©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

NCERT BASED EXERCISE

Some Basic Concepts And Mole Concept

1. Calculate the molecular mass of the following:
a. $\mathrm{H}_{2} \mathrm{O}$
b. CO_{2}
c. CH_{4}
2. Calculate the mass precent of different elements present in sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.

Watch Video Solution

3. Detennine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% dioxygen by mass.

- Watch Video Solution

4. Calculate the amount of carbon dioxide that could be produced when
a. 1 mol of carbon is burnt in air
b. 1 moles of carbon is brunt in $16 g$ of dioxygen.

2 moles of carbon are burnt in $16 g$ of dioxygen.

(Watch Video Solution

5. Calculate the mass of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ required to make 500 mL of 0.375 molar qqueous solution. Molar mass of sodium of acetate is $82.0245 \mathrm{gmol}^{-1}$.

- Watch Video Solution

6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density $1.41 \mathrm{~g} / \mathrm{mL}$ and the mass percent of nitric acid in it being 69%.

- Watch Video Solution

7. How much copper can be obtained from 100 g of copper sulphate $\left(\mathrm{CuSO}_{4}\right)$?

- Watch Video Solution

8. Determine the molecular formula of an oxide of iron in which the mass percent of iron and oxygen are 69.9 and 30.1 , respectively.

Watch Video Solution

9. Calculate the atomic mass (average) of chlorine using the following data:

	\% natural abundance	Molar mass
.${ }^{35} \mathrm{Cl}$	75.77	34.9689
.${ }^{37} \mathrm{Cl}$	24.23	36.9659

- Watch Video Solution

10. In the moles of ethane $\left(C_{2} H_{6}\right)$, calculate the following:
a. Number of moles of carbon atoms
b. Number of moles of hydrogen stoms
c. Number of molecules of ethane.
11. What is the concentration of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in molL^{-1} if its 20 g are dissolved in enough water to make a final volume up to $2 L$?

Watch Video Solution

12. If the density of methanol is $0.793 \mathrm{~kg}^{-1}$ what ia its volume needed for making 2.5 L of its $0.25 M$ solution?

- Watch Video Solution

13. Pressure is determined as force per unit area of the surface. The $S I$ unit of pressure, pascal is as shown below:

$$
1 P a=N m^{-2}
$$

If the mass of air at sea level is $1034 \mathrm{gcm}^{-2}$, calculate the pressure in pascal.

- Watch Video Solution

14. What is the $S I$ unit of mass? How is it defined?

- Watch Video Solution

15. What do you mean by significant figures?

- Watch Video Solution

16. A sample of drinking water was found to be severely contaminated with chloroform, CHCl_{3}, which is supposed to be carcinogenic in nature. The level of contamination was $15 p p m$ (by mass).
a. Express this is precent by mass.
b. determine the molarity of chloroform in the water sample.

- Watch Video Solution

17. Express the following in the scientific notation:
a. 0.0048
b. 234000
c. 8008
d. 500.0
e. 6.0012

- Watch Video Solution

18. How many significant figures are present in the following?
a. 0.0025
b. 208
c. 5005
d. 126000
e. 500.0
f. 2.0034

- Watch Video Solution

19. Round up the following upto three significant figures:
b. 10.4107
c. 0.04597
d. 2808

Watch Video Solution

20. The following data are obtained when dinitrogen and dioxygen react to gether to form different compounds:

	Mass of dinitrogen	Mass of dioxygen
i.	$14 g$	$16 g$
ii.	$14 g$	$32 g$
iii.	$28 g$	$32 g$
iv.	$28 g$	$80 g$

a. Which law of chemical combination is obeyed by the above experimental data? Give its statement.
b. Fill in the blanks in the following conversions:
I. $1 \mathrm{~km}=. m m=\ldots \mathrm{pm}$
II. $1 m g=\ldots k g=\ldots n g$
III. $1 m L=\ldots L=\ldots d m^{3}$
21. If the speed of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$, calculate the distance covered by light in 2.00 ns .

Watch Video Solution

22. In a reaction

$$
A+B_{2} \rightarrow A B_{2}
$$

Identify the limiting reagent, if any, in the following reaction mixtures.
a. 300atoms of $A+200$ molecules of B
b. $2 \mathrm{~mol} A+3 \mathrm{~mol} B$
c. 100atoms of $A+100$ molecules of B
d. $5 \mathrm{~mol} A+2.5 \mathrm{~mol} B$
e. $2.5 \mathrm{~mol} A+5 \mathrm{~mol} B$

- Watch Video Solution

23. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
a. Calculate the mass of ammonia produced if $2.00 \times 10^{3} g$ dinitrogen reacts with $1.00 \times 10^{3} g$ of dihydrogen.
b. Will any of the two reactants remain unreacted?
c. If yes, which one and what would be its mass?

Watch Video Solution

24. How are $0.50 \mathrm{molNa} \mathrm{CO}_{2}$ and $0.50 \mathrm{MNa}_{2} \mathrm{CO}_{3}$ different?

- Watch Video Solution

25. If ten volumes of dihydrogen gas reats with five volumes of dioxygen gas, how many volumes of water vapour would be produced?

- Watch Video Solution

26. Convert the following into basic units:
a. $28.7 p m$
b. 15.15 pm
c. $25365 m g$

Watch Video Solution

27. Which one of the following will have largest number of atoms?
a. $1 g A u(s)$
b. $1 g N a_{4}(s)$
c. $1 g L i(s)$
d. $1 g C l_{2}(g)$

Watch Video Solution

28. Calculate the molarity of a solution of ethnol in water in which the mole fraction of ethanol is 0.040 .
29. What will be the mass of one ${ }^{12} C$ atom in g ?

- Watch Video Solution

30. How many significant figures should be present in the answer of the following calculations?
a. $\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$
b. 5×5.364
c. $0.0125+0.7864+0.0215$

- Watch Video Solution

31. Use data given in the following table to calculate the molar mass of naturaly occuring argo isotopes:

Isotope	Isotopic molar mass	Abundance
.${ }^{36} \mathrm{Ar}$	$35.96755 \mathrm{gmol}^{-1}$	0.337%
.${ }^{38} \mathrm{Ar}$	$37.96272 \mathrm{gmol}^{-1}$	0.063%
.${ }^{40} \mathrm{Ar}$	$39.9624 \mathrm{gmol}^{-1}$	99.600%

(D) Watch Video Solution

32. Calculate the number of atoms in each of the following
a. 52 mol of He
b. $52 u$ of He
c. $52 g$ of He

- Watch Video Solution

33. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 litre (Measured at STP) of this welding gas is found weigh 11.6 g . Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.
34. Calcium carbonate reacts with aqueous HCl to give CaCl_{2} and CO_{2} according to the reaction:
$\mathrm{CaCO}_{3}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
What mass of CaCO_{3} is required to react completely with 25 mL of 0.75 MHCl ?

- Watch Video Solution

35. Chlorine is prepared in the laboratory by treating manganese dioxide
(MnO_{2}) with aqueous hydrochloric acid according to the reaction,
$4 \mathrm{HCl}_{(a q)}+\mathrm{MnO}_{2(s)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{l}+\mathrm{MnCl}_{2(a q)}+\mathrm{Cl}_{2(g)}$
How many gram of HCl react with 5.0 g of manganese water to make 250.0 mL solution.

- Watch Video Solution

1. Assign oxidation number to the underlined elements in each of the following species:
a. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
b. $\mathrm{NaH} \underline{S O}_{4}$
c. $H_{4} \underline{P_{2}} O_{7}$
d. $\mathrm{K}_{2} \underline{\mathrm{Mn} \mathrm{O}_{4}}$
e. $\underline{\mathrm{Ca}} \mathrm{O}_{2}$
f. $\mathrm{Na} \underline{B} \mathrm{H}_{4}$
g. $\mathrm{H}_{2} \underline{S_{2}} \mathrm{O}_{7}$
h. $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

2. What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results?
a. $K \underline{I}_{3}$ b. $H_{2} \underline{S}_{4} O_{6}$ c. $\underline{F e}_{3} O_{4}$
d. $\underline{C} \mathrm{H}_{3} \underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{OH}$
e. $\underline{C} \mathrm{H}_{3} \underline{\mathrm{C} O O H}$
3. Justify that the following reaction are redox reactions:
a. $\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightarrow \mathrm{Cu}(s)+\mathrm{H}_{2} \mathrm{O}(g)$
b. $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(g) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g)$
c. $4 B C l_{3}(g)+3 \mathrm{LiAlH}_{4}(s) \rightarrow 2 B_{2} H_{6}(g)+3 \mathrm{LiCl}(s)+3 A l C l_{3}(s)$
d. $2 K(s)+F_{2}(g) \rightarrow 2 K^{\oplus} F^{\Theta}(s)$
e. $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

D Watch Video Solution

4. Fluorine reacts with ice and results in the change:

$$
\mathrm{H}_{2} \mathrm{O}(s)+\mathrm{F}_{2}(g) \rightarrow \mathrm{HF}(g)+\mathrm{HOF}(g)
$$

Justify that this reaction is a redox reaction.

- Watch Video Solution

5. Calculate the oxidation number of sulphur, chromium, and nitrogen in $\mathrm{H}_{2} \mathrm{SO}_{5}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and NO_{3}^{Θ}. Suggest the structure of these compounds.

Count for the fallacy.

- Watch Video Solution

6. Write formulas for the following compounds:
a. Mercury ($I I$) chloride b. Nickel ($I I$) sulphate
c. Tin (IV) oxide d. Thallium (I) sulphate
e. Iron (III) sulphate f. Chromium (III) oxide

- Watch Video Solution

7. Suggest a list of the substances where carbon can exhibit oxidation states from -4 to +4 amd nitrogen from -3 to +5 .

- Watch Video Solution

8. While sulphate dioxide and hydrogen perxide can act as oxidising as well as reducing agents in their reactions, ozone and nitric acid act only
as oxidants. Why?

- Watch Video Solution

9. Consider the reactions
a) $6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+6 \mathrm{O}_{2}(\mathrm{~g})$
b) $\mathrm{O}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{O}_{2}(\mathrm{~g})$

Why it is more appropriate to write these reaction as
a) $6 \mathrm{CO}_{2}(g)+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+6 \mathrm{O}_{2}(\mathrm{~g})$
b) $\mathrm{O}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Also suggest a technique to investigate the path of the above (a) and (b) redox reactions.

- Watch Video Solution

10. The compound $A g F_{2}$ is an unstable compound. However, if formed, the compound acts as a strong oxidising agent. Why?
11. Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. Justify this statement giving three illustrations.

- Watch Video Solution

12. How do you count for the following observations?
a. Though alkaline potassium permanganate and acidic potassium permanganate both are used as oxidants, yet in the manufacture of benzoic acid from toluence we use alcoholic potassium permanganate as an oxidant. Why? Write a balanced redox equation for the reaction.
b. When concentrated sulphuric acid added to an inorganic mixture containing chloride, we get colourless pungent smelling gas HCl , but if the mixture contains bromide then we get red vapour og bromine. why?
13. Identify the substance oxidised substance reduced, oxidising agent, and reducing agent for each of the following reactions:
a. $2 \mathrm{AgBr}(s)+\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{Ag}(s)+2 \mathrm{HBr}(a q)+\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(a q)$
b.
$\mathrm{HCHO}(\mathrm{l})+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{3}\right]^{\oplus}+3 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}(a q) \rightarrow 2 \mathrm{Ag}(s)+\mathrm{HCOO}^{\Theta}(a q)+4 \Gamma$
C.
d. $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d. $\mathrm{Pb}(s)+\mathrm{PbO}_{2}(s)+2 \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow 2 \mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)$

- Watch Video Solution

14. Consider the reaction:
$2 S_{2} O_{3}^{2-}(a q)+I_{2}(s) \rightarrow S_{4} O_{6}^{2-}(a q)+2 I^{\Theta}(a q)$
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}(a q)+2 \mathrm{Br}_{2}(l)+5 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{SO}_{4}^{2-}(a q)+4 \mathrm{Br}^{\Theta}(a q)+10 \mathrm{H}^{\oplus}(a$
Why does the same reducatnt, thiosulphate, react differently with iodine and bromine?
15. Justify giving reaction that among halogens, fluorine is the best oxidant and among hydrohalic compounds, hydroiodic acid is the best reductant.

- Watch Video Solution

16. Why does the following reaction occur?
$\mathrm{XeO}_{6}^{4-}(a q)+2 \mathrm{~F}^{\Theta}(a q)+6 \mathrm{H}^{\oplus}(a q) \rightarrow \mathrm{XeO}_{3}(g)+\mathrm{F}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$ What conclusion about the compound $\mathrm{Na}_{4} \mathrm{XeO}_{6}$ (of which XeO_{6}^{4-} is a part) can be drawn from the reaction?

- Watch Video Solution

17. Consider the reactions:
a.
$\mathrm{H}_{3} \mathrm{PO}_{2}(a q)+4 \mathrm{AgNO}_{3}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+4 \mathrm{Ag}(s)+4 \mathrm{HNC}$
b.

$$
\mathrm{H}_{3} \mathrm{PO}_{2}(a q)+2 \mathrm{CuSO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(a q)+2 \mathrm{Cu}(s)+\mathrm{H}_{2} \mathrm{SO}
$$

C.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(l)+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}(a q)+3 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}(a q) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{\ominus}(a q)+2$
d. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(l)+2 \mathrm{Cu}^{2+}(a q)+5 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}(a q) \rightarrow$ No change observed

Wahat inference do you draw about the behaviour of Ag^{\oplus} and Cu^{2+} from these reaction?

- Watch Video Solution

18. Balance the following rebox reactions by ion electron method:
a. $\mathrm{MnO}_{4}^{\Theta}(a q)+I^{\Theta}(a q) \rightarrow \mathrm{MnO}_{2}(s)+I_{2}(s)$ (in basic medium)
b. $\quad \mathrm{MnO}_{4}^{\Theta}(a q)+\mathrm{SO}_{2}(g) \rightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{HSO}_{4}^{\Theta}(a q) \quad$ (in acidic solution)
c. $\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{Fe}^{2+}(a q) \rightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ (in acidic solution)
d. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$ (in acidic solution)

- Watch Video Solution

19. Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.
(a) $P_{4}(s)+\stackrel{\ominus}{O} H(a q) \rightarrow \mathrm{PH}_{3}(g)+\mathrm{H}_{2} \mathrm{PO}_{2}^{\Theta}$
(b) $\mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{ClO}_{3}^{\Theta}(a q) \rightarrow \mathrm{NO}(g)+\mathrm{Cl}^{\Theta}(g)$
(c) $\mathrm{Cl}_{2} \mathrm{O}_{7}(g)+\mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow \mathrm{ClO}_{2}^{\Theta}(a q)+\mathrm{O}_{2}(g)+\mathrm{H}^{\oplus}$

- View Text Solution

20. What sort of informations can you draw from the following reaction?
$(C N)_{2}(g)+2 \stackrel{\ominus}{O} H(a q) \rightarrow C N^{\Theta}(a q)+C N O^{\Theta}(a q)+H_{2} O(l)$

- Watch Video Solution

21. The Mn^{3+} ion is unstable in solution and undergoes desproportionation reaction to give $\mathrm{Mn}^{+2}, \mathrm{MnO}_{2}$, and H^{\oplus} ion. Write a balanced ionic equation for the reaction.
22. Consider the elements:
$C s, N e, I$ and F
a. Identify the element that exhibits only negative oxidation state.
b. Identify the element that exhibits only positive oxidation state.
c. Identify the element that exhibits both positive and negative oxidation states.
d. Identify the element which exhibits neither the negative nor does the positive oxidation state.

- Watch Video Solution

23. Chlorine is used to purify drinking water. Excess of chlorine is harmful.

The excess of chlorine is removed by treating with sulphur dioxide. Present a balanced equation for this redox change talking place in water.

- Watch Video Solution

24. Refer to the periodic table given in your book and now answer the following questions:
a. Select the possible non metals that can show disproportionation reaction.
b. Select three metals that can show disproportionation reaction.

- Watch Video Solution

25. In Ostwald's process for the manufacture of nitric acid, the first step involves the oxidation of amonia gas by oxygen gas to give nitric oxide gas and steam. What is the maximum weight of nitric oxide that can obtained starting only with 10.00 g of ammonia and 20.00 g of oxygen?

- Watch Video Solution

Atomic Structure

1. (i) Calculate the number of electrons which will together with one gram
(ii) Calculate the mass and charge on one mole of electrons.

- Watch Video Solution

2. (i) Calculate the total number of electrons present in 1 mole of methane.
(ii) Find (a) the total number and (b) the total mass of neutrons in 7 mg of . ${ }^{14} C$. (Assume that mass of a neutron $=1.675 \times 10^{-27} \mathrm{~g}$)
(iii) Find (a) the total mnumber of protons and (b) the total mass fo protons in 32 mg of NH_{3} at $S T P .\left(\right.$ mass of proton $=1.672 \times 10^{-27} \mathrm{~g}$)

Will the answer change if the temperature and pressure are changed ?

- Watch Video Solution

3. How many protons and neutrons are there in the following nuclei ?
${ }_{.6} C^{12}{ }_{, .8} O^{17}{ }_{, 12} M g^{25}{ }_{,{ }_{.26}} \mathrm{Fe}^{56}{ }_{, 38} \mathrm{Sr}^{88}$

(D) Watch Video Solution

4. Write the complete symbol for the atom with the given atomic number
(Z) and atomic mass (A).
a. $Z=17, A=35$,
b. $Z=92, A=233$,
c. $Z=4, A=9$

- Watch Video Solution

5. Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm . Calculate the frequency (v). Wave number and energy of yellow light photon.

- Watch Video Solution

6. Find energy of each of the photons which
a. correspond to light of frequency $3 \times 10^{15} \mathrm{~Hz}$.
b. have wavelength of $0.50 \AA$.

- Watch Video Solution

7. Calculate the wavelength, frequency, and wave number of a light wave whose period is $2.0 \times 10^{-10} s$.

- Watch Video Solution

8. What is the number of photons of light with a wavelngth of 400 pm that provide $1 J$ of energy ?

- Watch Video Solution

9. A photon of wavelength $4 \times 10^{-7} \mathrm{~m}$ strikes on metal surface, the work function fo the metal being 2.13 eV Calculate :
(i) the energy of the photon (ev)
(ii) the kinetic energy fo the emission and
the velocity fo the photoelectron $\left(1 \mathrm{eV}=1,6020 \times 10^{-19} \mathrm{~J}\right)$,

- Watch Video Solution

10. Electromagnetic radiation of wavelength 242 nm is just sufficient to ionise a sodium atom. Calculate the energy corresponding to this wavelength and the ionisation potential of Na .

- Watch Video Solution

11. A 25 watt bulb emits monochromatic yellow light of wavelength of $0.57 \mu \mathrm{~m}$. Calculate the rate of emission of quanta per second .

- Watch Video Solution

12. Electrons are emitted with zero velocity from a metal surface when it is exposed to radiation of wavelength $6800 \AA$. Calculate threshold
frequency $\left(v_{0}\right)$ and work function $\left(W_{0}\right)$ of the metal.

- Watch Video Solution

13. What is the wavelength of light emitted when the electron of a hydrogen atom undergoes a transition from an energy level with $n=4$ to an energy level with $n=2$? What is the colour corresponding to this wavelength?

- Watch Video Solution

14. How much energy is required to ionise an H atom if the electron occupies $n=5$ orbit? Compare your answer with the ionisation enthaply of H atom (anargy required to remove the electronic from $n=1$ orbit).

- Watch Video Solution

15. What is the maximum number of emission lines when the excited electron of a H atom in $n=6$ drop to the ground state?

Watch Video Solution

16. a. The energy associated with the first orbit in the hydrogen atom is $-2.18 \times 10^{-18} \mathrm{Jatom}^{-1}$. What is the energy associated with the fifth orbit?
b. Calculate the radius of Bohr's fifth orbit for hydrogen atom.

- Watch Video Solution

17. Calculate the wave number for the shortest wavelength transition in the Balmer series of atomic hydrogen.

- Watch Video Solution

18. What is the energy in joules required to shift the elertcon of the hydrogen atom from the first Bohr orbit to the fifth Bohr orbit? And what is the wavelenght of the light emitted when the electron returns to the ground state ? The ground state electron energy is -218×10^{-11} erg.

- Watch Video Solution

19. The electron energy in hydrogen atom is given by $E_{n}=\left(-2.18 \times 10^{-8}\right) / n^{2} J$. Calculate the energy required to remove an electron completely from the $n=2$ orbit. What is the longest wavelength of light in cm that can be used to cause this transition?

- Watch Video Solution

20. Calculate the wavelength of an electron moving with a velocity fo
21. $05 \times 10^{7} \mathrm{~ms}^{-1}$.
22. The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$. If its K.E. is $3.0 \times 10^{-25} \mathrm{~J}$, calculate its wavelength

- Watch Video Solution

22. Which of the following are isoelectronic species, i.e., those having the same number of electrons:
$N a^{\oplus}, K^{\oplus}, M g^{2+}, C a^{2+}, S^{2-}, A r$

- Watch Video Solution

23. i. Write the electronic conifigurations of the following ions:
a. H^{Θ}, b. $N a^{\oplus}$, c. O^{2-}, d. F^{Θ}
ii. What are the atomic numbers of elements whose outermost electrons are represented by
a. $3 s^{1}$,
b. $2 p^{3}$,
c. $3 p^{5}$?
iii. Which atoms are indicated by the following configurations?
a. $[H e] 2 s^{1}$,
b. $[N e] 3 s^{2} 3 p^{3}$,
c. $[A r] 4 s^{2} 3 d^{1}$

- Watch Video Solution

24. What is the lowest value of n that allows g orbitals to exist?

- Watch Video Solution

25. An eletron is in one of the $3 d$ orbitals. Give the possible values of n, l, and m_{1} for this electron.

- Watch Video Solution

26. An atom of an element contains 29 electrons and 35 netrons. Deduce
a. The number of protons and
b. The elctonic configuration of the element.
27. Give the number of electrons in the species $\mathrm{H}_{2}^{+}, \mathrm{H}_{2}$ and O_{2}^{\oplus}

- Watch Video Solution

28. a. An atomic orbital has $n=3$. What are the possible values of l and m ?
b. List the quantum numbers (m_{1} and l) of electons for $3 d$ orbital.
c. Which of the following orbitals are possible" $l p, 2 s, 2 p$, and $3 f$?

- Watch Video Solution

29. Using s, p, d notations, descibe the orbital with the following quantum numbers.
a. $n=1, l=0$, b. $n=3, l=1$
c. $n=4, l=2$, d. $n=4, l=3$
30. Explain, giving reason, which of the following sets of quantum

$$
\begin{array}{lllll}
a & n=0 & l=0 & m_{1}=0 & m_{s}=+1 / 2 \\
b & n=1 & l=0 & m_{1}=0 & m_{s}=-1 / 2
\end{array}
$$

number are not possible $\begin{array}{lllll}c & n=1 & l=1 & m_{1}=0 & m_{s}=+1 / 2 \\ d & n=2 & l=1 & m_{1}=0 & m_{s}=-1 / 2\end{array}$

$$
e \quad n=3 \quad l=3 \quad m_{1}=-3 \quad m_{s}=+1 / 2
$$

$$
f \quad n=3 \quad l=1 \quad m_{1}=0 \quad m_{s}=+1 / 2
$$

- Watch Video Solution

31. How many electron in an atom may have the following quantum number ?
a. $n=4, m_{s}=-\frac{1}{2}$
b. $n=3, l=0$

(Watch Video Solution

32. Show that the circumference of the Bohr orbit for the hydrogen atom is an integral multiple of the de Broglie wavelength associated with the electron revolving around the orbit.
33. What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition $n=4$ to $n=2$ of He^{\oplus} spectrum?

- Watch Video Solution

34. Calcultte the enrgy required for the process,
$H e^{+}(g) \rightarrow \mathrm{He}^{2+}(\mathrm{g})+e$
The ionization energy for the H -atom in the grounds state is
35. $18 \times 10^{-18} \mathrm{Jatom}^{-1}$.

- Watch Video Solution

35. If the diameter of a carbon atom is 0.15 nm , calculate the number of carbon atom which can be placed side by side in a straight line length of scale of length 20 cm long.
36. 2×10^{8} atoms of carbon are arranged side by side. Calculate the radius of carbon atom if the length of this arrangement is 2.4 cm .

- Watch Video Solution

37. The diameyer of zinc atom is 2.6 A . Calculate (a) radius of zinc atom in pm and (b) number of atoms present in a length of 1.6 cm if the zinc atoms are arranged side by side lengthwise.

- Watch Video Solution

38. A certain particle carries $2.5 \times 10^{-16} C$ of static electric charge.

Calculate the number of electrons present in it.

- Watch Video Solution

39. In Milikan's experiment, static electrons charge on the oil drops has been obtained by shining X-rays. If the static electric charge on the oil drop is $-1.282 \times 10^{-18} C$, calculate the number of electrons present on it.

- Watch Video Solution

40. In Rutherford's experiment, generally the thin foil of heavy atoms, such as gold, platinum, etc. have been used to be bombarded by the α particles. If the thin foil of light atoms such as aluminium atc. Is used, what difference would be observed form the above results?

- Watch Video Solution

41. Symbols.$_{35}^{79} \mathrm{Br}$ and.$^{79} \mathrm{Br}$ can be written, whereas symbols ${ }_{79}^{35} \mathrm{Br}$ and .$^{35} \mathrm{Br}$ are not acceptable. Answer briefly.
42. An element with mass number 81 contains 31.7% more neutrons as compared to protons. Assign the atomic symbol.

- Watch Video Solution

43. An ion with mass number 37 possesses one unit off negative charge. If the ion contains 11.1% more neutrons than electrons, find the symbol of the ion.

- Watch Video Solution

44. An ion with mass number 56 contains 3 units of positive charge and 30.4% more neutrons then electrons. Assign the symbol to this ion.

- Watch Video Solution

45. Arrange the following type of radiations in increasing order of frequency:
a. Radiation from microwave oven
b. Amber light from traffic signal
c. Radiation from FM ragio
d. Consmic rays from outer space and
e. X-rays

- View Text Solution

46. Nitrogen laser produces a radiation at a wavelength of 33.71 nm . If the number of photons emitted is 5.6×10^{24}. calculate the power of this laser.

- Watch Video Solution

47. Neon gas is generally used in the sign boards. If it emits strongly at 616 nm , calculate
a. The frequency of emission,
b. The distance travelled by this radiation in $30 s$
c. The energy of quantum and
d. The number of quanta present if it produces $2 J$ of energy.

- Watch Video Solution

48. In astronomical observations, signals observed from the distant stars are generally weak. If the photon detector receives a total of $3.15 \times 10^{-18} \mathrm{~J}$ from the radiations of 600 nm , calculate the number of photons received by the detector.

- Watch Video Solution

49. Lifetimes of the molecules in the ecited states are often measured by using pulsed radiation source of duration nearly in the nano second range. If the radiation source has the duration of 2 ns and the number of photons emitted during the pulse is 2.5×10^{15}, calculate the energy of the source.

(D) Watch Video Solution

50. The longest wavelength doublet absorption is observed at 589 and 589.6 nm . Caiculate the frequency of each transition and energy differebce between two excited states.

- Watch Video Solution

51. The work function for caesium atom is 1.9 eV . Calculate (a) the threshold wavelength and (b) the threshold frequency of the radiation. If the caesium element is irradiated with a wavelength 500 nm , calculate the kinetic energy and the velocity of the ejected photoelectron.

- Watch Video Solution

52. Following results are observed when sodium metal is irradiated with different wavelengths. Calculate (a) threshold wavelength and (b) Planck's
constant.

$\lambda(n m)$	500	450	400
$v \times 10^{-5}\left(\mathrm{cms}^{-1}\right)$	2.55	4.35	5.35

- Watch Video Solution

53. The ejection of the photoelectron from the silver metal in the photonelectric effect exeriment can be stopped by applying the voltage of 0.35 V when the radiation 256.7 nm is used. Calculate the work function for silver metal.

- Watch Video Solution

54. If the photon of the wavelength 150 pm strikes an atom and one of its inner bound electrons is ejected out with a velocity of $1.5 \times 10^{7} \mathrm{~ms}^{-1}$, calculate the energy with which it is bound to the nucleus.

- Watch Video Solution

55. Emission transitions in the Paschen series end at orbit $\mathrm{n}=3$ and start from orbit n and can be represented as $\mathrm{v}=$ $3.29 \times 10^{15}(H z)\left[1 / 3^{2}-1 / n^{2}\right]$. Calculate the value of n if the transition is observed at 1285 nm . Find the region of the spectrum.

- Watch Video Solution

56. Calculate the wavelength for the emission transition if it starts from the orbit having radius 1.3225 nm ends at 211.6 pm . Name the series to which this transition belongs and the region of the spectrum.

- Watch Video Solution

57. Dual behaviour of matter proposed by de Broglie led to the discovery of electron microscope often used for the highly magnefied images of biological molecules and other type of material. If the velocity of the electron in this microcope is $1.6 \times 10^{6} \mathrm{~ms}^{-1}$. Calculate de Broglie wavelength associated with this electron.

(D) Watch Video Solution

58. Similar to electron diffraction, neutron diffraction microscope is also used for the determination of the structure of molecules. If the wavelength used here is 800 pm , calculate the characteristic velocity associted with the neutran.

- Watch Video Solution

59. If the velocity of the electron in Bohr's first orbit is $2.19 \times 10^{6} \mathrm{~ms}^{-1}$, calculate the de Broglie wavelength associated with it.

- Watch Video Solution

60. The velocity associated with a proton moving in a potential difference of 1000 V is $4.37 \times 10^{5} \mathrm{~ms}^{-1}$. If the hockey ball of mass 0.1 kg is moving with this velocity, calculate the wavelength associated with this velocity.
61. If the position of the electron is measured within an accuracy of $\pm 0.002 \mathrm{~nm}$. Calculate the uncertainty in the momentum of the electron. Suppose the momentum of the electron is $h / 4 \pi_{m} \times 0.05 \mathrm{~nm}$, is there any problem in defining this value.

- Watch Video Solution

62. The quantum number of electrons are given below: Arrange them in order of increasing energies
a. $n=4, l=2, m_{l}=-2, m_{s}=-\frac{1}{2}$
b. $n=3, l=2, m_{l}=1, m_{s}=+\frac{1}{2}$
c. $n=4, l=1, m_{l}=0, m_{s}=+\frac{1}{2}$
$d . n=3, l=2, m_{l}=-2, m_{s}=-\frac{1}{2}$
e. $n=3, l=1, m=-1, m_{s}=+\frac{1}{2}$
$\mathrm{f} . n=4, l=1, m_{l}=+1, m_{s}=+\frac{1}{2}$
63. The bromine atom possesses $3 s$ electrons. It contains six electrons in $2 p$ orbitals, six electrons in $3 p$ orbitals and five electrons in $4 p$ orbitals. Which of these electrons experience the lower effective nuclear charge?

- Watch Video Solution

64. Among the following pairs of orbital which orbital will experience the larger effective nuclear charge?
a. $2 s$ and $3 s$, b. $4 d$ and $4 f$, c. $3 d$ and $3 p$

- Watch Video Solution

65. The unpaired electrons in $A l$ and $S i$ are present in $3 p$ orbital. Which electrons will experience more effective nuclear charge from the nucleus?

- Watch Video Solution

66. Indicate the number of unpaired electrons in:
a. $P, b . S i, c . C r$,
d. $F e, e . K r$

- Watch Video Solution

67. a. How many sub-shell are associated with $n=4$?
b. How many electron will be present in the sub-shell having m_{s} value of $-1 / 2$ for $n=4$?

- Watch Video Solution

68. What will be the minimum pressure required to compress $500 \mathrm{dm}^{3}$ of air at 1bar to $200 \mathrm{dm}^{3}$ at $30^{\circ} \mathrm{C}$? .

- Watch Video Solution

69. a vessel of 120 mL capacity contains a certain amount of gas at 1.2 bar pressure and $35^{\circ} \mathrm{C}$. The gas is transferred to another vessel of volume 180 mL at $35^{\circ} \mathrm{C}$. What would be its pressure?

- Watch Video Solution

70. Using the equation of state $p V=n R T$, show that at a given temperature the density of gas is proportional to gas pressure p.

D Watch Video Solution

71. At $0^{\circ} C$ the density of a gaseous oxide at 2 bar is same as that of nitrogen at 5 bar What is the molecular mass of the oxide? .

- Watch Video Solution

72. Pressure of $1 g$ of an ideal gas A at $27^{\circ} C$ is found to be 2 bar when $2 g$ of another ideal gas B is introduced in the same flask at same temperature the pressure becomes 3 bar. Find a relationship thieir molecular masses .

- Watch Video Solution

73. The drain cleaner Drainex contains small bits of aluminium which react with caustic soda to produce hydrogen What volume of hydrogen at $20^{\circ} \mathrm{C}$ aand one bar will be released when 0.15 g of aluminium reacts?.

- Watch Video Solution

74. What will be the pressure exerted by a mixture of $3.2 g$ of methane and 4.4 g of carbon dixide contained in a $9 \mathrm{dm}^{3}$ flask at $27^{\circ} \mathrm{C}$?.

- Watch Video Solution

75. What will be the pressure of the gas mixture when $0.5 L$ of H_{2} at 0.8 bar $2.0 L$ of oxygen at 0.7 bar are introduced in a $1 L$ vessel at $27^{\circ} C ?$

- Watch Video Solution

76. Density of a gas is found to be $5.46 / \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ at 2 bar pressure What will be its density at $S T P$? .

- Watch Video Solution

77. $34.05 m L$ of phosphorus vapours weighs $0.0625 g$ at $546^{\circ} \mathrm{C}$ and 0.1 bar pressure. What is the molar mass of phossphorus?

- Watch Video Solution

78. A student forgot to add the reaction mixture to the round bottomed open flask at $27^{\circ} \mathrm{C}$ and put it on the flame After a lapse of time he
realized his mistake using a pyrometer he found the temperature of the flask was $477^{\circ} C$ What fraction of air would have been expelled out?.

- Watch Video Solution

79. Calculate the temperature of 4.0 mol of a gas occupying $5 \mathrm{dm}^{3}$ at 3.32 bar.

Strategy : List the variables with the proper units. Then solve the ideal gas equation for T by substituting the values.

- Watch Video Solution

80. Calculate the total number of electrons presents in $1.4 g$ of nitrogen gas.
81. How much time would it take to distribute one Avogadro number of wheat grains, if 10^{10} grains are distributed each second?

- Watch Video Solution

82. Calculate the total pressure in a mixture og $8 g$ of oxygen and $4 g$ hydrogen confined in a vessel of $1 d m^{3}$ at $27^{\circ} \mathrm{C}$. $\left(R=0.083 \mathrm{bar} d \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

83. Pay load is defined as the difference between the mass of displaced air and the mass of the ballon Calculate the pay-load when a balloon of radius 10 m mass 100 kg is filled with helium at 1.66 bar at $27^{\circ} \mathrm{C}$ (Density of air $=1.2 \mathrm{kgm}^{-3}$ and $R=0.083$ nar $d m^{-3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$).
84. Calculate the volume occupied by $8.8 g$ of CO_{2} at $31.3^{\circ} \mathrm{C}$ and 1 bar pressure. $\left(R=0.083 \mathrm{bar} L K^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

85. $2.9 g$ of a gas at $95^{\circ} \mathrm{C}$ occupied the same volume as $0.184 g$ of hydrogen at $17^{\circ} C$ at same pressure What is the molar mass of the gas?.

- Watch Video Solution

86. A mixture of hydrogen and oxygen at 1 bar pressure contains 20% of hydrogen by weight. Calculate the partial pressure of hydrogen.

- Watch Video Solution

87. What would be the $S I$ unit for the quantity $p V^{2} T^{2} / n$?

- Watch Video Solution

88. In terms of Charles' law, explain why $-273^{\circ} \mathrm{C}$ is the lowest possible temperature?

Watch Video Solution

89. The critical temperatures of carbon dioxide and methane are $31.1^{\circ} \mathrm{C}$ and $-81.9^{\circ} C$, respectively. Which of them has stronger intermolecular forces and why?

- Watch Video Solution

90. Explain the physical significance of van der Waals parameters.

- Watch Video Solution

91. Through the two ends of a glass tube of length 200 cm hydrogen chloride gas and ammonia are allowed to enter At what distance
ammonium chloride will first appear ? .

- Watch Video Solution

92. From two identical holes, nitrogen and an unknown gas are leaked into a common vessel of $3 L$ capacity for 10 min , at $27^{\circ} \mathrm{C}$. The resulting pressure is 4.18 bar and the mixture contains 0.4 mol of nitrogen. What is the molar mass of the unknown gas?

- Watch Video Solution

93. Equal volumes of two gases A and B diffuse through a porous pot in 20 and 10 seconds respectively if the molar mass of A be 80 find the molar mass of B.

- Watch Video Solution

94. Calculate the total and average kinetic energy of $32 g$ methane molecules at $27^{\circ} C\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

Thermodynamics

1. Choose the correct answer. A thermodynamic state function is a quantity
A. used to determine heat changes
B. whose value is independent of path
C. used to detemine pressure volume work
D. whose value depends on temperature only

Answer: b
2. For the process to occur under adiabatic conditions, the correct condition is
A. $\Delta T=0$
B. $\Delta p=0$
C. $q=0$
D. $w=0$

Answer: c

- Watch Video Solution

3. The ethnalpies of all element in their states are:
A. Unity
B. Zero
C. <0
D. Different for each element

- View Text Solution

4. ΔU^{Θ} of combustion of methane is $-\mathrm{XkJmol}^{-1}$. The value of ΔH^{Θ} is
A. $=\Delta U^{\Theta}$
B. $>\Delta U^{\Theta}$
C. $<\Delta U^{\Theta}$
D. zero

Answer: c

- Watch Video Solution

5. The enthalpy of combustion of methane, graphite and dihydrogen at $298 \mathrm{~K}^{\text {are, }}-890.3 \mathrm{kJmol}^{-1}-393.5 \mathrm{kJmol}^{-1}$, and $-285.8 \mathrm{kJmol}^{-1}$
respectively. Enthapy of formation of $\mathrm{CH}_{4}(\mathrm{~g})$ will be
A. $-74.8 \mathrm{kJmol}^{-1}$
B. $-52.27 \mathrm{kJmol}^{-1}$
C. $+74.8 \mathrm{kJmol}^{-1}$
D. $+52.26 \mathrm{kJmol}^{-1}$

Answer: a

- Watch Video Solution

6. A reaction $A+B \rightarrow C+D+q$ is found to have a positive entropy change, the reaction will be:
A. possible at high temperature
B. possible only at low temperature
C. not possible at any temperature
D. possible at any temperature

Answer: d

D Watch Video Solution

7. In a process, 701 J of heat is obsorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?

(Watch Video Solution

8. The reaction of cyanamide, $\mathrm{NH}_{2} \mathrm{CN}(\mathrm{s})$, with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be $-742.7 \mathrm{kJmol}^{-1}$ at $298 K$. Calculate enthalpy change for the reaction at $298 K$.
$\mathrm{NH}_{2} \mathrm{CN}(g)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$

(Watch Video Solution

9. Calculate the number of $k J$ of heat necessary to raise the temperature of 60.0 g of aluminium from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Molar heat capacity of Al is $24 \mathrm{Jgm}^{-1}$.

- Watch Video Solution

10. The enthalpy change on freezing of 1 mol of water at $5^{\circ} \mathrm{C}$ to ice at $-5^{\circ} \mathrm{C}$ is:
(Given $\Delta_{\mathrm{fus}} H=6 \mathrm{kJmol}^{-1} \mathrm{at}^{\circ}{ }^{\circ} \mathrm{C}$,
$C_{p}\left(\mathrm{H}_{2} \mathrm{O}, l\right)=75.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$,
$\left.C_{p}\left(H_{2} O, S\right)=36.8 \mathrm{Jmol}^{-1} K^{-1}\right)$

- Watch Video Solution

11. Enthalpy of combustion of carbon to CO_{2} is $-393.5 \mathrm{kJmol}^{-1}$. Calculate the heat released upon formation of $35.2 g$ of CO_{2} from carbon and dioxygen gas.
12. Find the value of $\Delta_{f} H^{\circ}$ for the reaction
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO}_{2}(\mathrm{~g})$
Standard enthalpies of formation of $\mathrm{CO}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{N}_{2} \mathrm{O}(\mathrm{g})$, and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are $-110,-393,81$, and $9.7 \mathrm{kJmol}^{-1}$, respectively.

Strategy : The standard enthalpy change of a reaction is equal to the sum of the standard molar enthalpie of formation of the products each multiplied by its stiochiometric coefficient in the balanced equation, minus the corresponding sum of the standard molar enthalpies of formation of the reactants

- Watch Video Solution

13. Given
$N_{2}(g)+3 H_{2}(g)=2 N H_{3}(g), \Delta H^{\circ}=-22 k c a l$. The standard enthapy of formation of NH_{3} gas is
14. Calculate the standard enthalpy of formation of $\mathrm{CH}_{3} \mathrm{OH}(l)$ from the following data:
$\mathrm{CH}_{3} \mathrm{OH}(l)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l), \ldots(i), \Delta_{r} H_{1}^{\Theta}=-726 k J n$ $C(g)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \ldots(i i), \Delta_{c} H_{2}^{\Theta}=-393 \mathrm{kJmol}^{-1}$
$H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l), \ldots(i i i), \Delta_{f} H_{3}^{\Theta}=-286 \mathrm{kJmol}^{-1}$

- Watch Video Solution

15. Calculate the enthalpy change for the process
$C l_{4}(g) \rightarrow C(g)+4 C l(g)$ and calculate bond enthalpy of $C-C l$ in $C C l_{4}(g)$.
$\Delta_{v a p} H^{\Theta}\left(C C l_{4}\right)=30.5 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\Theta}\left(C C l_{4}\right)=-135.5 \mathrm{kJmol}^{-1}$
$\Delta_{a} H^{\Theta}(C)=715.0 \mathrm{kJmol}^{-1}$, where $\Delta_{a} H^{\Theta}$ is enthalpy of atomisation
$\Delta_{a} H^{\Theta}\left(C l_{2}\right)=242 k \mathrm{Jmol}^{-1}$

- Watch Video Solution

16. For an isolated system, $\Delta U=0$. What will be the value of ΔS ?

- View Text Solution

17. For the reaction at 298 K
$2 A+B \rightarrow C$
$\Delta H=400 \mathrm{kJmol}^{-1}$ and $\Delta S=0.2 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
At what temperature will the reaction becomes spontaneous considering
ΔH and ΔS to be contant over the temperature range.

- Watch Video Solution

18. For the reaction
$2 C l(g) \rightarrow C l_{2}(g)$, what are the signs of ΔH and ΔS ?

- Watch Video Solution

19. For the reaction,
$2 A(g)+B(g) \rightarrow 2 D(g)$
$\Delta U^{\Theta}=-10.5 k J$ and $\Delta S^{\Theta}=-44.1 J K^{-1}$
Calculate ΔG^{Θ} for the reaction, and predict whether the reaction may occur spontaneously.

- Watch Video Solution

20. The equilibrium constant for a reaction is 10 . What will be the value of
$\Delta G^{\Theta} ? R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, T=300 \mathrm{~K}$.

- Watch Video Solution

21. Comment on the thermodynamic stability of $\mathrm{NO}(g)$, given
$\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow N O(g), \Delta_{r} H^{\Theta}=90 \mathrm{kJmol}^{-1}$
$\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g), \Delta_{r} H^{\Theta}=-74 \mathrm{kJmol}^{-1}$
22. Calculate the entropy change in surroundings when 1.00 mol of $\mathrm{H}_{2} \mathrm{O}(l)$ is formed under standard conditions, $\Delta_{r} H^{\Theta}=-286 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

23. $0.562 g$ of graphite kept in a bomb calorimeter in excess of oxygen at 298 K and 1 atmospheric pressure was burnt according to the equation,

$$
C_{\text {Graphite }}+O_{2(g)} \rightarrow C O_{2(g)}
$$

durgin the reaction, temperature rises from 298 K o 298.89 K . If the heat capacity of the calorimeter and its contents is $20.7 \mathrm{~kJ} / \mathrm{K}$, what is the enthalpy change for the above reaction at 298 K and 1 atm ?

- Watch Video Solution

24. Red phosphorus reacts with liquid bromine in an exotermic reaction :
$2 P_{(s)}+3 B r_{2(l)} \rightarrow 2 P B r_{3(g)} \quad \Delta_{r} H^{\circ}=-243 k J . \quad$ Calculate the enthalpy change when $2.63 g$ of phosphorus with an excess of bromine in this way.

(D) Watch Video Solution

25. A swimmer coming out from a pool is covered with a film of water weighing about 80 g . How much heat must be supplied to evaporate this water ? If latent heat of evaporation for $\mathrm{H}_{2} \mathrm{O}$ is $40.79 \mathrm{kJmol}^{-1}$ at $100^{\circ} \mathrm{C}$.

- Watch Video Solution

26. With the help of thermochemical equations given below, determine
$\Delta_{r} H^{\Theta}$ at $298 K$ for the following reaction:
C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}), \Delta_{r} H^{\Theta}=$?
$C($ graphite $)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CH}_{2}(g), \Delta_{r} H^{\Theta}=-393.5 \mathrm{kJmol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
$\Delta_{r} H^{\Theta}=-285.8 \mathrm{kJmol}^{-1}$..
$\mathrm{CO}_{2}(2)(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$,
$\Delta_{r} H^{\Theta}=+890.3 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

27. The combustion of 1 mol of benzene takes place at 298 K and 1 atm . After combustion, $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are produced and 3267.0 kJ of heat is librated. Calculate the standard entalpy of formation, $\Delta_{f} H^{\Theta}$ of benzene

Given: $\Delta_{f} H^{\Theta} \mathrm{CO}_{2}(g)=-393.5 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\Theta} H_{2} O(l)=-285.83 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

28. Use the bond enthalpies listed below to estimate the enthalpy change for the reaction

$$
\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{HBr}(g)
$$

Given:

$B E$ of $H_{2}, B r_{2}$, and $H B r$ is 435,192 , and $368 \mathrm{kJmol}^{-1}$, respectively.

(D) Watch Video Solution

29. Explain the following terms:
(a) System, surroundings
(b) State function
(c) Heat capacity, molar heat capacity

Watch Video Solution

30. Define the following terms:
(a) Standard enthalpy of formation
(b) Bond enthalpy
(c) Zeroth law of thermodynamics
(d) Reversible and irrversible process

- Watch Video Solution

31. In what way internal energy is different from enthalpu? Explain both the trms with suitable examples.
32. Which of the following are open, close or nearly isolated system?
(a) Human being
(b) The earth
(c) Can of tomato soup
(d) Ice-cube tray filled with water,
(e) A satellite in an orbit
(f) Coffie in a thermos flask, and
(g) Helium-filled balloon.

- Watch Video Solution

33. Which of the following rae state functions?
(a) Height of a hill
(b) Distance travelled in climbing the hill
(c) Energy change in climbing the hill
34. Give the appropriate reason for the followings:
a. It is a preferable to determine a change in enthalpy than change in internal energy.
b. It is necessary to define the 'standard state.
c. It is necessary to specify the phases of the reactant and products in a thermochemical equation.

- Watch Video Solution

35. (a) Calculate the energy needed to raise the temperature of 10.0 g of iron from $25^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ if specific heat capacity of iron if $0.45 J\left(.^{\circ} C\right)^{-1} g^{-1}$
(b) What mass of gold (of specific heat capacity $0.13 J\left(.^{\circ} C\right)^{-1} g^{-1}$ can be heated can be heated through the same temperature difference when supplied with the same amount of energy as in (a) ?

- Watch Video Solution

36. Standard vaporization enthalpy of benzene at its boiling point is $30.8 \mathrm{kJmol}^{-1}$, for how long would a 100 W electric heater have to operate in order to vaporize a 100 g sample of benzene at its boiling temperature?

- Watch Video Solution

37. Use the standard enthalpies of formation and calculation the enthalpy changes accompanying the following reaction:
a. $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b. $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$

- Watch Video Solution

38. Acetic acid (ethanoic acid) and hydrochloric acid react with KOH solution. The enthalpy of neutralisation of ethanoic acis is $-55.8 \mathrm{kJmol}^{-1}$ while that of hydrochloric acid is $-57.3 \mathrm{kJmol}^{-1}$. Can you think of how are these different?'

- Watch Video Solution

39. Specific heat of $\operatorname{Li}(s), N a(s), K(s), R b(s)$ and $C s(s)$ at $398 K$ are $3.57,1.23,0.756,0.363$ and $0.242 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ respectively. Compute the molar heat capacity of these elements and identify any periodic trend. If there is trend, use it to predict the molar heat capacity of Fr .

- Watch Video Solution

40. Calculate the enthalpy change when 2.38 g of carbon monoxide (CO) vaporise at its normal boiling point.

- Watch Video Solution

41. Propane has the structutre $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$. Use the average the bond enthalpies to estimate the change in the enthalpy, ΔH, for the following reaction:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{Co}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Watch Video Solution

42. If standard enthalpy change $\Delta_{r} H^{\Theta}+-2.05 \times 10^{3} \mathrm{kJmol}^{-1}$ calculate the energy of oxygen-oxygen bond in O_{2} molecules and compare the calculate value with the value given in the table.

- View Text Solution

43. What is the basic difference between enthalpy of formation and enthalpy of reaction? Illustrate with suitable examples.

- Watch Video Solution

44. Use standard enthalpies of formation to calculate the value of $\Delta_{r} H^{\Theta}$ for the reaction
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g})$
45. Calculate the $\operatorname{Delat}_{r} H^{\Theta}$ for the reaction
$H-\stackrel{H}{\stackrel{H}{\mid}} \begin{gathered}\mid \\ C l\end{gathered}-C l(g) \rightarrow C(g)+2 H(g)+2 C l(g)$
[Use table given in Appendix for standard enthalpy of formation]

- Watch Video Solution

46. The enthalpy change (ΔH) for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
is -92.38 kJ at 298 K . What is ΔU at 298 K ?

- Watch Video Solution

47. A 1.250 g sample of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is burned in excess of oxygen in a bomb calorimeter. The temperatre of the calorimeter rises from 294.05 K to 300.78 K . If heat capacity of the calorimeter is $8.93 \mathrm{~kJ} / \mathrm{K}$, find the heat
transferred to the calorimeter. Also calculate the enthalpy combustion of the sample of octane.

- Watch Video Solution

48. 20.0 g of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ is dissolved In 125 g of water in a coffee-cup calorimeter, the temperature falls from 296.5 K to 286.4 K .

Find the value of q for the calorimeter. (Hint: heat capacity of water as the heat capacity of the calorimeter and its content)

- Watch Video Solution

49. A chemist while studying the properties of gaseous $C_{2} \mathrm{Cl}_{2} F_{2}$, a chlorofluoro carbon refrigerant, cooled a $1.25 g$ sample at constant atmospheric pressure of 1.0 atm from 320 K to 290 K . During cooling, the sample volume decreased from 274 to $248 m L$. Calculate ΔH and ΔU for the chlorofluoro carbon for this process. For $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2}$,

$$
C_{P}=80.7 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} .
$$

50. Compounds with carbon-carbon double bond, such as ethylene, $C_{2} H_{4}$, add hydrogen in a reaction called hydrogenation.

$$
C_{2} H_{4}(g)+H_{2}(g) \rightarrow C_{2} H_{6}(g)
$$

Calculate enthalpy change for the reaction, using the following combustion data

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}),
$$

$$
\Delta_{\mathrm{comb}} H^{\Theta}=-1401 \mathrm{kJmol}^{-1}
$$

$$
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta_{\text {comb }} H^{\Theta}=-1550 \mathrm{~kJ}
$$

$$
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l), \Delta_{\mathrm{comb}} H^{\Theta}=-286.0 \mathrm{kJmol}^{-1}
$$

- Watch Video Solution

Chemical Equilibrium

1. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a. what is the initial effect of the change on vapour pressure?
b. How do rates of evaporation and condensation change initially?
c. What happens when equilibrium is restored finally and what will be the final vapour pressure?

- Watch Video Solution

2. What is K_{c} for the following equilibrium concentration of each substance is:

$$
\left[S O_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M} \text { and }\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M} ?
$$

$2 S_{2}(g)+O_{2}(g) \Leftrightarrow 2 S_{3}(g)$

- Watch Video Solution

3. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of Iatoms, Calculate K_{p} for the equilibrium.
$I_{2(g)} \Leftrightarrow 2 I_{(g)}$
4. Write the expression for the equilibrium constant K_{c} for each of the following reactions:
a. $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$
b. $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s) \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
c. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)$
d. $\mathrm{Fe}^{3+}(a q)+3 O H^{\Theta}(a q) \Leftrightarrow \mathrm{Fe}(O H)_{3}(s)$
e. $I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

- Watch Video Solution

5. Find out the value of K_{c} for each of the following equilibrium from the value of K_{p} :
a. $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}), K_{p}=1.8 \times 10^{-2}$ at 500 K
b. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{p}=167$ at 1073 K

- Watch Video Solution

6. For the following equilibrium, $K_{c}=6.3 \times 10^{14}$ at 1000 K
$N O(g)+O_{3}(g) \Leftrightarrow N O_{2}(g)+O_{2}(g)$
Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is K_{c}, for the reverse reaction?

- Watch Video Solution

7. Concentration of pure solid and liquid is not included in the expression of equilibrium constant because

- Watch Video Solution

8. Reaction between nitrogen and oxygen takes place as following:
$2 N_{2(g)}+O_{2} \Leftrightarrow 2 N_{2} O_{(g)}$
If a mixture of $0.482 \mathrm{~mole} N_{2}$ and 0.933 mole of O_{2} is placed in a reaction vessel of volume 10litre and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$ itremol $^{-1}$. Determine the composition of equilibrium mixture.
9. Nitric oxide reacts with bromine and gives nitrosyl-bromide as per reaction given below:
$2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(g)} \Leftrightarrow 2 \mathrm{NOBr}_{(g)}$.
When 0.087 mole of NO and 0.0437 mole of Br_{2} are mixed in a closed container at constant temperature, 0.0518 mole of NOBr is obtained at equilibrium. Calculate equilibrium amount of nitric oxide and bromine.

- Watch Video Solution

10. At $450 K, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium.
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
What is K_{c} at this temperature?

- Watch Video Solution

11. A sample of $H I(g)$ is placed in flask at a pressure of 0.2 atm . At equilibrium. The partial pressure of $\operatorname{HI}(g)$ is $0.04 a t m$. What is K_{p} for the given equilibrium?
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

- Watch Video Solution

12. A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of NH_{3} is introduced into a $20 L$ reaction vessel at $500 K$. At this temperature, the equilibrium constant K_{c} for the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ is 1.7×10^{2}. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

- Watch Video Solution

13. The equilibrium constant expression for a gas reaction is,

$$
K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}
$$

Write the balance chemical chemical equation corresponding to this expression.

- Watch Video Solution

14. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in a 10litre vessel and heated to 725 K . At equilibrium, 40percent of water (by mass) reacts with carbon monoxide according to the equation,
$\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{(g)} \Leftrightarrow \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)}$
Calculate the equilibrium constant for the reaction.

- Watch Video Solution

15. At 700 K equilibrium constant for the reaction,

$$
H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}
$$

is 54.8 . If 0.5 mollitre $^{-1}$ of $H I_{(g)}$ is present at equilibrium at 700 K , what are the concentrations of $H_{2(g)}$ and $I_{2(g)}$, assuming that we initially started with $H I_{(g)}$ and allowed it to reach equilibrium at 700 K .
16. What is the equilibrium concentration of each of the substance in the euilibrium when the initial concentration of $I c l$ was $0.78 M$?
$2 I C l(g) \Leftrightarrow I_{2}(g)+C l_{2}(g), K_{c}=0.14$

(Watch Video Solution

17. $K_{p}=0.04$ atm at 899 K for the equilibrium shown below. What is the equilibrium concentration of $C_{2} H_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?

$$
C_{2} H_{6}(g) \Leftrightarrow C_{2} H_{4}(g)+H_{2}(g)
$$

- Watch Video Solution

18. The ester, ethyl acetate is formed by the reaction between ethanol and acetic acid and equilibrium is represented as:

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5_{(a q)}}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

(a) Write the concentration ratio (reaction quotient), Q_{e}, for this reaction. Note that water is not in excess and is not a solvent in this reaction.
(b) At 293 K , if one starts with 1.00 mole of acetic acid and 0.180 of ethanol, there is 0.171 mole of ehtyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(c) Starting with 0.500 mole of ethanol and 1.000 mole of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214$ mole of ethyl acetate is found after some time. Has equilibrium been reached?

- Watch Video Solution

19. A sample of pure $P C l_{5}$ was introduced into an evacuted vessel at 473 K . After equilibrium was attained,concentration of $P \mathrm{Pl}_{5}$ was found to be 0.5×10^{-1} mollitre ${ }^{-1}$. If value of K_{c} is 8.3×10^{-3} mollitre $^{-1}$. What are the concentrations of PCl_{3} and Cl_{2} at equilibrium ?

- Watch Video Solution

20. One of the reaction that takes plece in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and CO_{2}.
$F e O(s)+C O(g) \Leftrightarrow F e(s)+C O_{2}(g), K_{p}=0.265$ atm at $1050 K$
What are the equilibrium partial pressure of $C O$ and $C O_{2}$ at 1050 K if the partical pressure are: $p_{\mathrm{CO}}=1.4 \mathrm{~atm}$ and $p_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$?

D Watch Video Solution

21. Equilibrium constant, K_{c} for the reaction,
$N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$,
at $500 K$ is 0.061 litre 2 mole $^{-2}$. At a particular time, the analysis shows that composition of the reaction mixture is 3.00 mollitre ${ }^{-1} N_{2}$, 2.00 mollitre ${ }^{-1} \mathrm{H}_{2}$, and 0.500 mollitre ${ }^{-1} \mathrm{NH}_{3}$. Is the reaction at equilibrium? If not, in which direction does the reaction tend to proceed to reach equilibrium?

(Watch Video Solution

22. Bromine monochloride, (BrCl) decomposes into bromine and chlorine and reaches the equilibrium.
$2 B r C l_{(g)} \Leftrightarrow B r_{2(g)}+C l_{2(g)}$
For which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of 3.30×10^{-3} mollitre $^{-1}$, what is its molar concentration in the mixture at equilibrium?

- Watch Video Solution

23. At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has $90.55 \% C O$ by mass:

$$
C_{(s)}+C O_{2(g)} \Leftrightarrow 2 C O_{(g)}
$$

Calculate K_{c} for the reaction at the above temperature.

- Watch Video Solution

24. Calculate (a) ΔG^{Θ} and (b) the equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298 K
$\mathrm{NO}(g)+1 / 2 \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{NO}_{2}(g)$ where
$\Delta_{f} G^{\Theta}\left(N O_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} G^{\Theta}(N O)=87.0 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} G^{\Theta}\left(O_{2}\right)=$

- Watch Video Solution

25. Does the number of moles of reaction products increase, decrease, or remain same when each of the following equilibrium is subjected to a decrease in pressure by increasing the volume?
a. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
b. $\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{CaCO}_{3}(s)$
c. $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$

- Watch Video Solution

26. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction the reaction to go into forward of backward direction.
a. $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
b. $C H_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
c. $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g)$
d. $2 \mathrm{H}_{2}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
e. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
f. $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

- Watch Video Solution

27. The equilibrium constant for the following reaction is 1.6×10^{5} at $1024 K$
$H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)$
find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at $1024 K$.

- Watch Video Solution

28. Dihydrogen gas is obtaines from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
a. Write an expression for $\mathrm{K}_{-}(\mathrm{p})$ for the above reaction.
b. How will the value of $K_{-}(p)$ and composition of equilibrium mixture be affected by
i. Increasing the pressure
ii. Increasing the temperature
iii. Using a catalyst?

Watch Video Solution

29. Decribe the effect of:
a. Addition of H_{2}
b. Addition of $\mathrm{CH}_{3} \mathrm{OH}$
c. Removal of $C O$
d. Removal of $\mathrm{CH}_{3} \mathrm{OH}$
on the equilibrium of the reaction:
$2 \mathrm{H}_{2}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$

- Watch Video Solution

30. At $473 K$, equilibrium constant K_{c} for decomposition of phosphorus pentachloride, PCl_{5} is 8.3×10^{-3}. If decomposition is depicted as,
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g) \Delta_{r} H^{\Theta}=124.0 \mathrm{kJmol}^{-1}$
a. Write an expression for K_{c} for the reaction.
b. What is the value of K_{c} for the reverse reaction at the same temperature?
c. What would be the effect on K_{c} if
i. More $P \mathrm{Pl}_{5}$ is added
ii. Pressure is increased
iii. The temperature is increased?

- Watch Video Solution

31. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of the two 2 stage reaction involves the formation of CO and H_{2}. In second stage, $C O$ formed in first stage is reacted with more steam in water gas shift reaction,
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
If a reaction vessel at $400^{\circ} C$ is charged with an equimolar mixture of $C O$ and steam such that $p_{\mathrm{CO}}=p_{\mathrm{H}_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium? $K_{p}=10.1$ at $400^{\circ} \mathrm{C}$.

- Watch Video Solution

32. Predict which of the following reactions will have appreciable concentration of rectants and products:
a. $C l_{2}(g) \Leftrightarrow 2 C l(g), K_{c}=5 \times 10^{-39}$
b. $C l_{2}(g)+2 N O(g) \Leftrightarrow 2 N O C l(g), K_{c}=3.7 \times 10^{8}$
c. $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}), \mathrm{K}_{c}=1.8$

- Watch Video Solution

33. The value of K_{c} for the reaction $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$ is 2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If the equilibrium aoncentration of O_{2} in air at $25^{\circ} \mathrm{C}$ is 1.6×10^{-2} , what is the concentration of O_{3} ?
34. The reaction, $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is at equilibrium at 1300 K in a 1 L flask. It also contains 0.30 mol of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of CH_{4} in the flask. Determine the concentration of CH_{4} in the mixture. The equilibrium constant K_{c} for the reaction at the given temperature us 3.90 .

- Watch Video Solution

35. What is meant by the conjugate acid-base pair? Find the conjugate acid / base for the following species:
$\mathrm{HNO}_{2}, \mathrm{CN}^{\Theta}, \mathrm{HClO}_{4}, \mathrm{~F}^{\ominus} \stackrel{\ominus}{\mathrm{O}} \mathrm{H}, \mathrm{CO}_{3}^{2-}$, and S^{2-}

- Watch Video Solution

36. Which of the followings are Lewis acids: $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{\oplus}$ and NH_{4} ?
37. Write the conjugate bases for the following Brddotonsted acids
(a) HF (b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (c) $\mathrm{HCO}_{3}^{\Theta}$

- Watch Video Solution

38. Wirte the conjugate acids for the following Brdddotosted bases:
Θ
a. NH_{2} b. NH_{3} c. HCOO^{Θ}

- Watch Video Solution

39. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{\Theta}, \mathrm{HSO}_{4}^{\Theta}$ and NH_{3} can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and base.

- Watch Video Solution

40. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid / base:
a. $\stackrel{\ominus}{O} H, b . F^{\Theta}, c . H^{\oplus}, d . B C l_{3}$

- Watch Video Solution

41. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} M$. What is its $p H$?

- Watch Video Solution

42. The $p H$ of a sample of vinegar is 3.76 , Calculate the concentration of hydrogen ion in it.

- Watch Video Solution

43. The ionization constant of $H F, H C O O H$ and $H C N$ at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively. Calculate the
ionization constant of the corresponding conjugate base.

- Watch Video Solution

44. The ionization constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also $0.01 M$ in sodium phenolate?

- Watch Video Solution

45. The first ionization constant of $H_{2} S$ is 9.1×10^{-8}. Calculate the concentration of $H S^{\Theta}$ ion in its $0.1 M$ solution. How will this concentration be affected if the solution is 0.1 M in HCl also? If the second dissociation constant if $H_{2} S$ is 1.2×10^{-13}, calculate the concentration of S^{2-} under both conditions.

- Watch Video Solution

46. The ionization constant of acetic acid 1.74×10^{-5}. Calculate the degree of dissociation of acetic acid in its $0.05 M$ solution. Calculate the concentration of acetate ion in the solution and its $p H$.

- Watch Video Solution

47. It has been found that the $p H$ of a $0.01 M$ solution of an orginic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $p K_{a}$.

Watch Video Solution

48. Assuming complete dissociation, calculate the $p H$ of the following solutions,
a. 0.003 MHCl, b. 0.005 MNaOH ,
c. $0.002 \mathrm{MHBr}, d .0 .002 \mathrm{MKOH}$
49. Calculate the $p H$ of the following solutions:
a. $2 g$ of $T l O H$ dissolved in water to give 2 litre of solution.
b. 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.
c. 0.3 g of NaOH dissolved in water to give 200 mL of solution.
d. 1 mL of 13.6 MHCl is duluted with water to give 1 litre of solution.

- Watch Video Solution

50. The degree of ionisation of a $0.1 M$ bromoacetic acid solution is 0.13 .

Calculate the $p H$ of the solution and the $p K_{a}$ of bromoacetic acid.

- Watch Video Solution

51. The pH of 0.005 M codine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 . Calculate its ionisation constant and $p K_{b}$.

- Watch Video Solution

52. What is the $p H$ of $0.001 M$ aniline solution? The ionization constant of aniline 4.27×10^{-10}. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjustant acid of aniline.

- Watch Video Solution

53. Calculate the degree of ionisation of $0.05 M$ acetic acid if its $p K_{a}$ value is 4.74 . How is the degree of dissociation affected when its solution also contains
a. 0.01 M , b. 0.1 M in HCl ?

- Watch Video Solution

54. The ionisation constant os dimethylamine is 5.4×10^{-4}. Calculate its degree of ionization in its $0.02 M$ solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH ?
55. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:
a. Human muscle-fluid, 6.83
b. Human stomach fluid, 1.2
c. Human blood, 7.38
d. Human saliva, 6.4.

- Watch Video Solution

56. The $p H$ of milk, black coffee, tomato juice, lemon juice and egg white are $6.8,5.0,4.2,2.2$ and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

- Watch Video Solution

57. If 0.561 g of (KOH) is dissolved in water to give. 200 mL of solution at 298 K . Calculate the concentration of potassium, hydrogen and hydroxyl
ions. What is its $p H$?

- Watch Video Solution

58. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 g L^{-1}$ of solution.

Calculate the concentrations of strontium and hydroxyl ions and the $p H$ of the solution.

- Watch Video Solution

59. The ionization constant of propanoic acid is 1.32×10^{-5}. Calculate the degree of ionization of the acid in its 0.05 M solution and also its $p H$.

What will be its degree of ionization if the solution is 0.01 M on HCl also?

- Watch Video Solution

60. The $p H$ of $0.1 M$ solution of cyanic acid $(H C N O)$ is 2.34 . Calculate the ionization constant of the acid its degree of ionisation in the solution.

- Watch Video Solution

61. The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate the $p H$ of $0.04 M$ sodium nitrite solution and also its degree of hydrolysis.

- Watch Video Solution

62. A 0.02 M solution of phyridinium hydrochloride has $\mathrm{pH}=3.44$.

Calculate the ionization constant of pyridine.

- Watch Video Solution

63. Predict if the solution of the following salts are netural, acidic or basic:
$\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF

- View Text Solution

64. The ionization constant of chloroacetic acid is 1.35×10^{-3}. What will be the $p H$ of $0.1 M$ acid and its $0.1 M$ sodium salt solution?

- Watch Video Solution

65. Ionic product of water at 310 K is 2.7×10^{-14}. What is the $p H$ of netural water at this temperature?

- Watch Video Solution

66. Calculate the pH of the resultant mixture:
a. 10 mL of $0.2 \mathrm{MCa}(\mathrm{OH})_{2}+25 m L$ of 0.1 MHCl
b. 10 mL of $0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$.
c. 10 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 MKOH .

- Watch Video Solution

67. Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at $298 K$ from theor solubility product constants given in Table 7.9. Determine also the molarities of individual ions.

D Watch Video Solution

68. The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO} \mathrm{O}_{4}$ and AgBr are 1.1×10^{-12} and 5.0×10^{-13} respectively. Calculate the ratio of the molarities of their saturated solutions.
69. Equal volumes of 0.002 M solution of sodium iodate and cupric chlorate are mixed togather. Will it lead to precipitation of copper iodate?
(for cupric iodate $K=7.4 \times 10^{-8}$).

- Watch Video Solution

70. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, $\left.K_{s p}=6.3 \times 10^{-18}\right)$.

- Watch Video Solution

71. What is the minimum volume of water required to dissolve 1.0 g of calcium sulphate at $298 K$?
(For calcim sulphae , $K_{s p} i s 9.1 \times 10^{-6}$).

- Watch Video Solution

72. The concentration of suphide ion in 0.1 MHCl solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} \mathrm{M}$. If 10 mL of this is added to $5 m L$ of $0.04 M$ solution of the following: $\mathrm{FeSO}_{4}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{z}$ and CdCl_{2}. In which of these solutions precipitation will take place?

- Watch Video Solution

