni^{2+} ions, H_{2} Sgas is passed.
$K_{s p} o f S n S=8 \times 10^{-29}, K_{s p}$ ofCdS $=1510^{-28}, K_{s p} o f N i S-3 \times 10^{-21}, K_{1} o f H_{2} S=1 \times$
If $\mathrm{H}_{2} \mathrm{~S}$ is passed into the above mixture in the presence of $\mathrm{HC1}$, which ion will be precipitated first?
A. SnS
B. $C d S$
C. NiS
D. $S n S$ and $C d S$ (both together)

Answer: C

- Watch Video Solution

10. In equalitative analysis, cations of graph II as well as group IV both are precipitated in the form of sulphides. Due to low value of $K_{s p}$ of
group II sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in the presence of dil. HC , and due to high value of $K_{s p}$ of group $I V$ sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in the presence of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{C}$. In a solution containing 0.1 M each of $\mathrm{Sn}^{2+}, \mathrm{Cd}^{2+}$, and Ni^{2+} ions, H_{2} Sgas is passed.
$K_{s p} o f S n S=8 \times 10^{-29}, K_{s p}$ ofCdS $=1510^{-28}, K_{s p} o f N i S-3 \times 10^{-21}, K_{1} o f H_{2} S=1 \times$
At what value of pH , NiS will start to precipitate?
A. 12.76
B. 7
C. 1.24
D. $4^{`}$

Answer: C

- Watch Video Solution

11. In equalitative analysis, cations of graph II as well as group IV both are precipitated in the form of sulphides. Due to low value of $K_{s p}$ of group II sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in the presence of dil. $\mathrm{HC1}$, and due to
high value of $K_{s p}$ of group $I V$ sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in the presence of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{C} 1$. In a solution containing 0.1 M each of $\mathrm{Sn}^{2+}, \mathrm{Cd}^{2+}$, and Ni^{2+} ions, H_{2} Sgas is passed. $K_{s p} o f S n S=8 \times 10^{-29}, K_{s p}$ ofCdS $=1510^{-28}, K_{s p} o f N i S-3 \times 10^{-21}, K_{1} o f H_{2} S=1 \times$ Which of the following sulphides is more soluble in pure water?
A. CdS
B. NiS
C. SnS
D. Equal solubility for all

Answer: A

- Watch Video Solution

12. In equalitative analysis, cations of graph II as well as group IV both are precipitated in the form of sulphides. Due to low value of $K_{s p}$ of group II sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in the presence of dil. $\mathrm{HC1}$, and due to high value of $K_{s p}$ of group IV sulphides, group reagent is $\mathrm{H}_{2} \mathrm{~S}$ in
the presence of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{C} 1$. In a solution containing 0.1 M each of $\mathrm{Sn}^{2+}, \mathrm{Cd}^{2+}$, and Ni^{2+} ions, H_{2} Sgas is passed.
$K_{s p} o f S n S=8 \times 10^{-29}, K_{s p}$ ofCdS $=1510^{-28}, K_{s p} o f N i S-3 \times 10^{-21}, K_{1} o f H_{2} S=1 \times$ If $0.1 \mathrm{MHC1}$ is mixed in the solution containing only $0.1 \mathrm{MCd}^{2+}$ ions and saturated with $\mathrm{H}_{2} \mathrm{~S}$, then $\left[\mathrm{Cd}^{2+}\right]$ remaining in the solution after CdS stopes to precipitate is:
A. 10^{-8}
B. 8.2×10^{-9}
C. 5.6×10^{-6}
D. 5.6×10^{-10}

Answer: A

- Watch Video Solution

13. The degree of dissociation of weak electrolyde is inversely proportional to the square root fo concentration. It is called Ostwald's dilution law.
$\alpha=\sqrt{\frac{K_{a}}{c}}$ As the tempertaure increases, degree of dissociation will increase.
$\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{K_{a_{1}}}{K_{a_{2}}}}$ if concentration is same.
$\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{c_{2}}{c_{1}}}$ if acid is same.
$0.01 \mathrm{MCH}_{3} \mathrm{COOH}$ has 4.24% degree of dissociation, the degree of dissociation of $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$ will be
A. 1.33%
B. 4.24%
C. 5.24 \%
D. 0.33 \%

Answer: A

- Watch Video Solution

14. The degree of dissociation of weak electrolyde is inversely proportional to the square root fo concentration. It is called Ostwald's dilution law.
$\alpha=\sqrt{\frac{K_{a}}{c}}$ As the tempertaure increases, degree of dissociation will increase.
$\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{K_{a_{1}}}{K_{a_{2}}}}$ if concentration is same.
$\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{c_{2}}{c_{1}}}$ if acid is same.
$p H$ of $0.005 \mathrm{MHCOOH}\left[K_{a}=2 \times 10^{-4}\right]$ is equal to
A. 3
B. 2
C. 4
D. 5

Answer: A

15. The degree of dissociation of weak electrolyde is inversely proportional to the square root fo concentration. It is called Ostwald's dilution law.
$\alpha=\sqrt{\frac{K_{a}}{c}}$ As the tempertaure increases, degree of dissociation will increase.
$\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{K_{a_{1}}}{K_{a_{2}}}}$ if concentration is same.
$\frac{\alpha_{1}}{\alpha_{2}}=\sqrt{\frac{c_{2}}{c_{1}}}$ if acid is same.
a_{1} and a_{2} are in ratio of $1: 2, K_{a_{1}}=2 \times 10^{-4}$. What will be $K_{a_{2}}$?
A. 8×10^{-4}
B. 2×10^{-4}
C. 4×10^{-4}
D. 1×10^{-4}

(D) Watch Video Solution

16. The following solutions are mixed: $500 \mathrm{mLof} 0.01 \mathrm{MAgNO}_{3}$ and 500 mL solution that was both 0.01 M in NaCI and 0.01 M in NaBr . Given $K_{s p} A G C I=10^{-10}, K_{s p} A g B r=5 \times 10^{-13}$.

Calculate the $\left[C I^{\Theta}\right]$ in the equilibrium solution.
A. $5 \times 10^{-5} \mathrm{M}$
B. 2.5×10^{-5}
C. $5 \times 10^{-3} \mathrm{M}$
D. $2.5 \times 10^{-3} \mathrm{M}$

Answer: C

- Watch Video Solution

17. The following solutions are mixed: $500 \mathrm{mLof} 0.01 \mathrm{MAgNO}_{3}$ and 500 mL solution that was both 0.01 M in NaCI and 0.01 M in NaBr . Given
$K_{s p} A G C I=10^{-10}, K_{s p} A g B r=5 \times 10^{-13}$.
Calculate the $\left[A g^{\oplus}\right]$ in the equilibrium solution.
A. $2.0 \times 10^{-8} M$
B. $2.0 \times 10^{-10} M$
C. $2.5 \times 10^{-5} \mathrm{M}$
D. $2.5 \times 10^{-8} M$

Answer: A

D Watch Video Solution

18. The following solutions are mixed: $500 \mathrm{mLof} 0.01 \mathrm{MAgNO}_{3}$ and 500 mL solution that was both $0.01 M$ in $N a C I$ and $0.01 M$ in $N a B r$. Given $K_{s p} A G C I=10^{-10}, K_{s p} A g B r=5 \times 10^{-13}$.

Calculate the $\left[B r^{\Theta}\right]$ in the equilibrium solution.
A. $2.0 \times 10^{-8} \mathrm{M}$
B. $2.0 \times 10^{-10} M$
C. $2.5 \times 10^{-5} \mathrm{M}$
D. $2.5 \times 10^{-8} \mathrm{M}$

Answer: C

- Watch Video Solution

19. When 1.5 mol of $\mathrm{CuCI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is dissolved in enough water to make 1.0 L of solution.

Given: $K_{f} \mathrm{CuCI}^{\Theta} 1.0\left(K_{f}\right.$ is the formation constant of $\left.\mathrm{CuCi}^{\oplus}\right)$
$\left[\mathrm{Cu}^{2+}\right]$ in solution is
A. 1.0 M
B. 0.5 M
C. 2.0 M
D. None

Answer: A

20. When 1.5 mol of $\mathrm{CuCI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is dissolved in enough water to make
1.0 L of solution.

Given: $K_{f} \mathrm{CuCI}^{\Theta} 1.0\left(K_{f}\right.$ is the formation constant of $\left.\mathrm{CuCi}^{\oplus}\right)$
$\left[C I^{\Theta}\right]$ in solution is
A. 2.0 M
B. 1.0 M
C. 3.0M
D. None

Answer: A

- Watch Video Solution

21. When 1.5 mol of $\mathrm{CuCI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is dissolved in enough water to make 1.0 L of solution.

Given: $K_{f} C u C I^{\Theta} 1.0\left(K_{f}\right.$ is the formation constant of $\left.C u C i{ }^{\oplus}\right)$ $\left[C i C I^{\oplus}\right]$ in solution is
A. 1.0 M
B. 2.0 M
C. 3.0 M
D. 0.5 M

Answer: B

- Watch Video Solution

22. Acid rain takes place dur to combination of acidic oxides with water and it is an envirronmental concern all over the world. Assuming rain water is uncontaminated with HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ and is in equilibrium with $1.25 \times 10^{-4} \mathrm{atmCO} \mathrm{C}_{2}$. The Henry's law constant $\left(K_{H}\right)$ is 1.25×10^{6} torr. $K_{a_{1}}$ of $\mathrm{H}_{2} \mathrm{CO}_{3}=4.3 \times 10^{-7}$

Given : $K_{f} C u C I^{\Theta}=1.0\left(K_{f}\right.$ is formation constant of $\left.C u C I^{\oplus}\right)$
What is the pH of neturak rain water?
A. 5.64
B. 7.00
C. 5.85
D. 7.40

Answer: C

- Watch Video Solution

23. Acid rain takes place dur to combination of acidic oxides with water and it is an envirronmental concern all over the world. Assuming rain water is uncontaminated with HNO_{3} or $\mathrm{H}_{2} \mathrm{SO}_{4}$ and is in equilibrium with $1.25 \times 10^{-4} \mathrm{~atm} \mathrm{CO}_{2}$. The Henry's law constant $\left(K_{H}\right)$ is 1.25×10^{6} torr. $K_{a_{1}}$ of $\mathrm{H}_{2} \mathrm{CO}_{3}=4.3 \times 10^{-7}$

Given : $K_{f} C u C I^{\Theta}=1.0\left(K_{f}\right.$ is formation constant of $\left.\mathrm{CuCI}^{\oplus}\right)$

If SO_{2} content is the atomsphere is 0.64 ppm by volume, pH of rain water is (assume 100% ionisation of acid rain as monobasic acid).
A. 4.0
B. 5.0
C. 6.0
D. 7.0

Answer: B

- Watch Video Solution

24. In atmosphere, SO_{2} and NO are oxidised to SO_{3} and NO_{2}, respectively,w hcih react with water to given $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}. The resultant solution is called acid rain. SO_{2} dissolves in water to form diprotic acid.
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{HSO}_{3}^{\Theta}+H^{\oplus}, K_{a_{1}}=10^{-2}$.
$\mathrm{HSO}_{3}^{\Theta} \Leftrightarrow \mathrm{SO}_{3}^{2-}+H^{\oplus}, K_{a_{2}}=10^{-7}$
and for equilibrium,
$\mathrm{SO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{SO}_{3}^{2-}(a q)+2 \mathrm{H}^{\oplus}(a q)$
$K_{a}=K_{a_{1}} \times K_{a_{2}}=10^{-9} a t 300 \mathrm{~K}$.
Which of the following reagnets will given white precipitate with the aqueous solution of sulphurous acid?
A. BaCl_{2}
B. HCI
C. NaCI
D. KCI

Answer: A

- Watch Video Solution

25. In atmosphere, SO_{2} and NO are oxidised to SO_{3} and NO_{2}, respectively,w hcih react with water to given $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}. The resultant solution is called acid rain. SO_{2} dissolves in water to form diprotic acid.
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{HSO}_{3}^{\Theta}+H^{\oplus}, K_{a_{1}}=10^{-2}$.
$\mathrm{HSO}_{3}^{\Theta} \Leftrightarrow \mathrm{SO}_{3}^{2-}+H^{\oplus}, K_{a_{2}}=10^{-7}$
and for equilibrium,
$\mathrm{SO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{SO}_{3}^{2-}(a q)+2 \mathrm{H}^{\oplus}(a q)$
$K_{a}=K_{a_{1}} \times K_{a_{2}}=10^{-9} a t 300 \mathrm{~K}$.
The pH of 0.01 M aqueous solutioon of sodium sulphite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$
A. 4.5
B. 8.5
C. 9.0
D. 9.5

Answer: D

- Watch Video Solution

26. In atmosphere, SO_{2} and NO are oxidised to SO_{3} and NO_{2}, respectively,w hcih react with water to given $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}. The resultant solution is called acid rain. SO_{2} dissolves in water to form diprotic acid.
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{HSO}_{3}^{\Theta}+H^{\oplus}, K_{a_{1}}=10^{-2}$.
$\mathrm{HSO}_{3}^{\Theta} \Leftrightarrow \mathrm{SO}_{3}^{2-}+H^{\oplus}, K_{a_{2}}=10^{-7}$
and for equilibrium,
$\mathrm{SO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{SO}_{3}^{2-}(a q)+2 \mathrm{H}^{\oplus}(a q)$
$K_{a}=K_{a_{1}} \times K_{a_{2}}=10^{-9} a t 300 K$.
The dominant equilibrium in an aqueous solution of sodium hydrogen sulphite $\left(\mathrm{NaHSO}_{3}\right)$ is
$2 \mathrm{HSO}_{3}^{\Theta}(a q) \Leftrightarrow \mathrm{SO}_{2}(a q)+\mathrm{SO}_{3}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The equilibrium constant for the above reaction is
A. 10^{-3}
B. 10^{-5}
C. 10^{-6}
D. 10^{-9}

Answer: B

- Watch Video Solution

27. In atmosphere, SO_{2} and NO are oxidised to SO_{3} and NO_{2}, respectively,w hcih react with water to given $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}. The resultant solution is called acid rain. SO_{2} dissolves in water to form diprotic acid.
$\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{HSO}_{3}^{\Theta}+H^{\oplus}, K_{a_{1}}=10^{-2}$.
$\mathrm{HSO}_{3}^{\Theta} \Leftrightarrow \mathrm{SO}_{3}^{2-}+H^{\oplus}, K_{a_{2}}=10^{-7}$
and for equilibrium,
$\mathrm{SO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{SO}_{3}^{2-}(a q)+2 \mathrm{H}^{\oplus}(a q)$
$K_{a}=K_{a_{1}} \times K_{a_{2}}=10^{-9} a t 300 K$.
Which of the following statement is correct?
A. $\mathrm{H}_{2} \mathrm{SO}_{3}$ is less acidic than $\mathrm{H}_{2} \mathrm{SO}_{4}$.
B. HNO_{3} is less acidic than HNO_{2}.
$\mathrm{C} . \mathrm{SO}_{2}(\mathrm{~g})$ is reduced in the atmosphere during thunderstron.
D. CO_{2} gas develop more acidity in rain water than SO_{2}.

Answer: A

28. In acid-base titration react rapidly to neutralise each other. Equivalence point is a point at which the acid and the base (or oxidising agent and reducing agent) have beem added in equivalent quantities. The end point in the point at which the titration stops. since the purpose of the indicator is to stop the titration close to the point at which the acid and base were added in equivalent quantities, it is important that the equivalent point and the end point be as close as must change colour at a $p H$ close to that of a solution of the salt of the acid base. Singificantly, the pH changes most rapidly near the equivalent point. The exact shape of a titration curve depends on K_{a} and K_{b} of acid and base.

The following curve represents titration curve of HCI against KOH . The $p H$ at equivalent point is

Examine the titration curve below and answer the question.

A. 3
B. 6
C. 7
D. 8

Answer: C

- Watch Video Solution

29. In acid-base titration react rapidly to neutralise each other. Equivalence point is a point at which the acid and the base (or oxidising agent and reducing agent) have beem added in equivalent quantities. The end point in the point at which the titration stops. since the purpose of the indicator is to stop the titration close to the point at which the acid and base were added in equivalent quantities, it is important that the equivalent point and the end point be as close as must change colour at a $p H$ close to that of a solution of the salt of the acid base. Singificantly, the pH changes most rapidly near the equivalent point. The exact shape of a titration curve depends on K_{a} and K_{b} of acid and base.

The curve represents the titration of
A. CsOHbyHBr
B. HCIby NaOH
C. HCIbyKOH
D. $\mathrm{NH}_{3} \mathrm{byHNO}_{3}$

Answer: A

- Watch Video Solution

30. In acid-base titration react rapidly to neutralise each other. Equivalence point is a point at which the acid and the base (or oxidising agent and reducing agent) have beem added in equivalent quantities. The end point in the point at which the titration stops. since the purpose of the indicator is to stop the titration close to the point at which the acid and base were added in equivalent quantities, it is important that the equivalent point and the end point be as close as must change colour at a $p H$ close to that of a solution of the salt of the acid base. Singificantly, the $p H$ changes most rapidly near the equivalent point. The exact shape of a titration curve depends on K_{a} and K_{b} of acid and base.

The suitable indicator for the titration is
A. Methy1 orange
B. Bromothymol
C. Methy1 red
D. All of these

Answer: D

- Watch Video Solution

31. In acid-base titration react rapidly to neutralise each other. Equivalence point is a point at which the acid and the base (or oxidising
agent and reducing agent) have beem added in equivalent quantities. The end point in the point at which the titration stops. since the purpose of the indicator is to stop the titration close to the point at which the acid and base were added in equivalent quantities, it is important that the equivalent point and the end point be as close as must change colour at a $p H$ close to that of a solution of the salt of the acid base. Singificantly, the pH changes most rapidly near the equivalent point. The exact shape of a titration curve depends on K_{a} and K_{b} of acid and base.

The pH at equivalence point is
A. 2
B. 3
C. 7
D. 11

Answer: C

- Watch Video Solution

32. In acid-base titration react rapidly to neutralise each other. Equivalence point is a point at which the acid and the base (or oxidising agent and reducing agent) have beem added in equivalent quantities. The end point in the point at which the titration stops. since the purpose of the indicator is to stop the titration close to the point at which the acid and base were added in equivalent quantities, it is important that the equivalent point and the end point be as close as must change colour at a $p H$ close to that of a solution of the salt of the acid base. Singificantly, the $p H$ changes most rapidly near the equivalent point. The exact shape of a titration curve depends on K_{a} and K_{b} of acid and base.

Which of the following curves indicates the titration of a weak diprotic acid by KOH of equivalent strength?

A.

B.

C.

D Watch Video Solution

33. Physical and chemical equilibrium can respond to a change in their pressure, temperature, and concentration of reactants and products. To describe the change in the equilibrium we have a principle named Le Chatelier principle. According to this principle, even if we make some changes in equilibrium, then also the system even re-establishes the equilibrium by undoing the effect.

In the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$. If we increase the pressure of the system, the equilibrium is
A. Shifts in the product side
B. Remains unchanged
C. Shifts in the reactant side
D. Cannot be predicted

Answer: A

- Watch Video Solution

34. Physical and chemical equilibrium can respond to a change in their pressure, temperature, and concentration of reactants and products. To describe the change in the equilibrium we have a principle named Le Chatelier principle. According to this principle, even if we make some changes in equilibrium, then also the system even re-establishes the equilibrium by undoing the effect.

If we add SO_{4}^{2-} ion to a saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$, it will result in a//an
A. Result in an increase in Ag^{\oplus} concentration
B. Result in a decrease in Ag^{\oplus} concentration
C. Shift Ag^{\oplus} ions from solid $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ into solution.
D. Result in a decrease the CrO_{4}^{2-} ion concentration in the solution.

- Watch Video Solution

35. Physical and chemical equilibria can respond to a change in their pressure, temperature, and concentration of reactants and products. To describe the change in the equilibrium, we have a principle named Le Chatelier's principle. This we can define in terms of enegry, as the free energy change in equilibrium is zero means the system is stable. So if we are doing some changes in equilibrium, then the system having a tendency to reoestablish the equilibrium by undoing the effect we broughy. Consider the following equilibrium.

Three sparingly soluble salts $A_{2} B, A B$, and $A B_{3}$ are given. If all the three having the same value of solobility products $\left(K_{s p}\right)$, in the saturated solution, the correct order of their solubilites is
A. $A B_{3}>A B>A_{2} B$
B. $A B_{3}>A_{2} B>A B$
C. $A B>A B_{3}>A_{2} B$
D. $A B>A_{2} B>A B_{3}$

Answer: D

- Watch Video Solution

36. $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a tribasic acid with $p K_{a_{1},} p K_{a_{2}}$ and $p K_{a_{3}} 1.12,7.21$, and 12.32 , respectively. It is used in fertiliser productions and its various salts are used in food, detrgent, toothpaste, and in metal treatment.

Small quantities of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are used in inparting the sour or tart taste of soft drinkes, such as Coca Cola, and beers, in which $\mathrm{H}_{3} \mathrm{PO}_{4}$ is prese4nt 0.05% by weight (density $=1.0 \mathrm{gmL}^{-1}$).
$10^{-3} \mathrm{MH}_{3} \mathrm{PO}_{4}(\mathrm{pH}=7)$ is used in fertilisers as an aqueous soil digesting. Plants can absorb zinc in whater soluble from only. Zinc phosphate is the source of zinc and PO_{4}^{3-}) ions in the soil. $K_{s p}$ of zinc phosphate $=9.1 \times 10^{-33}$.

Calculate the pH of a Coca Cola, assuming that the acidity of the cola arises only from $H_{3} \mathrm{PO}_{4}$ and $K_{a_{2}}$ and $K_{a_{3}}$ are no importance.
A. . 18
B. 2.2
C. 3.3
D. 4.4

Answer: B

- Watch Video Solution

37. $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a tribasic acid with $p K_{a_{1}}, p K_{a_{2}}$ and $p K_{a_{3}} 1.12,7.21$, and 12.32, respectively. It is used in fertiliser productions and its various salts are used in food, detrgent, toothpaste, and in metal treatment.

Small quantities of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are used in inparting the sour or tart taste of soft drinkes, such as Coca Cola, and beers, in which $H_{3} \mathrm{PO}_{4}$ is prese4nt 0.05% by weight (density $=1.0 \mathrm{gmL}^{-1}$).
$10^{-3} \mathrm{MH}_{3} \mathrm{PO}_{4}(p H=7)$ is used in fertilisers as an aqueous soil digesting. Plants can absorb zinc in whater soluble from only. Zinc phosphate is the source of zinc and PO_{4}^{3-}) ions in the soil. $K_{s p}$ of zinc phosphate
$=9.1 \times 10^{-33}$.
$\left[\mathrm{PO}_{4}^{3-}\right]$ ion in the soil with $p H=7$, is
A. $10^{-3} M$
B. $1.2 \times 10^{-4} \mathrm{~m}$
C. $2.2 \times 10^{-4} M$
D. $1.1 \times 10^{-10} M$

Answer: C

D Watch Video Solution

38. $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a tribasic acid with $p K_{a_{1}}, p K_{a_{2}}$ and $p K_{a_{3}} 1.12,7.21$, and 12.32, respectively. It is used in fertiliser productions and its various salts are used in food, detrgent, toothpaste, and in metal treatment.

Small quantities of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are used in inparting the sour or tart taste of soft drinkes, such as Coca Cola, and beers, in which $H_{3} \mathrm{PO}_{4}$ is prese4nt 0.05% by weight (density $=1.0 \mathrm{gmL}^{-1}$).
$10^{-3} \mathrm{MH}_{3} \mathrm{PO}_{4}(\mathrm{pH}=7)$ is used in fertilisers as an aqueous soil digesting.

Plants can absorb zinc in whater soluble from only. Zinc phosphate is the source of zinc and PO_{4}^{3-}) ions in the soil. $K_{s p}$ of zinc phosphate $=9.1 \times 10^{-33}$. $\left[\mathrm{Zn}^{2+}\right]$ ion in the soil is
A. $2.9 \times 10^{-11} M$
B. $4.0 \times 10^{-10} M$
C. $3.0 \times 10^{-6} \mathrm{M}$
D. $9.1 \times 10^{-5} \mathrm{M}$

Answer: A

- Watch Video Solution

39. Aqueous solutions of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and CaCI_{2} are mixed and precipitate of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ formed is filered and dried. 250 mL of the saturated solution of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ required 6.0 mL of $0.001 \mathrm{MKMnO}_{4}$ solution in acidic medium for complete titration.

Number of mol of KMnO_{4} required is this titration and number of mol of
$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ ion present in the given saturated solution fo $\mathrm{CaC}_{2} \mathrm{O}_{4}$ respectively are
A. $6 \times 10^{-6}, 6 \times 10^{-6}$
B. $6 \times 10^{-6}, 1.5 \times 10^{-5}$
C. $1.5 \times 10^{-5}, 6 \times 10^{-6}$
D. $6 \times 10^{-6}, 3 \times 10^{-6}$

Answer: B

- Watch Video Solution

40. Aqueous solutions of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and CaCI_{2} are mixed and precipitate of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ formed is filered and dried. 250 mL of the saturated solution of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ required 6.0 mL of $0.001 \mathrm{MKMnO}_{4}$ solution in acidic medium for complete titration.

Equivalent of KMNO_{4} required in the titration and equivalent of $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ ion present in $\mathrm{CaC}_{2} \mathrm{O}_{4}$, respectively, are
A. $3 \times 10^{-5}, 3 \times 10^{-5}$
B. $1.8 \times 10^{-5}, 3 \times 10^{-6}$
C. $3 \times 10^{-6}, 6 \times 10^{-6}$
D. $6 \times 10^{-6}, 3 \times 10^{-6}$

Answer: A

- Watch Video Solution

41. Aqueous solutions of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and CaCI_{2} are mixed and precipitate of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ formed is filered and dried. 250 mL of the saturated solution of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ required 6.0 mL of $0.001 \mathrm{MKMnO}_{4}$ solution in acidic medium for complete titration.
$K_{s p}$ of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ is
A. 2.25×10^{-12}
B. 2.25×10^{-10}
C. 3.6×10^{-9}
D. 4.0×10^{-9}

Answer: C

- Watch Video Solution

42. Aqueous solutions of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and CaCI_{2} are mixed and precipitate of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ formed is filered and dried. 250 mL of the saturated solution of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ required 6.0 mL of $0.001 \mathrm{MKMnO}_{4}$ solution in acidic medium for complete titration.

Which is the indicator in the above titration?
A. Phenolphthalein
B. Methy1 ornage
C. KMnO_{4} it self
D. None

Answer: C

43. $H \in$ is an acidic indicator $\left(K_{\text {Ind }}=10^{-7}\right)$ which dissociates into aqueous acidic solution of 30 mL of
$0.05 \mathrm{MH}_{3} \mathrm{PO}_{4}\left(K_{1}=10^{-3}, K_{2}=10^{-7}, K_{3}=10^{-13}\right)$
Calculate the $\left[\frac{\operatorname{Ind}{ }^{\Theta}}{H \in}\right]$
A. 1.413×10^{-5}
B. 1.413×10^{-4}
C. 3.128×10^{-5}
D. 3.128×10^{-14}

Answer: A

- Watch Video Solution

44. $H \in$ is an acidic indicator $\left(K_{\text {Ind }}=10^{-7}\right)$ which dissociates into aqueous acidic solution of
$30 m L$
$0.05 \mathrm{MH}_{3} \mathrm{PO}_{4}\left(K_{1}=10^{-3}, K_{2}=10^{-7}, K_{3}=10^{-13}\right)$
If $H \in$ and Ind ${ }^{\Theta}$ posses colour P and Q, respectively, and concentration of HIn is 120 times than that of $\operatorname{Ind}^{\Theta}$. colour Q predominates over P when concnetration of Ind $^{\Theta}$ is 127 times of HIn.

What is the pH range of the indicator.
A. $4.896 \rightarrow 9.0792$
B. $4.896 \rightarrow 8.0792$
C. $4.896 \rightarrow 7.0792$
D. $4.896 \rightarrow 6.0792$

Answer: A

- Watch Video Solution

45. $H \in$ is an acidic indicator $\left(K_{\text {Ind }}=10^{-7}\right)$ which dissociates into aqueous acidic solution of 30 mL of $0.05 \mathrm{MH}_{3} \mathrm{PO}_{4}\left(K_{1}=10^{-3}, K_{2}=10^{-7}, K_{3}=10^{-13}\right)$

If this solution is treated with 30 mLof NaOH solution, then what molarity of NaOH is needed to reach the equivalence point with indicator?
A. 0.1 M
B. $0.2 M$
C. $0.3 M$
D. $0.4 M$

Answer: A

- Watch Video Solution

Exercises Multiple Correct

1. 0.1 mol of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mol of HCI and diluted to $1 L$. Which statement is correct?
A. The concentration of H^{\oplus} ion is $8 \times 10^{-11} M$.
B. The concentration of H^{\oplus} ion is $8 \times 10^{-5} \mathrm{M}$.
C. The pH of solution is 9.8
D. The pOH of solution is 10.2 .

Answer: A:C

- Watch Video Solution

2. When weak base solution ($50 \mathrm{mLof0} 0.1 \mathrm{NNH}_{4} \mathrm{OH}$) is titrated with strong acid (0.1 NHCI), the $p H$ of the solution initially decrease fast and then decreases slowely till near the equivalence point (as shown in figure).

Which of the following is//are correct.

A. The slow decrease of $p H$ is due to the formation of an acidic buffer solution after the addition of some HCI.
B. The slope of shown graph will be minimum when 25 mL of 0.1 NHCI is added.
C. The slow decrease of $p H$ is due to the formation of basic buffer solution.
D. The initial fast decrease in $p H$ is due to fast consumption of OH ions by HCI.

Answer: B::C::D

- Watch Video Solution

3. Which of the following statements about a weak acid strong base titration is//are correct?
A. The $p H$ after the equivalence point of the weal acid string base titration is determined by using the K_{b} expression for the conjugate base.
B. A buffer solution of weal acid and its conjugate base is formed before the equivalence is reached.
C. The $p H$ at the equivalence point of a weak monoprotic acid strong base titration is equal to the $p H$ at the equivalence point of a strong acid-strong base titration.
D. The increase in $p H$ in the region near the equivalence point of a weak acid strong base titration is grater than the pH change in the same region of a strong acid strong base titration

Answer: A:B

- Watch Video Solution

4. An acid-base indicator has $K_{a}=10^{-5}$. The acid form of the indicator is red and basic form is blue. Which of the following is//are correct?
A. At $p H=4.52$, solution is red
B. At $\mathrm{pH}-5.47$, solution is blue.
C. At $p H=6$, solution is 75% red
D. At $p H=8$, solution is 75% blue.

Answer: A::B

- Watch Video Solution

5. When HCl gas is passed through a saturated solution of common salt, pure NaCl is Precipitated because:
A. $H C I$ is higly soluble in water.
B. The ionic product $\left[N a^{\oplus}\right]\left[C I^{\Theta}\right]$ exceeds its solubility product $\left(K_{s p}\right)$.
C. The $K_{s p}$ of $N a C I$ is lowered the presence of $H C I^{\Theta}$ ions.
D. $H C I$ causes precipitation.

Answer: A::B::D

- Watch Video Solution

6. Excess of $\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s}), \mathrm{BaSO}_{4}(\mathrm{~s})$, and $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$ are simultaneously in euqilibrium with distilled water. Which of the following is (are) true? Assume no hydrolysis of dissolved ions.
A. $\left[\mathrm{Ag}^{\oplus}\right]+2\left[\mathrm{Ba}^{2+}\right]=2\left[\mathrm{SO}_{4}^{2-}\right]+3\left[\mathrm{PO}_{4}^{3-}\right]$
B. $2\left[\mathrm{Ag}^{\oplus}\right]+4\left[\mathrm{Ba}^{2+}\right]=2\left[\mathrm{SO}_{4}^{2-}\right]+2\left[\mathrm{PO}_{4}^{3-}\right]$
C. $2\left[\mathrm{Ag}^{\oplus}\right]+3\left[\mathrm{Ba}^{2+}\right]=2\left[\mathrm{SO}_{4}^{2-}\right]+2\left[\mathrm{PO}_{4}^{3-}\right]$
D. $\left[\mathrm{Ag}^{\oplus}\right]+\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{SO}_{4}^{2-}\right]+\left[\mathrm{PO}_{4}^{3-}\right]$

Answer: A

- Watch Video Solution

7. A solution is found to contain
$\left[C I^{\Theta}\right]=1.5 \times 10^{-1} M,\left[B r^{\Theta}\right]=5.0 \times 10^{-4} M,\left[\mathrm{CrO}_{4}^{2-}\right]=1.9 \times 10^{-2} M$.
A solution of AgNO_{3} (100 \% dissociated) is added to the above solution drop by drop. Which silver salt will precipiate first ? Given:

$$
K_{s p}(A g C I)=1.5 \times 10^{-10}, K_{s p}(\mathrm{AgBr})=5.0 \times 10^{-13}, K_{s p}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=1.9 \times 10^{-12}
$$

A. $A g C I$
B. AgBr
C. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
D. $A g C I$ and $A g B r$ togther

Answer: D

- Watch Video Solution

8. HgCrO_{4} just begins to peripitate when equal volumes of $4 \times 10^{-4} \mathrm{MHg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ and $2 \times 10^{-5} \mathrm{MK}_{2} \mathrm{CrO}_{4}$ are combind. What is the approximate $K_{s p}$ value of $\mathrm{Hg}_{2} \mathrm{CrO}_{4}$?
A. $1 \times 10^{-18} \mathrm{molL}^{-1}$
B. $8 \times 10^{-9} \mathrm{molL}^{-1}$
C. $2 \times 10^{-9} \mathrm{molL}^{-1}$
D. $4 \times 10^{-9} \mathrm{molL}^{-1}$

Answer: B

- Watch Video Solution

9. What is general criteria of chossing a suitable indicator for a given titration?
A. The indicator should have a broad pH range.
B. $p H$ at the end point of titration should be close of neutral point of indicator
C. The indicator should have neutral point at $p H=7$.
D. The indicator must show a sharp colour changes near the equivalence point of titration point.

Answer: B::D

10. Which of the following are true for an acid- base titration?
A. Indicators catalyse the acid-base reactions by relasing or accepting H^{\oplus} ions.
B. Indicators do not significantly affect the pH of the solution to which they are added
C. Acid-base reactions do not occur in the absence of indicators
D. Indicators have different colours in dissociated and undissociated
forms.

Answer: B::D

- Watch Video Solution

11. An acid-base indicator has $K_{a}=3.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Then:
A. $p H$ is 4.04 when indicator is 75% red.
B. $p H$ is 5.00 when indicator is 75% blue.
C. $p H$ is 5.00 when indicator is 75% red.
D. $p H$ is 5.05 when indicator is 75% blue.

Answer: A::B

- Watch Video Solution

12. At the end point, there is a sharp change of colour in the indicator. This happened because the
A. pH a end point changes sharply.
B. Structure of the indicator changes.
C. Colour of indicator is adsorbed by water.
D. Dissociation constant of acid and base differ by 10 .
13. For a series of indicators, the colour and pH range over which colour change takes place are as follows:

Indicator	Colour change over pH range
U	Yellow to blue pH 0.0 to 1.6
V	Red to yellow pH 2.8 to 4.1
W	Red to yellow pH 4.2 to 5.8
X	Yellow to blue pH 6.0 to 7.7
Y	Colourless to red pH 8.2 to 10.0
Which of the followinfg statements is correct ?	

A. Indicator V could be used to find the equivalence point for 0.01 M acetic and 0.1 M ammonium hydroxide (ammonia solution) titration.
B. Indicator Y could be used to distinguish between 0.1 MHCI and
0.01 MNaOH solutions in water.
C. Indicator X could be used to distinguish between solution of ammonium chloride and sodium acetate.
D. Indicator W could be suitable for use in determining the concentration of acetic acid in vinegar by base titration.

Answer: C

- Watch Video Solution

14. $H_{3} \mathrm{PO}_{4} \Leftrightarrow H^{\oplus}+H_{2} \mathrm{PO}_{4}^{\Theta}, K_{a_{1}}$:
$\mathrm{H}_{2} \mathrm{PO}_{4}^{\Theta} \Leftrightarrow H^{\oplus}+\mathrm{HPO}_{4}^{2-},{ }^{2} K_{a_{2}}:$
$\mathrm{HPO}_{4}^{2-} \Leftrightarrow H^{\oplus}+\mathrm{PO}_{4}^{3-}, K_{a_{3}}:$
Mark out the incorrect statements:
A. $K_{a_{1}}>K_{a_{2}}>K_{a_{3}}$
B. $p H\left(H_{2} P O_{4}^{\Theta}\right)=\frac{p K_{a_{1}}+p K_{a_{2}}}{2}$
C. Both $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{\Theta}$ are more acidic than HPO_{4}^{2-}
D. Only HPO_{4}^{2-} is amphiprotic anion in the solution.

Answer: B::D

15. Aqueous solution of $\mathrm{HNO}_{3}, \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{CH}_{3} \mathrm{COOK}$ of identical concentrations are given. The pair (s) of the solution which may form a buffer upon mixing is (are):
A. NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$
B. HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOK}$
C. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COOK}$
D. $\mathrm{HNO}_{3}+\mathrm{CH}_{3} \mathrm{COOH}$

Answer: A::B::C

- Watch Video Solution

16. To which of the solution, addition of water would not effect the pH ? .
A. $100 \mathrm{mLof} 0.2 \mathrm{MCH}_{3} \mathrm{COOH}+100 \mathrm{mLof} 0.1 \mathrm{MNaOH}$
B. $100 \mathrm{mLof} 0.2 \mathrm{MCH}_{3} \mathrm{COOH}+100 \mathrm{mLof} 0.2 \mathrm{MNaOH}$
C. $200 \mathrm{mLof} 0.2 \mathrm{MCH}_{3} \mathrm{COOH}+100 \mathrm{mLof} 0.1 \mathrm{MNaOH}$
D. $100 \mathrm{mLof} 0.2 \mathrm{MCH}_{3} \mathrm{COOH}+200 \mathrm{mLof} 0.1 \mathrm{MNaOH}$

Answer: A::C

- Watch Video Solution

17. Which of the following salt solutions has $\mathrm{pH}<7$? .
A. $\mathrm{NH}_{4} \mathrm{~F}$
B. $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$
c. $\left[\left(\mathrm{CN}_{3}\right)_{3} \stackrel{\oplus}{N} H\right] C I^{\Theta}$
D. CaI_{2}

Answer: A::B::C

18. Which of the folowing represents hydrolysis ? .
\oplus
A. $\mathrm{NH}_{4}+2 \mathrm{H}_{2} \Leftrightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
\oplus
B. $\mathrm{NH}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
C. $\mathrm{HCO}_{3}^{\Theta}+\mathrm{H}_{2} \mathrm{OHArrH}_{2} \mathrm{CO}_{3}+\stackrel{\Theta}{\mathrm{O}} \mathrm{H}$
D. $\mathrm{HCO}_{3}^{\Theta}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{CO}_{3}^{2-}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$

Answer: A:C

- Watch Video Solution

19. The $p H$ values of aqueous solutions of which of the following compounds does not change on dilution?
A. $\mathrm{PhCOONH}_{4}$
B. $\mathrm{NH}_{4} \mathrm{CN}$
C. HCOONa
D. $\mathrm{NH}_{4} \mathrm{CI}$

Answer: A: B

- Watch Video Solution

20. In $\mathrm{H}_{3} \mathrm{PO}_{4}$ which of the following is true?
A. $K_{a}=K_{a_{1}} \times K_{a_{2}} \times K_{a_{3}}$
B. $K_{a_{1}}<K_{a_{2}}<K_{a_{3}}$
C. $K_{a_{1}}>K_{a_{2}}>K_{a_{3}}$
D. $K_{a_{1}}=K_{a_{2}}=K_{a_{3}}$

Answer: A:C

- Watch Video Solution

21. The degree fo hydrolysis for a salt of strong acid and weak base
A. Is independent of dilution
B. Increases with dilution
C. Increases with decrease in K_{b} of the base
D. Decreases with decrease in temperature

Answer: B::C::D

- Watch Video Solution

22. A solution containing a mixture of 0.05 MNaCI and 0.05 M Nal is taken. $\left(K_{s p} o f A g C I=10^{-10}\right.$ and $K_{s p}$ of $\left.\mathrm{AgI}=4 \times 10^{-16}\right)$. When AgNO_{3} is added to such a solution:
A. The concentartion fo Ag^{\oplus} required to precipitate CI^{Θ} is

$$
2 \times 10^{-9} \mathrm{molL}^{-1}
$$

B. The concentartion of Ag^{\oplus} required to precipitate I^{Θ} is

$$
8 \times 10^{-15} \mathrm{molL}^{-1} .
$$

C. $A g C I$ and $A g I$ will be precipitate togther.
D. First AgI will be precipitated.

Answer: A::B::D

- Watch Video Solution

23. Which of the following is(are) correct when 0.1 L of $0.0015 \mathrm{MMgCI}_{2}$ and
0.1L of 0.025MNaF are mixed togther? $\left(K_{s p} o f M g F_{2}=3.7 \times 106(-8)\right)$.
A. $M g F_{2}$ remains in solution
B. MgF_{2} precipitates out
C. MgCI_{2} precipitates out
D. $C I^{\Theta}$ ions remains in solution

Answer: B::D

- Watch Video Solution

24. Choose the correct statement:
A. $p H$ of acidic buffer solution decrease if more salt is added
B. pH of acidic solution increases if more salt is added.
C. $p H$ of basic buffer increase if more salt is added.
D. $p H$ of basic buffer increase if more salt is added.

Answer: B::C

- Watch Video Solution

25. Which of the following is (are) correct for buffer solution?
A. Acidic buffer will be effective within in the $p H$ range $\left(p K_{a} \pm 1\right)$.
B. Basic buffer will be effective within the $p H$ range $\left(p K_{w}-p K_{b} \pm 1\right)$.
C. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaH}_{2} \mathrm{PO}_{4}$ is not a buffer solution.
D. Buffers behave most effectively when the [Salt]/[Acid]

- Watch Video Solution

26. A solution is prepared by dissolving 1.5 g of a monoacidic base into
1.5 kg of water at 300 K , which showed a depression in freezing point by $0.165^{\circ} \mathrm{C}$. When 0.496 g of the same base titrated, after dissolution, required 40 mL of semimolar $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. If K_{f} of water is $1.86 \mathrm{Kkgmol}^{-1}$, then select the correct statements (s) out of the following(assuming molarity = molarity):
A. The pH of the solution of weak base is 12.9.
B. The ionisation constant of the base is 8×10^{-3}.
C. The osmotic pressure of the aqueous solution of base is 21.67 atm
D. The base is 10% ionized in aqueous solution.

Answer: A::B::C::D

- Watch Video Solution

27. A solution of $0.01 \mathrm{MFe}^{2+}$ in a saturated $\mathrm{H}_{2} \mathrm{~S}$ solution and (i) $0.2 \mathrm{MofH}^{\oplus}\left(\right.$ ii) $0.001 \mathrm{MofH}^{\oplus} .\left(K_{1} \times K_{2} o f H_{2} S=10^{-21}, K_{\text {sp }} \mathrm{FeS}=3.7 \times 10^{-19}\right)$
.Which of the following statements is//are correct
A. FeS will precipitate in solution (i).
B. FeS will not precipitate in solution (i).
C. FeS will precipitate in solution (ii).
D. FeS will precipitate in solution (ii).

Answer: B::C

- Watch Video Solution

28. Which statements is//are correct?
A. $0.1 \mathrm{MNH}_{3}$ solution will precipitate $\mathrm{Fe}(\mathrm{OH})_{2}$ from a 0.1 M solution Fe^{2+}.
B. $0.1 \mathrm{MNH}_{3}$ solution will not precipitate $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution \oplus which is 0.2 M in NH_{4} and 0.1 M in Mg^{2+}
C. $0.1 \mathrm{MNH}_{3}$ solution will not precipitate AgOH from a solution which is $0.01 \mathrm{Min} \mathrm{Ag}^{\oplus}$.
D. Will precipitate is part (c).

Answer: A::B::C

- View Text Solution

29. Which statements is//are correct?
A. Compared to a strong acid, a weak acid titration with base starts at a higher pH .
B. Compared to a strong base, a weak base titration ends at a lower pH.
C. In both (a) and (b) titration curve is shortened at each end.
D. For titration of a weak base, the neraly vertical portion of the curve would be insufficient for an effective titration.

Answer: A::B::C::D

- Watch Video Solution

30. Which of the following solution will have $\mathrm{pH}=13$?
A. 2 gNaOHin 500 mL solution.
B. 100 mL solution fo $0.05 \mathrm{MCa}(\mathrm{OH})_{2}$.
C. 100 mL solution of $1.0 \mathrm{NCa}(\mathrm{OH})_{2}$.
D. 4 gNaOH in 500 mL solution.

Answer: A::B::C

31. Which of the following statements (s) is (are) correct?
A. The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCI is 8 .
B. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{\Theta}$ is HPO_{4}^{-2}.
C. Autoprotoysis constant of water increases with temperature.
D. When a solution of weak monoprotic acid is titrated against a strong base, at half-neutralisation, point $p H=(1 / 2) p K_{a}$.

Answer: B::C

- Watch Video Solution

32. The pH of 0.1 M solution of the following salts decreases in the order
A. $\mathrm{NaCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCN}<\mathrm{HCI}$
B. $\mathrm{HCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{NaCN}$
C. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{HCI}$
D. $\mathrm{HCI}<\mathrm{NaCI}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}$

Answer: B

- Watch Video Solution

33. A buffer solution can be prepared from a mixture of
A. Sodium acetate and acetic acid in water.
B. Sodium acetat and hydrochloric acid in water.
C. Ammonia and ammonia chloride in water.
D. Ammonia and sodium hydroxide in water.

Answer: A:C

- Watch Video Solution

1. 100 mL of a buffer solution contains 0.1 M each of weak acid $H A$ and salt

NaA . How many gram of NaOH should be added to the buffer so that it $p H$ will be $6 ?\left(K_{a}\right.$ of $\left.H A=10^{-5}\right)$.
A. 0.328
B. 0458
C. 4.19
D. None

Answer: A

- Watch Video Solution

2. K_{a} for the reaction,
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Fe}(\mathrm{OH})^{2+}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{\oplus}(a q)$ is 6.5×10^{-3}, what is the maximum $p H$ value which could be used so that at least 80% of the total iron (III) in a dilute solution exsists as Fe^{3+} ?
A. 2.0
B. ~ 2.4
C. ~ 2.8
D. ~ 1.6

Answer: D

- Watch Video Solution

3. The $p K_{b}$ of $C N^{\Theta}$ is 4.7. The $p H$ is solution prepared by mixing 2.5 mol of 2.5 mol of $K C N$ of 2.5 mol of $H C N$ in water and making the total volume upto 500 mL is
A. 10.3
B. 9.3
C. 8.3
D. 4.7

Answer: B

4. A 0.1 molar solution of weak base BOH is 1% dissociated. If 0.2 mol of $B C I$ is added in $1 L$ solution of $B O H$. The degree of dissociation of $B O H$ will become
A. 0.02
B. 0.005
C. 5×10^{-5}
D. 2×10^{-3}

Answer: C

- Watch Video Solution

$$
\Theta
$$

5. If the equilibrium constant of $\mathrm{BOH} \leftrightarrow \mathrm{B}^{\oplus}+\mathrm{OH}$ at $25^{\circ} \mathrm{C}$ is 2.5×10^{-6}, then equilibrium constant for $\mathrm{BOH}+\mathrm{H}^{\oplus} \Leftrightarrow B^{\oplus}+\mathrm{H}_{2} \mathrm{O}$ at the same temperature is
A. 4.0×10^{-9}
B. 4.0×10^{-5}
C. 2.5×10^{8}
D. 2.5×10^{-6}

Answer: C

- Watch Video Solution

6. An aqueous solution of metal chloride $\mathrm{MCI}_{2}(0.05 M)$ is saturated with $\mathrm{H}_{2} \mathrm{~S}(0.1 \mathrm{M})$. The minimum pH at which metal sulphide will be precipiated is

$$
\left[K_{s p} M S=5 \times 10^{-21}, K_{1}\left(H_{2} S\right)=10^{-7}, K_{2}\left(H_{2} S\right)=10^{-14} .\right.
$$

A. 3.25
B. 2.50
C. 1.50
D. 1.25

Answer: C

D Watch Video Solution

7. The $p H$ of a solution of weak base at neutralisation with strong acid is
8. K_{b} for the base is
A. 1.0×10^{-4}
B. 1.0×10^{-6}
C. 1.0×10^{-8}
D. None of these

Answer: B

- Watch Video Solution

8. The ionisation constant of an acid base indicator (a weak acid) is 1.0×10^{-6}. The ionised form of the indicator is red and unionised form is
blue. The pH change required to alter the colour of indicator form 80% red is
A. 0.80
B. 1.20
C. 1.40
D. 2.00

Answer: B

- Watch Video Solution

9. $\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 4.0×10^{-6}. At what minimum $\mathrm{pH}, \mathrm{Mg}^{2+}$ ions starts precipitating 0.01 MgCI
A. $2+\log 2$
B. $2-\log 2$
C. $12+\log 2$
D. $12-\log 2$

Answer: C

- Watch Video Solution

10. A solution of 0.1 MNaZ has $p H=8.90$. The K_{a} of $H Z$ is
A. 6.3×10^{-11}
B. 6.3×10^{-10}
C. 1.6×10^{-5}
D. 1.6×10^{-6}

Answer: C

- Watch Video Solution

11. Phenolphalein does not act as an indicator for the titration between
A. HCI and $\mathrm{NH}_{4} \mathrm{OH}$
B. $\mathrm{Ca}(\mathrm{OH})_{2}$ and HCI
C. NaOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. KOH and $\mathrm{CH}_{3} \mathrm{COOH}$

Answer: A

D Watch Video Solution

12. The pink colour of phenolphthalein in alkaline medium is due to
Θ
A. OH ions
B. Positive ion
C. Negative ion
D. Neutral form

Answer: C

13. Methy1 orange gives red colour in
A. KOH solution
B. HCI solution
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution
D. NaCI solution

Answer: B

- Watch Video Solution

14. A solution containing $\mathrm{NH}_{4} \mathrm{CI}$ and $\mathrm{NH}_{4} \mathrm{OH}$ has $\left[\begin{array}{l}\Theta \\ \mathrm{OH}\end{array}\right]=10^{-6} \mathrm{molL}^{-1}$, which of the following hydroxides would be precipitated when this solution in added in equal volume to a solution containing 0.1 M of metal ions?
A. $\mathrm{Mg}(\mathrm{OH})_{2},\left(K_{s p}=3 \times 10^{-11}\right)$
B. $\mathrm{Fe}(\mathrm{OH})_{2}\left(K_{\text {sp }}=8 \times 10^{-16}\right)$
C. $\mathrm{Cd}(\mathrm{OH})_{2}\left(K_{s p}=8 \times 10^{-6}\right)$
D. $\mathrm{AgOH}\left(K_{s p}=5 \times 10^{-3}\right)$

Answer: B

- Watch Video Solution

15. If equal volumes of BaCI_{2} and NaF solutions are mixed, which of these combination will not give a precipitate? $\left(K_{s p} o f B a F_{2}=1.7 \times 10^{-7}\right)$.
A. $10^{-3} \mathrm{BaCI}_{2}$ and $2 \times 10^{-2} \mathrm{MNaF}$
B. $10^{-3} \mathrm{MBaCI}$ and $1.5 \times 10^{-2} \mathrm{MNaF}$
C. $1.5 \times 10^{-2} \mathrm{MBaCI}_{2}$ and $10^{-2} \mathrm{MNaF}$
D. $2 \times 10^{-2} \mathrm{MBaCI}_{2}$ and $2 \times 10^{-2} \mathrm{MNaF}$

Answer: C

16. The solubility of solid silver chromate, $\mathrm{Ag}_{2} \mathrm{Cro}_{4}$, is determined in three solvents $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}=9 \times 10^{-12}$
I. pure water II. $0.1 \mathrm{MgNO}_{3}$
III. $0.1 \mathrm{MNa}_{2} \mathrm{CrO}_{4}$

Predict the relative solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in the three solvents.
A. $I=I I=I I I$
B. I $<$ II $<$ III
C. $I I=I I I<I$
D. II $<$ III $<$ I

Answer: D

- Watch Video Solution

17. The solubility products of $\mathrm{AI}(\mathrm{OH})_{3}$ and $\mathrm{Zn}(\mathrm{OH})_{2}$ are 8.5×10^{-23} and 1.8×10^{-14} respectively. If $\mathrm{NH}_{4} \mathrm{OH}$ is added to a solution containing AI^{3+} and Zn^{2+} ions, then substance precipitated first is:
A. $\mathrm{AI}(\mathrm{OH})_{3}$
B. $\mathrm{Zn}(\mathrm{OH})_{2}$
C. Both (a) and (b)
D. None of these

Answer: A

- Watch Video Solution

18. If $K_{s p}\left(\mathrm{PbSO}_{4}\right)=1.8 \times 10^{-8}$ and $K_{a}\left(\mathrm{HSO}_{4}^{\Theta}\right)=1.0 \times 10^{-2}$ the equilibrium constant for the reaction.
$\mathrm{PbSO}_{4}(s)+H^{\oplus}(a q) \Leftrightarrow \mathrm{HSO}_{4}^{\Theta}(a q)+\mathrm{Pb}^{2+}(a q)$ is
A. 1.8×10^{-6}
B. 1.8×10^{-10}
C. 2.8×10^{-10}
D. 1.0×10^{-2}

Answer: A

- Watch Video Solution

19. Which one of the following is true for any diprotic acid, $\mathrm{H}_{2} \mathrm{X}$?
A. $K_{a_{2}}>K_{a_{1}}$
B. $K_{a_{1}}>K_{a_{2}}$
C. $K_{a_{2}}=\frac{1}{K_{a_{1}}}$
D. $K_{a_{2}}=K_{a_{1}}$

Answer: B

20. The $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1 \times 10^{-12} \cdot 0.01 \mathrm{MMg}^{2+}$ will precipitate at the limiting pH of
A. 8
B. 9
C. 10
D. 12

Answer: B

- Watch Video Solution

21. The solubility products of $M A, M B, M C$ and $M D$ are $1.8 \times 10^{-10}, 4 \times 10^{-3}, 4 \times 10^{-8}$ and 6×10^{-5} respectively. If a 0.01 M solution of $M X$ is added dropwise to a mixture containing A^{-}, B^{-}, C^{-}and D^{-}ions, then the one to be precipitated first will be:
A. $M A$
B. $M B$
C. $M C$
D. $M D$

Answer: A

- Watch Video Solution

22. A solution is saturated with respect to SrCO_{3} and SrF_{2}. The $\left[\mathrm{CO}_{3}^{2-}\right]$ was found to be $1.2 \times 10^{-3} \mathrm{M}$. The concnetration of F^{Θ} in the solution would be

Given $K_{s p}$ of $\mathrm{SrCO}_{3}=7.0 \times 10^{-10} \mathrm{M}^{2}$,

$$
K_{s p}{\mathrm{of} S r F_{2}}=7.9 \times 10^{-10} \mathrm{M}^{3},
$$

A. $1.3 \times 10^{-3} \mathrm{M}$
B. $2.6 \times 10^{-2} \mathrm{M}$
C. $3.7 \times 10^{-2} \mathrm{M}$
D. $5.8 \times 10^{-7} \mathrm{M}$

- Watch Video Solution

23. The number of S^{2-} ions present in 1 L of $0.1 \mathrm{MH}_{2} S\left[K_{a}\left(\mathrm{H}_{2} \mathrm{~S}\right)=10^{-21}\right]$ solution having $\left[H^{\oplus}\right]=0.1 M$ is:
A. 6.023×10^{3}
B. 6.023×10^{4}
C. 6.023×10^{5}
D. 6.023×10^{6}

Answer: A

- Watch Video Solution

24. The solubility of AgI in NaI solutions is less than that in pure water because:
A. AgI forms complex with NaI
B. Of common ion effect
C. Solubility product of AgI is less than that of NaI .
D. The temperature of the solution decreases.

Answer: B

- Watch Video Solution

25. Three sparigly soluble salts $M_{2} X, M X$, and $M X_{3}$ have the same solubility product. Their solubilities will be in the order
A. $M X_{3}>M X>M_{2} X$
B. $M X_{3}>M_{2} X>M X$
C. $M X>M X_{3}>M_{2} X$
D. $M X>M_{2} X>M X_{3}$

Answer: B

26. When 0.2 M solution of acetic acid is neutralised with 0.2 MNaOH in 500 mL of water, the pH of the resulting solution will be: $\left[p K_{a}\right.$ of acetic acid $=4.74]$
A. 12.67
B. 7.87
C. 8.87
D. 7

Answer: C

- Watch Video Solution

27. A weak acid $H X$ has the dissociation constant $1 \times 10^{-5} \mathrm{M}$. It forms a salt NaX on reaction with alkali. The percentage hydrolysis of 0.1 M solution of NaX is
A. 0.001%
B. 0.01%
C. 0.1 \%
D. 0.15%

Answer: B

- Watch Video Solution

28. A certain buffer solution contains equal concentartion of X^{Θ} and $H X$. The K_{b} for X^{Θ} is 10^{-10}. The $p H$ of the buffer is
A. 4
B. 7
C. 10
D. 14
29. A certain weak acid has a dissocation constant of 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is
A. 1.0×10^{-4}
B. 1.0×10^{-10}
C. 1.0×10^{10}
D. 1.0×10^{14}

Answer: C

- Watch Video Solution

30. Auto-ionisation of liquid NH_{3} is
$2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{NH}_{4}^{\oplus}+\mathrm{NH}_{2}^{\Theta}$
with $K_{N H_{3}}=\left[\mathrm{NH}_{4}^{\oplus}\right]\left[\mathrm{NH}_{2}^{\Theta}\right]=10^{-30} \mathrm{at}-50^{\circ} \mathrm{C}$ Number fo amide ions
$\left(\mathrm{NH}_{2}^{\Theta}\right)$, present per mm^{3} of pure liquied NH_{3} is
A. 602
B. 301
C. 200
D. 100

Answer: A

- Watch Video Solution

31. A mixture of weak acid is 0.1 M in $\mathrm{HCOOH}\left(K_{a}=1.8 \times 10^{-4}\right)$ and $0.1 M$ in $\operatorname{HOCN}\left(K_{a}=3.1 \times 10^{-4}\right)$. Hence, $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ is
A. $7.0 \times 10^{-3} M$
B. $4.1 \times 10^{-4} M$
C. $0.20 M$
D. $4.1 \times 10^{-3} M$
32. pH of solution made by mixing 50 mL of $0.2 \mathrm{MNH}_{4} \mathrm{CI}$ and 75 mL of $0.1 \mathrm{MNaOHis}\left[p K_{b} \mathrm{ofNH}_{-}(3)(\mathrm{aq})=4.74 . \log 3=0.47\right]{ }^{\top}$
A. 7.02
B. 13.0
C. 7.02
D. 9.73

Answer: D

- Watch Video Solution

33. Some chemists at wished to perpare a saturated solution of a silver compound and they wanted it to have the highest concentration of silver ion possible. Which of the following compound would they use ?
$K_{s p}(A g C I)=1.8 \times 10^{-10}, K_{s p}(A g B r)=5.0 \times 10^{-13}$,
$K_{s p}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=2.4 \times 10^{-12}[\mathrm{Use} 3 \sqrt{0.6}=0.84]$
A. AgCI
B. AgBr
C. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
D. all of these

Answer: C

- Watch Video Solution

34. An acid-base indicator has a $K_{a}=3.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Then
A. $p H$ is 4.05 when indicator is 75% red.
B. $p H$ is 5.00 when indicator is 75% blue.
C. Both (a) and (b) are correct.
D. None of these

Answer: C

- Watch Video Solution

35. The pH value of 0.001 M aqueous solution of NaCI is
A. 7
B. 4
C. 11
D. Unpredictable

Answer: A

- Watch Video Solution

36. Which of the following will supress the ionisation of acetic acid in aquoeus solution?
A. NaCI
B. HCI
C. $K C I$
D. Unpredictable

Answer: B

- Watch Video Solution

37. An aqueous solution of $\mathrm{HCII} 10^{-9} \mathrm{MHCI}$. The pH of the solution should be
A. 9
B. Between 6 and 7
C. 7
D. Unpredictable

Answer: B

- Watch Video Solution

38. Which of the following represents the conjugate pair of NH_{3} ?
A. NH_{2}^{Θ}
B. $N H_{4}^{\oplus}$
C. Both (a) and (b)
D. N^{3-}

Answer: C

- Watch Video Solution

39. One of the following is a Bronsted acid but not a Bronsted base:
A. $\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{H}_{2} \mathrm{~S}$
C. $\mathrm{HCO}_{3}{ }^{\Theta}$
D. NH_{3}

Answer: A

- Watch Video Solution

40. In the third group of qualitive analysis, the precipitating reagent is $\mathrm{NH}_{4} \mathrm{CI} / \mathrm{NH}_{4} \mathrm{OH}$. The function of $\mathrm{NH}_{4} \mathrm{CI}$ is to
A. increases the ionisation of $\mathrm{NH}_{4} \mathrm{OH}$.
B. Supress the ionisation of $\mathrm{NH}_{4} \mathrm{OH}$.
C. Convert the ions of group theird into their respective chlorides.
D. Stabilise the hydroxides of group III cations.
41. At a certain temperature the value of $p K_{w}$ is 13.4 and the measured $p H$ of soln is 7. The solution is
A. Acidic
B. Basic
C. Neutral
D. Unpredictable

Answer: B

- Watch Video Solution

42. When 2 mol of HCI is added to 1 L of an acidic buffer, its pH changes from 3.4 to 2.9. The buffer capacity of the buffer solution is
A. 2
B. 0
C. 4
D. 8

Answer: C

- Watch Video Solution

43. Let the solubilities of AgCI in $\mathrm{H}_{2} \mathrm{O}$, and in $0.01 \mathrm{MCaCI}_{2}, 0.01 \mathrm{MNaCI}$, and $0.05 \mathrm{MAgNO}_{3}$ be $S_{1}, S_{2}, S_{3}, S_{4}$, respectively. What is the correct relationship between these quantites.
A. $S_{1}>S_{2}>S_{3}>S_{4}$
B. $S_{1}>S_{2}=S_{3}>S_{4}$
C. $S_{1}>S_{3}>S_{2}>S_{4}$
D. $S_{4}>S_{2}>S_{3}>S_{1}$

Answer: C

44. Which of the following salts will not undergo hydrolysis in water?
A. Sodium sulphate
B. Ammonium sulphate
C. Aluminimum sulphate
D. All the salts will hydrolyse

Answer: A

- Watch Video Solution

45. Which of the following salts will not change the pH of pure water on dissociation?
A. $K C I$
B. AICI_{3}
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{AI}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: A

- Watch Video Solution

46. A salt X is dissolved in water having $p H=7$. The resulting solution has a pH more than 7 . The salt is made by neutralisation of
A. A strong acid and strong base
B. A strong acid and strong weak base
C. A weak acid and weak base
D. A weak acid and strong base

Answer: D

- Watch Video Solution

47. The $p H$ of a solution 7.00 . To this solution, sufficient base is added to Θ
increase the pH to 12.0. The increase in OH ion concentration is
A. $5 \times$
B. $100 \times$
C. $10^{5} \times$
D. $4 \times$

Answer: C

- Watch Video Solution

48. Assuming $\mathrm{H}_{2} \mathrm{SO}_{4}$ to be completely ionised the pH of a 0.05 M aqueous of sulphuric acid is approximately
A. 0.01
B. 0.005
C. 2

D. 1

Answer: D

- Watch Video Solution

49. A solution has $p O H$ equal to 13 at $298 K$. The solution will be
A. Highly acidic
B. Highly basic
C. Moderatly basic
D. Unpredictable

Answer: A

- Watch Video Solution

50. If ammonia is added to pure water, the concentration of a chemical species already present will decrease. The species is
A. O_{2}^{Θ}
Θ
B. OH
C. $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

51. The $p H$ of a dilute solution of acetic acid wea found to be 4.3. The addition of a small crystal of sodium acetate will cause pH to
A. Become less than 4.3
B. Beome more than 4.3
C. Remain equal to 4.3

D. Unpredictable

Answer: B

- Watch Video Solution

52. Which of the following can act both as a Bronsted acid and a Bronsted base?
A. O_{2}^{Θ}
B. HCI
C. $\mathrm{HSO}_{4}^{\Theta}$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Answer: C

53. Which of the following is a Lewis base?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $C I^{\Theta}$
C. $B F_{3}$
D. NH_{3}

Answer: C

- Watch Video Solution

54. Which of the following is not a Lewis base?
A. $C N^{\Theta}$
B. ROH
C. NH_{3}
D. AICI_{3}

Answer: D

- Watch Video Solution

Θ
55. Conjugate base of OH is
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
C. H^{\oplus}
D. O^{2-}

Answer: D

Watch Video Solution
56. Which of the following will have the largest $p H$?
B. $M / 100 \mathrm{HCI}$
C. $\mathrm{M} / 10 \mathrm{NaOH}$
D. $\mathrm{M} / 100 \mathrm{NaOH}$

Answer: C

- Watch Video Solution

57. Which one of following will have the largest pH ?
A. Solution containing 1×10^{-2} molofK $_{2} \mathrm{SO}_{4} L^{-1}$.
B. Pure water.
C. Solution containing 1.0×10^{-2} molof HCIL $^{-1}$.
D. Solution containing 1×10^{2} molof $^{2} H_{4} \mathrm{OHL}^{-1}$.

Answer: D

58. When 20 mL of $\mathrm{M} / 20 \mathrm{NaOH}$ is added to 10 mL of $\mathrm{M} / 10 \mathrm{HCI}$, the resulting solution will
A. Turn blue litmus red.
B. Turn phenolpthalein solution pink.
C. Turns methy orange red.
D. Will have no effect on either red or blue litmus

Answer: D

- Watch Video Solution

59. pOH water is 7.0 at 298 K . If water is heated to 350 K , which of the following should be ture?
A. pOH will decrease
B. pOH will increase
C. pOH will remain seven
D. Concentration of H^{\oplus} ions will increae but that of OH will decrease.

Answer: A

- Watch Video Solution

60. Solubility of salt $A_{2} B_{3}$ is 1×10^{-4}, its solubility product is
A. 1.08×10^{20}
B. 1.08×10^{18}
C. 2.6×10^{-18}
D. 1.08×10^{-18}

Answer: D

- Watch Video Solution

61. The value of $K_{s p}$ is HgCI_{2} at room temperature is 4.0×10^{-15}. The concentration of $C I^{\Theta}$ ion in its aqueous solution at saturation point is
A. 1×10^{-5}
B. 2×10^{-5}
C. 2×10^{-15}
D. 8×10^{-15}

Answer: B

- Watch Video Solution

62. At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]=10^{-6.7} \mathrm{molL}^{-1}$. What is the value of K_{w} at $90^{\circ} \mathrm{C}$?
A. 10^{-6}
B. 10^{-12}
C. $10^{-13.4}$
D. $10^{-6.7}$

Answer: C

- Watch Video Solution

63. What is the solubility of PbSO_{4} in $0.01 \mathrm{MNa}_{2} \mathrm{SO}_{4}$ solution if $K_{s p}$ for $\mathrm{PbSO}_{4}=1.25 \times 10^{-9} ?$
A. $1.25 \times 10^{-7} \mathrm{molL}^{-1}$
B. $1.25 \times 10^{-9} \mathrm{molL}^{-1}$
C. $1.25 \times 10^{-10} \mathrm{molL}^{-1}$
D. $0.10 \mathrm{molL}^{-1}$

Answer: A

64. The pH of an aqueous solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 10 . If the $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 1×10^{-9}, then the concentration of Ba^{2+} ions in the solution in molL^{-1} is
A. 1×10^{-2}
B. 1×10^{-4}
C. 1×10^{-1}
D. 1×10^{-5}

Answer: C

- Watch Video Solution

65. How many grams of NaOH must be dissolved in $1 L^{-1}$ of the solution to given it a pH value of 12 ?
A. $0.20 g L^{-1}$
B. $0.40 \mathrm{gL} \mathrm{L}^{-1}$
C. $0.10 g L^{-1}$
D. $1.2 g L^{-1}$

Answer: B

- Watch Video Solution

66. Which of the following solutions will have $\mathrm{pH}=10$ at 298 K ?
A. $1 \times 10^{-10} \mathrm{MHCI}$ solution
B. $1 \times 10^{-4} \mathrm{MNaOH}$ solution
C. $1 \times 10^{-10} \mathrm{MNaOH}$ solution
D. Both (a) and (b)

Answer: B

- Watch Video Solution

67. An acid $H A$ is 40% dissociated in an aqueous solution. The hydronium ion concentration of its 0.2 M solution would be
A. 0.08 M
B. $0.4 M$
C. 0.2 M
D. None

Answer: A

- Watch Video Solution

68. $20 \mathrm{~cm}^{3}$ of $x M$ solution of $H C I$ is exactly neutralised by $40 \mathrm{~cm}^{3}$ of 0.05 MNaOH solutions, the pH of HCI solution is
A. 1.0
B. 2
C. 1.5
D. 2.5

Answer: A

- Watch Video Solution

69. A monoprotic acid $(H A)$ is 1% ionised in its aqueous solution of $0.1 M$ strength. Its pOH will be
A. 11
B. 3
C. 10
D. 2

Answer: A

70. The pH of a solution is 5.00 . To this solution, sufficient acid is added to lower the pH to 2.00. The corresponding increase in $\mathrm{H}_{3} \mathrm{O}^{\oplus}$ ion concentration is
A. 1000 times
B. 2.5 times
C. 100 times
D. 5 times

Answer: A

- Watch Video Solution

71. What would be the solubility of silver chloride in 0.10 MNaCI solution?
$K_{s p} f$ or $A g C I=1.20 \times 10^{-10}$
A. 0.1 M
B. $1.2 \times 10^{-6} \mathrm{M}$
C. $1.2 \times 10^{-9} \mathrm{M}$
D. $1.2 \times 10^{-10} M$

Answer: C

- Watch Video Solution

72. Which of the following metal sulphides has maximum solubility in water?
A. $\operatorname{CdS}\left(K_{\text {sp }}=36 \times 10^{-30}\right)$
B. $\operatorname{FeS}\left(K_{s p}=11 \times 10^{-20}\right)$
C. $\operatorname{HgS}\left(K_{s p}=32 \times 10^{-54}\right)$
D. $Z n S\left(K_{s p}=11 \times 10^{-22}\right)$

Answer: B

- Watch Video Solution

73. $M_{2} \mathrm{SO}_{4}\left(M^{\oplus}\right.$ is a monovalent metal ion $)$ has a $K_{s p}$ of 3.2×10^{-6} at 298 K The maximum concentration of SO_{4}^{2-} ion that could be attained in a saturated solution of this solid at 298 K is
A. $3 \times 10^{-3} M$
B. $7 \times 10^{-2} \mathrm{M}$
C. $2.89 \times 10^{-4} M$
D. $2 \times 10^{-2} M$

Answer: D

- Watch Video Solution

74. $K_{s p}$ for lead iodate $\left[\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}\right.$ is3.2 $\times 10^{-14}$ at a given temperature. The solubility in molL^{-1} will be
A. 2.0×10^{-5}
B. $\left(3.2 \times 10^{-7}\right)^{1 / 2}$
C. $\left(3.8 \times 10^{-7}\right)$
D. 4.0×10^{-6}

Answer: A

- Watch Video Solution

75. The pH of a 0.1 M solution of $\mathrm{NH}_{4} \mathrm{Oh}$ (having dissociation constant $\left.K_{b}=1.0 \times 10^{-5}\right)$ is equal to
A. 10
B. 6
C. 11
D. 12

Answer: C

76. The best indicator for the detection of the end point in the titration of a weak acid and a strong base is
A. Methy1 orange (pH range $3 \rightarrow 4$)
B. Methy1 red (pH range $4 \rightarrow 6$)
C. Thymol blue (pH range $8 \rightarrow 3$)
D. Phemolphethalein (pH range $8 \rightarrow 10$)

Answer: D

- Watch Video Solution

77. When a solid KCI is added to a saturated solution of $\mathrm{AgClin}_{2} \mathrm{O}$,
A. Nothing happens.
B. Solubility of AgCI decreases.
C. Solubility of AgCI increases.
D. Solubility product of AgCI increases.

Answer: B

- Watch Video Solution

78. Two buffer solutions, A and B, each made acetic acid and sodium acetate differ in their $p H$ by one unit, A has satl: acid $=x: y$, has salt: acid $=y: x$. If $x>y$, then the value of $x: y$ is
A. 10,000
B. 3.17
C. 6.61
D. 2.10

Answer: B

79. CaCO_{3} and BaCO_{3} have solubility product values 1×10^{-8} and 5×10^{-9}, respectively. If water is shaken up with both solids till equilibrium is reached, the concentration of CO_{3}^{2-} ion is
A. 1.5×10^{-8}
B. 1.225×10^{-4}
C. 2.25×10^{-9}
D. None of these

Answer: B

- Watch Video Solution

80. The $p H$ of an acidic buffer can be raised by 2 units by
A. Increasing the concentration of both weak acid and salt by two moles
B. Increasing the concentration of both the acid and salt by 10 times.
C. Diluting the solution by 10 times.
D. Increasing the concentration of the salt by 10 times by decreasing concentration of the acid by 10 times.

Answer: D

- Watch Video Solution

81. Buffer solutions can be prepared form mixtures of
A. HCI and NaCI
B. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
C. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCI}$
D. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{3}$

Answer: B

82. 20 mol of $\mathrm{M} / 10 \mathrm{CH}_{3} \mathrm{COOH}$ solution is titrated with $\mathrm{M} / 10 \mathrm{NaOH}$ solution. After addition of 16 mL solution of NaOH . What is the pH of the solution $\left(p K_{a}=4.74\right)$
A. 5.05
B. 4.15
C. 4.75
D. 5.35

Answer: D

- Watch Video Solution

83. The K_{a} value of CaCO_{3} and $\mathrm{CaC}_{2} \mathrm{O}_{4}$ in water are 4.7×10^{-9} and 1.3×10^{-9}, respectively, at $25^{\circ} \mathrm{C}$. If a miaxture of two is washed with $\mathrm{H}_{2} \mathrm{O}$, what is Ca^{2+} ion concentration in water?
A. 7.746×10^{-5}
B. 5.831×10^{-5}
C. 6.856×10^{-5}
D. 3.606×10^{-5}

Answer: A

- Watch Video Solution

84. What are the units in which the solubility product of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is expressed?
A. moldm $^{-3}$
B. $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
C. $\mathrm{mol}^{3} \mathrm{dm}^{-9}$
D. $\mathrm{mol}^{5} \mathrm{dm}^{-15}$

Answer: D

85. Calculate the pH of a $10^{-5} \mathrm{MHCl}$ solution if 1 mL of it is diluted to $1000 \mathrm{~mL} . K_{w}=1 \times 10^{-14}$.
A. 5
B. 8
C. 7.02
D. 6.98

Answer: D

- Watch Video Solution

86. Which of the following when mixed, will given a solution with $\mathrm{pH}>7$.
A. $0.1 \mathrm{MHCI}+0.1 \mathrm{MNaCI}$
B. $100 \mathrm{mLof0} .1 \mathrm{MH}_{2} \mathrm{SO}_{4}+100 \mathrm{mLof0} 0.3 \mathrm{MNaOH}$
C. $100 \mathrm{mLof0} 0.1 \mathrm{MHC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+100 \mathrm{mLof} 0.1 \mathrm{MKOH}$
D. $25 \mathrm{mLof} 0.1 \mathrm{HNO}_{3}+25 \mathrm{mLof0} 0.1 \mathrm{MNH}_{3}$

Answer: C

- Watch Video Solution

87. A solution of CaF_{2} is found to contain $4 \times 10^{-4} \mathrm{M}$ of $F^{\Theta}, K_{s p}$ of CaF_{2} is
A. 3.2×10^{-11}
B. 0.8×10^{-11}
C. 6.4×10^{-11}
D. 32×10^{-11}

Answer: A

- Watch Video Solution

88. At what $p H$ will a $10^{-3} \mathrm{M}$ solution fo indicator with $K_{b}=10^{-10}$ changes colour?
A. 10
B. 4.0
C. 3
D. 7

Answer: B

- Watch Video Solution

89. If the dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ is 1.8×10^{-5}, the concentration
Θ
of OH ions, in mol^{-1} of0. $1 \mathrm{MNH}_{4} \mathrm{OH}$ is
A. 1.8×10^{-6}
B. 1.34×10^{-3}
C. 4.20×10^{-2}
D. 5.0×10^{-2}

Answer: B

- Watch Video Solution

90. $p H$ signifies:
A. Puissance de hydrogen
B. $-\log \left[H^{\oplus}\right]$
C. All the above
D. $-14-p O H$

Answer: A

- Watch Video Solution

91. A solution with $p H=12$ is more acidic then one with a $p H=6$ by a factor of
A. 4
B. 12
C. 400
D. 10^{4}

Answer: D

- Watch Video Solution

92. A definite volume of an aqueous $N / 20$ acetic acid $\left(p K_{a}=4.74\right)$ is titrated with a strongs base. It is found that 75 equal-sized drops of NaOH added from a burette effect the complete neutralisation. Find the $p H$ when an acid solution is neutralised to the extent of $20 \%, 40 \%$, and 80%, respectively.
A. 4.14
B. 9.86
C. 5.34
D. 8.68

Answer: A

- Watch Video Solution

93. The $p K_{a}$ of acteylsalicylic acid (aspirin) is 3.5 . The pH of gastric juice in human stomach is about $2-3$ and the pH in the small intestine is about 8. Aspirin will be:
A. Unionised in the small intestine and in the stomach.
B. Completely ionised in the small intestine and in the stomach.
C. lonised in the stomach and alomost unionised in the small intestine.
D. lonised in small intestine and almost unionised in the stomach.

D Watch Video Solution

94. Which of the following salt is basic?
A. HOCI
B. NaOCI
C. NaHSO_{4}
D. $\mathrm{NH}_{4} \mathrm{NO}_{3}$

Answer: B

Watch Video Solution

95. For the indicator 'Hin' the ratio $\left(\right.$ Ind $\left.^{\Theta}\right) /(\mathrm{HIn})$ is 7.0 at $p H$ of 4.3 . What is $K_{e q}$ for the indicator.
A. 3.5×10^{-4}
B. 3.5×10^{-5}
C. 3.5×10^{-2}
D. 3.5×10^{-3}

Answer: A

- Watch Video Solution

96. When 0.002 mol of acid is added to 250 mL of a buffer solution, pH decreases by 0.02 units. The buffer capacity of the system is
A. 0.1
B. 0.2
C. 0.3
D. 0.4
97. pH of an aqueous solution of $0.6 \mathrm{MNH}_{3}$ and $0.4 \mathrm{MNH}_{4} \mathrm{CI}$ is $9.4\left(p K_{b}=4.74\right)$. The new $p H$ when $0.1 \mathrm{MCa}(\mathrm{OH})_{2}$ solution is added to it.
A. 9.86
B. 10.14
C. 10.2
D. 10.86

Answer: A

- Watch Video Solution

98. Which of the following salts undergoes anionic hydrolysis?
A. CuSO_{4}
B. $\mathrm{NH}_{4} \mathrm{CI}$
C. FeCI_{3}
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Answer: D

- Watch Video Solution

99. A saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is $2.5 \times 10^{-2} \mathrm{M}$. The value of its solubility product is
A. 62.5×10^{-6}
B. 6.25×10^{-4}
C. 15.625×10^{-10}
D. 3.125×10^{-6}

Answer: A

100. Which one of the followinf is acid salt?
A. $\mathrm{Na}_{2} \mathrm{~S}$
B. $\mathrm{Na}_{2} \mathrm{SO}_{3}$
C. NaHSO_{3}
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Answer: C

101. Which one is not an acid salt?
A. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
B. $\mathrm{NaH}_{2} \mathrm{PO}_{2}$
C. $\mathrm{NaH}_{2} \mathrm{PO}_{3}$
D. All of the above are acid salts

Answer: D

D Watch Video Solution

102. Which one of the following salts when dissolves in water hydrolyse?
A. NaCI
B. $\mathrm{NH}_{4} \mathrm{CI}$
C. $K C I$
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Answer: B

103. Which of the following salt undergoes hydrolysis?
B. NaNO_{3}
C. KCI
D. $\mathrm{K}_{2} \mathrm{SO}_{4}$

Answer: A

- Watch Video Solution

104. Out of the following the compound whose water solution has the highest $p H$ is
A. NaCI
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{CI}$
D. NaHCO_{3}

Answer: B

105. When equal volumes of the following solutions are mixed, precipitation of $\operatorname{AgCI}\left(K_{s p}=1.8 \times 10^{-10}\right)$ will occur only wity
A. $10^{-4} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-4} \mathrm{M}\left(\mathrm{CI}^{\Theta}\right)$
B. $10^{-5} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-5} \mathrm{M}\left(\mathrm{CI}^{\Theta}\right)$
C. $10^{-5} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-6} \mathrm{M}\left(\mathrm{CI}^{\Theta}\right)$
D. $10^{-4} \mathrm{M}\left(A g^{\oplus}\right)$ and $10^{-10} \mathrm{M}\left(C I^{\Theta}\right)$

Answer: A

- Watch Video Solution

106. The gatric juice in our stomach contains enough HCI to make the hydrogen ion concentration about $0.01 \mathrm{~mol}^{-1}$. The pH of gastric juice is
A. 0.01
B. 1
C. 2
D. 14

Answer: C

- Watch Video Solution

107. Of the given anions, the strongest Bronsted base is
A. CIO^{Θ}
B. $\mathrm{CIO}_{2}^{\Theta}$
C. $\mathrm{CIO}_{3}{ }^{\Theta}$
D. $\mathrm{CIO}_{4}^{\Theta}$

Answer: A

108. In decinormal solution, $\mathrm{CH}_{3} \mathrm{COOH}$ acid is ionised to the extent of 1.3%. If $\log 1.3=0.11$, what is the pH of the solution?
A. 3.89
B. 2.89
C. 4.89
D. Unpredictable

Answer: B

- Watch Video Solution

109. An aqueous solution of aluminium sulphate would show
A. Acidic
B. Neutral
C. Basic
D. Both acidic and basic reaction.

- Watch Video Solution

110. The aqueous solution of AICI_{3} is acidic due to
A. Cation hydrolysis
B. Anion hydrolysis
C. Hydrolysis of both anion and cation
D. Dissociation

Answer: A

- Watch Video Solution

111. A solution contains 10 mL of 0.1 NNaOH and 10 mL of $0.05 \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{pH}$ of this solution is
A. 7
B. Less than 7
C. Greater than 7
D. Zero

Answer: C

- Watch Video Solution

112. 20 mL of 0.1 NHCI is mixed with 20 ml of 0.1 NKOH . The pH of the solution would be
A. 0
B. 7
C. 2
D. 9

Answer: B

113. 0.1 M solution of which of the substances will behave basic?
A. Sodium borate
B. Ammonium ditoride
C. Calcium nitrate
D. Sodium sulphate

Answer: A

- Watch Video Solution

114. In which of the following solvents will AgBr has highest solubility?
A. $10^{-3} \mathrm{MNaBr}$
B. $10^{-3} \mathrm{MNH}_{4} \mathrm{OH}$
C. Pure water
D. $10^{-3} \mathrm{MHBr}$

Answer: B

- Watch Video Solution

115. Which of the following mixture solution has $p H \approx 1.0$?
A. $100 \mathrm{mLM} / 10 \mathrm{HCI}+100 \mathrm{mLM} / 10 \mathrm{NaOH}$
B. $55 \mathrm{mLM} / 10 \mathrm{HCI}+45 \mathrm{mLM} / 10 \mathrm{NaOH}$
C. $10 \mathrm{mLM} / 10 \mathrm{HCI}+90 \mathrm{mLM} / 10 \mathrm{NaOH}$
D. $75 \mathrm{mLM} / 5 \mathrm{HCI}+25 \mathrm{mLM} / 5 \mathrm{NaOH}$

Answer: D

- Watch Video Solution

116. Fear or exitement, generally cause one to breathe rapidaly and it results in the decrease of concentration of CO_{2} in blood. In what way it will change pH of blood ?
A. $p H$ will increase
B. $p H$ will decrease
C. No change
D. $p H$ will adust to 7

Answer: C

- Watch Video Solution

117. Which buffer solution out of the following will have $\mathrm{pH}>7$?
A. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
B. $\mathrm{HCOOH}+\mathrm{HCOOK}$
C. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
D. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{CI}$

Answer: D

- Watch Video Solution

118. Which of the following is most soluble?
A. $B i_{2} S_{3}\left(K_{s p}=1 \times 10^{-70}\right)$
B. $\operatorname{MnS}\left(K_{s p}=7 \times 10^{-16}\right)$
C. $\operatorname{CuS}\left(K_{s p}=8 \times 10^{-37}\right)$
D. $A g_{2} S\left(K_{s p}=6 \times 10^{-51}\right)$

Answer: B

- Watch Video Solution

119. If $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of a solution is increased by 10 times, its pH will
A. Increase by 1
B. Remains unchanged
C. Decreases by 1
D. Increase by 10

Answer: C

- Watch Video Solution

120. If $p K_{b}$ for fluoride ion at $25^{\circ} \mathrm{C}$ is 10.83 , the ionisation constant of hydrofluoric acid in water at this temperature is
A. 1.74×10^{-5}
B. 3.52×10^{-3}
C. 6.75×10^{-4}
D. 5.38×10^{-2}

Answer: C

- Watch Video Solution

121. The following graph represents the titration of pH vs volume

A. A diprotic acid.
B. Two monoprotic acids with the same K_{a} but different concentrations.
C. Two monoprotic acids with different K_{a} but the same concentration.
D. Two monoprotic acids with differnet K_{a} and different concentartions.

Answer: D

- Watch Video Solution

Exercises Assertion-Reasoning

1. Assertion (A): A solution contains 0.1 M each of $\mathrm{pB}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Ni}^{2+}$, ions.

If $\mathrm{H}_{2} \mathrm{~S}$ is passed into this solution at $25^{\circ} \mathrm{C}$.
$\mathrm{Pb}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}$ will get precpitated simultanously.
Reason (R): Pb^{2+} and Zn^{2+} will get precipitated if the solution contains

0.1MHCI.

$$
\left[K_{1} H_{2} S=10^{-7}, K_{2} H_{2} S=10^{-14}, K_{s p} P b S=3 \times 10^{-29} K_{s p} N i S=3 \times 10^{-19} . K_{s p} Z n!\right.
$$

A. If both (A) and (R) are correc, and (R) is the correct explanation of

(A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

2. Assertion (A): Solubility of $A g C N$ in acidic solutions is greater than in pure water.

Reason (R) : Solubility equilibrium of $A g C N$ is shifted in formwed direction due to the formation of $H C N$.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

3. Assertion (A): Methy red has $K_{a}=10^{-5}$ and the acid form, "Hin" is red and its conjugate base $\operatorname{Ind}{ }^{\Theta}$ is yellow.

$$
p H=\begin{array}{llll}
p H & 3 & 7
\end{array}
$$

Reason (R) : $\frac{\left[\operatorname{Ind}^{\ominus}\right]}{[\text { Hin }]}=10^{-2} 1$
10^{2}
Colour $=$ Red Orange Yellow
A. If both (A) and (R) are correc, and (R) is the correct explanation of

(A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

D Watch Video Solution

4. Assertion (A) : On cooling in a freezing mixture, colout of the mixture turns to pink from deep blue for a reaction.
$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}($ Pink $)(\mathrm{aq})+4 \mathrm{CI}^{\Theta} \Leftrightarrow \mathrm{CoCI}_{4}^{2-}(a q)($ Blue $)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Reason (R) : The reaction is endothermic in formed reation, so on cooling the reaction, deep blue colour appears.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

D Watch Video Solution

5. Assertion (A): Due to common ion effect, the solubility of HgI_{2} is expected to be less in an aqueous solution of KI than in water. But HgI_{2} dissolves in an aqueous solution of $K I$ to form a clear solution. Reason (R) : I^{Θ} ions is highly polarisable.
A. If both (A) and (R) are correc, and (R) is the correct explanation of
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: B

- Watch Video Solution

6. Assertion (A): $p K_{a}$ of a weak acid become equal of the $p H$ of the solution at the mid-point of titration.

Reason (R) : The molar concentration of the proton donor an proton acceptor beomes equal at the mid-point.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: B

- Watch Video Solution

7. Assertion (A): pH of HCI solution is less than that of acetic acid of the some concentartion.

Reason (R) : In equimolar solution, the number of titrable protons present in $H C I$ is less than that present in acetic acid.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

8. Assertion (A): $p H$ value of $H C N$ solution decreases when $N a C N$ is added to it.

Reason (R) : NaCN provides a common ion $C N^{\Theta} \rightarrow \mathrm{HCN}^{`}$.
A. If both (A) and (R) are correc, and (R) is the correct explanation of
(A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: D

- Watch Video Solution

9. Assertion (A): pH of water increases with an increase in temperature.

Reason (R) : K_{w} or water increases with increase in temperature.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: D

- Watch Video Solution

10. Assertion (A): $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is a salt of unstable acid.

Reason (R) : $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is a polyprotic acid.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: B

- Watch Video Solution

11. Assertion (A): When a solution of $\mathrm{CH}_{3} \mathrm{COOH}$ in water is shaken with charcoal, pH of the solution will get decreased.

Reason (R) : The degree of ionisation of $\mathrm{CH}_{3} \mathrm{COOH}$ increase.
A. If both (A) and (R) are correc, and (R) is the correct explanation of
(A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: D

- Watch Video Solution

12. Assertion (A): There is very little difference in acid strength of $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$, and $\mathrm{H}_{3} \mathrm{PO}_{2}$.

Reason (R) : The hydrogens in these acids are not all bonded to oxygens. The electrone-grativities of P and H are almost the same.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

13. Assertion (A): Both reactions are Lewis acid-base recations?
i. $\mathrm{NH}_{3}+\mathrm{BF}_{3} \rightarrow \mathrm{H}_{3} \mathrm{~N}: \mathrm{BF}_{3}$
ii. $\mathrm{Mg}+\mathrm{S} \rightarrow \mathrm{Mg}^{2+}+\mathrm{S}^{2-}$

Reason (R) : Lewis acid-base reaction involve the donation of lone pair electrons from base to acid. this donation results in a corrdinate bond.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: D

- Watch Video Solution

14. Assertion (A): Solution of AICI_{3} in water is neutral.

Reason (R) : $\left[A I\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is formed.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: D

15. Assertion (A): In dilute benzene solutions, equimolar addition of $R_{3} N$ and HCI produce a substance with a dipole moment. In the same solvent, equimolar addition of $R_{3} \mathrm{~N}$ and SO_{3} produce a substance having an almost identical dipole moment.

Reason (R) : Both HCI and SO_{3} are Lewis acids and can react with the amine base to form polar substances which undergo ionic dissociation in a solvent sufficiently more polar than benzene.

Moreover, $(N-S)$ bond is a more polar bond.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

16. Assertion (A): A certain recation is catalysed by acids and the catalytic activity of 0.1 M solutions of the acids in water decrease in the order, $\mathrm{HCI}, \mathrm{HCOOH}$, and $\mathrm{CH}_{3} \mathrm{COOH}$. The same reaction takes place in anhydrous NH_{3}, but the three acids have same catalytic effect in 0.1 M solution.

Reason (R) : The order of catalytic activity in water is the same as the order of acidity. in anhyrous NH_{3}, all the three acids are strong.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

Watch Video Solution

17. Assertion (A): S reacts with SO_{3}^{2-} and forms $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$

Reason (R) : S is electorn deficient and acts and acid and SO_{3}^{2-} is a base in terms of Lewis acid theroy.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

18. Assertion (A): The amino acid glycine predominatly exists in the form of $\wedge(\oplus) \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{\Theta}$.

Reason (R) : The conjugate acid of glycine is $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{\Theta}$.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

19. Assertion (A): Sb^{3+} is not precipitated as sulphide when $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ is passed in alkaline solution.

Reason $(R):\left[S^{2-}\right]$ ion in basic medium is inadequate for precipitation.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

20. Assertion (A): Addition of Ag^{\oplus} ions to a mixture of aqueous NaCI and

NaBr solution will first precipitate AgBr rather than AgCI .
Reason (R): $K_{s p} A g C I<K_{s p} o f A g B r$.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

21. Assertion (A): The pH of an aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$ remains unchanged on the addition of $\mathrm{CH}_{3} \mathrm{COONa}$.

Reason (R) : The pH of an aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$ remains unchanged on the addition of $\mathrm{CH}_{3} \mathrm{COONa}$.

Reason (R) : The ionisation of $\mathrm{CH}_{3} \mathrm{COOH}$ is supressed by the addition of $\mathrm{CH}_{3} \mathrm{COONa}$.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: D

- Watch Video Solution

22. Assertion (A): On mixing equal volumes of 1 MHci and $2 \mathrm{MCH}_{3} \mathrm{COONa}$, an acidic buffer solution is formed.

Reason (R) : The resultant mixture contains $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ which are parts of acidic buffer.
A. If both (A) and (R) are correc, and (R) is the correct explanation of
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

23. Assertion (A): On addition of $\mathrm{NH}_{4} \mathrm{CI}$ to $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{pH}$ decreases but remains grater than 7.
\oplus
Reason (R) : Addition of NH_{4} ion decreases ionication of $\mathrm{NH}_{4} \mathrm{OH}$, thus $\left[\begin{array}{l}\Theta \\ O H\end{array}\right]$ decreases and also $p H$ decreases.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

24. Assertion (A): A is very dilute acidic solution of Cd^{2+} and Ni^{2+} gives yellow precipitate of CdS on passing hydrogen sulphide. Reason (R) : Solubility product of CdS is more than that of NiS.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

25. Assertion: In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl using methyl orange indicator, the volume of acid required is twice that of the acid required using phenolphthalein as indicaton.

Reason: Two moles of HCl are required for the complete neutralisation of one mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: B

D Watch Video Solution

26. Statement: In acidic medium, Zn^{2+} is not precipitated by $\mathrm{H}_{2} \mathrm{~S}$.

Explanation: Common ion effect reduces the concentration of S^{2-} to a minimum level.
A. If both (A) and (R) are correc, and (R) is the correct explanation of
(A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

D Watch Video Solution

27. Statement: In an acid-basic titration involving a strong base and a weak acid, methyl orange can be used as an indicator.

Explanation: Methyl orange changes its colour in the pH range 3 to 5 .

A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

- Watch Video Solution

28. Assertion (A): An aqueous solution of ammonium acetate acts as a buffer solution.

Reason (R) : A buffer solution reacts with small quantities of hydrogen or hydroxy ions and keps the pH almost same.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: B

(D) Watch Video Solution

29. Assertion (A): When small amount of acid or base is added to pure water, its pH undergoes a change.

Reason (R) : Addition of an acid or a basic increases the degree of ionisation of water.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

30. Assertion (A): ph of acidic solution is always below 7 at $25^{\circ} \mathrm{C}$. Reason (R) : At $25^{\circ} \mathrm{C}$, the pH of $10^{-8} \mathrm{MHCI}$ is 8 .
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

31. Assertion (A): $\mathrm{H}_{2} \mathrm{SO}_{4}$ acts as a base in the presence of HCIO_{4}. Reason (R) : Perchloride acid is stronger acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

32. Assertion (A): pH of neutral solution is always 7.

Reason (R) : pH of solution does not depend upon temperature.
A. If both (A) and (R) are correc, and (R) is the correct explanation of

(A).

B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.
33. Assertion (A): $p H$ of $10^{8} \mathrm{MHCI}$ is not equal to 8 .

Reason (R) : HCI does not dissociate properly in very dilute solution.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

34. Assertion (A): If a solution with $p H=2$ is diluted to double the volume, the pH of the solution will fall to 1 .

Reason (R) : $p H$ is inversely proportional to the volume of the solution.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

- Watch Video Solution

35. Assertion (A): If HCI gas is passed through satirated NaCI solution, solid $N a C I$ starts separating out.

HCI decrease the solubility product of NaCI.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

36. Assertion (A): pH of buffer chnages with temperature. Reason (R) : lonic of a water $\left(K_{w}\right)$ changes with temperature.
A. If both (A) and (R) are correc, and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

Exercises Integer

1. What is the sum of magic numbers of all solutions gives below : (Interger value is between 50 and 60)
(Magic numver of a solution $=p H$ of solution \times Weight factor) Solution
I 0.1M HCN $\left(K_{a}=10^{-10}\right) \quad 2$
II $0.1 \mathrm{MCH}_{3} \mathrm{COOH}+0.1 \mathrm{MCH}_{3} \mathrm{COONa}\left(\mathrm{K}_{\mathrm{a}}=10^{-5}\right) \quad 1$
III 0.1 MHCl 3
IV $0.1 \mathrm{MNH}_{4} \mathrm{OH}\left(K_{b}=10^{-5}\right) \quad 2$
V 0.01 MNaOH 0.5
VI 10 mL of $0.01 \mathrm{MCH}_{3} \mathrm{COOH}+10 \mathrm{ml}$ of $0.1 \mathrm{MNH}_{4} \mathrm{OH} \quad 1$
2. How much of the following cations belong to group IIA, III, IV, and V only in quanlitative salt analysis?

$$
\mathrm{S}^{2+}, \mathrm{Hg}_{2}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Ag}^{3+}, \mathrm{Mg}^{2+}, \mathrm{Sb}^{3+}
$$

- Watch Video Solution

3. How much of the following are strong electorlytes?
a. NH_{3} b. $\mathrm{NH}_{4} \mathrm{CI}$ c. $\mathrm{CH}_{3} \mathrm{COOH}$
d. $\mathrm{CH}_{3} \mathrm{COONa}$ e. HCI f. NaCI

- Watch Video Solution

4. How much of the following 0.1 M solutions are acidic?
a. $\mathrm{NH}_{4} \mathrm{CI}$ b. NaOH c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ d. NaCI
e. $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{CI}$ f. NH_{3} g. HCI
h. HCIO_{4} i. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ j. $\mathrm{K}_{2} \mathrm{SO}_{4}$

- Watch Video Solution

5. How many in $Q .(4)$ are basic ?

- Watch Video Solution

6. How many in $\mathrm{Q} .(4)$ are neutral ?

- Watch Video Solution

7. How many of the following salts:
i. $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ ii. $\mathrm{PhCOONH}_{4}$ iii. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
iv. $\mathrm{NH}_{4} \mathrm{CI}$ v. MgS vi. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
vii. KCI
a. Hydrolyse more in water at $25^{\circ} \mathrm{C}$.
b. Do not hydrolyse.
c. Both cation and anion hydrolyse to the same extent.
d. Both cation and anion hydrolyse to differnet extent.
8. How many of the following combinations of reactants will react less than 2% of theroetically possible extent?
a. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ b. $\mathrm{CH}_{3} \mathrm{COO}^{\Theta}+\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{CH}_{3} \mathrm{COO}^{\Theta}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$ d. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{KOH}$
e. $\mathrm{CH}_{3} \mathrm{COOK}+\mathrm{HCI}(a q)$ f. $\mathrm{HCI}(g)+\mathrm{H}_{2} \mathrm{O}$
g. $C l^{\Theta}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$
\oplus
h. $\mathrm{CI}^{\Theta}+\mathrm{H}_{2} \mathrm{O}$ i. $\mathrm{NH}_{4}+\mathrm{KOH}$
$\oplus \quad \Theta$
j. $\mathrm{NH}_{4}+\mathrm{OH}$ k. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
I. $\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{\oplus}$ m. $\mathrm{NH}_{3}+\mathrm{HCI}(\mathrm{aq})$
n. $K^{\oplus}+\stackrel{\Theta}{O} H$

- Watch Video Solution

9. How many of the conbinations of reactants in above will react untill more than 98% of the limiting quantity is used up?

- Watch Video Solution

10. Calculate the $p H$ at equilibrium point when a solution of $10^{-6} \mathrm{MCH}_{3} \mathrm{COOH}$ is titrated with a solution of $10^{-6} \mathrm{MNaOH} . \mathrm{K}_{a}$ for acid $2 \times 10^{-5}\left(p K_{a}=4.7\right)$ (Answer given in whole number).

- Watch Video Solution

Exercises True/ False

1. Silver chloride is more soluble in very concentrated sodium chloride solution than in pure water.

- Watch Video Solution

2. Any buffer solution can be used as a buffer upto two pH units only.

- Watch Video Solution

3. Mg^{2+} ions is essential for selective precipitation of $\mathrm{Fe}(\mathrm{OH})_{3}$ be aqueous NH_{3}.

- View Text Solution

4. A mixture of aqueous solution of sodium acetat and sodium propanota forms a buffer solution.

- Watch Video Solution

5. pH of some solution is given by $p H=\frac{p K_{a_{1}}+p K_{a_{2}}}{2}$. This formula is valid for the compound $\mathrm{NaH}_{2} \mathrm{BO}_{3}$.

- Watch Video Solution

6. 0.6 mmol of NaCl and 1 mol of HCI in 1 L solution is a buffer.
7. The K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ at 300 and 310 K are 1.8×10^{-5} and 1.805×10^{-5}, respectively. The enthalpy of deprotonation for acetic acid is 51.6cal.

- Watch Video Solution

8. Out of the following salts:
i. $\mathrm{NaH}_{2} \mathrm{BO}_{3}$ ii. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
iii. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ iv. NaHS

Salts (i) has concentration-depends $p H$.

- Watch Video Solution

9. Out of the following acid base-reactions, reaction (b) and (c) are possible.
\oplus
\oplus
a. $\mathrm{PH}_{3}+\mathrm{NH}_{4} \rightarrow \mathrm{PH}_{4}+\mathrm{NH}_{3}$
b. $\mathrm{NH}_{3}+\stackrel{\oplus}{\mathrm{P}} \mathrm{H}_{4} \rightarrow \stackrel{\oplus}{\mathrm{NH}_{4}}+\mathrm{PH}_{3}$
c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}+\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{\mathrm{P}} \mathrm{H}+\mathrm{NH}_{3}$
d. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{PH}_{4}^{\oplus} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\oplus}{\mathrm{~N}} \mathrm{H}+\mathrm{PH}_{3}$

- Watch Video Solution

10. The oxo-acids of $P_{2} \mathrm{O}_{5}$ are $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}, \mathrm{HPO}_{3}$, and $\mathrm{H}_{3} \mathrm{PO}_{3}$.

- Watch Video Solution

Archives Multiple Correct

1. Which of the following statements is//are correct?
A. The $p H$ of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCI is 8 .
B. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{\Theta}$ is HPO_{4}^{-2}.
C. The autoprotolysis constant of water increases with temperature.
D. When a solution of a weak monoprotic acid is trated against a strong base, at half-neutralisation point, $p H=(1 / 2) p K_{a}$.

Answer: B::C

- Watch Video Solution

2. A buffer solution can be prepared from a mixture of
A. Sodium acetate and acetic acid in water.
B. Sodium acetat and HCI in water
C. Ammonia and ammonia chloride in water.
D. Ammonia and sodium hydroxide in water.

Answer: A::C

3. Aqueous solutions of $\mathrm{HNO}_{3}, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{COOH}$,and $\mathrm{CH}_{3} \mathrm{COONa}$ of identical concentrations are provided. The pair (s) of solution which form a buffer upon mixing is $/ /$ are
A. HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$
B. KOH and $\mathrm{CH}_{3} \mathrm{COONa}$
C. HNO_{3} and $\mathrm{CH}_{3} \mathrm{COONa}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$

Answer: C::D

- Watch Video Solution

Archives Single Correct

1. At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$as $10^{-6} \mathrm{~mol} \mathrm{~L}{ }^{-1}$. What is the value of K_{w} at $90^{\circ} \mathrm{C}$?
A. 10^{-6}
B. 10^{-12}
C. 10^{-14}
D. 10^{-8}

Answer: B

- Watch Video Solution

2. The pH of $10^{-8} \mathrm{M}$ solution of HCl in water is
A. 8
B. -8
C. Between 7 and 8
D. Between 6 and 7

Answer: D

3. An acidic buffer solution can be prepared by mixing solution of
A. Sodium acetate and acetic acid
B. Ammonium chloride and ammonium hydroxide
C. Sulpuric acid and sodium sulphate
D. Sodium chloride and sodium hydroxide

Answer: A

- Watch Video Solution

4. The strongest Bronsted base in the following anion is
A. $C I O^{\Theta}$
B. $\mathrm{CIO}_{2}^{\Theta}$
C. $\mathrm{CIO}_{3}{ }^{\Theta}$
D. $\mathrm{CIO}_{4}^{\Theta}$

Answer: A

- Watch Video Solution

5. The precipitate of $\operatorname{CaF}_{2}\left(K_{\text {sp }}=1.7 \times 10^{-10}\right)$ is obtained when equal volumes of the following are mixed
A. $10^{-4} \mathrm{MCa}^{2+}+10^{-4} \mathrm{MF}^{\Theta}$
B. $10^{-2} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{\Theta}$
C. $10^{-5} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{\Theta}$
D. $10^{-3} \mathrm{MCa}^{2+}+10^{-5} \mathrm{MF}^{\Theta}$

Answer: B

- Watch Video Solution

6. A cetrain buffer solution contains equal concentration of X^{-}and HX . Calculate pH of buffer. $\left(K_{b} f\right.$ or $\left.X^{-} i s 10^{-10}\right)$
A. 4
B. 7
C. 10
D. 14

Answer: A

- Watch Video Solution

7. A certain weak acid has a dissociation constant 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is :
A. 10×10^{-4}
B. 10×10^{-10}
C. 10×10^{10}
D. 1.0×10^{14}

Answer: C

- Watch Video Solution

8. The conjugate acid of amide ion $\left(\mathrm{NH}_{2}^{-}\right)$is
A. NH_{3}
B. $\mathrm{NH}_{2} \mathrm{OH}$
C. NH_{4}^{\oplus}
D. $\mathrm{N}_{2} \mathrm{H}_{4}$

Answer: A

9. The best indicator for the detection of the end point in the titration of a weak acid and a strong base is
A. Methy1 orange $(3 \rightarrow 4)$
B. Methy1 red (5 \rightarrow)
C. Bromothymol blue (6 \rightarrow 7.5)
D. Phenolphtalein ($8 \rightarrow 9.6$)

Answer: D

- Watch Video Solution

10. The compound that is not a Lewis acids is
A. $B F_{3}$
B. AICI_{3}
C. BeCI_{2}
D. SnCI_{4}

Answer: D

D Watch Video Solution

11. The $p K_{a}$ of acteylsalicylic acid (aspirin) is 3.5 . The pH of gastric juice in human stomach is about $2-3$ and the pH in the small intestine is about 8. Aspirin will be:
A. Unionised in the small intestine and in the stomach.
B. Completely ionised in the small intestine and in the stomach.
C. lonised in the stomach and alomost unionised in the small intestine.
D. Ionised in the small intestine and almost unionised in the stomach.

Answer: D

- Watch Video Solution

12. When equal volumes of following solution are mixed, precipitation of

AgCl ?

$\left(K_{s p}=1.8 \times 10^{-10}\right)$ will occur only with
A. $10^{-4} M\left(A g^{\oplus}\right)$ and $10^{-4} M\left(C I^{\Theta}\right)$
B. $10^{-5} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-5} \mathrm{M}\left(\mathrm{CI}^{\Theta}\right)$
C. $10^{-6} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-6} \mathrm{M}\left(C I^{\Theta}\right)$
D. $10^{-10} \mathrm{M}\left(\mathrm{Ag}^{\oplus}\right)$ and $10^{-10} \mathrm{M}\left(C I^{\Theta}\right)$

Answer: A

- Watch Video Solution

13. Which of the following is the strongest acid?
A. $\mathrm{CIO}_{3}(\mathrm{OH})$
B. $\mathrm{CIO}_{2}(\mathrm{OH})$
C. $\mathrm{SO}(\mathrm{OH})_{2}$
D. $\mathrm{SO}_{2}(\mathrm{OH})_{2}$

Answer: A

- Watch Video Solution

14. Amongst the following hydroxides, the one which has the lowest value of $K_{s p}$ is:
A. $\mathrm{Mg}(\mathrm{OH})_{2}$
B. $\mathrm{Ca}(\mathrm{OH})_{2}$
C. $\mathrm{Ba}(\mathrm{OH})_{2}$
D. $\mathrm{Be}(\mathrm{OH})_{2}$

Answer: D

- Watch Video Solution

15. Which solutionwill have pH closer to 1.0 ?
A. 100 mL of $(\mathrm{M} / 10) \mathrm{HCI}+100 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
B. 55 mL of $(\mathrm{M} / 10) \mathrm{HCI}+45 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
C. 75 mL of $(\mathrm{M} / 10) \mathrm{HCI}+90 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
D. 75 mL of $(\mathrm{M} / 5) \mathrm{HCI}+25 \mathrm{mLof}(\mathrm{M} / / 5) \mathrm{NaOH}^{`}$

Answer: D

- Watch Video Solution

16. The pH of 0.1 M solution of the following salts increases in the order
A. $\mathrm{NaCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCN}<\mathrm{HCI}$
B. $\mathrm{HCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{NaCN}$
C. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{HCI}$
D. $\mathrm{HCI}<\mathrm{NaCI}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}$

- Watch Video Solution

17. For a sparingly soluble salt $A_{p} B_{q}$, the relationship of its solubility product $\left(L_{s}\right)$ with its solubility (S) is
A. $L_{S}=S_{p+q} p_{p} q_{q}$
B. $L_{S}=S_{p+q} p_{q} q_{p}$
C. $L_{S}=S_{p q} p_{q} q_{p}$
D. $L_{S}=S_{p q}(p q)^{(p+q)}$

Answer: A

- Watch Video Solution

18. Which of the following acids has the smallest dissociation constant?
A. $\mathrm{CH}_{3} \mathrm{CHFCOOH}$
B. $\mathrm{FCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
C. $\mathrm{B}_{1} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{CHBrCOOH}$

Answer: C

- Watch Video Solution

19. A solution which is $10^{-3} \mathrm{M}$ each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$, and Hg^{2+} it treated with $10^{-16} \mathrm{M}$ sulphide ion. If the $K_{\text {sp }}$ of $\mathrm{MnS}, \mathrm{FeS}, \mathrm{ZnSand} \mathrm{HgS}$ are $10^{-15}, 10^{-23}, 10^{-20}$, and 10^{-54}, respectively, which one will precipitate first?
A. FeS
B. MgS
C. HgS
D. ZnS

D Watch Video Solution

20. $H X$ is a weak acid $\left(K_{a}=10^{-5}\right)$. If forms a salt $\operatorname{NaX}(0.1 M)$ on reacting with caustic soda. The degree of hydrlysis of NaX is
A. 0.01%
B. 0.001 \%
C. 0.1%
D. 0.5%

Answer: A

Watch Video Solution

21. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl and diluted to one litre. The $\left[H^{+}\right]$in solution is
A. $8 \times 10^{-2} M$
B. $8 \times 10^{-11} M$
C. $1.6 \times 10^{-11} M$
D. $8 \times 10^{-5} M$

Answer: B

- Watch Video Solution

22. If $\mathrm{Ag}^{+}+\mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}, \quad \mathrm{K}_{1}=3.5 \times 10^{-3} \quad$ and $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}+\mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}, \mathrm{K}_{2}=1.74 \times 10^{-3}$. The formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is :
A. 6.08×10^{-6}
B. 6.08×10^{6}
C. 6.08×10^{-9}
D. None of these

- Watch Video Solution

23. The solubility product constant $\left(K_{s p}\right)$ of salts of types $M X, M X_{2}$, and $M_{3} X$ at temperature T are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$, and 2.7×10^{-15}, respectively. The solubilities of the salts at temperature T are in the order
A. $M X>M X_{2}>M_{3} X$
B. $M_{3} X>M X_{2}>M X$
C. $M X_{2}>M_{3} X>M X$
D. $M X>M_{3} X>M X_{2}$

Answer: D

- Watch Video Solution

24. When $2.5 m L$ of $2 / 5 M$ weak monoacidic base ($\left.K_{b}=1 \times 10^{-12} a t 25^{\circ} \mathrm{C}\right)$ is titrated with $2 / 15 \mathrm{MHCI}$ in water at $25^{\circ} \mathrm{C}$ the concentration of H^{\oplus} at equivalence point is $\left(K_{w}=1 \times 10^{-14}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
A. $3.7 \times 10^{-13} M$
B. $3.2 \times 10^{-7} \mathrm{M}$
C. $3.2 \times 10^{-2} \mathrm{M}$
D. $2.7 \times 10^{-2} \mathrm{M}$

Answer: D

- Watch Video Solution

25. Passing $\mathrm{H}_{2} \mathrm{~S}$ gas into a mixture of $\mathrm{Mn}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$ and Hg^{2+} ions in an acidified aqueous solution precipitates
A. CuS and HgS
B. MnS and CuS
C. MnS and NiS
D. NiS and HgS

Answer: A

- Watch Video Solution

Archives Integer

1. The dissociation constant of a substitued benzoic acid at $25^{\circ} \mathrm{C}$ is
1.0×10^{-1}. Find the $p H$ of a 0.01 M solution of its sodium salt.

- Watch Video Solution

2. Amonst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is:

KCN

$$
\mathrm{K}_{2} \mathrm{SO}_{4} \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad \mathrm{NaCI}
$$

$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{FeCl}_{3} \quad \mathrm{~K}_{2} \mathrm{CO}_{3} \quad \mathrm{NH}_{4} \mathrm{NO}_{3}$

LieN

- Watch Video Solution

3. Find the total number of diprotic acids among the following:
$\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{2} \mathrm{CrO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}$

- Watch Video Solution

4. In 1L saturated solution of $\mathrm{AgCI}\left[K_{S P}(A g C I)=1.6 \times 10^{-10}\right], 0.1$ mole of $\mathrm{CuCl}\left[K_{S P}(\mathrm{CuCl})=1.0 \times 10^{-6}\right]$ is added. The resultant concentration of Ag^{+}in the solution is 1.6×10^{-x}. The value of x is:

- Watch Video Solution

1. The conjugate base of $\mathrm{HSO}_{4}^{\Theta}$ in aqueous solution is \qquad

- Watch Video Solution

2. An element which can exist as a positive ion in acidic solution and also as a negative ion in basic solution is said to be.....

- Watch Video Solution

3. Silver chloride is sparingly soluble in water because its lattice energy is greater than \qquad

- Watch Video Solution

4. $\left(\mathrm{CH}_{3}(\mathrm{OH})_{2}^{1}\right)$ is...acidic than $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right)$.
5. In the reaction $I^{\Theta}+I_{2} \rightarrow I_{3}^{\Theta}$, the Lewis acid is \qquad

- Watch Video Solution

Archives True/False

1. Aluminium chloride $\left(\mathrm{AlCl}_{3}\right)$ is a Lewis acid because it can donate electrons.

- Watch Video Solution

2. The solubility of sodium hydroxide increases with increase of temperature.

- Watch Video Solution

3. Give the decreasing order of the acidic properties of oxides.
a. ZnO , b. KO_{2}, c. $\mathrm{P}_{2} \mathrm{O}_{5}$, d. MgO

- Watch Video Solution

Archives Subjective

1. How much moles of sodium propionate should be added to $1 L$ of an aqueous solution containing 0.020 mol of propionic acid to obtain a buffer solution of $p H 4.75$? What will be the $p H$ if 0.010 mol of HCI is dissolved in the above buffer solution. Compare the last pH value with the pHof0.010MHCI solution. Dissociation constant of propionic acid, K_{a}, at $25^{\circ} \mathrm{C}$ is 1.34×10^{-5}.

- Watch Video Solution

2. Given reason for the statement that the pH of an aqueous solution of sodium acetate is more than 7.
3. 20 mL of 0.2 M sodium hydroxide is added to 50 mL of 0.2 Macetic acid to give 70 mL of the solution. What is the pH of this solution. Calculate the additional volume of 0.2 MNaOh required to make the pH of the solution 4.74. (Ionisation constant of $\mathrm{CH}_{3} \mathrm{COOh}$ is 1.8×10^{-5})

- Watch Video Solution

4. The dissociation constant of a weak acid HAsi4.9 $\times 10^{-8}$. After making the necessary approximations, calculate
i. Percentage ionisation
ii. $p H$
Θ
iii. $O H$ concentration in a decimolar solution of the acid. Water has a pHof7.

- Watch Video Solution

5. A solution contains a mixture of $\mathrm{Ag}^{+}(0.10 \mathrm{M})$ and $\mathrm{Hg}_{2}^{2+}(0.10 M)$ which are to be separated by selective precipitation. Calculate the miximum
concentreation of iodide ion at which one of them gets precipitated almost completely. What $\%$ of that metal ion is precipitated ? $\left(K_{S P}\right.$ ofAgI $=8.5 \times 10^{-17}$ and $K_{S P}$ of ${H g_{2}} I_{2}=2.5 \times 10^{-26})$

- Watch Video Solution

6. The concentration of hydrogen ions in a 0.2 M solution of formic acid is $6.4 \times 10^{-3} \mathrm{molL}^{-1}$. To this solution, sodium formate is added so as to adjust the concentration of sodium formate to $1 \mathrm{molL}^{-1}$. What will be the pH of this solution? The dissociation constant of formic acid is 2.4×10^{-4} and the degree of dissociation fo sodium formate is 0.75 .

- Watch Video Solution

7. The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in pure water is $9.57 \times 10^{-3} \mathrm{gL}^{-1}$. Calculate its solubility (in gL^{-1}) in $0.02 \mathrm{MMg}\left(\mathrm{NO}_{3}\right)_{2}$ solution.

- Watch Video Solution

8. What is the $p H$ of the solution when 0.20 mol of $H C I$ is added to 1 L of a solution containing
a. $1 M$ each of acetic acid and acetate ion.
b. 0.1 Meach of aceta acid and acetate ion.

Assume the total volume is $1 \mathrm{~L} . K_{a}$ for acetic acid is 1.8×10^{-5}.

- Watch Video Solution

9. How many gram moles of HCI will be required to prepare 1 L of buffer solution (containing NaCN and HCI) of pH 8.5 using 0.01 g formula weight of $N a C N>K_{H C N}=4.1 \times 10^{-10}$.

- Watch Video Solution

10. Freshly precipiteated Al and Mg hydroxides are stirred vigorously in a buffer solution containing 0.25 M of $\mathrm{NH}_{4} \mathrm{CI}$ and 0.05 M of $\mathrm{NH}_{4} \mathrm{OH}$. Calculate $\left[\mathrm{Al}^{3+}\right]$ and $\left[\mathrm{Mg}^{2+}\right]$ in solution. K_{b} for $\mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5} \mathrm{~K}_{S P}$ of $\mathrm{Al}(\mathrm{OH})_{3}=6 \times 10^{-32}$ and $K_{S P}$ of $\mathrm{Mg}(\mathrm{OH})_{2}=8.9 \times 10^{-12}$.

- Watch Video Solution

11. What is the pH of 1 M solution of acetic acid? To what volume one litre of this solution be diluted so that pH of the resulting solution will be twice of the original value ? $\left(K_{a}=1.8 \times 10^{-5}\right)$

D Watch Video Solution

12. A 50 mL solution of weak base BOH is titrated with 0.1 NHCI solution.

The pH of solution is found to be 10.04 and 9.14 after the addition of 5.0 mL and 20.0 mL of acid respectively. Find out K_{b} for weak base.

- Watch Video Solution

13. The $K_{S P}$ of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ at $25^{\circ} \mathrm{C}$ is $1.29 \times 10^{-11} \mathrm{~mol}^{3} \mathrm{~L}^{-3}$. A solution of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ containing 0.152 mole in 500 mL water is shaken at $25^{\circ} \mathrm{C}$ with excess of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ till the equilbirium is reached.
$\mathrm{Ag}_{2} \mathrm{CO}_{3}+\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow \mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{K}_{2} \mathrm{CO}_{3}$
Ar equilibrium the solution contains 0.0358 mole of $\mathrm{K}_{2} \mathrm{CO}_{3}$. Assuming degree of dissociation of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to be same, calculate $K_{S P}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$.

- Watch Video Solution

14. The $K_{S P} o f C a(O H)_{2} i s 4.42 \times 10^{-5} a t 25^{\circ} \mathrm{C}$. A 500 mL of saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is mixed with equal volume of 0.4 MNaOH . How much $\mathrm{Ca}(\mathrm{OH})_{2}$ in mg is preciptated ?

- Watch Video Solution

15. The pH of blood stream is maintained by a proper balance of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} concentrations. What volume of 5 M NaHCO 3 solution, shnould be mixed with 10 mL sample of blood, which is 2 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in order to maintain a pH of $7.4\left(K_{a} f\right.$ or $\mathrm{H}_{2} \mathrm{CO}_{3}$ in blood $\left.=7.8 \times 10^{-7}\right)$

- Watch Video Solution

16. An aqueous solution of a metal bromide $\mathrm{MBr}_{2}(0.05 M)$ is saturated with $\mathrm{H}_{2} \mathrm{~S}$. What is the minimum pH at which MS will precipitate ? $K_{S P}$ for $M S=6.0 \times 10^{-21} \quad$ Concentration of saturqated $H_{2} S=0.1 M, K_{1}=10^{-7}$ and $K_{2}=1.3 \times 10^{-13}$ for $H_{2} S$.

- Watch Video Solution

17. For the reaction
$A g(C N)_{2}^{\ominus} \Leftrightarrow A g^{\oplus}+2 C N^{\ominus}$, the K_{c} at $25^{\circ} C$ is 4×10^{-19} Calculate $\left[A g^{\oplus}\right]$ in solution which was originally 0.1 M in KCN and 0.03 M in AgNO_{3}.

- Watch Video Solution

18. Calculate the pH of an aqueous solution of 1.0 M ammonium formate assuming complete dissociation. $\left(p K_{a}\right.$ of formic acid $=3.8$ and $p K_{b}$ of ammonia $=4.8$)
19. What is the pH of a 0.50 M aqueous NaCN solution ? $\left(p K_{b} o f C N^{-}=4.70\right)$

Watch Video Solution

\oplus

20. The ionization constant of NH_{4} ion in water is 5.6×10^{-10} at $25^{\circ} \mathrm{C}$.
$\oplus \quad \ominus$
The rate constant the reaction of NH_{4} and OH ion to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is $3.4 \times 10^{10} \mathrm{Lmol}^{-1} \mathrm{~S}^{-1}$. Calculate the rate constant for proton transfer form water to NH_{3}.

- Watch Video Solution

21. A sample of AgCl was treated with 5.00 mL of $1.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solubility to give $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. The remaining solution contained $0.0026 \mathrm{gofCI}^{-}$per litre.

Calculate the solubility product of AgCl . $\left(K_{S P} f\right.$ or $\left.\mathrm{Ag}_{2} \mathrm{CO}_{3}=8.2 \times 10^{-12}\right)$
22. An acid type indicator, H In differs in colour from its conjugate base $\left(I n^{-}\right)$. The human eye is sensitive to colour differences only when the ratio $\left[\mathrm{In}^{-}\right] /[\mathrm{HIn}]$ is greater than 10 or smaller than 0.1 . What should to observe a complete colour change ? $\left(K_{a}=1.0 \times 10^{-5}\right)$

(D) Watch Video Solution

23. What will be the resultant pH , when 200 mL of an aqueous solution of $\operatorname{HCI}(p H=2.0)$ is mixed with 300 mL of an aqueous solution of $\mathrm{NaOH}(\mathrm{pH}=12.0) ?$

- Watch Video Solution

24. Given: $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} \Leftrightarrow \mathrm{Ag}^{+} 2 \mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{C}}=6.2 \times 10^{-8} \quad$ and $\quad K_{S P}$ of $A g C I=1.8 \times 10^{-10}$ at 298 K . Calculate the concentration of the complex in 1.0 M aqueous ammonia.
25. The solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $6.7 \times 10^{-6} \mathrm{M}$. Calculate the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in a buffer solution of $\mathrm{pH}=8$.

- Watch Video Solution

26. The average concentration of SO_{2} in the atmosphere over a city on a cetrain day is 10 ppm , when the average temperature is 298 K . Given that the solubility of SO_{2} in water at 298 K is $1.3653 \mathrm{~mol}_{\text {litre }}{ }^{-1}$ and the $p K_{a}$ of $\mathrm{H}_{2} \mathrm{SO}_{3}$ is 1.92 , estimate the pH of rain on that day.

- Watch Video Solution

27. 500 mL of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 HCI at $25^{\circ} \mathrm{C}$.
a. Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the folution.
b. If 6 g of NaOH is added to the above solution determine the final pH. $\left[\mathrm{K}_{a}\right.$ of $\mathrm{CH}_{3} \mathrm{COOH}=2 \times 10^{-5}$.

- Watch Video Solution

28. 0.1 MNaOH is titrated with 0.1 MHA till the end point. K_{a} of HA is 5.6×10^{-6} and degree of hydrolysis is less compared to 1 . Calculate pH of the resulting solution at the end point ?

- Watch Video Solution

