©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY

(HINGLISH)

ISOMERISM

Illustration

1. Give various functional isomers of butanol
and give their isomeric relations.
2. Give various functional isomers of pentanal and give their isomeric relations.

- Watch Video Solution

3. Give various functional isomers of butanoic acid and give their isomeric relations.
4. (I) Give various functional isomers of butan-

1-amine and give their isomeric relations.
(II) Give various isomers of butan -1-amine and their isomeric relations.

D Watch Video Solution

5. I. Give the various functional isomers of pent-1-yne and give their isomeric relations.
II. Give the various isomers of pent-1-yne and their isomeric relations.
6. Give various functional isomers of 2-phenyl ethanol and give their isomeric relations.

D Watch Video Solution

7. I. Give various functional isomers of butanenitrile and give their isomeric relations.
II. Give the various isomers of butanenitrile and give their isomeric relations.
8. Write more stable tautomeric structrues of
the following:
(a) Phenol
(b) Methyl-3-oxobutane
(c)Cyclohexan -1,3,5 trione
(d) Butan-2-one
(e)1-Phenyl butan-2- one

(g). 2-Bicyclo[4.1.0] heptan-2-one
$\underset{\substack{\text { (A) } \\ \text { Glycerol } \\ \mathrm{P}_{2} \mathrm{O}_{5} \\-2 \mathrm{H}_{2} \mathrm{O}}}{\mathrm{KHSO}_{4}}(B) \stackrel{\text { Tautomeric form }}{\Longleftrightarrow}(C)$

- Watch Video Solution

9. Keto-enol tautomerism is observed in :
(i) a.PhCHO , b. $\mathrm{PhCOCH} \mathrm{CH}_{3}$
c. PhCOPh, d. $\mathrm{PhCOCH} \mathrm{COCH}_{3}$
a. $\mathrm{PhCH}=\mathrm{CH}-\mathrm{OH}$

c.

(II) Arrange the following in the decreasing
order of enol content:
(i) a. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CHO}$, b. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
c. $\mathrm{CH}_{3} \mathrm{CHO}$, d. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$
(ii) a. $\mathrm{CH}_{2}(\mathrm{COOEt})_{2}$ (Diethyl malonate)
b. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOEt}(E A A)$
c. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$
d. $\mathrm{PhCOCH}_{2} \mathrm{COCH}_{3}$
iii. a. Me

b.

(III) Give the decreasing order of enol content of ethyl acetoacetate in the following solvents:
a. Water b. Methanol
c. Benzene d. Acetone

D Watch Video Solution

10. Explain the following:
I. Which of the following is more easily enolised?
a.

Cyclobutenone

4
b.

Triketo
cyclobutane
II. Why are keto forms of 2-pyridinol and 4pydridinol more stable than enol form?
III. Why is keto form generally much stable than enol form?
IV. Why is enol content of butane $-2,3$ dione(biacetyl) (A) slightly higher than that of butan-2 one (B) and much less than that of cyclohexane $-1,2-$ dione (C)

Watch Video Solution

11. Write all the acyclic and cyclic isomers of a compound having molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$.

D Watch Video Solution
12. Write all the ring-chain isomers of (a) pent-

1-ene and (b) Pent-1-yne.

- Watch Video Solution

13. Arrange the following ligands in the decreasing order of priority.
a. i. $-O H$, ii. -COOH
iii $-\mathrm{CH}_{2} \mathrm{OH}$, iv. $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
b. i. $-N H_{2}$ ii. $-C \equiv N$
iii. $-\mathrm{NO}_{2}$ iv. $-\mathrm{CH}_{2} \mathrm{NH}_{2}$
c. i. $\left(\mathrm{H}_{(}\left(\mathrm{CH}_{3}\right)_{2}\right.$

cyclohexyl
d.

ii. $(\langle\bigcirc)$

Phenyl
e.

:hens!
ii. $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
14. Which of the following alkenes have diasteremores?
a.

b.

c.

d.

Me

D Watch Video Solution
15. Assign $E-Z$ configuration to each of the following:
a.

b.

a.
d.

D Watch Video Solution
16. Give the decreasing order of net dipole moments of the following:
a.
(I)

(II)

(III)

b. (I)

(II)

- Watch Video Solution

17. Give the structural and diastereomers of pent-1-ene.

D Watch Video Solution
18. Specify the configuration of following compounds in D of L.

D Watch Video Solution

19. The optical rotation of an optically active compound is $+20^{\circ}$. The length of tube is 10 cm and the density of solution is $0.4 \mathrm{gmml}^{-}$. The specific rotation of the
compound is:
i. $+50^{\circ}$ ii. $+500^{\circ}$ iii. $+5^{\circ}$ iv. $+0.5^{\circ}$
b. Which of the following are optically active compounds and why?
i. Butan-1-ol ii. 2-Chlorobutane
II. Lactive acid iv. 3-Chloropentane
c. Which of the following are optically active and why?
i. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{3}$
ii. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$
iii. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{3}$
iv. $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$
d. Which of the following are optically active
and why?
i. Propan-1-ol , ii. Butan-2-ol
iii. Heptan-4-ol , iv. 3-Aminohexane
v. 2-Chloropentane, vi. 2,2-Dichloropropane
e. Mark (*) on the asymmetric carbon atom,
if any, in the following compounds:
(i) $\mathrm{CH}_{3}-\mathrm{CHCl}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$,
ii.
$\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{CH}_{3}$.

Watch Video Solution

20. Explain the following:
a. What is stereocentre and how it is related to a chiral centre?
b. What kinds of $s p^{2}$-hybridised C atoms cannot be chiral centres?
c. What kinds of $s p^{3}$ - hybridised atom other than C atom can be chiral?

D Watch Video Solution

21. Write the name and structrue of the following optically active compounds with lowest moleuclar weight.
i. alkane ii. Alkene
iii. Alkyne iv. unsaturated hydrocabon
v. alkyl halide vi. Alcohol
vii. Acid viii. Amine.

- Watch Video Solution

22. a. How many stereoisomers are possible for
the compound $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHClCH}$?
b. How many stereoisomers are possible for the compound $\mathrm{HOOCCH} \mathrm{H}_{2}-\mathrm{COOH}$?
c. Isopentane on monochlorination gives
\qquad isomers and out of them are optically active.
d. Which of the following compounds exhibits
(s) geometrical isomerism?
i. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$, ii. $(\mathrm{CH})_{2}(\mathrm{COOH})_{2}$
iii. $\mathrm{CH}_{3} \mathrm{CHO}$, iv. $\left(\mathrm{CH}_{2}\right)_{2}(\mathrm{COOH})_{2}$
e. Write down the structuers of stereoisomers
of the following:
i. 2,3-Dihydroxybutane
ii. 3-Phenyl-2-propenoic acid
f. Write down the number of asymmertric carbon atoms in each optically active compound and report the number of isomers.
i. $\mathrm{CH}_{3}(\mathrm{CHOH})_{2} \mathrm{COOH}$
ii. COOH . $(\mathrm{CHOH})_{2} \mathrm{COOH}$

D Watch Video Solution

23. How many structural isomers and stereoisomers of bromopiperidine are
possible?
b. How many stereoisomers of 4-chlorocyclohexane are possible?
c. How many optically active and inactive isomers of $2,3,4,5$ - tetrachloroadipic acid are possible?
d. How many meso diastereomers of
$C_{6} H_{12} B r_{2}$ are possible
e. How many optically active inactive isomers
of $1,2,3$ - trimethylcyclohexane are possible?

- Watch Video Solution

24. a. The specific rotation of a pure enantiomer is $+10^{\circ}$. What will be its observed rotation if its is isolated from a reaction with
i. 30% racemisation and 70% retention.
ii. 70% racemisation and 30% inversion.
b. What is the percentage composition of a mixtrue of two enantiomers whose rotation is
-10° ? The specific rotation of pure enantiomers is -20°.
c. What is the optical purity of a sample having
an $[\alpha]_{\text {obs } .}=+9.0^{\circ}$ if $[\alpha]_{D}=+12^{\circ}$.

D Watch Video Solution

25. An aqueous solution containing 10 gm of optically pure fructose was diluted to 500 ml with water and placed in a polarimeter tube 20 cm long. The measured roatation was -5.0°. To this solution, 500 ml of a solution containing 10 gm of racemic fructose is added.

What will be the change in specific rotation?
26. Which of the following will show dipole moment (μ) ?

- Watch Video Solution

27. Draw Fischer projection formulae for the following molecules:

b.

D Watch Video Solution

28. a. Convert Wedge formula to Fischer formula.
CHO
(2) $\xrightarrow[\mathrm{HO}]{\mathrm{H} \cdots \cdots} \underset{\mathrm{CH}_{2} \mathrm{OH}}{\stackrel{\text { chain }}{\text { chan }}}$
b. Convert Fischer formula to Wedge formula.

Br
 COOH
 (1) $\mathrm{H}-\mathrm{O}$
 (2)
 $\mathrm{H}_{3} \mathrm{C} \xrightarrow[\text { ! }]{ } \mathrm{CHO}$
 H
 $\mathrm{C}_{2} \mathrm{H}_{5}$

D Watch Video Solution

29. Convert Sawhorse formula to Fischer formula.

- Watch Video Solution

30. Assign the R and S configurations to the enantiomers of 2-chlorobutane.

- Watch Video Solution

31. Assign the R and S designation to the following compounds:

NH_{2}
a. $\mathrm{H} \quad \mathrm{CH}_{3}$
b. $\mathrm{H}^{\prime \prime}$

CHO
$\mathrm{OH} \mathrm{CH}_{2} \mathrm{OH}$
c. ${ }^{\mathrm{Cl}} \because \stackrel{\mathrm{SH}}{ }$

- Watch Video Solution

32. Give the effect of the configuration of
(S) - $2-$ bromo butane on performing the
following operations:
a. Exchanging ligands across the horizontal bond.
b. Exchanging ligands across the vertical bond.
c. Making both switches (a) and (b)
d. Exchanging a horizontal and vertical ligand.
e. A 180° verticle or horizontal rotation outside the plane of paper.
f. A 90° rotation on the plane of paper.

D Watch Video Solution

33. Assign R and S configuration of the following compound.

- Watch Video Solution

Example

1. State whether the following statements are true or false.
a. D and L stereoisomers are enantiomers.
b. D enantiomer rotates the plane-polarised
light to the right and L enantiomer to the left.
c. Conversion of an erythro to a threo stereoisomer always occur by inversion at one chiral C.
d. A racemate can be distinguished from a meso or a chiral compound by an attempted resolution.
e. Racemisation of an enantiomer can only
occure by breaking of at least one bond to the

chiral centre.

f. A reaction catalysed by an enzyme always gives an O. A product.
g. When an achiral molecule reacts to give achiral molecule, the product is always racemic h. In chemical reactions, the change from an S reactant to an R product always signals an inversion of configuraion.
i. An optically inactive substance must be achiral.
j. An achiral compound can have chiral centres.
K. A compound with S configuration is the $(-)$ enantiomer.

D Watch Video Solution

2. a. Write the stable tautomer form the following:

b. Explain why α methyl acetone enolises to a smaller extent than acetylacetone.
c. Why is the $\left(-C H_{2}-\right)$ group in acetyl
acetone

methylene group?

D Watch Video Solution
3. Some possible structrues of a compound A
$\left(C_{10} H_{16}\right)$ are:

c.

Write the possible stereoisomers of (a), (b), and (c)

D Watch Video Solution

4. Some possible structrues of a compound A
$\left(C_{10} H_{16}\right)$ are:

Write the possible stereoisomers of (a) and
(b).

D Watch Video Solution

5. Consider the compound (A) given below:

$$
\mathrm{R}^{\prime}-\underset{\substack{\mathrm{R} \\ \mathrm{C} \\ \mathrm{C}}}{\mathrm{C}}-\mathrm{HC}=\mathrm{CH}-\stackrel{\text { l }}{\mathrm{l}} \mathrm{C}
$$

a. Give the total number of stereoisomers possible for (A).
b. If the stereochemistry about the double bond in (A) is cis, give the number of enantiomers possible for (A).
c. If the stereochemistry about the double bond (A) is trans, give the number of enantiomers possible for (A).
d. Give the total number of diastereomers possible for (A).
e. Give some examples of the types of (A).

D View Text Solution

6. How many geometrical isomers are possible for the following?
a. Decalin b. 1 - Methyldecalin
c. 9 - Methyldecalin

D Watch Video Solution
7. How many geometrical isomers are possible for the following ?
a. 1, 2- Dimethylcyclobutane
b. 1, 3, 5- Trimethtylcyclohexane
c. 1, 1, 2 - Trimethlcyclopropane

D Watch Video Solution

8. How many geometrical isomers are possible for the following compounds:
a. 3 - Bromo-5 - iodomethyl
b. 5 - Bromo-1, 3 - diamethyl cyclohexane
c. 1, 2, 4-Trimethyl cyclohexane.

D Watch Video Solution

9. How many isomaric dienes with a sixmembered ring are possible of the compound with the molecular formula $C_{7} H_{10}$?

D Watch Video Solution

10. Give the name and structrues of six C atom
cyclic diene with lowest molecular mass that
shows only geometrical isomers
(diastereomers) and not optical isomers.

- Watch Video Solution

11. Give the structural formula of an
unsaturated hydrocarbon with the lowest number of C atoms (or with lowest molecular mass) which shows:
a. Optical isomers
b. Geometrical isomers
c. Both optical and geometrical isomers

D Watch Video Solution

12. Give the structural formula of a cyclic alkyne with the lowest number of C atoms and showing:
a. Both geometrical and optical isomerisms.
b. Geometrical isomerism with meso
stereoisomers.
13. Give the type of isomerism exhibited by each of the following pairs:
a. Acetic acid and methyl formate
b. o - Nitrophenol and m - nitrophenol
c. n - Butance and isobutance
d. Maleic and fumaric acid
e. Benzyl alcohol and o - methyl phenol
f. Propionic acid and methyl acetate g. n - Butyl alcohol and diethyl ether
h. $1,1-$ Dibromoethane and $1,2-$ dibromoethane

D Watch Video Solution

14.

$$
2,2^{\prime}-
$$

Dofluoro-6, $6^{\prime}-$
dimethylbiphenyl is non-resolvable, whereas
$2,2^{\prime}-$ dinitro $-6,6^{\prime}-$ disulfonic acid biphenyl is resolvable. Account for this fact.
15. What is the observed rotation when $0.1 M$ solutions of $(R)-2$ butanol is mixed with an equal volume of $0.05 M$ solution of recemic

2 - butnol and the resulting solution is taken
in a cell of 5 cm long tube in a polarimeter?
The specific rotation of $(R-2)$ butonal is $+13.9^{\circ}$

- Watch Video Solution

1. 0.90 gm of an organic compound
$C_{4} H_{10} O_{2}(A)$ when treated with sodium gives
$224 m l$ of hydrogen at $N T P$. Compound (A)
can be separated into fraction (B) and
(C), by crystallisation of which the fraction (B)
is resolved into isomers (D) and (E). Write down the structural formula of (A) to (E) with proper reasoning.

D Watch Video Solution

2. Write dwon the structrues of close homologues of heptane having one quaternary C atom in their molecule and the other having two tertiary carbon atoms.

D Watch Video Solution

3. An alkance (A) $C_{5} H_{12}$ on chlorination at $300^{\circ} C$ gives a mixtrue of four different monochlorinated derivatives $(B),(C),(D)$, and (E). Two of these derivatives give the
same stable alkene (F) on
dehydrohalogenation. On oxidation with hot alkaline KMnO_{4} followed by acidification, (F) gives two products (G) and (H). Give the structrues of $(A) \operatorname{to}(H)$ with proper reasoning.

D Watch Video Solution

4. Which alkane, having a molecular weight of 86 , will form only two monobromo alkanes?

D Watch Video Solution

5. A hydrocarbon (A) was found to have vapour density 36 . If forms only a single monochloro substitution product. Suggest (A).

D Watch Video Solution

6. Write the appropriate structural formule
for:
a. A cyclic molecule that is a consitutional
isomer of cyclohexane
b. Molecules with the formula $C_{6} H_{12}$ that contain one ring and are enantiomers of each other.
c. Molecules with formula $C_{6} H_{12}$ that contian one ring and are diastereomers of each other. d. Molecules with formula $C_{6} H_{12}$ that contain no ring and are enantiomers of each other.
e. Molecules with formula $C_{6} H_{12}$ that contain no ring and are diastereomers of each other.
7. There are four dimethylcyclopropane isomers.
a. Write the three-dimensional formulas for these isomers.
b. Which of these isomers is chiral?
c. If a mixtrue consisting of 1 mol of each of
these isomers is subjected to simple gas
chromatography, how many fractions would
be obtained and how many compounds each
fraction will have?
d. How many of these fractions would be optically active?
8. Which of the follwing objects listed below possess a plane of symmetry and are, therfore, achiral?
a. A hammer
b. A car
c. A woodscrew
d. An ear
e. A screwdriver
f. A tennis shoe
g. A golf club
h. A baseball bat

D Watch Video Solution

9. Assign (R) or (S) designations to each of
the following compounds
a)

CH_{3}
 H

b. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$

- Watch Video Solution

10. Consider the following pair of structrue and tell whether they represent enantiomer or two molecules of the same compound in different oreintation.

D Watch Video Solution

11. Tell whether the two structrues in each pair represent enantiomers or two molecules of the same compound in different orientions.

c.

12. A sample of optically active alochol has a specific ratation, $[\alpha]_{D}^{25}$, equal to $+1.51^{\circ}$.
a. What is the percentage enantiomeric excess of the sample?
b. Which enantiomer is in excess, (R) or (S) ?

D View Text Solution

13. The following are the formule for three compounds $2,3-$ dichlorobutane written in non-eclipsed confromations. In each instance,
tell which compounds are enantiomers and which are meso.
a.

b.

- Watch Video Solution

14. Write the three-dimensional formulas for all of the stereoisomers of each of the following compounds. Label pairs of enantiomers and meso compounds.
a. $\mathrm{CH}_{3} \mathrm{CHBrCHFCH} 3$
b. $\mathrm{CH}_{3} \mathrm{CHOCH}_{2} \mathrm{CHClCH}_{3}$
c. $\mathrm{CH}_{2} \mathrm{ClCHFCHFCH} 2 \mathrm{Cl}$ Itbr d.
$\mathrm{CH}_{3} \mathrm{CHOHCH} \mathrm{CHOHCH}_{3}$
e. CHCHClCHClCH 3

D Watch Video Solution

15. Consider the following pairs of structrue.

Identify the relationship between them by describing them as presenting enantiomers, diastereomers, consitutional isomers, or two molecule of the same compound.

h.

I.

m.

n.

0.

- Watch Video Solution

16. Discuss the anticipated stereochemistry of each of the following compounds.

$$
\text { a. } B r C H=C=C=C H B r
$$

b. $\mathrm{CH}_{2}=C=C=\mathrm{CHBr}$
c. $B r C H=C=C=C B r_{2}$

- Watch Video Solution

17. Write formulae for all the isomers of each
of the following. Designate pairs of enantiomers and achiral compounds where they exist.
a. 1-Bromo-4- chlorocyclohexane
b. 1-Bromo-3-chlorocyclohexane
c. 1-Bromo-2- chlorocyclohexane
18. Which of the following are chiral and capable of existing as enantiomers?
a. 1 - 3 - Dibromobutane
b. 1, 2 - Dichloropropane
c. 1, 5 - Dibromopentane
c. 3 - Ethylpentane
e. 2 - Chlorobicyclo [1.1.0] butane
f. 2 - Iodobicyclo [2.2.2] octane
g. 2 - Bromobicyclo [2.1.1] hexane
h. 5 - Bromobicyclo [2.1.1] hexane

- View Text Solution

19. a. Write the structrue of $2,2-$ dibromobicyclo [2.2.1] heptane.
b. How many stereocenters does it contain?
c. How many stereoisomers are predicted by the $2^{\text {nd }}$ rule?
d. Only on pair of enantiomers is possible for
$2-2$, dibromobicyclo [2.2.1] heptane. Explian.

- Watch Video Solution

Linked Comprehension Type Exercise

1. An organic compound (A) $\left(C_{10} H_{20}\right)$ on reductive ozonolysis gives 2 - methyl butanal. Based on this information, answer the following question.
2. Compound (A) is
A.

B.

C.

D.

Answer: A

- Watch Video Solution

2. An organic compound (A) $\left(C_{10} H_{20}\right)$ on reductive ozonolysis gives $2-\quad$ methyl
butanal. Based on this information, answer the
following question.

The total number of stereoisomers possible for (A) is :
A. 8
B. 7
C. 6
D. 4

Answer: C

D Watch Video Solution

3. An organic compound (A) $\left(C_{10} H_{20}\right)$ on reductive ozonolysis gives $2-\quad$ methyl butanal. Based on this information, answer the following question.

If the stereochemistry about the double bond
in (A) is cis, the total number of stereoisomers
for (A) is :
A. 2
B. 3
C. 4
D. 5

Answer: B

D Watch Video Solution
4. An organic compound (A) $\left(C_{10} H_{20}\right)$ on reductive ozonolysis gives $2-\quad$ methyl butanal. Based on this information, answer the following question.

If the stereochemistry about the double bound in (A) is cis, the total number of enantiomers for (A) is :
A. None
B. 2
C. 4
D. 6

Answer: B

- Watch Video Solution

5. An organic compound (A) $\left(C_{10} H_{20}\right)$ on reductive ozonolysis gives 2 - methyl
butanal. Based on this information, answer the following question.

If the stereochemistry about the double bound in (A) is trans, the total number of stereoisomers for (A) is:
A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

6. An organic compound (A) $\left(C_{10} H_{20}\right)$ on reductive ozonolysis gives $2-\quad$ methyl butanal. Based on this information, answer the
following question.

If the stereochemistry about the double bond in (A) is trans, the total number of enantiomers for (A) is :
A. None
B. 2
C. 4
D. 6

Answer: B

Compound (A) $\left(\mathrm{C}_{10} \mathrm{H}_{16}\right) \xrightarrow{\mathrm{O}_{3} / \text { Red. }} \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{~B})$

Optically inactive
Optically inactive
7.

$|$| Three equivalent |
| :---: |
| of $\mathrm{H}_{2}+\mathrm{Pd}$ at $120^{\circ} \mathrm{C}$ |

(C)

The possible structrue of (A) is :

A.

B. trans(I),
C.

D. trans, (II)

Compound (A) $\left(\mathrm{C}_{10} \mathrm{H}_{16}\right) \xrightarrow{\mathrm{O}_{3} / \text { Red. }} \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{~B})$

Optically inactive

Optically inactive
$\left\lvert\, \begin{gathered}\text { Three equivalent } \\ \text { of } \mathrm{H}_{2}+\mathrm{Pd} \text { at } 120^{\circ} \mathrm{C}\end{gathered}\right.$
8.
(C)

If the both compound (A) and (B) are optically active, the possible structrue of (A) is:
A. $c i s-I$
B. $\operatorname{trans}-I$
C. $c i s-I I$
D. trans - II

Answer: C::D

D View Text Solution

Compound (A) $\left(\mathrm{C}_{10} \mathrm{H}_{16}\right) \xrightarrow{\mathrm{O}_{3} \text { Red. }} \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{~B})$
Optically inactive Optically inactive
$\left\lvert\, \begin{gathered}\text { Three equivalent } \\ \text { of } \mathrm{H}_{2}+\mathrm{Pd} \text { at } 120^{\circ} \mathrm{C}\end{gathered}\right.$
9.
(C)

If the both compoundsd (A) and (B) are optically inactive, the possible structrue of (B)

are:

A.

D. All

Answer: A
(Watch Video Solution

Compound (A) $\left(\mathrm{C}_{10} \mathrm{H}_{16}\right) \xrightarrow{\mathrm{O}_{3} / \text { Red. }} \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{~B})$

Optically inactive

Optically inactive
10.

$|$| Three equivalent |
| :---: |
| of $\mathrm{H}_{2}+\mathrm{Pd}$ at $120^{\circ} \mathrm{C}$ |

(C)

If both compounds (A) and (B) are optically active, the possible structrues of (B) are:
A.
a.

B.
C. (OHC
D. All

Answer: B::C

D Watch Video Solution

11. In this paragraph, some statements are given based on isomerism. Read the following
statements given for every question and provide the answer.

How many isomeric dienes with a six membered ring are possible for the compound with molecular formula $C_{7} H_{10}$?
A. 5
B. 6
C. 7
D. 8

Answer: D

D Watch Video Solution

12. In this paragraph, some statements are given based on isomerism. Read the following
statements given for every question and
provide the answer.

Which of the following cyclic dienes does not
show geometrical isomerism?
A.

B.

C.

Answer: D

D Watch Video Solution
13. Which of the following structures of a cyclic alkene with the lowest number of C atoms
shows both geometrical and optical
isomerism?
A.

B.

C. Both
D. None

Answer: A

- Watch Video Solution

14. In this paragraph, some statements are given based on isomerism. Read the following statements given for every question and provide the answer.

Which of the following structrues of a cyclic alkene with the lowest number of C atoms shows geometrical isomerism having two meso stereiosomers?
A. (I)
B. (II)
C. Both
D. None

Answer: B

D View Text Solution

Multiple Choice Questions Exercise

1. Which of the following show stable or major form of tautomerism?
A.

b.

C.

Answer: B::D

- Watch Video Solution

2. Keto enol tautomerism is not observed in:

A. Phenol

B. Glycerol

C. HCN
D. Benzophenone

Answer: D
(D) Watch Video Solution
3. Arrange the following in decreasing order of enol content:
i. Diethyl malonate
ii. Acetoacetic easter (AAE or EAA)
iii. Acetyl acetone iv. $\mathrm{PhCOH}_{2} \mathrm{COH}_{3}$

$$
\begin{aligned}
& \text { A. }(i v)>(i i i)>(i i)>(i) \\
& \text { B. }(i v)>(i i i)>(i)>(i i) \\
& \text { C. }(i i i)>(i v)>(i i)>(i) \\
& \text { D. }(i i i)>(i v)>(i)>(i i)
\end{aligned}
$$

Answer: A

- Watch Video Solution

4. Which of the following will not show geometrical isomerism?
A. $P h-N=N-P h$
B. 2, 4- Dinitro phenyl hydrazone of acetone
C. Oxime of formaldehyde

D. Cyclohexan 1, $2-$ diol

Answer: B::C

D Watch Video Solution

5. Which of the following will show geometrical isomerism ?
A. $\mathrm{CH}_{3}-\stackrel{\mathrm{C}_{2} \mathrm{H}_{5}}{\mathrm{C}}=\mathrm{CH}_{2}$
B. $\left[\operatorname{Pt}\left(N H_{3}\right)_{2} C l_{2}\right]$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{\oplus}$

Answer: B::C::D

- Watch Video Solution

6. Which of the following are not resolvable?
A. 2, 3- Pentadiene

C. c. ${\underset{H}{C O}-\mathrm{NH}_{\mathrm{H}}}_{\mathrm{CH}_{3}}^{\mathrm{NH}-\mathrm{CO}} \mathrm{CH}_{3}$

Answer: C::D

D View Text Solution

7. Which of the following are resolvable?

Answer: B::D

D Watch Video Solution

8. Which of the following is/are optically

 active?
b.

Answer: B

D View Text Solution

9. The compounds

are optically inactive because
A. Both compounds have the plane of
symmetry.
B. Both compounds have the centre of symmetry.
C. Compound (I) has the plane of symmetry,
while compound (II) has the centre of
symmetry.
D. Compound (I) has the centre of symmetry, while compound (II) has the plane of symmetry.

Answer: C

D Watch Video Solution

10. The stable conformer (s) of trans
$-1-4-$ dimethyl] cyclohexane is/are:
A. $1-$ axial $-4-$ equatorial form
B. $1-$ axial $-4-$ axial form
C. $1-$ equatorial $-4-$ axial from
D. $1-$ equatorial $-4-$ equatorial from

Answer: D

D Watch Video Solution

11. The stable conformer (s) of cis-cyclohexane $1-3-$ diol is/are:
A. $1-$ axial $-3-$ axial form
B. $1-$ axial-3- equatorial form
C. 1-equatorial- 3 - axial form
D. 1- equatorial -3- equatorial form

Answer: A

D Watch Video Solution
12. Which form (s) of cyclohexane is/are free
from angle strian?
A. Chair form
B. Boat form
C. Twist boat form
D. All

Answer: D

D Watch Video Solution

13. Which of the following statements is/are wrong, about the more stability of chair form than boat form?
A. In chair conformation, all the $(C-H)$
bonds in adjacent carbons are in the
skew position.
B. In boat conformation, there are four
skew interactions and two eclipsed
interaction.
C. In a boat conformation, there are three
skew interactions and three eclipsed interactions.
D. Boat form has an angle strain

Answer: C::D

- Watch Video Solution

14. Which of the following methods are used for resolution ?
A. Biological methods by using special
enzymes
B. By making their diastereomers
C. Chromatographic method using special absorbents

D. Azetotropic distillation

Answer: A::B::C

D Watch Video Solution

15. According to Baeyer's strain theory, which of the following is/are most stable cyclic compounds?
A. Cyclopropane
B. Cyclobutane
C. Cyclopentane
D. Cyclohexane

Answer: D

D Watch Video Solution
16. The angle strain in cyclohexane is :
A. $9^{\circ}, 44^{\prime}$
B. $0^{\circ}, 44^{\prime}$
C. $-5^{\circ}, 16^{\prime}$
D. $5^{\circ}, 16^{\prime}$

Answer: C

- Watch Video Solution

17. Which of the following statements are

correct?

A. Methyl cyclopropane and methyl
cyclobutane do not show
stereoismerism.
B. Both show stereoisomerism.

C. Dimethyl
 cyclopropane
 shows
 stereoisomerism,
 but
 methyl

cyclobutane does not.
D. Dimethyl cyclopropane does not show
stereoisomerism,
but
methyl
cyclobutane shows.

Answer: A::C

- Watch Video Solution

18. Which of the following statement regarding 1, 2- dimethylcyclopropane (I) and

1, 2- dimethyl cyclobutane (II) are wrong
A. Both of them show three stereoisomers.
B. The cis form of both is optically inactive
(meso) and the trans form the both has
a pair of enantiomers.
C. The cis form of both has a pair of
enantiomers and the trans form of both
is optically inactive (meso).
D. The meso form of both is optically
inactive due to the presence of the
centre of symmetry.

Answer: C::D

D Watch Video Solution
19. Which of the following statements regarding 1,3- dimethyl cyclobutane is/are correct?
A. Both cis and trans forms are optically active.
B. Both cis and trans forms are optically inactive.
C. The cis form is optically active, while the trans form is optically inactive.
D. The trans form is optically active, while the cis form is optically inactive.

Answer: B

- Watch Video Solution

20. Which of the following statements regarding 1,3 - dimethl cyclobutane is/are correct?
A. The cis has plane of symmetry, while the
trans form has both plane and centre of
symmetry.
B. The cis form has both plane and centre
of symmetry, while the trans form has
only plane of symmetry.
C. Both have only plane of symmetry.
D. Neither of them has any element of
symmetry.

- Watch Video Solution

21. Which of the following statements regarding 1,2 -dimethyl cyclo-pentane and 1,3 -dimethyl cyclopentane is/are correct?
A. In both, cis form is meso, while trans
from is resolvable
B. In both, trans form is meso, while cis
form is resolvable
C. In both cis and trans forms are meso.
D. In both, cis and trans forms are resolvable.

Answer: A

D Watch Video Solution

22. The configuration of sugars is related to glyceraldehyde and that of amino acids is related to:
A. Serine
B. Leucine
C. Alanine
D. Glycine

Answer: A

D View Text Solution
23. Which of the following statement are true?
A. 2-Butanone on reaction with
$2,4-D N P$ forms two compounds
which are geometrical isomers and can
be separated.
B. Acetophenone on reaction with $H C N$
forms two compounds which are geometrical isomers.
C. Acetone on reaction with NH_{3} forms
two compounds which are resolvable.
D. Acetaldehyde on reaction with $\mathrm{NH}_{2} \mathrm{OH}$
forms two compounds which have
different melting points.

Answer: A::D

- Watch Video Solution

24. Which of the following statements are correct?
A. Butan - $2-$ one shows tautomerism.
B. Compounds containing asymmetric C atoms are always optically active.
C. Members belonging to the same class of compounds are called isomers.

D. Isomers have the same molecular

formula.

Answer: A::D

D Watch Video Solution
25. Which of the following statements are wrong?
A. m-Chlorobromo benzene is an isomer of m-bromochloro benzene.
B. All alkenes show geometrical isomerism.
C. Dimethyl ether and ethanol are
functional isomers.
D. Geometrical isomers have different physical properties.

Answer: A::B

D Watch Video Solution

26. Which of the following statements are correct?
A. $2,3,4$ - Tribromo pentane has three chiral C atoms..
B. Tartaric acid has two asymmetric C
atoms.
C. d and l forms of an optically active
compound have different specific
rotations with opposite signs.

D. Staggered and eclipsed forms of ethane

 have different stabilities.
Answer: B::D

- Watch Video Solution

27. Which of the following satements are wrong?
A. Isobutane and n - butane are chain
isomers.
B. Ethyl cyanide and ethyl isocyanide are
functional isomers.
C. $H-C \equiv N \quad$ and $\quad H-\stackrel{\oplus}{N} \equiv \stackrel{\ominus}{C} \quad$ are
tautomers.
D. Maleic and fumaric acids are
enantiomers.

Answer: D

D Watch Video Solution
28. Which of the following statements are correct?

A.A reaction in which different

stereoisomers produced different
products or act a different rates is called
stereospecific reaction.
B. A reaction in which a given substrate
produces diastereoisomeric products in
different amounts and where one
diastereomer predominates very much
over the other is called stereoselective
reaction.
C. If the replacement of one group at an
achiral centre by a new substituent
generates a chiral centre by a new
substituent generates a chiral centre,
the original molecule is said to be enantiotopic.
D. The E and Z system of naming geometrical isomers is based on the
$C I P$ sequence rule.

Answer: A::B::C::D

- Watch Video Solution

29. Which of the following statements are correct?
A. diastereomers have different physical properties but not identical chemical properties.

B. Enantiomers have the same physical and chemical properties but different physiological properties.

C. Polarimeter is used in measuring the optical rotation of compund.
D. Only organic molecules show optical

Answer: A::B::C

- Watch Video Solution

30. Which of the following statements are wrong?
A. Ethyl benzene is the chain isomer of xylene.
B. Alkenes can exhibit the position, chain,
functional, and geometrical isomerism.
C. Esters and carboxylic acids are examples
of metamerism.
D. Metamers belong to different classes of
compounds.

Answer: C::D

D Watch Video Solution

31. Only two isomeric monochloro derivatives are possible for
A. n Butane
B. 2, 4-Dimethyl pentane
C. Benzene
D. 2-Methyl propane

Answer: A::D

D Watch Video Solution

32. Keto-enol tautomerism is observed in

O
A. $C_{6} H_{5}-C-H$
B. $C_{6} H_{5}-\stackrel{\|}{C}-\mathrm{CH}_{3}$
C. $C_{6} H_{5}-\stackrel{O}{C}-C_{6} H_{5}$
D. $\mathrm{C}_{6} \mathrm{H}_{5}-\stackrel{O}{\stackrel{\|}{\mathrm{C}}}-\mathrm{CH}_{2}-\stackrel{O}{\mathrm{C}^{+}}-\mathrm{CH}_{3}$

Answer: B::D

D Watch Video Solution

33. Which of the following has/have asymmetric carbon atom?

$$
\begin{aligned}
& \mathrm{Cl} \quad \mathrm{Br} \\
& \text { A. } H-\stackrel{\mid}{C}-\stackrel{\mid}{C}-H \\
& \text { B. } H-\stackrel{H}{H} \stackrel{H}{H} \stackrel{H}{C l} \stackrel{\mid}{C}-\stackrel{\mid}{C}-C l \\
& \text { C. } H-\stackrel{\mid}{\mid}-\stackrel{\mid}{\mid}-D
\end{aligned}
$$

Answer: C::D

D Watch Video Solution

34. The molecule (s) that will have dipole moment is/are:
A. 2, 2 Dimethyl propane
B. trans-2-Pentene
C. cis -3- Hexene
D. 2, 2, 3, 3-Tetramethyl butane

Answer: B::C
(Watch Video Solution
35. Which of the following compounds will show geometrical isomerism?
A. 2-Butene
B. Propene
C. 1-phenyl propane
D. 2-Methyl-2-butene

Answer: A::C

D Watch Video Solution

36. Tautomerism is exhibited by :

A.
a. $\langle-\mathrm{CH}=\mathrm{CH}-\mathrm{OH}$
B.

D.
d.

Answer: A::C::D

- Watch Video Solution

37. The correct statements (s) about the compound given below is/are:

A. The compound is optically active
B. The compound possesses plane of
symmetry.
C. The compound possesses plane of
symmetry.
D. The compound possesses axis of
symmetry.

Answer: A::D

D Watch Video Solution
38. In the Newman projection for 2, 2dimethylbutane

X and Y can, respectively, be
A. H and H
B. H and $C_{2} H_{5}$
C. $\mathrm{C}_{2} \mathrm{H}_{5}$ and H
D. CH_{3} and CH_{3}

- Watch Video Solution

Single Correct Answer Type

1. Which of the following will not be able to
show optical isomerism (enantiomerism)?
A. 1, 2-Propadiene
B. 2, 3-Pentadiene
C. sec-Butyl alcohol
D. All exibit enantiomerism

D Watch Video Solution

2. The type of isomerism exihibited by the compound with formula $C_{4} H_{10} O$ is :
A. Chain and position
B. Functional and position
C. Metamerism

D. Chain, position, functional, and

metamerism

Answer: D

- Watch Video Solution

3. Acids and ester having the same number of carbon atoms are:
A. Functional isomers
B. Tautomers
C. Metamers
D. Not isomers

Answer: A

- Watch Video Solution

4. Which of the following kinds of isomerism can nitroethane exhibit?
A. Metamerism

B. Optical activity

C. Tautomerism

D. Position isomerism

Answer: C

- Watch Video Solution

5. Which among the following is likely to show geometrical isomerism?
A. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{N}-\mathrm{OH}$

$$
\begin{aligned}
& \text { C. } \mathrm{CH}_{3} \mathrm{C}(\mathrm{Cl})=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \\
& \text { D. } C \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=C C l_{2}
\end{aligned}
$$

Answer: B

- Watch Video Solution

6. How many gem dihalides with different formulas are possible for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{CI}_{2}$?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

7. Which of the following statement is correct?

A. The presence of chiral carbon is
essential condition for enantiomerism.
B. Functional isomerism is a kind of
stereoisomersim.
C. The compounds containing one chiral carbon only are always chiral.
D. All statements are wrong.

Answer: C

- Watch Video Solution

8. The total number of halogenated products

likely to be formed by ethance is:
A. 4
B. 6
C. 9
D. 8

Answer: C

D Watch Video Solution
9. If the optical rotation produced by the compound (A) is $+52^{\circ}$, the one produced by compound (B) is:

A. -52°
B. $+52^{\circ}$
C. 0°
D. Unpredictable

- Watch Video Solution

10. The E-isomer among the following is:
A.

B. b. ${ }_{\mathrm{H}_{3} \mathrm{C}^{\prime}}^{\stackrel{\mathrm{Cl}}{ }} \mathrm{C}=\mathrm{C}^{\prime}{ }_{\mathrm{CHO}}^{\mathrm{C}_{2} \mathrm{H}_{5}}$
C. c. ${ }_{\mathrm{H}^{\prime}}^{\mathrm{H}_{3} \mathrm{C}} \mathrm{C}=\mathrm{C}^{\prime}{ }_{\text {CH }}^{\text {CH }}=\mathrm{CH}_{2}$
D. d. ${ }_{\mathrm{H}_{3} \mathrm{C}}^{\stackrel{\mathrm{H}}{\text { d }} / \mathrm{C}=\mathrm{C}} \stackrel{<}{\mathrm{CHCl}_{2}}$

Answer: B
11. Which of the following will not show geometrical isomerism?

B.

D. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
12. The dihedral angle between the hydrogen atoms of two methyl groups is staggered conformation of ethane is
A. 120°
B. 180°
C. 90°
D. 60°
13. Which of the following object is chiral?
A. Nail
B. Blade
C. Tennis racket
D. Laced football

Answer: D

Single Correct Answer Type Exercise

1. Predict the number of stereoisomers in
$\mathrm{CH}_{2} \mathrm{OH} .(\mathrm{CHOH})_{4} . \mathrm{CHO}$.
A. 16
B. 8
C. 4
D. 2
2. Predict the number of stereoisomers for 2,5 heptadiene.
A. 4
B. 3
C. 2
D. 5

Answer: B
3. Symbol D stands for:
A. Dextrorotatory, which rotates $P . P . L$.
towards right.
B. Dextrorotatory, which rotates P. P.L.
towards left.
C. Relative configuration with respect to
lactic acid taken as standard.

D. Relative configuration with respect to

glyceraldehyde taken as standard and
$(O H)$ group is on the right side.

Answer: D

D Watch Video Solution

4. Which of the following compounds will not show geometrical isomerism?
A. 3- Phenyl-2 propinoic acid
B. 2 Butene
C. 3-Methyl-2 butenoic acid
D. 3-Methyl-2 pentenoic acid.

Answer: C

D Watch Video Solution

5. The enolic form of acetone contains:
A. 9σ-bond, 1π-bound, and 2 lone pairs.
B. 8σ-bonds, 2π-bonds, and 2 lone pairs.
C. 10σ-bonds 2π-bonds and 1 lone pair.
D. 9σ-bonds, 2π-bonds, and 2 lone pairs.

Answer: A

D Watch Video Solution

6. Arrange the following in the increasing order of expected enol content.
i. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CHO}$
ii. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
iii. $\mathrm{CH}_{3} \mathrm{CHO}$
iv. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$
A. $i i i<i i<i v$
B. $i i i<i i<i<i v$
C. $i<i v<i i<i i i$
D. $i v<i<i i<i i i$

Answer: B

D Watch Video Solution
7. The decreasing order of reactivity of the following alkenes is:
i. 2, 3 -Dimethyl-2 butene
ii. 2- Methyl-2 butene

2 - Butene
iv. Ethane

$$
\begin{aligned}
& \text { A. }(i v)>(i i i)>(i i)>(i) \\
& \text { B. }(i)>(i i)>(i i i)>(i v) \\
& \text { C. }(i v)>(i i)>(i i i)>(i) \\
& \text { D. }(i)>(i i i)>(i i)>(i v)
\end{aligned}
$$

D Watch Video Solution

8. Which of the following is the least stable form of cyclohexane?
A. Boat-form
B. Chair form
C. Skew- boat form
D. Crown form

D Watch Video Solution

9. The minimum number of carbon atoms an
alkane should contain in order to exhibit optical activity is:
A. 5
B. 6
C. 7
D. 8

Answer: C

D Watch Video Solution

10. A compound whose molecule is
superimposabel on its mirror image despite
containing chiral carbon atoms is called:
A. Threo isomer
B. Meso compound
C. Enantiomer
D. No special name

Answer: B

D Watch Video Solution

11. The $I U P A C$ name of the compound with
formula $C_{n} H_{2 n+2}$, having the lowest possible molecular mass and capable of showing enantiomerism, is:
A. 3-Methyl hexane
B. 2, 3-Dimethyl pentane
C. Methane

D. Both (a) and (b)

Answer: D

D Watch Video Solution

12. A racemic mixtrue is optically inactive due to :
A. The presence of plane of symmetry
B. External compensation
C. Internal compensation

D. None of these

Answer: B

D Watch Video Solution

13. The pair of structures given below represents:

A. Enantiomers

B. Position isomers

C. Conformers

D. None of these

Answer: B

D Watch Video Solution

14. The degree of unsaturation or index of hydrogen deficiency in the following is :
i. $C_{6} H_{14}$
ii. $C_{4} H_{6}$
iii. $C_{6} H_{6}$
A. $0,2,4$
B. 1,0,2
C. $4,1,0$
D. 2,0,4

Answer: A

D Watch Video Solution

15. The degree of unsaturation in

i. $C_{3} H_{3} C l_{3}$, ii. $C_{3} H_{4} O$, iii. $C_{4} H_{5} N$ is :
A. 2,1,3
B. 1,2,3
C. 3,2,1
D. 2,3,1

Answer: B
(Watch Video Solution
16. Which of the following alkenes is the most stable?

> A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2}$
> B. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
> C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
> D. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$

Answer: C

- Watch Video Solution

17. Which of the following will have zero dipole moment?
A. cis, - 1, 2-Dichloroethene
B. trans - 1, 2-Dichloroethene
C. Dichloromethane
D. o - Phenylene dichloride

Answer: B

D Watch Video Solution
18. The total number of conformations of ethane is:
A. Infinite
B. Two
C. Three
D. Four

Answer: A

- Watch Video Solution

19. Which of the following is not an isomer of butanal?
A. 2-Butanone
B. 2-Methyl propanal
C. 2-Butanol
D. But-2-en-1-ol

Answer: C

D Watch Video Solution
20. The least energetic conformation of cyclohexane is:
A. Boat form
B. Half chair form
C. Chair form
D. Twisted form

Answer: C

D Watch Video Solution
21. How many chiral carbons are present in

glucose molecule $\mathrm{CHO}(\mathrm{CHOH})_{4} \mathrm{CH}_{2} \mathrm{OH}$?

A. 4
B. 3
C. 2
D. 1

Answer: A
(D) Watch Video Solution
22. The process of separation of racemic modifications into d and l enantiomers is called:
A. Resolution
B. Dehydration
C. Revolution
D. Dehydrohalogentation

Answer: A

23. If a compound has n asymmetric carbon atoms with different terminal groups, the number of stereoisomers is given by the formula:
A. $(1 / 2)^{n}$
B. 2^{n}
C. $2 \sqrt{n}$
D. $\sqrt{2} n$

Answer: B
24. The number of isomers that can be obtained theoretically on monochlorination of

2-methylbutane is:
A. 1
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution
25. A hydrocarbon with formula $C_{8} H_{18}$ gives one monochloro derivative. The hydrocarbon can be:
A. n-octane
B. 2 Methyl heptane
C. 2, 2, 4-Trimethyl pentane
D. 2, 2, 3, 3-Tetramethyl butane

Answer: D
26. The most stained cycloalkane is :
A. Cyclopropane
B. Cyclobutane
C. Cyclopentane
D. Cyclohexane

Answer: A
27. The total number of acyclic isomers, including the stereoisomers, with formula $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{Cl}$ is
A. 12
B. 11
C. 10
D. 9

Answer: A

- Watch Video Solution

28. Mesotartaric acid is optically inactive due to the presence of:
A. Geometrical isomerism
B. Two chiral carbon atoms
C. Molecular symmetry

D. External compensation

Answer: C

D Watch Video Solution
29. Butene when treated with chlorine at about $500^{\circ} C$ forms:

$$
\begin{aligned}
& \text { A. } \mathrm{MeCH} \mathrm{H}_{2} \mathrm{CHCl}-\mathrm{CH}_{2} \mathrm{Cl} \\
& \text { B. } \mathrm{MeCH}(\mathrm{Cl})-\mathrm{CH}=\mathrm{CH}_{2} \\
& \text { C. } \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \\
& \text { D. } \mathrm{MeC}(\mathrm{Cl})_{2} \mathrm{CH}=\mathrm{CH}_{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

30. Which of the following are diastereomers ?

ii.

(II)

A. (I) and (III)
B. $(I I)$ and (IV)
C. (I) and (II)
D. None

Answer: C

- Watch Video Solution

31. An organic compound contains $66 \% C$ and
$13.3 \% H$. Its vapour density is 37 . The possible number of isomers of resonance is not correct?
A. 6
B. 7
C. 5

D. 8

Answer: B

D Watch Video Solution

32. Which of the following statements regarding the concept of resonance is not correct?
A. The different resonating structure of a molecule have fixed arrangement of
atomic nuclei
B. The different resonating structures
differ in the arrangement of electrons.
C. None of the individual resonating
structure explains the various
characteristics of the molecule.
D. The hybrid structure have equal
contribution from all the resonating
structures.
33. The keto form of phenol contains:
A. $3 \pi, 13 \sigma, 4$ non-bonding electrons.
B. $3 \pi, 9 \sigma, 4$ non-bonding electrons.
C. $3 \pi, 9 \sigma, 4$ non-bonding electrons.
D. $3 \pi, 8 \sigma, 4$ non-bonding electrons.

Answer: A

34. Tautomerism is not exhibited by :

A.

B.
b. $0=\langle=0$
C.

D.

Answer: B

D Watch Video Solution
35. The number of isomers of the compound $C_{2} F C l B r l$ is :
A. 3
B. 4
C. 5
D. 6

Answer: D

36. Pure enantiomeric acid+optically active alcohol having chiral C atom \rightarrow ?

The product will be:
A. An optically active mixtrue
B. A meso compound
C. A racemic mixtrue
D. A pure enantiomer

Answer: A

D Watch Video Solution
37. Racemic acid + optically active alcohol
having chiral C atom \rightarrow ?

The product will be:
A. Optically active mixtrue
B. Meso compound
C. Diastereomeric mixtrue
D. Racemic mixtrue

Answer: C

D Watch Video Solution

38. $\mathrm{PhCH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{Ph} \xrightarrow{\text { Alc. } \mathrm{KOH}}$ Product

How many product are possible?
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

39. formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$ 。

Five compounds with formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$
How many structrue of (X) are possible?
A. 2
B. 3
C. 4
D. 5

Answer: B

Hydrogenation of the above compound in the presence of poisoned $P d$ catalyst gives:
A. An optically active compound
B. An optically inactive compound
C. A racemic mixture

D. A diasteromeric mixture

Answer: B

D Watch Video Solution

41. Hydrogenation of the compound by Brich
reduction

$$
\left(\mathrm{Na}+\text { liq. } \mathrm{NH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)
$$ gives:

A. An optically active compound
B. An optically inactive compound

C. A racemic mixtrue

D. A diasteromeric mixtrue

Answer: C

D Watch Video Solution

42. An $S N^{2}$ reaction at an asymmetric C of a compound always gives:
A. A enantiomer of the substrate
B. A product with opposite optical rotation
C. A mixtrue of diastereomers
D. A single stereoisomers

Answer: D

D Watch Video Solution

43. The nodal plane in the π-bond of ethene is
located in:
A. The molecular plane
B. A plane parallel to the molecular plane
C. A plane perpendicular to the molecular
plane which bisects the carbon-carbon σ
-bond at right angle
D. A plane perpendicular to the molecular
plane which contains the carbon-carbon
σ bond

Answer: A

D Watch Video Solution
44. Which of the following compounds exhibits stereoisomerism?
A. 2-Methylbutane
B. 3-Methylbutane
C. 3-Methylbutanoic acid
D. 2-Methylbutanoic acid

Answer: D
(Watch Video Solution
45. Consider the following reaction:

$$
\underset{\substack{\text { D } \\ \mathrm{CH}_{3} \\ \mathrm{C} \\ \mathrm{CH} \\ \mathrm{CH}}}{\mathrm{CH}}-\underset{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{3}-\mathrm{Br} \rightarrow \mathrm{X}+\mathrm{HBr}
$$

Identify the structrue of the major product X

$$
\begin{aligned}
& \text { A. } \mathrm{H}_{3} \mathrm{C}-\underset{\mathrm{D}}{\mathrm{C}} \underset{\substack{\mathrm{C} \\
\mathrm{CH}}}{\underset{\mathrm{CH}}{3}} \mathrm{CH}-\dot{\mathrm{C}} \mathrm{H}_{2} \\
& \text { B. } \mathrm{H}_{3} \mathrm{C}-\underset{\substack{\mathrm{C} \\
\mathrm{D} \\
\mathrm{CH}}}{\mathrm{C}} \underset{\substack{\mathrm{C} \\
\mathrm{CH}}}{\dot{\mathrm{C}}} \mathrm{CH} \\
& \text { C. } \mathrm{H}_{3} \mathrm{C}-\underset{\mathrm{C}}{\dot{\mathrm{C}}}-\underset{\mathrm{D}}{\mathrm{C}} \mathrm{CH}-\mathrm{CH}_{3} \\
& \text { D. } \mathrm{H}_{3} \mathrm{C}-\dot{\mathrm{CH}}-\underset{\underset{\mathrm{CH}}{\mathrm{C}} \mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{3}
\end{aligned}
$$

Answer: B

46. Which of the following hydrocarbons has
the lowest dipole moment?
A. ${ }^{\text {a. }}{ }_{\mathrm{H}_{3} \mathrm{C}}^{\mathrm{H}} \mathrm{C}=\mathrm{C}_{-}^{-\mathrm{CH}_{3}}$
B. $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$

Answer: B
47. The geometrical isomerism is shown by:
a.

b.

C.

d.

Answer: D

48. The number of geometrical isomers in

$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{N}-\mathrm{OH}$ is
A. 2
B. 4
C. 5
D. 6

Answer: D
(Watch Video Solution
49. The smallest aldehyde and its next
homologue are treated with $\mathrm{NH}_{2} \mathrm{OH}$ to form
oxime. Find out the correct answer out of the
following.
A. Two different oximes are formed
B. Three different oximes are formed.
C. Two oximes are optically active.
D. All oximes are optically active.

Answer: B

Propane $\xrightarrow[h v]{\mathrm{Cl}_{2}} \mathrm{~N}$ (Isomeric products)
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$
Fractional distillation
M (Isomeric products)
50.

What are the numerical values of N and M ?

A. 6,6
B. 5,4
C. 4,4
D. 3,3
51. The compound in which the distance between the two adjacent carbon atoms is largest is :
A. Ethane
B. Ethene
C. Ethyne
D. Benzene
52. The compound which is not isomeric with diethyl ether is :
A. n - Propyl methyl ether
B. Butan-1 - ol
C. 2-Methyl propan-2 - ol
D. Butanone

Answer: D
53. Among the following, the compound that can be most readily sulphonated is:
A. Benzene
B. Nitrobenzene
C. Toluene
D. Chlorobenzene

Answer: C

- Watch Video Solution

54. Which of the following compounds will exhibit cis-trans (geometrical) isomerism ?
A. 2-Butene
B. 2-Butyne
C. 2-Butanol
D. Butanal

Answer: A

55. An isomer of ethanol is:
A. Methanol
B. Diethyl ether
C. Acetone

D. Dimethyl ether

Answer: D

56. Which of the following will have the least
hindered rotation about carbon-carbon
bonds?
A. Ethane
B. Ethylene
C. Acetylene
D. Hexachlorethane

Answer: A

D Watch Video Solution

57. The number of isomers of $C_{6} H_{14}$ is:

A. 4
B. 5
C. 6
D. 7

Answer: B
58. The enolic form of acetone contains:
A. 9σ-bonds, 1π-bound, and 2 lone pairs.
B. 8σ-bonds, 2π-bonds, and 2 lone pairs.
C. 10σ-bonds 1π-bonds and 1 lone pair.
D. 9σ-bonds, 2π-bonds, and 2 lone pair.

Answer: A
59. The isomers that can be interconverted
through rotation around a single bond are:
A. Conformers
B. Diastereomers
C. Enantiomers
D. Positional isomerisms

Answer: A
(D) Watch Video Solution
60. How many optically active stereiosomers are possible of butane 2,3 diol?
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution
61. The optically active tartaric acid is named
as $D-(+)-$ tartaric acid because it has a
positive
A. Optical rotation and is derived from D glucose.
B. $p H$ in organic solvent.
C. Optical rotation and is derived from
$D-(+)-$ glyceral-dehyde.
D. Optical rotation when substituted by
deuterium.

- Watch Video Solution

62. Which of the following compounds will exhibits geometrical isomerism ?
A. 1- Phenyl-2 butene
B. 3-Phenyl1-butene
C. 2-Phenyl-1-butene
D. 1, 1-Diphenyl 1 - 1-propene

Answer: A

- Watch Video Solution

63. The number of isomers for the compound
with molecular formula $C_{2} B r C l F I$ is:
A. 3
B. 4
C. 5
D. 6

Answer: D

D Watch Video Solution

64. Which of the following compounds exhibits stereoisomerism?
A. 2-Methyl butene
B. 3-Methyl butyne
C. 3-Methyl butanoic acid
D. 2-Methyl butanoic acid

Answer: D

- Watch Video Solution

65.

In the above compound, C_{2} is rotated
clockwise 120° about $C_{2}-C_{3}$ bond. The resulting conformer is:
A. Partially eclipsed
B. Eclipsed
C. Gauche
D. Staggered

Answer: C
(D) Watch Video Solution

Assertion Reasoning Type Exercise

1. Assertion (A): Metamers can also be position or chain isomers.

Reason (R): Tautomerism was introduced by
C. P. Laar to explain the chemical reactivity of a substance according to two possible structrues.
A. If both (A) and (R) are true and (R) is
the correct explanation for (A).
B. If both (A) and (R) are true and (R) is
not the true explanation for (A)
C. If (A) is true, but (R) is false.
D. If both (A) and (R) are false

Answer: B

D Watch Video Solution

2. Assertion (A): Pentane and 3 methyl pentane are chain isomers.

Reason (R): Pentane is a straight-chain alkane while 3-methyl pentane is branched-chain alkane.
A. both (A) and (R) are true and (R) is the correct explanation for (A).
B. both (A) and (R) are true and (R) is not the true explanation for (A)
C. (A) is true, but (R) is false.
D. (A) is false and (R) is true.

Answer: D

D Watch Video Solution

3. Assertion (A): Pent -1-ene and 2-methyl but 1ene are position isomers

Reason (R): Position isomers have the same molecular formula but differ in the position of functional group.
A. If both (A) and (R) are true and (R) is
the correct explanation for (A).
B. If both (A) and (R) are true and (R) is
not the true explanation for (A)
C. If (A) is true, but (R) is false.

D. If (A) is false and (R) is true.

Answer: D

D Watch Video Solution

4. Assertion (A): Both cis 1, 3-dimethyl
cyclobutane and trans $1-3$, dimethyl
cyclobutane are optically inactivity

Reason (R): cis-1,3- Dimethyl cyclobutane has
the plane of symmetry, wheras trans form has
the centre of symmetry.
A. If both (A) and (R) are true and (R) is
the correct explanation for (A).
B. If both (A) and (R) are true and (R) is
not the true explanation for (A)
C. If (A) is true, but (R) is false.
D. If both (A) and (R) are false

Answer: A

D Watch Video Solution

5. Assertion (A): The cis form of

exist in three-diastereomers.
Reason (R): One form is optically inactive due to the presence of centre of symmetry.
A. If both (A) and (R) are true and (R) is
the correct explanation for (A).
B. If both (A) and (R) are true and (R) is
not the true explanation for (A)
C. If (A) is true, but (R) is false.
D. If both (A) and (R) are false

Answer: C

(D) Watch Video Solution

Fill In The Blanks Exercise

1. Isomers which are mirror images are knows as (superimposable, non-
superimposable, enantiomers, diastereomers, epimers)

D Watch Video Solution

2. The structrue of the enol form of
$\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{3} \quad$ with
intermolecular hydrogen bonding is.....

D Watch Video Solution
3. The total number of cyclic isomers possible
for a hydrocarbon with the molecular formula
$C_{4} H_{6}$ is
A. 4
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

True False Exercise

1. m-Chloro bromobenzene is an isomer of m bromo chloro benzene.

- Watch Video Solution

2. 2, 3, 4- Trichloropentane has three asymmetric carbon atoms.

- Watch Video Solution

Analytical And Descriptive Type Exercise

1. Write structural formula for all the isomeric alcohols having the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$.

- Watch Video Solution

2. Write the structural of all the possible isomers of dichloroethene. Which of them will have zero dipole moment?
3. Write tautomeric form of phenol

D Watch Video Solution

4. Discuss the hybridisation of carbon atoms
in allene $\left(C_{3} H_{4}\right)$ and show the π-orbital overlap.

- Watch Video Solution

5. Identify the pairs of enantiomers and diastereomers from the following:

D Watch Video Solution

6. Draw Newman projection of the less stable
staggered from of butane.
b. Give reason for the relatively less stability of
the staggered form.

Assertion Reasoning Type

1. Statement I: Molecules that are nonsuperimposable on their mirror images are chiral.

Statement II: All chiral molecules have chiral centres.
A. Statement I and II are true and

Statement II is the correct explanation
for Statement I.
B. Statement I and II are true, but

Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: C

D Watch Video Solution

