©"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

PERIODIC CLASSIFICATION OF ELEMENTS

AND GENERAL INORGANIC CHEMISTRY

Illustration

1. What would be the $I U P A C$ name and symbol for
the element with atomic number 120 ?
2. There are 2,8 and 8 elements in the first, second and third periods of periodic table respectively. Explain.

- Watch Video Solution

3. Which of the following is correct:
(a) The element Mendelebium (d) has been named is
the honour of Mendeleev. What is the atomic number of that element?
(i) 100 , (ii) 101 , (iii) 102 , (iv) 103
(b) The element Seaborgium $(S g)$ has been nemed in
the honour of Glenn T. Seaborg. What is the atomic number of that elements?
(i) 104 , (ii) 105 , (iii) 106 , (iv) 107
(c) Glenn T. Seaborg was awarded Nobel Prize in

1951 for the discovery of which element / elements?
(i) Uranium (U)
(ii) Elelments from 90 to 93
(iii) Elements from 94 to 102
(iv) elements from 103 to 106

D Watch Video Solution

4. Which of the atomic numers and the $I U P A C$
name and sysmbol for the elements Mendelevium
$(M d)$ and Seaborgium $(S g)$?
(b) What is the atomic number of the element for which both the American and Soviet scientists claimed credit for the discovery?
(c) Refer to the problem (b) above, what name is given to the element by the American and Soviet scientists?

- Watch Video Solution

5. How would you justify the presence of 18 elements in the 5 th period of the periodic table?
6. Considering the atomic number position in the periodic table, arrange the following elements in the increasing order of metallic character: $S i, B e, M g, N a, P$.

- Watch Video Solution

7. Predict the period, group number and block of the following elements. $A($ at.no $1=8), B$ (at.no. $=11$),
C (at.no. $=28$), D (at.no. $=54$).

- Watch Video Solution

8. What is the atomic number of the element having maximum number of unpaired $2 p$ electrons? To which group it belongs?

- Watch Video Solution

9. The elements $Z=117$ and 120 have not yet have been discovered, in which family/group would you place these elements and also give the electronic configuration in each case.

- Watch Video Solution

10. Write the electronic configuration of the elements given below and also predict the block, group number and period to which they belong. ($Z=$ Atomic number)

$$
\text { I. } A(Z=5), B(Z=11), c(Z=28)
$$

$D(Z=54), E(Z=59), F(Z=90)$.

- Watch Video Solution

11. Write the names and the atomic numbers (Z) of the following elements:
a. The fourth alkaline earth metal
b. The fifth alkali metal
c. The sixth element of the first transition series
d. The second inner transition elements and
e. The third noble gas

- Watch Video Solution

12. How do the electronic configuration of the elements with $Z=106-108$ differ from one another?
13. Predict the name and position of the element in the periodic table with the electronic configuration

$$
(n-1) d^{8} n s^{2} \text { for } n=5
$$

- Watch Video Solution

14. Elements A to E have the following electronic configuration:
$A:[H e] 2 s^{2} 2 p^{2}, B:[N e] 3 s^{2} 3 p^{2}, C:[N e] 3 s^{2} 3 p^{3}$,
$D:[N e] 3 s^{2} 3 p^{4}, E:[A r] 4 s^{2}$.
Which of the above will belong to the same group in
the periodic table?
15. Which of the following species will have the largest and the smallest size $M g, M g^{2+}, A l, A l^{3+}$?

- Watch Video Solution

16. a. Compare the size of $C l, C l^{\ominus}$ and $F e^{2+}$ ion.
b. the radii of $A r$ is greater than the radii of chlorine.

Explain.

- Watch Video Solution

17. a. Give and explain the decreasing order of atomic radius of fluorine (F), nitrogen (N) and oxygen (O).
b. Give the decreasing order of van der Waals radii:
$N, O, H, C l, B r$.

- Watch Video Solution

18. a. In the sixth period, after filling of $6 p$ orbitals, the next electron (i.e. $57 t h$) enters the $5 d$-orbital against aufbau principal and there after the filling of seven $4 f$-orbitals starts with cerium $(Z=71)$.

Explain this anomalous behaviour.
b. In the seventh period, after the filling of $7 s$-orbital,
the next two electrons (i.e. $89 t h$ and $90 t h$) enter the $6 d$-orbital against Aufbau principle and there after the filling of seven $5 f$-orbitals begins with proactinium $(\operatorname{Pr}, Z=91)$ and ends up with lawrencium ($L r, Z=103$). Explain this anomalous behaviour.

- View Text Solution

19. which of the following species are isoelectronic?
(i) $N e$, (ii) O^{2-}, (iii) $M g^{2+}$, (iv) F
(v) $A l^{3+}$, (vi) $C l^{\ominus}$, (vii) K, (viii) $N a$

Arrange them in decreasing order of their size.
20. Which of the following species has the smallest size?
(a) $K^{\oplus}, S r^{2+}, \mathrm{Ar}$, (b) $\mathrm{Si}, \mathrm{P}, \mathrm{Cl}$, (c) $O, O^{\oplus}, \mathrm{O}^{2-}$

- Watch Video Solution

21. Arrange the following in order of decreasing radii?
a. $F^{\ominus}, O^{2-}, N^{3-}, S^{2-}$, b. $P, S i, N, C$, c. $I^{\ominus}, I^{\oplus}, I$

- Watch Video Solution

22. Calculate the effective nuclear charge experienced by the $4 s$-electron in potassium atom ($Z=19$).

- Watch Video Solution

23. Calculate the effective nuclear charge of the last
electron in an atom. The electronic configuration is
$1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{5}$.

- Watch Video Solution

24. Calculate the screening constant in $Z n$.
a. For a $4 s$-electron b. For a $3 d$-electron

- Watch Video Solution

25. The first ionisation enthalpy $\left(\Delta_{i} \mathrm{H}^{o-}\right)$ values of the third period elements, $N a, M g$ and $S i$ are respectively 496,737 and $786 \mathrm{kJmol}^{-1}$. Predict whether the first $\Delta_{i} H^{o-}$ value for $A l$ will be more close to 575 or $760 \mathrm{kJmol}^{-1}$? Justify your answer.

- Watch Video Solution

26. Calculate the energy required to convert all atoms of $M g$ to $M g^{2+}$ ions present in $48 m g$ of $M g$ vapours. $I E_{1}$ and $I E_{2}$ of $M g$ are 740 and $1450 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

27. The first $\left(I E_{1}\right)$ and second $\left(I E_{2}\right)$ ionisation energies $\left(k J m o l^{-1}\right)$ of a new elements designated by roman numerals are shown below:

	$I E_{1}$	$I E_{2}$
I	2370	5250
II	520	7300
III	900	1800
IV	1700	3400

Which of the above elements is likely to be :
a. A reactive metal
b. A reactive non-metal
c. a noble gas
d. A metal that forms a stable binary halide of the formula $A X_{2}$ ($X=$ the halogen).

- Watch Video Solution

28. The electronic configuration for some neutral atoms are given below.

A: $1 s^{2} 2 s^{2}$, B: $1 s^{2} 2 s^{2} 2 p^{3}$
C: $1 s^{2} 2 s^{2} 2 p^{4}$, D: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

In which of this electronic configuration would you expect to have highest (a) $I E_{1}$ and (b) $I E_{2}$.

- Watch Video Solution

29. The ionisation potential of hydrogen is 13.60 eV .

Calculate the energy required to produce one mole of H^{\oplus} ion $\left(1 e V=96.3 \mathrm{kJmol}^{-1}\right)$.

- Watch Video Solution

30. Which of the following electronic configurations
has the lowest value of ionisation energy? Explain.
a. $1 s^{2} 2 s^{2} 2 p^{6}$
b. $1 s^{2} 2 s^{2} 2 p^{5}$
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

- Watch Video Solution

31. For each of the following pairs which has greater
$I E$ and why?
a. $L i, L i^{\oplus}$, b. $K, B r$, c. $B r, I$, d. $N a^{\oplus}, N e$
32. Calculate the percentage of $M g_{(g)}^{\oplus}$ and $M g_{(g)}^{2+}$ if $2.4 g$ of $M g$ absorbs $120 k J$ of energy. The $I E_{1}$ and $I E_{2}$ of $M g_{(g)}$ are 740 and $1450 \mathrm{kmol}^{-1}$.

- Watch Video Solution

33. The electronic configuration for the following atoms are given below :
a. $1 s^{2} 2 s^{2} 2 p^{5}$, b. $1 s^{2} 2 s^{2} 2 p^{4}$, c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
d. $1 s^{2} 2 s^{2} 2 p^{6}$, e. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
i. From the above configuration, arrange them in decreasing $I E$.
ii. Which of the electronic configuration given above
wil have the lowest $I E$?
iii. Which of the electronic configuration given above will be for noble gases?

D View Text Solution

34. The $I E_{1}$ and $I E_{2}\left(\mathrm{kJmol}^{-1}\right)$ of three elements A ,
B and C are given below :

	A	B	C
$I E_{1}$	400	550	1150
$I E_{2}$	2650	1070	2090

Identify the elements which represent (a) an alkali metal, (b) an alkaline earth metal or (c) non-metal.
35. The sum of $I E_{1}$ and $I E_{2}$ and those of $I E_{2}$ and those of $I E_{3}$ and $I E_{4}$ in $\left(k J m o l^{-1}\right)$ of $N i$ and $P t$ are :

$\left(I E_{1}+I E_{2}\right) \quad\left(I E_{2}+I E_{4}\right) \quad$ Total
\(\begin{array}{lll}Ni \& 2.5 \times 10^{3} \& 8.8 \times 10^{3}
11.3 \times 10^{3}\end{array}\)
Pt $\quad 2.7 \times 10^{3}$
6.7×10^{3}
9.4×10^{3}

a. What is the most common oxidation state (O.S.) of
$N i$ and $P t$.
b. Name of the metal (Nior Pt) which can more easily form compounds in its +4 O.S.
36. The $I E_{1}$ of C atom is greater than that of boron
(B) atom, whereas the reverse is true for $I E_{2}$. Explain?

- Watch Video Solution

37. The second $I E$ for alkali metals shows a jump
while the third $I E$ for alkaline metals shows a jump.
Explain.
38. Which of the following will have the most negative electron gain enthalpy and which the least negative ? $F, P, S, C I$.

- Watch Video Solution

39. The amount of energy released when 10^{12} atoms
of $C l$ vapours are converted to $C l^{\theta}$ ions, according to the equation :
$C_{(g)}+e^{-} \rightarrow C l_{(g)}^{\ominus}$ is $58 \times 10^{-10} J$
Calculate the $\Delta_{e g} H^{\ominus}$ of Cl atom in kJmol^{-1} and $e V$ atom $^{-1}$.
40. The electron gain enthalpy of chlorine 3.7 eV . How much energy in $k J$ and $k c a l$ is released when $1 g$ of chlorine is converted completely to $\mathrm{Cl}^{\mathrm{O-}}$ ion in the gaseous state. $\left(1 \mathrm{eV}=96.3 \mathrm{kJmol}^{-1}\right)$

- Watch Video Solution

41. Write the electronic configuration of the element
with atomic number of $9,11,21$ and 36 . Preedict the folloiwng from these configurations:
(a) Which of them has the lowest ionisation potential ?
(b) Which of them has the hihest electron gain enthalpy?
(c) Which of them are non-metals?
(d) Which of them has zero electron gain enthalpy?

- Watch Video Solution

42. Which of the following has the hihest electron gain enthalpy. Give reasons.
(a) $[N e] 3 s^{2} 3 p^{3}$ (b) $[N e] 3 s^{2} 3 p^{4}$
(c) $[N e] 3 s^{2} 3 p^{5}$, (d) $[N e] 3 s^{2} 3 p^{6}$
43. Arrange the elements with the following electronic configuration of valence electron in decreasing order of $\Delta_{e g} H^{\ominus}$.
(a) $3 s^{2} 3 p^{4}$, (b) $2 s^{2} 2 p^{4}$
(c) $2 s^{2} 2 p^{3}$, (d) $2 s^{2} 2 p^{5}$

- Watch Video Solution

44. Which one of the following pairs has higher $\Delta_{e g} H^{\theta}$?
(a) S^{\ominus}, O, (b) N^{\ominus}, P
(c) S, O^{\ominus}, (d) O^{\ominus}, S^{\ominus}
45. Give the decreasing order of $\Delta_{e g} H^{\ominus}$ of the following elements: B, C, N, O.

- Watch Video Solution

46. How many $C l$ atoms can you ionise in the process $\mathrm{Cl} \rightarrow \mathrm{Cl}^{+}+e$, by the energy liberated for the process $\mathrm{Cl}+e \rightarrow \rightarrow \mathrm{Cl}^{-}$for one Avogadro's number of atoms ? (Given : $I P=13.0 \mathrm{eV}$ and $E A=3.60 \mathrm{eV})$.

D Watch Video Solution

47. Calculate the percentage of ionic character in $C s-C l$ bond in $C s C l$ molecule. The electronegativity values of $C S$ and $C l$ are 0.7 and 0.3 respectively.

- Watch Video Solution

48. The ionic resonance energy of $C-H$ bond is $\approx 6.0 \mathrm{kcalmol}^{-1}$. The $E N$ of H is 2.1. Calculate $E N$ of carbon ? Given : $\Delta_{C-H} \approx 6.0 \mathrm{kcalmol}^{-1}$

- Watch Video Solution

49. The ionic resonance energy of $C-H$ bond is $\approx 6.0 \mathrm{kcalmol}^{-1}$. The $E N$ of H is 2.1. Calculate $E N$ of carbon ? Given : $\Delta_{C-H} \approx 6.0 \mathrm{kcalmol}^{-1}$

- Watch Video Solution

50. Arrnge the following compounds in order of their decresaing stabilities:
$\mathrm{HF}, \mathrm{CCl}_{3}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HCl}$
(Given $E N$ values of element as below)

$$
H=2.1, F=4, C l=3.0, B r=2.8, I=2.3, N=3.0
$$

51. Predict which of the following hydroxy compounds is acidic and which is basic in aqueous solution :
(i). CsOH , ii. IOH .
$E N$
values
are:
$C s=0.7, O=3.5, H=2.1, I=2.5$.

- Watch Video Solution

52. NaOH behaves as a base while $\mathrm{Zn}(\mathrm{OH})_{2}$ is amphoteric why?
53. Calculale the $d_{(N-C)}$ in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ molecule by using Eqs. (1.18) and (1.19) above and show from which equation $d_{(N-C)}$ closely resembles with the experimental value of $d_{(M \mid N-C)}=1.47 \AA$.
(Given:
$r_{N}=0.75 \AA, r_{C}=0.77 \AA, \chi_{A}=3.0, \chi_{C}=2.5$

D View Text Solution

54. In which of the following triatomic molecules, the observed bond angle is $116^{\circ}, 49^{\prime}$?
a. $\mathrm{H}_{2} \mathrm{O}$ b. OF_{2} c. CO_{2} d. O_{3}
II. In which of the following molecules, bond angle is
the maximum?
a. BeBr_{2} b. $\mathrm{H}_{2} \mathrm{O}$ c. $\mathrm{H}_{2} \mathrm{~S}$ d. CH_{4}
III. In which of the following molecules, bond angle between two adjacent covalent bonds is smallest?

$$
\text { a. } B e H_{2} \text { b. } B F_{3} \text { c. } N H_{3} \text { d. } C C l_{4}
$$

IV. Bond angle $(H-S-H)$ in $H_{2} S$ is close to

$$
\text { a. } 109^{\circ} \text { b. } 107^{\circ} \text { c. } 105^{\circ} \text { d. } 90^{\circ}
$$

V . The hybridisation of B in $B F_{3}$ is $s p^{2}$. The bond angle in $B F_{4}{ }^{\ominus}$ will be
a. 107° b. 109°
c. 120°
c. 120° d. 180°
VI. Which of the following molecules contains a bond angle which is smaller than the bond angle in CH_{4} ?
a. $S F_{6}$ b. $S O_{2}$ c. O_{3} d. $\stackrel{\oplus}{N} H_{4}$
55. Using the perodic table, perdict the formulas of compounds which might be formed by the following pairs of elements : (a) silicon and bromine aluminium and sulphur.

- Watch Video Solution

56. Are the oxidation state and covalency of in $\left[\mathrm{AlCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ same ?

- Watch Video Solution

57. Show by a chemical reaction with water that $\mathrm{Na}_{2} \mathrm{O}$ is a basic oxide and ClO_{7} is an acidic oxide.

- Watch Video Solution

58. Predict the formulae of the stable binary compounds that would be formed by the following pairs of compounds :
(a) $A l$ and $C l$, (b) $M g$ and I
(c) Element 113 and F, (d) $S i$ and S (e) Element 119 and oxygen.
59. Give the decreasing order of magnetic moment of the following:
(a) $C a$,
(b) $A l$, (c) N, (d) O

Watch Video Solution

60. Which element in $3 d, 4 d$, and $5 d$ transition series has the highest paramagnetism in
(a) elemental form, (b) $+1 O . S$.
(c) $+2 O . S$. , (d) $+3 O . S$.
[O.S. = oxidation state]
61. Give the decreasing order of the acidic properties of oxides.
a. ZnO , b. KO_{2}, c. $P_{2} \mathrm{O}_{5}$, d. MgO

- Watch Video Solution

62. Give the decreasing order of the basic properties of oxides.
a. $T l_{2} \mathrm{O}$, b. $\mathrm{Al}_{2} \mathrm{O}_{3}$, c. $\mathrm{Tl}_{2} \mathrm{O}_{3}$, d. $\mathrm{Ga}_{2} \mathrm{O}_{3}$
63. Give the increasing order of melting points of the following compounds:
a. I. $N a F$, II. $N a C l$, III. $N a B r$, IV. $N a I$
b. I. $C a I_{2}$, II. $C a B r_{2}$, III. $C a C l_{2}$, IV. $C a F_{2}$, V. $B e C l_{2}$
d. I. NaCl , II. $M g C l_{2}$, III. AlCl_{3}
e. I. $C C l_{4}$, II. $B C l_{3}$, III. $B e C l_{2}$, IV. LiCl

- Watch Video Solution

64. Give the decreasing order of covalent character of the following compounds.
a. I. $G e C l_{2}$ II. $G e C l_{4}$ III. $S n C l_{2}$ IV. $S n C l_{4}$
V. PbCl_{2} VI. PbCl_{4}
b. I. CH_{4} II. NH_{3} III. $\mathrm{H}_{2} \mathrm{O}$ IV. HF
c. I. HF II. HCl III. HBr IV. HI

d. I. AgI II. Nal III. Cul IV. NaCl

- Watch Video Solution

65. Give the decreasing $p H$ of aqueous solution of the following compounds :

$$
\text { a. } N a C l \text {, b. } M g C l_{2}, \text { c. } A l C l_{3}, \text { d. } P C l_{5}
$$

- Watch Video Solution

66. Calculate the ratio of lattice energies of
$\mathrm{CaCl}_{2(s)}$ and $\mathrm{NaCl}_{(s)}$, if the inter-ionic distance in
CaCl_{2} is twice that of $\mathrm{NaCl}_{(s)}$.

- Watch Video Solution

67. Give the decreasing order of melting points of
the following compounds:
i. NaF ii. BeO iii. MgO iv. SrO

Given: The inter-ionic distance in \AA as
$N a F=2.31, B e O=1.65, M g O=2.106, S r O=2.58$
b. Given the decreasing order of hardness of the
following compounds:
i. CaO ii. BeO iii. TiC

Given : The inter-ionic distances in \AA as
$C a O=2.405, B a O=2.762, T i C=2.159$

- Watch Video Solution

68. Identify the complexes which are expected to be coloured.
a. $\left[\mathrm{Ti}\left(\mathrm{NO}_{3}\right)_{4}\right]$, b. $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right]^{\oplus} B F_{4}{ }^{\ominus}$
c. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 3 \mathrm{Cl}^{\ominus}$, d. $\mathrm{K}_{3}\left[V \mathrm{~F}_{6}\right]$

- Watch Video Solution

69. $(p \pi-p \pi)$ back bonding occurs in the halides of boron but not in those of aluminium. Explain.

- Watch Video Solution

70. The Lewis acid character of boron trihalides decreases as: $B B r_{3}>B C l_{3}>B F_{3}$. Explain ?

- Watch Video Solution

71. The correct order of relative basic character of
$\mathrm{NaOH}, \mathrm{Mg}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ is
A. $\mathrm{Al}(\mathrm{OH})_{3}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{NaOH}$

$$
\text { B. } \mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{NaOH}>\mathrm{Al}(\mathrm{OH})_{3}
$$

C. $\mathrm{NaOH}>\mathrm{Mg}(\mathrm{OH})_{2}>\mathrm{Al}(\mathrm{OH})_{3}$

$$
\text { D. } \mathrm{Al}(\mathrm{OH})_{3}>\mathrm{NaOH}>\mathrm{Mg}(\mathrm{OH})_{2}
$$

Answer: C

- Watch Video Solution

72. Which of the oxdies behave both as neutral oxide and suboxide ?
(a) $\mathrm{N}_{2} \mathrm{O}$, b. NO, c. $\mathrm{C}_{3} \mathrm{O}_{2}$, d. CO

- Watch Video Solution

73. Which of the following is not amphoteric oxide ?
A. ZnO
B. BeO
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. CrO_{3}

Answer: D

- Watch Video Solution

74. Which of the following is superoxide ?
A. $\mathrm{Na}_{2} \mathrm{O}_{2}$
B. BaO_{2}
C. CsO_{2}
D. MnO_{2}

Answer: C

- Watch Video Solution

75. Which of the oxides is coloured and contains $3 e^{-}$ bond?
A. $M g O$
B. $\mathrm{Na} a_{2} \mathrm{O}$
C. KO_{2}
D. $\mathrm{Mn}_{3} \mathrm{O}_{4}$

Answer: C

- Watch Video Solution

76. The least stable hydride is
A. Staanane
B. Silane
C. Plumbane

D. Germane

Answer: C

- Watch Video Solution

77. The most stable hydride is

A. $B_{2} H_{6}$
B. AlH_{3}
C. GaH_{3}
D. InH_{3}

Answer: A
78. The strongest reducing hydride is
A. NH_{3}
B. PH_{3}
C. AsH_{3}
D. SbH_{3}

Answer: A
79. Give the decreasing order of acidic strength of the following :
(a) CH_{4}
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) $H F$
(d) NH_{3}
(e) $L i H$
(f) BeH_{2}.

- Watch Video Solution

80. Arrange the following acids in the decreasing order of their acid strength:
$H F, H C l, H B r, H I$

- Watch Video Solution

81. Arrange the order of decreasing/increasing properties given below:
82. Decreasing order of atomic and ionic radii
a. $M g^{2+}, O^{2-}, N a^{\oplus}, F^{\ominus}$
b. $C l^{\ominus}, S^{2-}, C a^{2+}, A r$
c. $\mathrm{N}^{3-}, N a^{\oplus}, F^{\ominus}, O^{2-}, M g^{2+}$
d. $S, O, S e, C$
e. $B, B e, L i, N a$
f. $L i^{\oplus}, N a^{\oplus}, K^{\oplus}, R b^{\oplus}, C s^{\oplus}$ (in aqueous solution)
g. $\mathrm{Cl}^{7+}, S i^{4+}, M g^{2+}, N a^{\oplus}$
h. $H^{\oplus}, L i, H^{\ominus}$
i. $O^{2-}, B^{3+}, L i^{\oplus}, F^{\ominus}$
j. $B r^{\ominus}, I, I^{\ominus}, I^{\oplus}$
k. $I^{\ominus}, I, I^{\oplus}$
I. $K^{\oplus}, C a^{2+}, T i^{3+}, T i^{4+}$
m. $C e, S n, Y b, L u$
n. $F, F^{\ominus}, O, O^{2-}$
o. $\mathrm{Ar}, \mathrm{Br}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$

- Watch Video Solution

1. Predict the group number and block to which the given elements belong.
$A(Z=9), B(Z=20), C(Z=29), D(Z=36)$ and
$E(Z=58)$.

- Watch Video Solution

2. The first $\left(I E_{1}\right)$ and second $\left(I E_{2}\right)$ ionisation energies $\left(k J m o l^{-1}\right)$ of a new elements designated by roman numerals are shown below:

	$I E_{1}$	$I E_{2}$
I	2370	5250
II	520	7300
III	900	1800
IV	1700	3400

Which of the above elements is likely to be :
a. A reactive metal
b. A reactive non-metal
c. a noble gas
d. A metal that forms a stable binary halide of the formula $A X_{2}$ ($X=$ the halogen).

- Watch Video Solution

3. Identify the three elements A, B and C from the data given below
a. The elements have successive atomic numbers
b. A forms a stable anion, A^{\ominus}
c. C forms a stable cation, C^{\oplus}
4. Among the elements, $A r, S i, N a$ and $C l$. Select an elements with
a. Highest $I E$ b. Highest $E A$
c. Smallest size d. Highest electrical conductivity

- Watch Video Solution

5. Arrange the following in decreasing order as directed.
(a) Decreasing order of $E N$: $H, O, A l, F$
b. Decreasing order of radii: $\mathrm{Ar}, \mathrm{Br}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$
c. Decreasing order of $E A: C, N, B e, F, O, C I$
d. Decreasing order of $I E$ and $E A: F, C l, B r, I$
e Decreasing order of $E N: F, N, O, C l, S$
f. Decreasing order of $I E: N e, O, N a, N a^{\oplus}$
g. Decreasing electropositive character: $N a, C u, Z n$

- Watch Video Solution

6. Predict from each set, the atom/ion which has the greatest $I E_{1}$ with explanation:
a. $C l$ or F, b. S or $C l$
c. $A r$ or K, d. $X e$ or $K r$
e. O or N, f. $N a^{\oplus}$ or $N a$
g. $B e^{\oplus}$ or Mg^{2+}, h. I^{\ominus} or I
i. B or C, j. $N e$ or F
k. N, O, F I. $P, A r, M g$
m. $B, A l, G a$

- Watch Video Solution

7. The $\Delta_{e g} H^{\ominus}$ of $B r$ is 3.4 eV . How much energy in kcal is released when $0.8 g$ of $\operatorname{Br}(g)$ is completely converted to $B r^{\theta}(g)$ ions.
$\left(1 e V=23.06\right.$ kcalmol $\left.^{1-}\right)$
b. The energy released when 10^{7} atoms of $I(g)$ is converted to $I^{\ominus}(g)$ ions, is $5 \times 10^{-13} J$. Calculate $\Delta_{e g} H^{\ominus}$ of $I(g)$ in (i) $e V$ atom $^{-1}$ and (ii) kJmol^{-1}.
8. Predict from each set, the element which has the more negative electron gain enthalpy $\left(\Delta_{e g} H^{\ominus}\right)$.

Give reasons:
a. C or $S i$, b. F or $C l$, c. O or S
e. $F, C l S, P$
f. (i) $[N e] 3 s^{2} 3 p^{5}$, (ii) $[N e] 3 s^{2} 3 p^{4}$, (iii) $[N e] 3 s^{2} 3 p^{3}$

- Watch Video Solution

9. (a) The $E N$ of cesium $(C s)$ is 0.7 and that of chlorine $(C l)$ is 3.5 . Predict tha bond formed between them.
(b) The $X-X$ bond length is $100 \pm$ and $C-C$ bond length is $154 \pm$. If $E N$ of ' X ' and ' C ' are 3.0 and 2.0 respectively, calculate the $C-X$ bond length.
(i) $127 \pm$, (ii) $118 \pm$
(iii) $108 \pm$, (iv) $128 \pm$
(c) Which of the properties can be predicted by $E N$ values?
(d) If a, b and c are $E N, I E$ and $E A$ respectively.

What is the formula of $E A(c)$ in the terms of $E N$ (a)
and $I E(b)$?

Watch Video Solution

10. Among the elements with $Z=9,12$ and 36 , identify by atomic number of an element which is
(a) Highly electropositive
(b) Highly $E N$
(c) An inert gas

- Watch Video Solution

11. Explain the following question (based on ionisation energy):
(a) Why $I E_{1}$ of N is higher than that of O atom ?
(b) Why $I E_{1}$ of $M g$ is higher than that of $A l$ atom?
(c) Why $I E_{1}$ of C is greater than that of B atom
whereas $I E_{2}$ is reverse?
(d) In general, $I E$ increases along the period (\rightarrow).

Explain why the $I E_{2}$ of $C r$ is higher than that of $M n$
(Manganese)?
(e) The $I E_{1}$ and $I E_{2}$ of K are 420 and $3050 \mathrm{kJmol}^{-1}$
respectively and those of $C a$ are 560 and
$1140 \mathrm{kJmol}^{-1}$ respectively. Compare their values and comment on the differences.
(f) The $I E$ of $L i, B e$ and C are 5.5, 9.3 and 11.3 eV .

What would be the case and explain.
i. $K, C a, S e$, ii. N, O, F
iii. $K^{\oplus}, A r, C l^{\ominus}$, iv $F e, F e^{2+}, F e^{3+}$
v. C, N, O, vi. $C u, A g, A u$
vii. $K, R b, C s$, viii $B e, B, C$
ix. $N a, M g, A l$
(h) Explain why Fe^{2+} is more easily oxidised to Fe^{3+} than Mn^{2+} to Mn^{3+}.
(i) Explain whether $I E_{1}$ of two isotopes of same element would be same or different.
(j) What are the factors on which $I E$ of main group elements tends to decrease douwn the group (\downarrow).

- Watch Video Solution

12. Answer the following question (Based on $E A, \Delta_{e g} H^{\ominus}$ and $\left.I E\right)$.
(a) $I E_{1}$ of $L i$ is $5.4 e V$ atom $^{-1}$ and the $E A$ of $C l$ is
3.6 eV atom $^{-1}$. Calculate $\Delta_{r} H^{\ominus}$ in $\mathrm{kcal} \mathrm{mol}^{-1}$ and
$k J m o l^{-1}$ for the reaction
$L i_{(g)}+C l_{(g)} \rightarrow L i_{(g)}^{\oplus}+C l_{(g)}^{\ominus}$
formed at such a low pressure that resulting ions do
not combine with each other.
(b) The $I E$ of atoms X and Y are 400 and $300 \mathrm{kcalmol}^{-1}$ respectively. $E A$'s of these atoms are 80.0 and $85.0 \mathrm{~K}^{\text {calmol }^{-1}}$. Explain as which of the atoms has higher $E N$.
(c) Explain why $E A$ of S is $-200 \mathrm{kJmol}^{-1}$ but the second $E A$ is $+649 \mathrm{kJmol}^{-1}$?
(d) Which of the following pairs of elements would have more negative electron gain enthalpy $\left(\Delta_{\mathrm{eg}} H^{\ominus}\right) ?$
(i) F or $C l$, (ii) O or F
(e) What would be the second electron gain enthalpy $\left(\Delta_{e g} H_{2}^{\ominus}\right)$ of oxygen as positive, more negative or less negative than first $\left(\Delta_{e g} H_{1}^{\ominus}\right)$? Explain.
(f) Which has less negative $\Delta_{e g} H^{\ominus}$ oxygen or sulphur?

- Watch Video Solution

13. Explain the following question (based on size of atoms or ions and other periodic properties):
a. Arrange the following species in decreasing order
of their sizes//ionic radii.
i. $A r, K^{\oplus}, C l^{\ominus}, S^{2-}$ and $C a^{2+}$
ii. $A l^{3+}, M g^{2+}, N a^{\oplus}, C l^{\ominus}, N^{3-}$ and O^{2-}
b. What are isoelectronic species? Name the species
which are isoelectronic with each of the following atom or ions.
i. $R b^{\oplus}$ ii. F^{\ominus}, iii. $M g^{2+}$ iv. $A r$
c. Arrange the following species/atoms in decreasing order of reducing character.
i. $N a, M g$ and $A l$ ii. $M g, C a$ and $S r$
iii. $N a, K$ and $R b$ iv. $F^{\ominus}, C l^{\ominus}, B r^{\ominus}$ and I^{\ominus}
d. The decreasing order of reactivety of group 1 elements is $C s>R b>K>N a>L i$ whereas that of group 17 elements is $(C l>F>B r>I)$.

Explain.
e. Predict the formula of the stable binary compounds that would be formed by the
combination of the following pairs of elements:
i. $M g$ and N
ii. $S i$ and O
iii. Elements with $Z=71$ and F
iv. P and F
v. $A l$ and I
vi. $L i$ and O
f. Ansewer the following by the use of periodic table.
i. Identify the element that would tend to gain two electrons.
ii. Identify the group having metal, non-metal, liquid as well as gas at the room temperature,
iii. Identify the element with five electrons in the outer shell.
iv. Identify the element that would tend to lose two elctrons.

- Watch Video Solution

14. For the gaseous reaction
$K+F \rightarrow K^{\oplus}+F^{\ominus}$
$\Delta H=19 \mathrm{kcalmol}^{-1}$ under the condition when
cations and anions are prevented by electrostatic
separation from combining with each other. The $I E_{1}$ of K is $4.3 e V$. Calculate $\Delta_{\text {eg }} H^{\ominus}$ of F.
15. For the reaction $K(g)+F(g)+K^{\oplus}+F^{\Theta}$ (separated ions $\Delta H=19 \mathrm{kcalmol}^{-1}$), if the ionisation potential of K and the electron affinity of F^{Θ} have a geometric means of 3.88 eV and $I P>E A$, calculate the values fo ionisation potential and electron affinity.

- Watch Video Solution

16. From N atoms of an element A, when half the atoms transfer one electron to the another atom.
$405 \mathrm{kJmol}^{-1}$ of energy was found to be consumed.
An additional energy of $745 \mathrm{kJmol}^{-1}$ was further required to convert all the A^{\ominus} ions to A^{\oplus}. Calculate
the ionisation energy and the electron gain enthalpy of atom A in $e V(1 e V=96.48 k J)$.

- Watch Video Solution

17. The conservation of gaseous atoms K and F to K^{\oplus} and F^{\ominus} absorbs 0.85 eV of energy. If the $I E$ and $\Delta_{\text {eg }} H^{\ominus}$ of K and F have magnitudes in the ratio of $7: 6$, what is the electron gain enthalpy $\left(\Delta_{\mathrm{eg}} H^{\ominus}\right)$ of fluorine ?

- Watch Video Solution

18. Explain the following:
a. Which of the following $N a, M g, S i$ and P would have the greatest difference between the $I E_{1}$ and $I E_{2}$? Explain?
b. The $E N^{\prime} s$ of $B, A l$ and $G a$ are $2.0,1.5$ and 1.6 respectively. The trends is not regular.Explain?
c. $\mathrm{Li}_{2} \mathrm{CO}_{3}$ decomposes on heating but other alkali metal barbonate (e.g. $\mathrm{Na}_{2} \mathrm{CO}_{3}$) does not. Explain?
d. Expalin why $C u^{\oplus}$ is found only is solid state and not solutions.
e. $B e$ of N have extremely low value of $E A$ (i.e. less negative value)against the trend. Explain?
f. Arrange the following in decreasing order of their
properties indicated:
$N a^{\oplus} M g^{2+}$ and $A l^{3+}$
i. Ionic mobillity in $\mathrm{H}_{2} \mathrm{O}$
ii. Size of ions
iii. Standard reduction protential $\left(E_{M^{x+(a q .)}}^{\ominus} / M_{s}\right)$ iv. Extent of hydration
v. Hydration energy
vi. Size of hydrated ions
g. In iodomentry. why $K I$ is not added dropwise to
an acidified solution of KMnO_{4} but reverse is done?
h. Why the decrease in size between $L i$ and $B e$ is much greater than that between $N a$ and $M g$ or K and $C a$?
i. $\mathrm{K}_{2} \mathrm{CO}_{3}$ is less soluble than $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ or $\mathrm{Rb}_{2} \mathrm{CO}_{3}$
while among group 2 elements MgCO_{3} is more soluble than BaCO_{3}.
j. Expalin the decreasing order of solubility of sulphate of group 2 elements.
k. ' $E A$ ' of $C l$ is the highest among the halogens,
yet F is the strongest oxidising agent'. Why?

- Watch Video Solution

19. Classify the following oxides as
a. Strongly acidic b. Weakly acidic
c. Neutral d. Amphoteric
e. Weakly basic and f. Strongly basic
i. SnO_{2} ii. SnO iii. CO iv. PbO
v. MnO_{2} vi. RaO vii. $\mathrm{N}_{2} \mathrm{O}$ viii. FeO
ix. $\mathrm{Ag}_{2} \mathrm{O}$ x. OsO_{4} xi. $\mathrm{Al}_{2} \mathrm{O}_{3}$ xii. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
xii. CeO_{2} xiv. $\mathrm{CO}_{2} \mathrm{xv} . \mathrm{MgO}$ xvi. $\mathrm{K}_{2} \mathrm{O}$

- Watch Video Solution

20. Select the strongest and weakest acid in each of the following sets:
a. $\mathrm{HBr}, \mathrm{HF}, \mathrm{H}_{2}, \mathrm{Te}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{HClO}, \mathrm{HIO}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{AsO}_{3}$

Watch Video Solution

21. A $0.10 M$ aqueous solution of which salt in each of the following pairs would have the higher $p H$?
a. NanO_{2} or $\mathrm{NaAsO} \mathrm{O}_{2}$
b. $N a F$ or $N a C N$
c. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ or $\mathrm{Na}_{2} \mathrm{TeO}_{3}$
d. NaOHCl or NaOBr

- Watch Video Solution

22. Identify:
a. The good oxidising agent (s)
b. The good reducing agent
c. The good dehydrating agent (s) among the
following substances:
$\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HNO}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

23. Answer the following:
a. Which of the following has the greatest affinity for water: $\mathrm{P}_{4} \mathrm{O}_{10} . \mathrm{Cl}_{2} \mathrm{O}, \mathrm{I}_{2} \mathrm{O}_{5}$.
b. Which of the following is the most basic:
$\mathrm{Al}_{2} \mathrm{O}_{3}, T \mathrm{I}_{2} \mathrm{O}_{3}, T \mathrm{I}_{2} \mathrm{O}$.
c. Which of the following has the lowest melting point: $\mathrm{LiBr}, \mathrm{Be}, \mathrm{BBr}_{3}$.
d. Which of the following has higher $E N: L i, B e, M g$.
e. Which of the following is most stable towards oxidation: $\mathrm{GeCl}_{2}, \mathrm{SnCl}_{2}, \mathrm{PbCl}_{2}$.
f. Which of the following is the strongest oxidising agent:
$\mathrm{CrO} \mathrm{H}^{2-}, \mathrm{MoO}_{4}^{2-}, \mathrm{WO}_{4}^{2-}$.

- Watch Video Solution

24. Explain the following:
a. The formation of $\mathrm{Cs}_{2} \mathrm{O}$ from its element is less
exothermic than the formation of $Z n O$ from its element.
b. On the basis of appropriate Born-Haber cycle, state what factor (s) is (are)responsible for the fact
that lithium nitride $\left(L i_{3} N\right)$ is more stable while potassium nitride $\left(K_{3} N\right)$ is unstable.
c. Why $A l^{3+}$ is the only stable oxidation state of $A l$ in its compounds while $T I$ has +1 and +3 oxidation states?
d. Pb^{4+} is a powerful oxidising agent. What is the reducing ability of Pb^{2+}
e. Which is more soluble in water $L i I$ or $K I$?

- Watch Video Solution

25. Give the name and atomic number of the inert
gas atom in which the total number of d-electrons is
equal to the difference in number to the p-and $-s$ electrons.

- Watch Video Solution

26. Classify the elements having atomic numbers
$(9,12,16,34,53,56)$ into three separate pairs on the basis of similar chemical properties.

- Watch Video Solution

27. Calculate the electronegativity of fluorine from
the following data:

$$
E_{H-H}=104.4 \mathrm{kcalmol}^{-1}, E_{F-F}=36.6 \mathrm{kcalmol}^{-1}
$$

$$
E_{H-F}=134.3 \mathrm{kcalmol}^{-1}, \chi_{H}=2.1
$$

- Watch Video Solution

28. Calculate electronegativity of carbon at Pauling scale Given that :
$E_{H-H}=104.2 k c a l \mathrm{~mol}^{-1} E_{C-C}=83.1 \mathrm{kcalmol}^{-1}$,
$E_{C-H}=98.8 k c a l \mathrm{~mol}^{-1}$.
Electronegativity of hydrogen $=2.1$.

- Watch Video Solution

29. Ionisation potential and electron affinity of fluorine are 17.42 and 3.45 eV respectively .Calculate the electronegativity of fluorine on Mulliken scale and Pauling scale.

- Watch Video Solution

30. Calculate the electonegativity of silicon using

Allred -Rochow method .(Covalent radius of silicoan

$$
=1.175 \AA)
$$

31. Calculate the electronegativity value of chlorine on Mulliken's scale, given that $I P=13.0 \mathrm{eV}$ and $E A=4.0 \mathrm{eV}$.

- Watch Video Solution

32. Find the electronegativity of lead with the help of the given valus. Screening consitant (σ) of $P b=76.70$. Atomic number of lead $=82$ and covalent radius of $P b=5.3 \AA$

- Watch Video Solution

33. The ionisation potentials of atoms A and B are 400 and $300 \mathrm{kcalmol}^{-1}$ respectively. The electron gain enthalpy of these atoms are 80.0 and $85.0 \mathrm{kcalmol}^{-1}$ respectively. Which of the atoms has highrt electronegativity.

- Watch Video Solution

34. Give the names of seven f-orbitals and how they are represented.

D View Text Solution

1. $3 d-, 4 d-$ and $5 d-$ series consists of 10 elements each? Explain.

- Watch Video Solution

2. Why the f-block elements are called inner transition elements?

- Watch Video Solution

3. Transition elements show horizontal as well as vertical relationship. Explain.

- Watch Video Solution

4. $B e$ and $A l$ are placed in different periods and groups but they show the similar properties. Explain.

- Watch Video Solution

5. The outer electronic configuration of some elements are given below:
(a) $6 d^{1} 7 s^{2}$,
(b) $4 f^{1} 5 d^{1} 6 s^{1}$
(c) $2 s^{2} 2 p^{6} 3 s^{2}$
(d) $3 d^{5} 4 s^{1}$
(e) $4 s^{1} 4 p^{3}$

State to which of the periodic table each of these elements belongs.

- Watch Video Solution

6. Arrange the following elements in decreasing order of metallic character:
$K, M g, B, A l$.
7. Name the species that will be isoelectronic with the following atoms or ions.
(a) Ca^{2+}, (b) Ne , (c) $C l^{\ominus}$,(d) $R b^{\oplus}$

D Watch Video Solution

8. Which of the following pairs would have a smaller size. Explain.
(a) $N a^{\oplus}$ or ${M g^{2+}}^{2+}$, (b) O^{2-} or F^{\ominus}
(c) P or $A s$

- Watch Video Solution

9. Arrange the following ions in order of their decreasing ionic radii.
$L i^{\oplus}, K^{\oplus}, M g^{2+}, A l^{3+}$

- Watch Video Solution

10. What property did Mendelev use to classify the elements in his perodic table.

- Watch Video Solution

11. Elements with $Z=107,108$ and 109 have been made recently. Indicate the groups to which they
belong.

- Watch Video Solution

12. Why $Z n, C d$ and $H g$ are not considered as typical transitions elements?

- Watch Video Solution

13. Why $C u, A g$ and $A u$ are transition elementsm although they have completely filled d-orbititals ?

- Watch Video Solution

14. Stability Of Completely Filled And Half Filled

 Orbitals
- Watch Video Solution

Ex 1.1 (Very Short)

1. What are supper heavy elements?

- Watch Video Solution

2. How many anomalous pairs were present in original Mendeleev periodic table?
3. How many s-block elements are known ?

- Watch Video Solution

4. Which block of elements consists of metals, non metals and metalloids ?

- Watch Video Solution

5. Which is the hardest elements ?
6. Which elements is heaviest melting point liquid metal ?

- Watch Video Solution

7. Which element is heaviest melting and boiling point metal ?

Watch Video Solution
8. Name the liquid non-metal.

- Watch Video Solution

9. Name the best and the poorest conductor of current among metals.

D Watch Video Solution

10. Name the heaviest solid metal.

- Watch Video Solution

11. Name the most poisonous element.
12. Name of the heaviest naturally occurring element.

- Watch Video Solution

13. Among the radioactive elements, which is a liquid element?

- Watch Video Solution

14. Name the element having the lowest electronegative, lightest and liquid metal.

- Watch Video Solution

15. Name the lightest solid non-metal having the highest tensile strenght.

D Watch Video Solution

16. Which elements has highest catenation property?

- Watch Video Solution

17. Which non-metal sublime on heating and have metallic lusture.
18. Which is the most stable element?
(D) Watch Video Solution
19. Name the element which is the poorest conductor of current among non-metals.
20. Name the elements with highest $E N$ and with highest $E A$ or $\Delta_{e g} H^{\ominus}$.

D Watch Video Solution

21. Which is used in high temperature thermometry ?

- Watch Video Solution

22. Which element is used in the making of infared
$(I R)$ windows, prism and lenses ?
23. Which of the following statement is wrong?
A. Among the following elements :
$K, M n, C a, C s, F e, C u, P b, O s, Y$

The number of transition element is 4 .
B. All the lanthanides and actionides belong to

IIIB or the $3 r d$ group in the periodic table.
C. The inner transition elements belong to the f -
block of the periodic table and are shown
separately at the bottom of the periodic table.

D. The d-block elements have variable valency.

Answer: A

D Watch Video Solution

2. Which of the following statement is wrong?
A. In the lanthanide series the electrons occupy
$4 f$-orbitals in preference to $5 d$ the and $6 p$ orbitals.
B. Zero group was not present in the periodic table when Mendeleev presented it.
C. Law of octave was presented by Newland.
D. Cuprous compounds are coloured while cupric
compounds are colourless.

Answer: D

- Watch Video Solution

3. Which of the following triads have approximately equal size?

$$
\text { A. } N a^{\oplus}, M g^{2+}, A l^{3-} \text { (isoelectronic) }
$$

B. $F^{\ominus}, N e, O^{2-}$ (isoelectronic)
C. $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$
D. $\mathrm{Mn}^{1+}, \mathrm{Fe}^{2+}, \mathrm{Cr}$ (isoelectronic)

Answer: C

D Watch Video Solution

4. Which is the correct order of size ?
$\left(O^{\ominus}, O^{2-}, F^{\ominus}\right.$ and $\left.F\right)$
A. $O^{2-}>O^{\ominus}>F^{\ominus}>F$
B. $O^{\ominus}>O^{2-}>F^{\ominus}>F$
C. $O^{2-}>F^{\ominus}>F>O^{\ominus}$
D. $O^{2-}>F^{\ominus}>O^{\ominus}>F$

Answer: A

- Watch Video Solution

5. Select the correct statement :

Which of the following graph represents Mosely's experiement.
($v=$ frequency of X-rays)

Answer: D

- Watch Video Solution

6. Calculate the screening constant of alkali metals for valenvy electrons.
7. Calculate the screening constants of members of the $2 n d$ period for valency electrons.

- Watch Video Solution

8. Answer the following :
(a) Name of the element not known at time of

Mendeleev.
(b) Name any two typical elements.
(c) Name any two bridge elements.
(d) Name two pairs showing diagonal relationship.
(e) Name two transition elements.
(f) Name two are rare earth elements.
(g) Name two transuranic elements.
(h) In which case compounds of $C r$ show maximum radius.
(i) $\mathrm{K}_{2} \mathrm{CrO}_{7}$, (ii) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$, (iii) $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(iv) CrCl_{2}

- Watch Video Solution

9. In s - and p-block elements the $O S$. changes in units, but in transition elements it changes it chnages in units of one. Explain ?

10. $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is an acidic oxide, why ?

- Watch Video Solution

11. Why Ar (argon) (at, wt. $=39.94$) has been placed before K (at. Wt. $=39.10$) in the periodic table?

- Watch Video Solution

12. Why $A g$ is a noble metal and K is a highly reactive metal ?
13. Answer the following :
(a) Why inert gases are monoatomic ?
(b) Potassium (K) is strongly metallic, while $C l$ is
strongly non-metallic. Explain.
(c) Why metals are good conductors of electricity?
(d) Comment on 'lodine possesses some metallic lusture'.
(e) Of all noble metals, gold $(A u)$ has a relatively high $E A$. Explain.
(f) In alkali metal which element is the strongest reducing agent in aqueous solution and why?
(g) $C l$ and be converted to $C l^{\ominus}$ ion easily than F to
F^{\ominus} ion. Explain.
(h) Why $\mathrm{Al}(\mathrm{OH})_{3}$ is amphoteric in nature ?
(i) Why $B e$ and $M g$ do not impart flame colouration?
(j) The $I E$ of K is same as $E A$ of K^{\oplus} ion. Explain.
(k) Explain the large atomic radii of noble gases.

- Watch Video Solution

Ex 1.2(Objective)

1. Which has maximum polarising power in cation ?
A. O^{2-}
B. $A l^{+3}$
C. Li^{+}
D. $M g^{+2}$

Answer: B

- Watch Video Solution

2. Which has the maximum $I E$?
A. O^{\oplus}
B. N
C. O
D. $N a$

- Watch Video Solution

3. The correct order of hydration enthalpies of alkali

 metal ions is:A. $N a^{\oplus}$
B. $L i^{\oplus}$
C. $C s^{\oplus}$
D. K^{\oplus}

Answer: B
4. Inert pair effect is shown by
A. s-block
B. p-block
C. d-block
D. f-block

Answer: B

- Watch Video Solution

5. Which is / are ampoteric oxide ?

A. ZnO
B. BeO
C. SnO
D. All of these

Answer: D

- Watch Video Solution

6. $E A$ is positive when
A. O^{\ominus} is formed from O
B. O^{\oplus} is formed from O
C. O^{2-} is formed from O
D. $E A$ is always a negative value

Answer: C

D Watch Video Solution

7. Which has the maximum covalent character?
A. $M g C l_{2}$
B. NaCl
C. $S i C l_{4}$
D. AlCl_{3}

Answer: C

- Watch Video Solution

8. In which sovalent $K B r$ has maximum solubility?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
C. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

9. Lattice energy of $\mathrm{BeCO}_{3}(I), \mathrm{MgCO}_{3}(I I)$ and $\mathrm{CaCO}_{3}(\mathrm{III})$ is in order.
A. $I>I I>I I I$
B. $I I I>I I>I$
C. $I I>I I I>I$
D. $I I I>I>I I$

Answer: A
10. NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are two forms of nitrogen dioxide. One exists in gaseous state while other in liquid state. The nature of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ forms are
A. Both are diamagnetic
B. Both are paramagnetic
C. NO_{2} is dimagnetic while $\mathrm{N}_{2} \mathrm{O}_{4}$ is paramagnetic
D. NO_{2} is paramagnetic while $\mathrm{N}_{2} \mathrm{O}_{4}$ is diamagnetic

Answer: D

- Watch Video Solution

11.

Magnetic
moment
of
$V(Z=23), C r(Z=24)$, and $M n(Z=25) \quad$ are
x, y, z repectively hence
A. $x=y=z$
B. $x<y<z$
C. $x<z<y$
D. $z<y<x$

Answer: C

- Watch Video Solution

12. Solubility of groups 1 and 2 fluorides increases down the group'. Which of the following is correct explanation for the above given statement ?
A. Both the hydration and lattice energies decrease down the group (\downarrow) but decrease in lattice energy is rapid.
B. Both the energies increase down the group but increase in hydration energy is rapid.
C. Both the energies decrease down the group but decrease in hydration energy is rapid.

D. Hydration energy increases and lattice energy decreases down the group.

Answer: A

- Watch Video Solution

13. Which of the following molecule is theoretically not possible?
A. $O F_{4}$
B. $O_{2} F_{2}$
C. $O F_{2}$
D. $S F_{4}$

Answer: A

D Watch Video Solution

14. Which of the following triads have approximately equal size?

$$
\text { A. } N a^{\oplus}, M g^{2+}, A l^{3+} \text { (isoelectronic) }
$$

B. $M n^{\oplus}, \mathrm{Fe}^{2+}, \mathrm{Cr}$ (isoelectronic)
C. $F^{\ominus}, N e, O^{2-}$ (isoelectronic)
D. $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$

Answer: D

- Watch Video Solution

15. Which pair is different from the others ?
A. $N a-K$
B. $C a-M g$
C. $L i-M g$
D. $B-A l$

D Watch Video Solution

16. Compound $X Y$ is predominantly ionic as $X^{\oplus} Y^{\ominus}$ if

$$
\begin{aligned}
& \text { A. }(I E)_{X}<(I E)_{Y} \\
& \text { B. }(E A)_{X}<(E A)_{Y} \\
& \text { C. }(E N)_{X}<(E N)_{Y} \\
& \text { D. } \left.(I E)_{Y}\right)<(I E)_{X} \text {. }
\end{aligned}
$$

Answer: C

17. $(X),(Y),(Z)$ are elements in third short period. Oxide of (X) is ionic, (Y) is amphoteric and (Z) is a giant molecule. $(X),(Y)$ and (Z) will have atomic number in the order :
A. $(X)<(Y)<(Z)$
B. $(Z)<(Y)<(X)$
C. $(X)<(Z)<(Y)$
D. $(Y)<(X)<(Z)$

Answer: A
18. Which of the correct order of size ?
$\left(O^{\ominus}, O^{2-}, F^{\ominus}\right.$ and $\left.F ?\right)$
A. $O^{2-}>O^{\ominus}>F^{\ominus}>F$
B. $O^{\ominus}>O^{2-}>F^{\ominus}>F$
C. $O^{2-}>F^{\ominus}>O^{\ominus}>F$
D. $O^{2-}>F^{\ominus}>F>O^{\ominus}$

Answer: A
19. F has the highest electronegativity among the group 17 elements (i.e. $n s^{2} n p^{2} n p^{5}$ type), on the Pailing scale, but the $E A$ of F is less than that of $C l$ because
A. F being the first member of the family behaves in an unusual manner.
B. The atomic number of F is less than that of $C l$.
C. $C l$ can accommodate an electron better than
F by utilsing its vacant $3 d$ orbital.
D. Small size, high $E N$ and an increased electron-
electron replusion makes addition of an electron to F less favourable.

Answer: D

- Watch Video Solution

20. The correct order of decreasing ionic character is
A. $\mathrm{BaCl}_{2}>\mathrm{CaCl}_{2}>\mathrm{MgCl}_{2}>\mathrm{BeCl}_{2}$
B. $\mathrm{BaCl}_{2}>\mathrm{MgCl}_{2}>\mathrm{CaCl}_{2}>\mathrm{BeCl}_{2}$
C. $\mathrm{BeCl}_{2}>\mathrm{MgCl}_{2}>\mathrm{CaCl}_{2}>\mathrm{BaCl}_{2}$
D. $\mathrm{BaCl}_{2}>\mathrm{BeCl}_{2}>\mathrm{CaCl}_{2}>\mathrm{MgCl}_{2}$

Answer: A
21. The correct order of decreasing polarisability of ion is
A. $C l^{\ominus}>B r^{\ominus}>I^{\ominus}>F^{\ominus}$
B. $F^{\ominus}>I^{\ominus}>B r^{\ominus}>C l^{\ominus}$
C. $I^{\ominus}>B r^{\ominus}>C l^{\ominus}>F^{\ominus}$
D. $F^{\ominus}>C l^{\ominus}>B r^{\ominus}>I^{\ominus}$

Answer: C

- Watch Video Solution

22. Which of the following has the smallest bond length ?
A. O_{2}
B. N_{2}
C. $C l_{2}$
D. HCl

Answer: B

- Watch Video Solution

1. Arrange the following in order of decreasing ionic character.
a. $\mathrm{ClF}_{3}, \mathrm{SO}_{2}, \mathrm{~N}_{2}, \mathrm{~K}_{2} \mathrm{O}$ and LiF
b. $C-H, F-H, B r-H, N a-I, K-F$ and
$L i-C l$
c. $A l F_{3}, A l C l_{3}, A l B r_{3}$

- Watch Video Solution

2. Arrange the following in order of decreasing bond angle.
a. $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}$
b. $\mathrm{SO}_{4}^{2-}, \mathrm{SO}_{3}^{2-}$

- Watch Video Solution

3. CaCO_{3} dissolves in HCl but not in water. Why?

D Watch Video Solution

4. Why $M g O$ exist as $M g^{2+} O^{2-}$ not as $M g^{\oplus} O^{\ominus}$ whereas the formation of Mg^{2+} from Mg requires more energy than formation of $M g^{\oplus}$ and formation of O^{\ominus} from O is exothermic whereas the formation of O^{2-} is endothermic.

- Watch Video Solution

5. Anhydrous AlCl_{3} is covalent. From the date given below, predict whether it would remain covalent or become ionic in aqueous solution. (Ionisation energy for $A l$ is $1537 \mathrm{kJmol}^{-1}$)
$\Delta_{\text {hydration }} f$ or $A l^{3+}=-4665 \mathrm{kJmol}^{-1}$
$\Delta_{\text {hydration }} f$ or $C l^{\ominus}=-381 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

6. Which compound for each of the following pairs is
more ionic and why ?
a. BeBr_{2} or MgBr_{2}, b. PbCl_{2} or PbCl_{4}
c. AgBr or AgI , d. CuO or CuS

- Watch Video Solution

7. NaBr gives pale yellow precipitate with AgNO_{3} solution but $C B r_{4}$ does not. Why?

- Watch Video Solution

8. Copper is conducting as such while CuSO_{4} is conducting only in molten state or in aqueous solution. Why?
9. Explain the observed bond angle order.
$\mathrm{Cl}_{2} \mathrm{O}\left(110.8^{\circ}\right)>\mathrm{H}_{2} \mathrm{O}\left(104.5^{\circ}\right)>\mathrm{F}_{2} \mathrm{O}\left(103.2^{\circ}\right)$

- Watch Video Solution

10. $\stackrel{\oplus}{N} H_{4}$ has bond angle identical to CH_{4} but NH_{3} has different bond angle. Why?

- Watch Video Solution

11. Electronegativities of $F, O, N, C l, H$ are
4.0, 3.5, 3.2 and 2.1 respectively. In which atoms there is strongest bond.

- Watch Video Solution

12. The $I E_{1}$ of $L i$ is 5.4 eV and $I E_{1}$ of H is 13.6 eV .

Calculate the charge acting on the outermost electron of $L i$ atom.

- Watch Video Solution

13. a. The melting point of $K B r$ is higher than that of AgBr through the crystal radii of $A g^{\oplus}$ and K^{\oplus} ions are almost the same. Explain.
b. $S n C l_{2}$ is solid but $S n C l_{4}$ is liquid. Why?

Ex 1.3 (Objective)

1. The correct order of $I E_{2}$ of C, N, O and F is
A. $O>F>N>C$
B. $F>O>N>C$
C. $C>N>O>F$
D. $O>N>F>C$

Answer: A
2. The least stable ion among the following is
A. $L i^{\oplus}$
B. B^{\ominus}
C. C^{\ominus}
D. $B e^{\ominus}$

Answer: D

- Watch Video Solution

3. Which has the most stable +2 oxidation state ?

A. $S n$
B. $F e$
C. Pb
D. $A g$

Answer: C

- Watch Video Solution

4. Amongst the following elements (whose electronic configuration an given below) the one having highest ionization energy is
A. $[N e] 3 s^{2} 3 p^{3}$
B. $[N e] 3 s^{2} 3 p^{1}$
C. $[N e]] 3 s^{2} 3 p^{2}$
D. $[A r] 3 d^{10} 4 s^{2} 4 p^{3}$

Answer: A

- Watch Video Solution

5. The magnitude of lattice energy of a solid increases if
A. The ions are large
B. The ions are small
C. The ions are of equal sizes
D. Charges on the ions are small

Answer: B

- Watch Video Solution

6. Bond angle in PH_{3} is
A. Much less than NH_{3}
B. Much less than $P F_{3}$
C. Slightly more than NH_{3}

D. Much more than $P F_{3}$

Answer: A

- Watch Video Solution

7. The correct order of decreasing bond angles in $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{BF}_{3}$ and SiH_{4} is
A. $\mathrm{BF}_{3}>\mathrm{SiH}_{4}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{NH}_{3}$
B. $\mathrm{BF}_{3}>\mathrm{SiH}_{4}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{~S}$
C. $\mathrm{BF}_{3}>\mathrm{NH}_{3}>\mathrm{SiH}_{4}>\mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{SiH}_{4}>\mathrm{BF}_{3}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{~S}$

Answer: B

- Watch Video Solution

8. The bond angle around central atom is maximum
for
A. $\mathrm{H}_{2} \mathrm{O}$
B. $H_{2} S$
C. $\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{Te}$

Answer: A

Ex 1.3 (Multiple Correct)

1. Which of the following can conduct electricity in?
A. $M g B r_{2}$
B. CaBr_{2}
C. $B a B r_{2}$
D. BeBr_{2}

Answer: A::B::C
2. Which of the following are expected to be covalent?

A. BeCl_{2}

B. SnCl_{4}
C. CuS
D. CaCl_{2}

Answer: A::B

- Watch Video Solution

3. Which of the following does not exist?

A. $H S_{6}$
B. HPO_{4}
C. FeI_{3}
D. HClO_{4}

Answer: A::B::C

- Watch Video Solution

4. Which of the following relation is/are correct?
A. Covalent character \propto Pseudo inert configuration
B. Ionic character \propto Inert configuration
C. Covalent character $\propto \frac{1}{\text { Dipole moment }}$
D. Ionic character $\propto \frac{1}{\text { Dipole moment }}$

Answer: A::B::C

- Watch Video Solution

5. Which of the following are correct?
A. $A s^{5+}$ salts are better oxidising agents
B. $T l^{3+}$ salts are better oxidising agents
C. $G a^{\oplus}$ salts are better oxidising agents
D. Pb^{4+} salts are better oxidising agents

Answer: B::C::D

D Watch Video Solution

Ex 1.29 (Integer)

1. On the basis of quantum number, which period of the periodic table should have 32 elements.
2. What is the atomic number of the element present in the second period anf group 15.

- Watch Video Solution

3. $\Delta_{f} H^{\ominus}$ of hypothetical MX is $-150 \mathrm{kJmol}^{-1}$ and for $M X_{2}$ is $-600 \mathrm{kJmol}^{-1}$. The enthalpy of disproportionation of MX is $=-100 x \mathrm{kJmol}^{-1}$.

Find the value of x.

- Watch Video Solution

Ex 1.32 (Assertion-Reasoning)

1. Assertion (A) : $I E_{1}$ of $M g$ is greater than that of $A l$.

Reason (R): It is easier to remove an electron fro $3 s$ orbital than from $3 p$ orbital.
A. If both A and R are correct and R is the correct
explanation for A .
B. If both A and R are correct and R is not the
correct explanation for A.
C. If A is correct and R is incorrect
D. If A is incorrect and R is correct

Answer: C

D Watch Video Solution

2. Assertion (A): s- block elements can form ionic hydrides. Which on electrolysis in fused state give H_{2} gas at cathode.

Reason (R) : s-block elements have low IE and low EN as compared to p-block elements.
A. If both A and R are correct and R is the correct explanation for A .
B. If both A and R are correct and R is not the correct explanation for A.
C. If A is correct and R is incorrect
D. If A is incorrect and R is correct

Answer: D

D Watch Video Solution

Exercises (Linked Comprehension)

1. Effective nuclear charge $\left(Z_{e f f}\right)$ is the net attractive force on electrons under consideration
and is equal to:
$Z_{e f f}=Z-\sigma$ (nuclear charge - screening constant).
$Z_{e f f}$ or σ is calculated by Slater's formula, as given.
If one electrons is present in the outermst orbit,
there will be no screening in that orbital. Each electrons contribute, 0.35 (total electrons minus one electron) present in the outermost shell.

A contribution of 0.85 for each electrons is taken in the $(n-1)$ th shell.

The screening constant (σ) for $4 s$ electron of $M n(Z=25)$ will be
A. 18.00
B. 4.25
C. 18.35
D. 22.6

Answer: D

- Watch Video Solution

2. Effective nuclear charge $\left(Z_{e f f}\right)$ is the net attractive force on electrons under consideration and is equal to:
$Z_{e f f}=Z-\sigma$ (nuclear charge - screening constant).
$Z_{e f f}$ or σ is calculated by Slater's formula, as given.
If one electrons is present in the outermst orbit,
there will be no screening in that orbital. Each
electrons contribute, 0.35 (total electrons minus one electron) present in the outermost shell.

A contribution of 0.85 for each electrons is taken in the $(n-1)$ th shell.

Which of the following statement is wrong?
A. $I E_{1}$ of $G a>A l$, due ot imperfect shielding of
$3 d$-orbitals in $G a$.
B. $I E_{1}$ of $G a<A l$, due ot perfect shielding of $3 d$
-orbitals in $G a$.
C. The atomic size of $G a$ and $A l$ are almost same
because of poor shielding effect of electrons in
d-orbitals as the effective nuclear charge increases in $G a$.

D. $I E_{1}$ of group 16 elements is less than that of

group 15 elements.

Answer: B

- Watch Video Solution

3. Effective nuclear charge $\left(Z_{e f f}\right)$ is the net attractive force on electrons under consideration and is equal to:
$Z_{e f f}=Z-\sigma$ (nuclear charge - screening constant).
$Z_{e f f}$ or σ is calculated by Slater's formula, as given.
If one electrons is present in the outermst orbit, there will be no screening in that orbital. Each electrons contribute, 0.35 (total electrons minus one electron) present in the outermost shell.

A contribution of 0.85 for each electrons is taken in the $(n-1)$ th shell.

Which of the following statement is wrong?
A. The number of lobes in f-orbitals are 8 .
B. $I E_{1}$ of elements increases along the period.
C. $I E_{1}$ of the group 3 elements is more than that of the group 2 elements.

D. $I E_{1}, I E_{2}$ and $I E_{3}$ of an elemnt are $9.5,18.5$

and 154.4 eV . Predict that the element has
either two s-electrons or two p-electrons in the valence shell.

Answer: C

- Watch Video Solution

4. In the long or modern form of the periodic table, the element in the periodic table have been divided into four blocks, $s-p-d$-and f-. Each period begins with the filling of new energy shell. Two series
of f-block elements are placed at the bottom of the periodic table.

The element with $Z=39$ belongs to
A. s-block
B. p-block
C. d-block
D. f-block

Answer: C

- Watch Video Solution

5. In the long or modern form of the periodic table, the element in the periodic table have been divided into four blocks, $s-p-d$-and f-. Each period begins with the filling of new energy shell. Two series of f-block elements are placed at the bottom of the periodic table.

The element with $Z=113$ has been discovered. Its block, group number, period and ourershell electronic configuration are
A. s-block, group 2, period $7,7 s^{2}$
B. p-block, group 13 , period $7,7 s^{2} 7 p^{1}$
C. p-block, group, 13 , period $6,6 s^{2} 6 p^{1}$

D. d-block, group 12 ,period $6,5 d^{10}, 6 s^{2}$

Answer: B

- Watch Video Solution

6. In the long or modern form of the periodic table, the element in the periodic table have been divided into four blocks, $s-p-d$-and f-. Each period begins with the filling of new energy shell. Two series of f-block elements are placed at the bottom of the periodic table.

Which of the element whose atomic numbers are
given below cannot be accommodated in the present set-up of the modern periodic table?
A. 109
B. 118
C. 120
D. 125

Answer: D

- Watch Video Solution

7. In the long or modern form of the periodic table, the element in the periodic table have been divided
into four blocks, $s-p-d$-and f-. Each period begins with the filling of new energy shell. Two series of f-block elements are placed at the bottom of the periodic table.

What is the maximum number of electrons that can
be accommodated with $n=5$ ($n=$ principal quantum number)?
A. 10
B. 18
C. 36
D. 54

Answer: C

8. In the long or modern form of the periodic table, the element in the periodic table have been divided into four blocks, $s-p-d$-and f-. Each period begins with the filling of new energy shell. Two series of f-block elements are placed at the bottom of the periodic table.

Which of the following ions is most stable?
A. $L i^{\ominus}$
B. $B e^{\theta}$
C. B^{\ominus}

Answer: A

- Watch Video Solution

9. In the long or modern form of the periodic table,
the element in the periodic table have been divided into four blocks, $s-p-d$-and f-. Each period begins with the filling of new energy shell. Two series of f-block elements are placed at the bottom of the periodic table.

The last element of the p-block in the present
periodic table is represented by the configuration, where $[X]$ represents inert gas is
A. $[X] 7 s^{2} p^{6}$
B. $[X] 5 f^{14}, 6 d^{10}, 7 s^{2} 7 p^{5}$
C. $[X] 4 f^{14}, 5 d^{10}, 6 s^{2} 6 p^{6}$
D. $[X]$ None of the above

Answer: C

- Watch Video Solution

10. In the long or modern form of the periodic table, the element in the periodic table have been divided
into four blocks, $s-p-d$-and f-. Each period begins with the filling of new energy shell. Two series of f-block elements are placed at the bottom of the periodic table.

If the elements were discovered in future in which the electrons would be present in g-orbitals. Then g orbital starts, and ends up with what atomic number?
A. 121,139
B. 121,138
C. 122,140
D. 122,139

Answer: B

- Watch Video Solution

11. The energy required to remove an electron from the outermost shell of an isolate gaseous atom is known as $I E_{1}$ of that atom. Similarly, the enrgy required for the removal of the electron from the unipositive ion, diapositive ion and tripositive ion are known as $I E_{2}, I E_{3}$ and $I E_{4}$ respectively, and are called successive ionisation energies. The magnitude of the charge depends on the size of the orbital of
electron. Electrons in smaller orbitals are on average
close with each other and have more repulsion. Thus
for $B e\left(2 s^{2}\right)$, the $I E_{1}$ and $I E_{2}$ are 9.3 and $18.2 e V$ atom 1, whereas for $C a\left(4 s^{2}\right)$, the values are 6.1 and 11.9 eV .

The correct order of arrangement of the first ionisation energies of C, N, O and F (in decreasing values) is
A. $C>N>O>F$
B. $O>N>F>C$
C. $O>F>N>C$
D. $F>N>O>C$

Answer: D
12. The energy required to remove an electron from the outermost shell of an isolate gaseous atom is
known as $I E_{1}$ of that atom. Similarly, the energy
required for the removal of the electron from the unipositive ion, diapositive ion and tripositive ion are known as $I E_{2}, I E_{3}$ and $I E_{4}$ respectively, and are called successive ionisation energies. The magnitude of the charge depends on the size of the orbital of
electron. Electrons in smaller orbitals are on average
close with each other and have more repulsion. Thus
for $B e\left(2 s^{2}\right)$, the $I E_{1}$ and $I E_{2}$ are 9.3 and 18.2 eV atom 1, whereas for $C a\left(4 s^{2}\right)$, the values are
6.1 and 11.9 eV .

Four elemensts have the following first ionization
energies in $\mathrm{KJmol}^{-1}: 762,709,59$ and 558 . The elements are $C a, G e$. In and $S n$ (not in order).

Which of these elements has the ionisation energy of $762 \mathrm{~K}_{\mathrm{Jmol}^{-1}}$?
A. In
B. $G a$
C. $S n$
D. $G e$

Answer: D
13. The energy required to remove an electron from the outermost shell of an isolate gaseous atom is
known as $I E_{1}$ of that atom. Similarly, the energy required for the removal of the electron from the unipositive ion, diapositive ion and tripositive ion are known as $I E_{2}, I E_{3}$ and $I E_{4}$ respectively, and are called successive ionisation energies. The magnitude of the charge depends on the size of the orbital of
electron. Electrons in smaller orbitals are on average
close with each other and have more repulsion. Thus
for $B e\left(2 s^{2}\right)$, the $I E_{1}$ and $I E_{2}$ are 9.3 and 18.2 eV atom 1, whereas for $C a\left(4 s^{2}\right)$, the values are
6.1 and 11.9 eV .

Which of the following are isoelectronic species?

$$
1 \rightarrow \mathrm{CH}_{3}^{\oplus}, I I \rightarrow \mathrm{NH}_{2}^{\ominus}, \mathrm{III} \rightarrow \mathrm{NH}_{4}^{\oplus}, I V \rightarrow \mathrm{NH}_{3}
$$

A. $I, I I$ and $I I I$
B. II, III and $I V$
C. $I, I I$ and $I V$
D. $I I$ and I

Answer: B
14. The energy required to remove an electron from the outermost shell of an isolate gaseous atom is
known as $I E_{1}$ of that atom. Similarly, the enrgy required for the removal of the electron from the unipositive ion, diapositive ion and tripositive ion are
known as $I E_{2}, I E_{3}$ and $I E_{4}$ respectively, and are called successive ionisation energies. The magnitude
of the charge depends on the size of the orbital of
electron. Electrons in smaller orbitals are on average
close with each other and have more repulsion. Thus
for $B e\left(2 s^{2}\right)$, the $I E_{1}$ and $I E_{2}$ are 9.3 and 18.2 eV atom 1, whereas for $C a\left(4 s^{2}\right)$, the values are 6.1 and 11.9 eV .

Among the following ionisation reactions, which one will have the maximum value of ionisation energy?
A. $B e \rightarrow B e^{\oplus}$
B. $B e^{\oplus} \rightarrow B e^{2+}$
C. $S r \rightarrow S r^{\oplus}$

$$
\text { D. } S r^{\oplus} \rightarrow S r^{2}
$$

Answer: B

- Watch Video Solution

15. The energy required to remove an electron from the outermost shell of an isolate gaseous atom is
known as $I E_{1}$ of that atom. Similarly, the enrgy required for the removal of the electron from the unipositive ion, diapositive ion and tripositive ion are
known as $I E_{2}, I E_{3}$ and $I E_{4}$ respectively, and are called successive ionisation energies. The magnitude of the charge depends on the size of the orbital of
electron. Electrons in smaller orbitals are on average
close with each other and have more repulsion. Thus
for $B e\left(2 s^{2}\right)$, the $I E_{1}$ and $I E_{2}$ are 9.3 and 18.2 eV atom 1, whereas for $C a\left(4 s^{2}\right)$, the values are 6.1 and 11.9 eV .

Consider the $I E_{1}$ of the element whose electronic configuration correspond to the following:
A. $[H e] 2 s^{2} 2 p^{3}$
B. $[H e] 2 s^{2} 2 p^{4}$
C. $[N e] 3 s^{2} 3 p^{1}$
D. $[A r] 3 d^{10} 4 s^{2} 4 p^{1}$

Answer: C

- Watch Video Solution

16. The energy required to remove an electron from the outermost shell of an isolate gaseous atom is known as $I E_{1}$ of that atom. Similarly, the enrgy required for the removal of the electron from the unipositive ion, diapositive ion and tripositive ion are
known as $I E_{2}, I E_{3}$ and $I E_{4}$ respectively, and are called successive ionisation energies. The magnitude of the charge depends on the size of the orbital of electron. Electrons in smaller orbitals are on average close with each other and have more repulsion. Thus for $B e\left(2 s^{2}\right)$, the $I E_{1}$ and $I E_{2}$ are 9.3 and 18.2 eV atom 1, whereas for $C a\left(4 s^{2}\right)$, the values are 6.1 and 11.9 eV .

The relationship between $I E_{4}$ and $I E_{2}$ of an element is
A. $I E_{4}>I E_{2}$
B.
C. $I E_{4}=I E_{2}$

D. None of the above

Answer: A

- Watch Video Solution

17. Energy is released when an electron is added to neutral isolated gaseous atom in its ground state to give monoanion and this is known as $E A$, or $\Delta_{e g} H_{1}{ }^{\ominus}$
. The greater the amount of energy released the greater is the $E A . E A$ is expressed in $\mathrm{eVaatom}^{-1}$ or $k c a l$ or $K k J m o l ~^{-1}$.

The $E A$ values of element depends on the following:
i. Nuclear charge
ii. Electroniv configuration
iii. Atomic size
iv. chemical environment
A. I,iii, iv
B. I,ii,iii
C. ii,iii,iv
D. All

Answer: B

- Watch Video Solution

18. Energy is released when an electron is added to neutral isolated gaseous atom in its ground state to give monoanion and this is known as $E A$, or $\Delta_{e g} H_{1}{ }^{\ominus}$
. The greater the amount of energy released the greater is the $E A . E A$ is expressed in $\mathrm{eVaatom}^{-1}$ or $k c a l$ or $K k J m o l ~^{-1}$.
$E A$ values of N and P are exceptionally low, because
A. Both N and P have half-filled p-orbitals in the valence shell.
B. The atom is more stable than the corresponding anoin.
C. The electronic configuration of the anoin N^{\ominus} and P^{\ominus} is relatively more stable than the corresponding atom. D. Both (b) and C.

Answer: A

- Watch Video Solution

19. Energy is released when an electron is added to neutral isolated gaseous atom in its ground state to give monoanion and this is known as $E A$, or $\Delta_{e g} H_{1}{ }^{\ominus}$
. The greater the amount of energy released the
greater is the $E A . E A$ is expressed in $\mathrm{eVaatom}^{-1}$ or $k c a l$ or $K k J m o l ~^{-1}$.

Select the correct statements (more than one correct)
A. $E A$ and $\Delta_{e g} H_{1}^{\ominus}$ of an atom of element have same magnitude
B. $\Delta_{e g} H_{1}^{\ominus}$ of $A l>B$
C. $\Delta_{e g} H_{1}^{\ominus}$ of $P>N$
D. $\Delta_{e g} H_{1}^{\ominus}$ of $S>O$

Answer: A::B::C::D

20. Energy is released when an electron is added to neutral isolated gaseous atom in its ground state to give monoanion and this is known as $E A$, or $\Delta_{e g} H_{1}{ }^{\ominus}$
. The greater the amount of energy released the greater is the $E A . E A$ is expressed in $\mathrm{eVaatom}^{-1}$ or $k c a l$ or $K k J m o l ~^{-1}$.

Select the correct statement (more than one correct)
A. $\Delta_{e g} H^{\ominus}$ of noble gases have large positive values.
B. $\Delta_{e g} H^{\ominus}$ of noble gases have large negative values.
C. $\Delta_{e g} H^{\ominus}$ of helium $(H e)$ is the lowest of all the noble gases.
D. $\Delta_{e g} H^{\ominus}$ of $A r$ is lower than that of $N e$.

Answer: A::C::D

- Watch Video Solution

21. Along the period (\rightarrow) atomic/ionic radii and metallic character decreases while $I E, E N$, nonmetallic character and oxidising power increases.

Down the group (\downarrow), atomic/ionic radii, metallic character and reducing character increase while $I E$
and $E N$ decrease. However, $\Delta_{e g} H^{\ominus}$ becomes less negative down a group but more negative along a period.

Which of the following isoelectronic species has lowest $I E_{1}$?
A. K^{\oplus}
B. $C a^{2+}$
C. S^{2-}
D. $C l^{\ominus}$

Answer: C
22. Along the period (\rightarrow) atomic/ionic radii and metallic character decreases while $I E, E N$, nonmetallic character and oxidising power increases.

Down the group (\downarrow), atomic/ionic radii, metallic character and reducing character increase while $I E$ and $E N$ decrease. However, $\Delta_{e g} H^{\ominus}$ becomes less negative down a group but more negative along a period.

If the ionic radii of M^{\oplus} and X^{\ominus} are about $135 p m$, then expected values of metallic radii of M and X should be respectively.
A. 65 and $230 p m$
B. 230 and 60 pm

C. 230 and 135 pm

D. 135 and 135 pm

Answer: B

- Watch Video Solution

23. Along the period (\rightarrow) atomic/ionic radii and metallic character decreases while $I E, E N$, nonmetallic character and oxidising power increases.

Down the group (\downarrow), atomic / ionic radii, metallic
character and reducing character increase while $I E$
and $E N$ decrease. However, $\Delta_{e g} H^{\ominus}$ becomes less negative down a group but more negative along a
period.
In which of the following pairs, both species have nearly the same size? (more than one correct)
A. $M g^{2+}, A l^{3+}$
B. K^{\oplus}, F^{\ominus}
C. $L i^{\oplus}, M g^{2+}$
D. $R b^{\oplus}, O^{2-}$

Answer: B::C::D

- Watch Video Solution

24. Along the period (\rightarrow) atomic/ionic radii and metallic character decreases while $I E, E N$, nonmetallic character and oxidising power increases.

Down the group (\downarrow), atomic /ionic radii, metallic
character and reducing character increase while $I E$
and $E N$ decrease. However, $\Delta_{e g} H^{\ominus}$ becomes less negative down a group but more negative along a period.

Correct order of $I E_{2}$ of the following is
A. $F>O>N>C$
B. $O>N>F>C$
C. $O>F>N>C$

$$
\text { D. } C>N>O>F \text {. }
$$

Answer: C

- Watch Video Solution

25. Along the period (\rightarrow) atomic/ionic radii and metallic character decreases while $I E, E N$, nonmetallic character and oxidising power increases.

Down the group (\downarrow), atomic/ionic radii, metallic character and reducing character increase while $I E$ and $E N$ decrease. However, $\Delta_{e g} H^{\ominus}$ becomes less negative down a group but more negative along a period.

Which of the following are statements ? (more than one correct)
A. $I E$ and $E A$ are defined at absolute zero
temperature. At any other temperature, heat
capacities for the reactants and product have to be taken into account.
B. The ionisation enthalpy $\left(\Delta_{r} H^{\ominus}\right)$ and $I E$ related to each other by the equation.
$\Delta_{i} H^{\ominus}$
(ionisation
enthalpy
$=\left[I E\left(\right.\right.$ ionisation energy $\left.+\frac{5}{2} R T\right]$
)
C. The electron gain enthalpy $\left(\Delta_{e g} H^{\ominus}\right)$ and $E A$
are related to each other by the equation:
$\Delta_{e g} H^{\ominus}$
(ionisation
enthalpy
)
$=\left[-I E\left(\right.\right.$ electron affinity $\left.-\frac{5}{2} R T\right]$
D. The valuye of C_{p} (heat capacity at constant pressure and C_{v} (heat capacity at constant volume) are $\frac{3}{2} R$ and $\frac{5}{2} R$ respectively)

Answer: A::B::C

- Watch Video Solution

Configuration And Periodicity

1. Which of the following statement (s) is/are correct?
A. Mendeleev's periodic law was based on atomic number of the element.
B. Zero group was not present in the periodic table when Mendeleev presented it.
C. The effective nuclear charge $\left(Z_{e f f}\right)$ is the atomic number minus shielding effect.
D. There are four transition series in the periodic table each one consists of 10 elements.

Answer: B::C::D

- Watch Video Solution

2. Which of the following statement (s) is /are correct ?
A. Similar electrons configuration is repeated after intervals of $2,8,8,18$ and 32 in the extended form of periodic table.
B. In a period from right ot left (\leftarrow), reducing nature increases.
C. Along the period (\rightarrow) thye number of valency electrons increases from 1 to 8 .
D. The first member of lanthanide series is lanthanum.

Answer: A::B::C::D

- Watch Video Solution

3. Which of the following statement (s) is/are
A. All the memebers of the actinide series are man made.
B. Zero group elements are paramagnetic.
C. Third group of the periodic table accommodates maximum number of elements.
D. All elements of zero groups are non-metals.

Answer: C::D

- Watch Video Solution

4. Which of the following statement (s) is/are
A. In Mendeleev periodic table, all groups are divided into two subgroups.
B. There is no relationship between electronic configuration of the elements and their position in the extended form of periodic table.
C. s-block elements have one or two electrons in
their outermost shell.
D. Osmium has the maximum density among metals.
5. Which of the following statement (s) is /are correct ?
A. The last member of the $7 t h$ period of the periodic table will have atomic number 118 if observed.
B. All the transition elements are metals and paramagnetic.
C. The maximum number of elements are present in the 5 th period of the periodic table.

D. Every period of the periodic table starts with a

 member of alkali group.
Answer: A::B

- Watch Video Solution

Exercises (Multiple Correct) Atomic And lonic Radii

1. Which of the following is correct in order of increasing size ?
A. $I^{\oplus}<I<I^{\ominus}$
B. $\mathrm{Fe}<\mathrm{Fe}^{2+}<\mathrm{Fe}^{3+}$
C. $F e^{3+}<\mathrm{Fe}^{2+}<\mathrm{Fe}$

D. All of these

Answer: A::C

- Watch Video Solution

2. Reason for diagonal relationship is
A. Same size
B. Same electronegativity
C. Same electron affinity
D. Same polarisability

Answer: A::B::D

- Watch Video Solution

3. Which of the following pairs of elements have alomost similar atomic radii ?
A. $Z r, H f$
B. $M o, W$
C. $C o, N i$
D. $N b, T a$
4. Which of the following statements is / are correct ?
A. An anion is larger than a cation if they are isoelectronic.
B. Out of $N a^{\oplus}$ and $A l^{3+}, N a^{\oplus}$ has the largest size.
C. The ionic radii of trivalent lanthanides

$$
\left[L a^{3+}, C e^{3+}, \mathrm{Pr}^{3+}, \ldots .\right] \quad \text { decreases with }
$$

increasing atomic number.
D. Out of P^{3-}, S^{2-}, and $C l^{\ominus}, C l^{\ominus}$ ion has the largest size.

Answer: A::B::C

- Watch Video Solution

Multiple Correct Answer type

1. Which of the following statements is / are correct
?
A. $Z_{\text {eff }}$ of elements increases along the period

$$
(\rightarrow) .
$$

B. $Z_{\text {eff }}$ of elements increases down the group (\downarrow).
C. Isoelectronic species have the same nuclear charge.
D. Screening constant (σ) increases down the group (\downarrow).

Answer: A::D

- Watch Video Solution

1. Which of the following statements is / are correct
?
A. Successive $I E^{\prime} s$ are lower.
B. Less energy is required to remove and electron from a alf-filled shell or completely filled shell.
C. $I E_{1}$ or $A l<I E_{1}$ of $M g$
D. $I E_{1}$ of $B e>I E_{1}$ of B

Answer: C::D

- Watch Video Solution

2. The factors that influence the ionisation energies are
A. Size of the atom
B. Charge on the nucleus
C. The inner electrons which effectively screen the nuclear charge
D. Atomic number of the element

Answer: A::B::C

- Watch Video Solution

3. Which is the correct increasing order of ionisation

 energy?$$
\begin{aligned}
& \text { A. } L i<B<B e \\
& \text { B. } B e<B<L i \\
& \text { C. } L i<N a<K \\
& \text { D. } O<N<F
\end{aligned}
$$

Answer: A::D

- Watch Video Solution

4. Which is correct about ionisation potential ?
A. $I E_{1}$ of $I E_{1}$ of O
B. $I E_{2}$ of $N>I E_{2}$ of O
C. $I E_{2}$ of $L i>I E_{2}$ of Ne
D. $I E_{1}$ of $A l>I E_{1}$ of $C a$

Answer: A::C

- Watch Video Solution

5. The first eight ionisation energies for a particular neutral atom is as given below. All values are expressed in kJmol^{-1}. Which oxidation states (s) is
/ are not possible of the atom?

$1 s t$	$2 n d$	$3 r d$	$4 t h$	$5 t h$	$6 t h$	$7 t h$	$8 t h$
1.31	3.39	5.30	7.47	10.99	13.33	71.33	84.01

A. -2
B. -3
C. -6
D. 6

Answer: B::C::D

- Watch Video Solution

6. $I E_{2}$ for an element is inveriably higher than $I E_{1}$
A. The size of cations is smaller than its atom.
B. It is difficult to remove electron from cations.
C. Ionisation energy is endothermic.
D. All of the above

Answer: A::B

- Watch Video Solution

7. Which sequence is correct regarding the first ionisation potential of coinage metals?
A. $C u>A g>A u$
B. $C u<A g<A u$
C. $C u>A g<A u$
D. $A g>C u>A u$

Answer: C

- Watch Video Solution

8. Mark the correct statements out of the following:
A. He has highest $I E_{1}$ in the periodic table.
B. $C I$ has the highest $E A$ out of all elements in the periodic table.
C. $H g$ and $B r$ are liquid at room temperature.
D. In any period, the atomic radius of the noble gas is lowest.

Answer: A::B::C

- Watch Video Solution

9. Ionization energy is influenced by :
A. Size of the atom
B. Charge on the nucleus
C. Electrons present in inner shells

D. None of the above

Answer: A::B::C

D Watch Video Solution

10. Which of the following statement (s) is /are correct ?
A. The element which has higher $E A$ acts as a strong oxidising agent.
B. The element with higher $E A$ has higher $I E$.
C. Along a period halogen has maximum $E A$.
D. The decreasing order of $E A$ is $F>C l>B r$.

Answer: A::B::C

- Watch Video Solution

11. Which of the following process do not involve absorption of energy?

$$
\text { A. } C l(g)+e^{-} \rightarrow C l^{\ominus}(g)
$$

B. $S(g)+e^{-} \rightarrow S^{\ominus}(g)$
C. $O(g)+e^{-} \rightarrow O^{\ominus}(g)$
D. $O^{\ominus}+e^{-} \rightarrow O^{2-}(g)$

Answer: A::B::C

D Watch Video Solution

Exercises (Multiple Correct) Electronegativity (En)

1. Which of the following properties can be determined by using Born-Haber cycle?
A. $\Delta_{\mathrm{hyd}} H^{\ominus}$
B. $\Delta_{e g} H^{\ominus}$
C. $\Delta_{u} H^{\ominus}$
D. $E N$

Answer: B::C

- Watch Video Solution

2. Select the correct statement (s).
A. On Mulliken scale, the average of $I P$ and $E A$
(in eV atom $^{-1}$) is known as $E N$.
B. The maximum $E N$ is shown by $C l$.
C. H, P and $T e$ have similar value of $E N$.
D. H, S and $T e$ have similar value of $E N$.

- Watch Video Solution

3. Select the correct statement (s).
A. Mulliken's values of $E N$ are about 2.8 times more than the Pauling scale.
B. Mulliken's value of $E N$ are about 2.8 times less than the Pauling scale.
C. On Mulliken's scale if $I P$ and $E A$ are in kJmol^{-1}, then $E N=\frac{I P+E N}{540}$
D. On Mulliken's scale if $I P$ and $E A$ are in kcal
mol $^{-1}$, then $E N=\frac{I P+E A}{2 \times 62.5}$

Answer: A::C::D

- Watch Video Solution

4. Select the correct statement (s)
A. On Pauling scale, the difference in $E N$ of two
atoms A and B in $S I$ units is.

$$
\left(E N_{A}-E N_{B}\right)=0.1017 \sqrt{\Delta_{A-B}}
$$

B. On Pauling scale, the difference in $E N$ of two atoms A and B in $\mathrm{kcalmol}^{-1}$ is.

$$
\left(E N_{A}-E N_{B}\right)=0.208 \sqrt{\Delta_{A-B}}
$$

C. The Mulliken's $E N$ values are scaled down to match the Pauling value by dividing $\left(\frac{I P+E A}{2}\right)$ in $e V$ by 3.17 .
D. The Maulliken's $E N$ values are scaled down to
match the Pauling value by multiplying
$\left(\frac{I P+E A}{2}\right)$ in $e V$ by 3.17

Answer: A::B::C

- Watch Video Solution

5. Select the correct statement (s).
A. $E N$ of $G a$ and $G e>E N$ of $A l$ and $S i$, due to
d-block contraction.
B. $E N$ of $G a$ and $G e<E N$ of $A l$ and $S i$, due to
d-block contraction.
C. $E N$ of $P b>E N$ of $T I$ and $B i$, due to d-block
contraction
D. $E N$ of $P b<E N$ of $T I$ and $B i$, due to d-block
contraction

Answer: A::C

- Watch Video Solution

Exercises (Multiple Correct) Miscellaneous

1. Transition metals are characterised by which of the following properties ?
A. Variable valency
B. Coloured compounds
C. High melting and boiling points
D. Tendency to form complexes

Answer: A::B::C::D

2. Which is correct statement reagarding $B O H$ (where χ is electronegate)?
A. If $\chi_{O}-\chi_{B}>\chi_{O}-\chi_{H}$ will be basic.
B. If $\chi_{O}-\chi_{B}<\chi_{O}-\chi_{H}$ will be acidic
C. If $\chi_{O}-\chi_{B}>\chi_{O}-\chi_{H}$ will be acidic.
D. If $\chi_{O}-\chi_{B}<\chi_{O}-\chi_{H}$ will be basic

Answer: A: B

- Watch Video Solution

3. The elements which are radioactive and have been

 named after the name of planet areA. $H g$ (Mercury) (Hergentium)
B. $N p$ (Neptunium)
C. $P u$ (Plutonium)
D. $R a$ (Radium)

Answer: B::C

- Watch Video Solution

4. The properties which are common to the elements belonging to group 1 and 17 of periodic tables are\}
A. Electropositive character increases downt the group.
B. Reactivity decreases from a top to bottom
C. Atomic radii increases as atomic number increases
D. Electronegatively decreases on moving down a
group.

Answer: A::C::D
5. The number of which subatomic particle is same in case of chlorine atom and chloride ion?
A. Electron
B. Proton
C. Neutrons
D. All of the above

Answer: B::C

6. Which of the following show amphoteric behaviour?
A. $\mathrm{Zn}(\mathrm{OH})_{2}$
B. BeO
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. $\mathrm{Pb}(\mathrm{OH})_{2}$

Answer: A::B::C::D

- Watch Video Solution

7. Which is correct in increasing order of ionic character?
A. $\mathrm{AlCl}_{3}<\mathrm{MgCl}_{2}<\mathrm{NaCl}$
B. $\operatorname{LiI}<\operatorname{LiBr}<L i C l<L i F$
C. $\mathrm{NaCl}>\mathrm{MgCl}_{2}<\mathrm{AlCl}_{3}$
D. None of the above

Answer: A::B

D Watch Video Solution

8. Highly pure dilute solution of sodium in ammonia
A. Shows blue colouration due to solvated electrons
B. Shows electrical conductivity due to both solvated electrons and solvated sodium ions
C. Shows red colouration due to solvated electrons but a bad conductor or electricity
D. Produces hydrogen gas or carbonate

Answer: A::B

D Watch Video Solution

9. Which of the following are ionic carbides ?
A. $C a C_{2}$
B. $A l_{4} C_{3}$
C. SiC

D. $B e_{2} C$

Answer: A::B::D

- Watch Video Solution

10. Which of the following substance (s) is/are used in laboratory for drying purposes?
A. Anhydrous $P_{2} O_{5}$
B. Graphite
C. Anhydrous CaCI_{2}
D. $\mathrm{Na}_{3} \mathrm{PO}_{4}$

Answer: A::C

- Watch Video Solution

11. Which of the following properties can be determined by using Born-Haber cycle ?
A. Electronegativity
B. Hydration energy
C. Lattice energy of ionic crystals

D. Binding energy of electrons

Answer: A::B::D

- Watch Video Solution

12. The compound (s) which have $-O-O$ - bonds
(s) is / are
A. BaO_{2}
B. $\mathrm{Na}_{2} \mathrm{O}_{2}$
C. CrO_{5}
D. $\mathrm{Fe}_{2} \mathrm{O}_{3}$

- Watch Video Solution

13. Which of the following compounds are paramagnetic in nature?
A. KO_{2}
B. $\mathrm{K}_{2} \mathrm{O}_{2}$
C. $\mathrm{Na}_{2} \mathrm{O}_{2}$
D. RbO_{2}

Answer: A::D
14. Select the correct statement (s).
A. Cr^{2+} compounds are ionic.
B. They are oxidised to Cr^{3+} by air.
C. They are reducing agent in aqueous solution.
D. None is correct.

Answer: A::B::C

15. On moving down the group from F to I, which of the following properties decreases ?
A. Ionic radius
B. $I E$
C. Oxidising power
D. $E N$

Answer: B::C::D

- Watch Video Solution

16. Select the correct statement (s)
A. Alkali metals have lowest $I E$ in respective period.
B. Noble gas have highest $I E$ is respective period.
C. $E A_{1}$ of $N<E A_{1}$ of O.
D. F^{\ominus} is the strongest reducing agent among halide ions.

Answer: A::B::C

- Watch Video Solution

17. The electronic configuration of given speices (X) is $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{5}, 4 s^{1}$. This can be its
A. Cationic form X^{\oplus}
B. Anionic form X^{\ominus}
C. Excited state
D. Ground state

Answer: A::D

- Watch Video Solution

18. Which of the following sets contain only isoelectronic species?

$$
\begin{aligned}
& \text { A. } K^{\oplus}, C a^{2+}, S c^{3+}, C l^{\ominus} \\
& \text { B. } Z n^{2+}, C a^{2+}, G a^{3+}, A l^{3+} \\
& \text { С. } T i^{4+}, A r, C r^{6+}, V^{5+} \\
& \text { D. } P^{3-}, S^{2-}, C l^{\ominus}, K^{\oplus}
\end{aligned}
$$

Answer: A::C::D

- Watch Video Solution

19. In which of the following arrangements, the order

 is according to the property indicated against it?$$
\text { A. } I E_{1}: O>N>C>B
$$

B. $\Delta_{e g} H^{\oplus}$ (with-ve sign) : $C l>F>B r>I$
C. Metallic radius: $R b>K>N a>L i$
D. Ionic size: $F^{\ominus}>N a^{\oplus}>M g^{2+}>A l^{3+}$

Answer: B::C::D

D Watch Video Solution

20. In which of the following arrangements, the order is according to the property indicated against it?
A. Basic strenght: $\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
B. $I E_{1}: N>O>C>B$.
C. Oxidising
power
$\mathrm{PbO}_{2}>\mathrm{SnO}_{2}>\mathrm{SiO}_{2}>\mathrm{CO}_{2}$
D. Acid strength: $\mathrm{HI}>\mathrm{HCl}>\mathrm{HF}$

Answer: B::C::D

- Watch Video Solution

21. The bond dissociation energy of $B-F$ in $B F_{3}$ is
$646 \mathrm{kJmol}^{-1}$ whereas that of $C-F$ in $C F_{4}$ is
$515 \mathrm{kJmol}^{-1}$. The correct reason for higher $B-F$
bond dissociation energy as compared to that of
$C-F$ in $C F_{4}$ is
A. Lower degreee of $p \pi-p \pi$ interaction between
B and $F B F_{3}$ than that between C and F in
$C F_{4}$
B. Significant $p \pi-p \pi$ interaction between B and
F in $B F_{3}$ whereas there is no possibility of
such interaction between C and F in $C F_{4}$
C. Smaller size of B-atoms as compared to that of
C-atom and the stronger bond between B and
F in $B F_{3}$ as compared to that between C and
$C F_{4}$
D. Lewis acid character pf boron trihalides is as:

$$
B B r_{3}>B C l_{3}>B F_{3}
$$

Answer: B:

- Watch Video Solution

1. According to periodic law of elements, the variation in properties of elements is related to their:
A. Atomic mass
B. Atomic number
C. Density
D. Mass number

Answer: B

- Watch Video Solution

2. Newland's law of octave applies to which of the following set elements ?
A. $B e, M g, C a$
B. $A s, K, C a$
C. B, N, C
D. None of these

Answer: A

- Watch Video Solution

3. The element whose electronic configuration is $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2}$ is a/an
A. Metal
B. Metalloid
C. Inert gas
D. Non-metal

Answer: A

- Watch Video Solution

4. The member of periods and group in the long form of periodic table are
A. 7 and 9
B. 8 and 18
C. 7 and 18
D. 6 and 10

Answer: C

- Watch Video Solution

5. The elements of group $1,2,13,14,15,16,17,18$ are collectively called
A. Noble elements
B. Typical elements
C. Transition elements
D. Representative elements

Answer: D

- Watch Video Solution

6. The statement that is false regarding the long form the periodic table is
A. It reflects the sequence of filling the electrons
in the order of sub-energy levels s, p, d and f.
B. It helps to predict the stable valency states of
the elements.
C. It reflects trends in physical and chemical
properties of the elements.
D. It helps to predict the relative ionic character
of the bond between any two elements

Answer: D

- Watch Video Solution

7. In the periodic table, going down in fluorine group
A. Reactivity will increase
B. Electronegativity will increase
C. Ionic radius will increase
D. Ionisation potential will increase

Answer: C

8. In the long form of periodic table all the nonmetals are placed under
A. s-block
B. p-block
C. d-block
D. f-block

Answer: B

- Watch Video Solution

9. Alkali metals in each period have
A. Smallest size
B. Highest $E N$
C. Lowest $I E$
D. Highest $I E$

Answer: C

D Watch Video Solution
10. Which one pair of atoms or ions will have same configuration ?
A. F^{\oplus} and $N e$
B. $L i^{\oplus}$ and $H e^{\theta}$
C. $N a$ and K
D. $C l^{\ominus}$ and $A r$

Answer: D

- Watch Video Solution

11. In the modern periodic table, the period indicates
the value of
A. Atomic number
B. Atomic mass
C. Principal quantum number
D. Azimuthal quantum number

Answer: C

- Watch Video Solution

12. Which of the following does not reflect periodicity of elements ?
A. Bonding behaviour
B. $E N$
C. $I E$
D. Neutron / proton ratio

Answer: D

- Watch Video Solution

13. The 3 rd period of the periodic table contains
A. 8 elements
B. 32 elements
C. 3 elements
D. 18 elements

- Watch Video Solution

14. Which of the following set
A. $H f, Z r$
B. $K, R b$
C. $B e, A l$
D. $B, A l$

Answer: C
15. Which of the following belongs to the category of transition metal?
A. K
B. $R a$
C. $F e$
D. All of the above

Answer: C

16. Without looking at the periodic table, select the elements belonging to same from the following list.

$$
\begin{aligned}
& \text { А. } Z=12,38,4,88 \\
& \text { в. } Z=9,16,3,35 \\
& \text { С. } Z=5,11,27,19 \\
& \text { D. } Z=24,47,42,55
\end{aligned}
$$

Answer: A

- Watch Video Solution

17. The elements of same group of the periodic table have
A. Same number of protons
B. Same valence shell
C. Same valence electrons
D. Same electrons affinity

Answer: C

- Watch Video Solution

18. The elements which are characterised by the outer shell configuration $n s^{1}$ to $n p^{6}$ are colectively called
A. Transition elements
B. Representative elements
C. Lanthanides
D. Inner transition elements

Answer: B

Watch Video Solution

19. The outer most electronic configuration of transition elements is

$$
\begin{aligned}
& \text { A. } n s^{2} n d^{1-10} \\
& \text { B. }(n-1) d^{1-10} n s^{1-2} \\
& \text { C. }(n-1) d^{2} n s^{0-2} \\
& \text { D. }(n-1) d^{1-10} n s^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

20. An element with atomic number 20 will be placed

 in which period of the periodic tableA. 4
B. 3
C. 2
D. 1

Answer: A

21. The statement that is not correct for periodic classification of elements is
A. The properties of elements are the periodic
functions of their atomic numbers.
B. Non-metallic elements are less in number than
metallic elements.
C. The first ionisation energies of elements along
a period do not vary in a regular manner with
an increase in atomic number.
D. For transition elements the ionisation energies
increase gradually with increase in atomic

number.

Answer: D

- Watch Video Solution

22. In the modern periodic table, elements are arranged in
A. Increasing mass
B. Increasing volume
C. Increasing atomic number
D. Alphabetically

Answer: C

- Watch Video Solution

23. Name of the heaviest naturally occurring element.
A. U
B. $R a$
C. Pb
D. Hg

Answer: A

24. The screening effect of d-electron is

A. Equal to p-electron
B. Much more than p-electron
C. Same as f-electrons
D. Less than p-electrons

Answer: D

25. Which of the following represents the electronic

 configuration of the electropositive element ?A. $[H e] 2 s^{1}$
B. $[X e] 6 s^{1}$
C. $[H e] 2 s^{2}$
D. $[X e] 6 s^{2}$

Answer: B

D Watch Video Solution

1. Which of the following has the largest ionic radius
?
A. $B e^{2+}$
B. $M g^{2+}$
C. $C a^{2+}$
D. $S r^{2+}$

Answer: D

- Watch Video Solution

2. The size of species I, I^{+}and I^{\ominus} decrease in the order.

$$
\text { A. } I^{\oplus}>I^{\ominus}>I
$$

B. $I^{\ominus}>I>I^{\oplus}$
C. $I^{\ominus}>I^{\oplus}>I$
D. $I>I^{\oplus}>I^{\ominus}$

Answer: B

- Watch Video Solution

3. Which one of the following is the smallest in size?
A. $N a^{\oplus}$
B. N^{3-}
C. O^{2-}
D. F^{\ominus}

Answer: A

- Watch Video Solution

4. Which of the following represent increasing order of size of $4 t h$ period element ?
A. $K, K r, C a, B r$
B. $K r, B r, C a, K$
C. $K, C a, B r, K r$
D. $B r, K r, C a, K$

Answer: D

- Watch Video Solution

5. Which of the following van der Waals radii is the largest?
A. $N e$
B. Cl
C. O
D. F

Answer: B

- Watch Video Solution

6. The correct order of the size of $B e, C, N, P$ and S is
A. $N<C<P<S$
B. $C<N<P<S$
C. $N<C<S<P$
D. $C<N<S<P$

Answer: C

- Watch Video Solution

7. The correct order of the size of $B e, C, F$ and $N e$ is
A. $B e>C>F>N e$
B. $B e<C<F<N e$
C. $F<C<S<P$
D. $B e>C>F<N e$
8. The correct order of increasing radii are
A. $B e^{2+}, M g^{2+}, N a^{\oplus}$
B. $K^{\oplus}, C a^{2+}, S^{2-}$
C. $O^{2-}, F^{\ominus}, N^{3-}$
D. $S^{2-}, O^{2-}, A s^{3-}$

Answer: A
9. The correct arrangement of decreasing order of atomic radius among $N a, K, M g$ and $R b$ is

$$
\begin{aligned}
& \text { A. } R b>N a>N>M g \\
& \text { B. } K>R b>N a>M g \\
& \text { C. } R b>K>N a>M g \\
& \text { D. } M g>R b>K>N a
\end{aligned}
$$

Answer: C

- Watch Video Solution

10. Which of the following pairs of elements have almost similar atomic radii ?
A. $Z r, H f$
B. $C u, A g$
C. $S c, T i$
D. $P d, P t$

Answer: A

- Watch Video Solution

11. The radius of isoelectronic species
A. Increases with increase in nuclear charge
B. Decreases with increases in nuclear charge
C. Same for all
D. First increases and then decreases

Answer: B

- Watch Video Solution

12. Atomic radil of fluorine and neon in Angstrom units are respectively given by
A. $0.72,1.60$
B. $1.60,1.60$
C. $0.72,0.72$
D. $1.60,0.72$

Answer: A

- Watch Video Solution

13. Anything that influences the valence electrons will affect the chemistry of the element. Which one of
the following factors does not affect the valence shell ?
A. Valence principal quantum number (n)
B. Nuclear charge (Z)
C. Nuclear mass
D. Number of core electrons

Answer: C

- Watch Video Solution

14. The size of isoelectronic species $F^{\ominus}, N e$, and
$N a^{\oplus}$ is affected by
A. Nuclear charge (Z)
B. Valence principal quantum number (n)
C. Electron-electron interaction in the outer orbitals

D. None of the factors because their size the

same

Answer: C

- Watch Video Solution

15. Ionic radii of :
A. ${ }^{35} C l^{\ominus}>C l(\Theta)$
B. $M n^{7+}>T i^{4+}$
C. $\mathrm{K}^{\oplus}>\mathrm{Cl}$
D. $P^{3+}>P^{5+}$

Answer: D

- Watch Video Solution

Exercises (Single Correct) Effective Nuclear Charge $\left(Z_{E f f}\right)$

1. Which of the following statement is most correct ?

Effective nuclear charge of atom depends on
A. The charge on the ion
B. The atomic number of an atom
C. The screening effect
D. Both (a) and (c)

Answer: D

- Watch Video Solution

2. The sheilding effect of d-electrons is
A. More than s-electrons
B. More than p-electrons
C. Less than s-electrons
D. Same as f-electrons

Answer: C

- Watch Video Solution

3. The chemistry of lithium is very similar to that to that of magnesium even though they are placed in different groups. Its reason is
A. Both are found together in nature
B. Both have nearly the same size
C. Both have similar electronic configuration
D. The raito of their charge and size (i.e. charge density) is nearly the same

Answer: D

- Watch Video Solution

4. In a given energy level, the order of penetration effect of different orbitals is
A. $f<d<p<s$
B. $s=p=d=f$
C. $s<p<d<f$
D. $p>s>d>f$

Answer: A

- Watch Video Solution

5. Which one of the following group of atoms or ions is not isoelectronic?
A. $H e, H^{\ominus}, L i^{\oplus}$
B. $N a^{\oplus}, M g^{2+}, A l^{3+}$
C. $F^{\ominus}, O^{2-}, N^{3-}$
D. $\mathrm{K}^{\oplus}, \mathrm{Ca}^{2+}, \mathrm{Ne}$

Answer: D

- Watch Video Solution

6. The correct order of relative stability of half filled and completely filled sub-shell is
A. $p^{3}>d^{5}<d^{10}<p^{6}$
B. $d^{5}>p^{3}<d^{10}<p^{6}$
C. $d^{5}>p^{3}>d^{10}>p^{6}$
D. $p^{3}<d^{10}<d^{5}<p^{6}$

Answer: C

Exercises (Single Correct) Ionisation Energy (le)

1. From the ground state electronic configuration of the elements given below, pick up the one with the highest value of second ionisation energies
A. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2}$
B. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{1}$
C. $1 s^{2}, 2 s^{2} 2 p^{6}$
D. $1 s^{2}, 2 s^{2} 2 p^{5}$

Answer: B

- Watch Video Solution

2. Which of the following process refers to $I E_{2}$?
A. $X_{(g)} \rightarrow X_{(g)}^{2+}$
B. $X_{(g)}^{\oplus} \rightarrow X_{(g)}^{2-}$
C. $X_{(a q)}^{\oplus} \rightarrow X_{(g)}^{2+}$
D. $X_{(g)} \rightarrow X_{(g)}^{\oplus}$

Answer: B
3. Which of the following statement concerning ionisation energy is not correct ?
A. The $I E_{2}$ is always more than the first.
B. Within a group, there is a gradual increase in ionisation energy because nuclear charge increases.
C. Ionisation energies of $B e$ is more than B.
D. Ionisation energies of noble gases are high.

Answer: B
4. The graph of $I E_{1}$ or $\Delta_{1} H_{1}^{\ominus}$ versus atomic number (Z) is given below:

Which of the following statement is correct ?
A. Alkali metals are at the maxima and noble gases at the minima.
B. Noble gases are at the maxima and alkali metals at the minima.
C. Transition elements are at the maxima.
D. Minima and maxima do not show any regular behaviour.

Answer: B

- Watch Video Solution

5. Which of the following ioelectronic ions have the lowest ionisation enthalpy?
A. K^{\oplus}
B. Ca^{2+}
C. $C l^{\ominus}$
D. S^{2-}

Answer: D

- Watch Video Solution

6. The second ionisation potential is
A. less than
B. higher than
C. same
D. depends on the elements

Answer: B

D Watch Video Solution

7. Which of the following process requires the largest amount of energy?
A. $A l_{(g)} \rightarrow A l^{\oplus}+e^{-}$
B. $A l_{(g)}^{2+} \rightarrow A l^{3+}+e^{-}$
C. $A l_{(g)}^{\oplus} \rightarrow A l^{2+}+e^{-}$

D. All require same amount of energy

Answer: B

- Watch Video Solution

8. Which of the following in an energy consuming process ?
A. $O_{(g)}+e^{-} \rightarrow O_{(g)}^{\ominus}$
B. $N a_{(g)}^{\oplus}+e^{-} \rightarrow N a_{(g)}$
C. $O_{(g)}^{\ominus}+e^{-} \rightarrow O_{(g)}^{2-}$
D. $O_{(g)}^{2-} \rightarrow O^{\ominus}+e^{-}$

Answer: C

- Watch Video Solution

9. Arrange S, P and $A s$ in order of increasing ionisation energy.
A. $S<P<A s$
B. $P<S<A s$
C. $A s<S<P$
D. $A s<P<S$

Answer: C
10. The five successive energies of an element are $800,2427,3658,25024$ and $32824 \mathrm{kJmol}^{-1}$ respectively. The number of valence electron is
A. 3
B. 5
C. 1
D. 2

Answer: A
11. Which of the following transitions involves maximum amount of energy?
A. $M_{(g)}^{\ominus} \rightarrow M_{(g)}$
B. $M_{(g)}^{\ominus} \rightarrow M_{(g)}^{\oplus}$
C. $M_{(g)}^{\oplus} \rightarrow M_{(g)}^{2+}$
D. $M_{(g)}^{2+} \rightarrow M_{(g)}^{3+}$

Answer: D

- Watch Video Solution

12. Which of the elements show least values of ionisation within their periods?
A. Alkaline earth metals
B. Alkali metals
C. Noble gases
D. Chalcogens

Answer: B

- Watch Video Solution

13. Which of the following has the largest ionisation energy.

> A. ${ }_{11} N a$
> B. ${ }_{19} K$
> C. ${ }_{12} M g$
> D. ${ }_{37} R b$

Answer: C

14. Which one of the following elements has the highest ionisation energy?
A. $[N e] 3 s^{2} 3 p^{1}$
B. $[N e] 3 s^{2} 3 p^{3}$
C. $[N e] 3 s^{2} 3 p^{2}$
D. $[A r] 3 d^{10} 4 s^{2} 4 p^{2}$

Answer: B

- Watch Video Solution

15. The correct order of the second ionisation potential of carbon, nitrogen, oxygen and fluorine is
A. $C>N>O>F$
B. $O>N>F>C$
C. $O>F>N>C$
D. $F>O>N>C$

Answer: C

- Watch Video Solution

16. Which has the largest first ionisation energy ?
A. $N a$
B. K
C. $R b$
D. Li

Answer: D

Watch Video Solution

17. Which of the following element has the highest ionisation enregy?
A. Carbon
B. Boron

C. Oxygen

D. Nitrogen

Answer: D

- Watch Video Solution

18. The ionisation energy of nitrogen is more than that of oxygen because
A. Greater attraction of electrons by the nucleus
B. Extra stability of the half-filled p-orbitals

C. Smaller size of nitrogen

D. More penetrating effect

Answer: B

- Watch Video Solution

19. The set representing the correct order of the first ionisation potential is
A. $K>N a>L i$
B. $B e>M g>C a$
C. $B>C>N$
D. $G e>S i>C$

Answer: B

- Watch Video Solution

20. The first ionisation potential of which of the element is highest
A. $N a$
B. $M g$
C. $A l$
D. Si

- Watch Video Solution

21. Highest ionisation potential in a period is shown
by
A. Alkali metals
B. Transition elements
C. Halogens
D. Alkaline earth metals

Answer: C
22. The first ionisation energy is maximum for
A. $N a$
B. $M g$
C. K
D. Kr

Answer: D
23. Which sequence is correct regarding the first ionisation potential of coinage metals?

$$
\begin{aligned}
& \text { A. } C u>A g<A u \\
& \text { B. } C u>A g>A u \\
& \text { C. } C u<A g<A u \\
& \text { D. } A u>A g<C u
\end{aligned}
$$

Answer: A

24. The second ionisation potentials in electron volts

 of oxygen and fluorine atoms are respectively given byA. $35.1,38.3$
B. $38.3,38.3$
C. $38.3,35.1$
D. $35.1,35.1$

Answer: C
25. The value of $I E_{1}, I E_{2}, I E_{3}$ and $I E_{4}$ of an atom are respectively $7.5 \mathrm{eV}, 25.6 \mathrm{eV}, 48.6 \mathrm{eV}$ and 170.6 eV .

The electronic configuration of the atom will be
A. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{1}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
C. $1 s^{2}, 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
D. $1 s^{2}, 2 s^{2} 2 p^{6} 3 s^{2}$

Answer: B
26. $I E_{1}, I E_{2}$ and $I E_{3}$ values are 100,150 and 1500 eV respectively. The element can be
A. $N a$
B. B
C. $B e$
D. F

Answer: C

- Watch Video Solution

27. $N_{0} / 2$ atoms of $X_{(g)}$ are converted into $X_{(g)}^{\oplus}$ by energy $E_{1}, N_{0} / 2$ atoms of $X_{(g)}$ are converted inot
$X_{(g)}^{\ominus}$ by energy E_{2}. Hence ionisation potential and electron affinity of $X_{(g)}$ per atom are
A. $\frac{2 E_{1}}{N_{0}}, \frac{2\left(E_{2}-E_{1}\right)}{N_{0}}$
B. $\frac{2 E_{1}}{N_{0}}, \frac{2 E_{2}}{N_{0}}$
C. $\frac{\left(E_{1}-E_{2}\right)}{N_{0}}, \frac{2 E_{2}}{N_{0}}$
D. None is correct.

Answer: A

28. Which of the following ionisation energy valuyes for calcium show a sudden increase?
A. Third
B. Second
C. First
D. Fourth

Answer: A

- Watch Video Solution

29. Which one of the following statements is incorrect in relation to ionisation enthalpy?
A. Ionisation enthalpy increases for each
successive electron.
B. The greatest increase in ionisation enthalpy is
experienced on removal of electron from core noble gas configuration.
C. End of valence electrons is marked by a big
jump in ionisation enthalpy.
D. Removal of electron from orbitals bearing
lower n value is easier than from orbitals

having higher than n value.

Answer: D

- Watch Video Solution

30. $I E_{2}$ for an element is inveriably higher than $I E_{1}$ because
A. It is difficult to remove electron from cation
B. The size of the cation is smaller than its atoms
C. $Z_{\text {eff }}$ is more for cation
D. All the above

Answer: D

- Watch Video Solution

31. Which of the following metal requires radiation of the lowest wavelength to cause emission of electrons?
A. $N a$
B. K
C. $M g$
D. $C a$

Answer: C

- Watch Video Solution

Exercises (Single Correct) Isoelectronic Species

1. Which of the following are isoelectronic?
$\mathrm{NO}_{3}^{\ominus}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{\ominus}, \mathrm{SO}_{2}$
A. $\mathrm{NO}_{3}^{\ominus}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{\ominus}$
B. $\mathrm{NO}_{3}^{\ominus}, \mathrm{CO}_{3}^{2-}, \mathrm{SO}_{2}$
C. $\mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{\ominus}, \mathrm{SO}_{2}$
D. None of these

Answer: B

- Watch Video Solution

2. Consider the ioselectronic series , $K^{\oplus}, S^{2-}, C l^{\ominus}, C a^{2+}$, the radii of the ions decrease as
A. $C a^{2+}>K^{\oplus}>C l^{\ominus}>S^{2-}$
B. $C l^{\ominus}>S^{2-}>K^{\oplus}>C a^{2+}$
C. $S^{2-}>C l^{\ominus}>K^{\oplus}>C a^{2+}$
D. $K^{\oplus}>C a^{2+}>S^{2-}>C l^{\ominus}$

Answer: C

- Watch Video Solution

3. Which of the following are isoelectronic species?
$\stackrel{\oplus}{C H} H_{3}(I), \stackrel{\ominus}{N} H_{2}(I I), \stackrel{\oplus}{N} H_{4}(I I I)$ and $N H_{3}(I V)$
A. II, III and IV
B. I, II and III
C. I, II and IV
D. II and I

Answer: A
4. Two p-block elements x (outer configuration $n s^{2} n p^{3}$) and z (outer configuration $n s^{2} n p^{4}$) occupy neighbouring positions in a period. Using this information which of the following is correct with respect to their ionisation potential I_{x} and I_{z}.
A. $I_{x}>I_{z}$
B. $I_{z}>I_{x}$
C. $I_{z}=I_{x}$
D. Relation between I_{x} and I_{x} is uncertain

Answer: A

D Watch Video Solution

Exercises (Single Correct) Matallic-Non Metallic Character

1. Considering the elements $B, A l, M g$ and K, the correct order of their metallic character is
A. $B>A l>M g>K$
B. $A l>M g>B>K$
C. $M g>A l>K>B$
D. $K>M g>A l>B$

Answer: D

- Watch Video Solution

2. $I E_{1}$ and $I E_{2}$ of $M g$ are 178 and $348 \mathrm{kcalmol}^{-1}$.

The energy required for the reaction
$M g \rightarrow M g^{2+}+2 e^{-}$is
A. +170 kcal
B. +526 kcal
C. -170 kcal

D. -526 kcal

Answer: B

D Watch Video Solution

3. Considering the elements B, C, N and $S i$, the correct order of their non-metallic character is ?

$$
\begin{aligned}
& \text { A. } B>C>S i>N>F \\
& \text { B. } S i>C>B>N>F \\
& \text { C. } F>N>C>B>S i \\
& \text { D. } F>N>C>S i>B
\end{aligned}
$$

Answer: C

D Watch Video Solution

Exercises (Single Correct) Electron Affinity (Ea) And Electron Gain Enthalpy $\left(\Delta_{E g} H^{\ominus}\right)$

1. Which of the following have least electron affinity?
A. Oxygen
B. Fluorine
C. Nitrogen
D. Carbon

Answer: C

D Watch Video Solution

2. Second and successive electron affinity of an element
A. is always successive (energy is released)
B. is always positive (energy is absorbed)
C. can be positive or negative
D. is always zero
3. Which one of the following statements is incorrect?
A. Greater is the nuclear, greater is the electron affinity.
B. Neon has zero electron affinity.
C. Electron affinity decreases from fluorine to iodine in the group
D. Electron affinity decreases in going down a group and increases across from the left to the

$$
\text { right }(\rightarrow)
$$

Answer: C

- Watch Video Solution

4. The lower electron affinity of fluorine than that of chlorine is due to
A. Smaller size
B. Smaller nuclear charge
C. Difference in their electronic arrangement
D. Its highest reactivity

Answer: A

- Watch Video Solution

5. The $E A$ order for halogen is
A. $F>C l>B r>I$
B. $F<C l<B r<I$
C. $F<C l>B r>I$
D. $F>C l<B r>I$

Answer: C

6. The $E A$ for inert gases is likely to be

A. High
B. Small
C. Zero
D. Positive

Answer: C
7. Ionisation of energy F^{\ominus} is $320 \mathrm{kJmol}^{-1}$. The electronic gain enthalpy of fluorine would be
A. $-320 \mathrm{kJmol}^{-1}$
B. $-160 \mathrm{kJmol}^{-1}$
C. $+320 \mathrm{kJmol}^{-1}$
D. $+160 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

8. Which of the following represents the correct order of electron affinities?

$$
\begin{aligned}
& \text { A. } F>C l>B r>I \\
& \text { B. } C<N<O<F \\
& \text { C. } N<C<O<F \\
& \text { D. } C<S i<P<N
\end{aligned}
$$

Answer: C

D Watch Video Solution

9. Fluorine has the highest electronegativity among the group on the Pauling scale, but the electron affinity of fluorine is less than that of chlorine because
A. The atomic number of fluorine is less than that of chlorine
B. Fluorine being the first member of the family behaves in an unuseual manner
C. Chlorine can accommodate an electron better
than fluorine by untilising its vacant $3 d$ orbital

D. Small size, high electron density and an

 increases electron repulsion make addition ofan electron to fluorine less favourable than that in the case of chlorine

Answer: D

- Watch Video Solution

Exercises (Single Correct) Electronegativity (En)

1. Which is true about the electronegative order of the following elements ?
A. $P>S i$
B. $C>N$
C. $\mathrm{Br}>\mathrm{Cl}$
D. $S r>G a$

Answer: A

- Watch Video Solution

2. The electronnegativity of the following elements increases in the order
A. $C, N, S i, P$
B. $N, S i, C, P$
C. $S i, P, C, N$
D. $P, S i, N, C$

Answer: C

- Watch Video Solution

3. An atom with high $E A$ generally has
A. Tendency to form $+v e$ ions
B. High ionisation energy
C. Large atomic size
D. Low electron affinity

Answer: B

- Watch Video Solution

4. The electronegativity of the following elements increases in the order
A. $S<P<N<O$
B. $P<S<N<O$
C. $N<O<P<S$
D. $N<P<S<O$

- Watch Video Solution

5. Downwards in a group, the electropositive character of elements
A. Increases
B. decreases
C. Remain same
D. None
6. What is the correct order of electronegativity?
A. $M^{1-}<M^{2-}<M^{3-}<M^{4-}$
B. $M^{1-}>M^{2-}>M^{3-}>M^{4-}$
C. $M^{1-}>M^{2-}<M^{3-}>M^{4-}$
D. $M^{4-}<M^{2-}<M^{3-}<M^{1-}$

Answer: B

7. Due to screening effect of electrons in an atom

A. $I E$ decreases
B. $I E$ increases
C. No change in $I E$
D. Attraction of nucleus on the valence electron increases

Answer: A
8. Select the group where $E N$ increases down the group
A. $F, C l, B r$
B. $L i, N a, K$
C. $C a, S r, B a$
D. $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$

Answer: D

- Watch Video Solution

9. Which of the following element has the highest
$E N$?
A. $A s$
B. $S b$
C. P
D. S

Answer: D

- Watch Video Solution

10. In C, N, O and F the electronegativity
A. Increases from carbon to fluorine
B. Decreases from carbon to fluorine
C. Increases up to oxygen and is minimum at
fluorine
D. Is minimum at nitrogen and then increases
continuously

Answer: A

- Watch Video Solution

Exercises (Single Correct) Acidic, Basicand Amphoteric

1. Among the following oxides, which is least acidic ?

A. $\mathrm{Al}_{2} \mathrm{O}_{3}$
B. $\mathrm{B}_{2} \mathrm{O}_{3}$
C. CO_{2}
D. NO_{2}

Answer: A

- Watch Video Solution

2. Which of the following oxides is most basic ?
A. $\mathrm{Na}_{2} \mathrm{O}$
B. $M g O$
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. CuO

Answer: A

- Watch Video Solution

3. The order in which the following oxides are arranged according to decreasing basic nature is

$$
\text { A. } \mathrm{Na} a_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CuO}
$$

B. $\mathrm{CuO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$
C. $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CuO}, \mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$
D. $\mathrm{CuO}, \mathrm{MgO}, \mathrm{Na} a_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$

Answer: A

D Watch Video Solution
4. Identify the correct order of acidic strength of $\mathrm{CO}_{2}, \mathrm{CuO}, \mathrm{CaO}$ and $\mathrm{H}_{2} \mathrm{O}$.
A. $\mathrm{CaO}<\mathrm{CuO}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}$
B. $\mathrm{CaO}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CuO}<\mathrm{CO}_{2}$
C. $\mathrm{H}_{2} \mathrm{O}<\mathrm{CuO}<\mathrm{CaO}<\mathrm{CO}_{2}$

$$
\text { D. } \mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}<\mathrm{CaO}<\mathrm{CuO}
$$

Answer: B

- Watch Video Solution

5. What is the nature of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$?
A. Acidic, acidic
B. Acidic, amphoteric
C. Amphoteric, amphoteric
D. Amphoteric, acidic

Answer: D

- Watch Video Solution

6. which one of the following oxides is neutral?
A. SiO_{2}
B. $C O$
C. ZnO
D. SnO_{2}

Answer: B
7. Which of the following oxides is amphoteric is nature ?
A. $C a O$
B. CO_{2}
C. SnO_{2}
D. SiO_{2}

Answer: C

- Watch Video Solution

8. The correct order of acidic strength of the following is
A. $\mathrm{SO}_{2}>\mathrm{P}_{2} \mathrm{O}_{3}>\mathrm{SiO}_{2}>\mathrm{Al}_{2} \mathrm{O}_{3}$
B. $\mathrm{P}_{2} \mathrm{O}_{3}>\mathrm{SO}_{2}>\mathrm{SiO}_{2}>\mathrm{Al}_{2} \mathrm{O}_{3}$
C. $\mathrm{P}_{2} \mathrm{O}_{3}>\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{SO}_{2}>\mathrm{SiO}_{2}$
D. $\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{SiO}_{2}>\mathrm{P}_{2} \mathrm{O}_{3}>\mathrm{SO}_{2}$

Answer: A

- Watch Video Solution

9. Which of the oxdies behave both as neutral oxide and suboxide?
(a) $\mathrm{N}_{2} \mathrm{O}$, b. NO, c. $\mathrm{C}_{3} \mathrm{O}_{2}$, d. CO
A. $C O$
B. CO_{2}
C. $C_{3} O_{2}$
D. $\mathrm{N}_{2} \mathrm{O}$

Answer: D
10. Which of the odies is not a mixed oxide ?
A. $\mathrm{Co}\left(\mathrm{Al}_{2} \mathrm{O}_{2}\right)_{2}$
B. $\mathrm{Mn}_{3} \mathrm{O}_{4}$
C. $\mathrm{Pb}_{3} \mathrm{O}_{4}$
D. $\mathrm{C}_{3} \mathrm{O}_{2}$

Answer: D

- Watch Video Solution

11. Which of the oxides is basic as well as normal oxide?
A. $\mathrm{N}_{2} \mathrm{O}$
B. $\mathrm{Na}_{2} \mathrm{O}$
C. NO
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

Exercises (Single Correct) Bond Angle

1. Decreasing order of bond angle of
$\left(\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}\right)$ is
A. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}$
B. $\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}$
C. $\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{AsH}_{3}$
D. $\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$

Answer: A

- Watch Video Solution

2. The correct order of bond angle of
$\mathrm{NO}_{2}^{+}, \mathrm{NO}_{2}$ and NO_{2}^{-}is
A. $\mathrm{NO}_{2}^{\ominus}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{\oplus}$
B. $\mathrm{NO}_{2}^{\oplus}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{\ominus}$
C. $\mathrm{NO}_{2}^{\ominus}>\mathrm{NO}_{2}^{\oplus}>\mathrm{NO}_{2}$
D. $\mathrm{NO}_{2}>\mathrm{NO}_{2}^{\ominus}>\mathrm{NO}_{2}^{\oplus}$

Answer: B

- Watch Video Solution

3. Decreasing order of bond angle of $\left(N H_{3}, \stackrel{\oplus}{N H_{4}}, \mathrm{PCl}_{5}, S C l_{2}\right)$ is
A. $\mathrm{NH}_{3}>\mathrm{SCl}_{2}>\mathrm{PCl}_{5}>\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}$
B. $\mathrm{NH}_{3}>\mathrm{SCl}_{2}>\stackrel{\oplus}{\mathrm{NH}} \mathrm{H}_{4}>\mathrm{PCl}_{5}$
C. $\stackrel{\oplus}{\mathrm{NH}} \mathrm{H}_{4}>\mathrm{NH}_{3}>S \mathrm{Sl}_{2}>\mathrm{PCl}_{5}$
D. $\stackrel{\oplus}{N H} H_{4}>\mathrm{NH}_{3}>\mathrm{PCl}_{5}>\mathrm{SCl}_{2}$

Answer: C

- Watch Video Solution

4. Increasing order of bond angle of $\left(\mathrm{Cl}_{2} \mathrm{O}, \mathrm{ClO}_{2}, \mathrm{Cl}_{2} \mathrm{O}_{7}, I_{3}^{\ominus}\right)$ is
A. $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}<\mathrm{Cl}_{2} \mathrm{O}_{7}<\mathrm{I}_{3}^{\ominus}$
B. $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}<\mathrm{I}_{3}^{\ominus}<\mathrm{Cl}_{2} \mathrm{O}_{7}$
C. $I_{3}^{\ominus}<\mathrm{Cl}_{2} \mathrm{O}_{7}<\mathrm{ClO}_{2}<\mathrm{Cl}_{2} \mathrm{O}$
D. $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{Cl}_{2} \mathrm{O}_{7}<\mathrm{ClO}_{2}<\mathrm{I}_{3}^{\ominus}$

Answer: D

- Watch Video Solution

Exercises (Single Correct) Lattice And Hydration Energy

1. Decreasing order of hydration energy of the following is
A. $L i^{\oplus}>N a^{\oplus}>K^{\oplus}>C s^{\oplus}$
B. $C s^{\oplus}>K^{\oplus}>N a^{\oplus}>L i^{\oplus}$
C. $L i^{\oplus}>K^{\oplus}>N a^{\oplus}>C s^{\oplus}$

$$
\text { D. } C s^{\oplus}>N a^{\oplus}>K^{\oplus}>L i^{\oplus}
$$

Answer: A

- Watch Video Solution

2. Extent of hydrolysis of the following is
A. $P C l_{5}>S i C l_{4}>M g C l_{2}>A l C l_{3}$
B. $A l C l_{3}>M g C l_{2}>S i C l_{4}>P C l_{5}$
C. $S i C l_{4}>\mathrm{PCl}_{5}>\mathrm{MgCl}_{2}>\mathrm{AlCl}_{3}$
D. $\mathrm{PCl}_{5}>\mathrm{SiCl}_{4}>\mathrm{AlCl}_{3}>\mathrm{MgCl}_{2}$

Answer: D
3. Give the decreasing order of thermal stability of the following .
A. $\mathrm{BeCO}_{3}>\mathrm{MgCO}_{3}>\mathrm{CaCO}_{3}>\mathrm{BaCO}_{3}$
B. $\mathrm{BaCO}_{3}>\mathrm{CaCO}_{3}>\mathrm{MgCO}_{3}>\mathrm{BeCO}_{3}$
C. $\mathrm{BaCO}_{3}>\mathrm{CaCO}_{3}>\mathrm{BaCO}_{3}>\mathrm{MgCO}_{3}$
D. $\mathrm{MgCO}_{3}>\mathrm{CaCO}_{3}>\mathrm{BaCO}_{3}>\mathrm{BeCO}_{3}$

Answer: B
4. Lattice energy of an ionic compound depedns

upon :

A. Change density of the ions only
B. Packing of ions only
C. Size of the ion only
D. Charge on the ions only

Answer: A

- Watch Video Solution

5. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is soluble in water while BaSO_{4} is insoluble. Which of the reason is correct about the above statement.
A. Lattice energy of BaSO_{4} exceeds its hydration energy.
B. Hydration energy of BaSO_{4} exceeds its lattice
energy.
C. The solubility in $\mathrm{H}_{2} \mathrm{O}$ of a compound depends
ony on its hydration energy.
D. The solubility in $\mathrm{H}_{2} \mathrm{O}$ of a compound depends
only on its lattice enregy.

Answer: A

- Watch Video Solution

6. Calculate the lattice energy from the following data (given $1 \mathrm{eV}=23.0 \mathrm{kcalmol}^{-1}$)
i. $\Delta_{f} H^{\ominus}(K I)=-78.0 \mathrm{kcalmol}^{-1}$
ii. $I E_{1}$ of $K=4.0 \mathrm{eV}$
iii. $\Delta_{\text {diss }} H^{\ominus}\left(I_{2}\right)=28.0 \mathrm{kcalmol}^{-1}$
iv. $\Delta_{\text {sub }} H^{\ominus}(K)=20.0 \mathrm{kcalmol}^{-1}$ Itbvrgt v. $E A$ of
$I=-70.0 \mathrm{kcalmol}^{-1}$
vi. $\Delta_{\text {sub }} H^{\ominus}$ of $I_{2}=14.0 \mathrm{kcalmol}^{-1}$
A. $+14.1 \mathrm{kcalmol}^{-1}$
B. $-14.1 \mathrm{kcalmol}^{-1}$
C. $-141 \mathrm{kcalmol}^{-1}$
D. $+141 \mathrm{kcalmol}^{-1}$

Answer: C

- Watch Video Solution

7. Calculate the $E A$ of O atom to O^{2-} ion from the following data:
i. $\Delta_{f} H^{\ominus}[M g O(s)]=-600 \mathrm{kJmol}^{-1}$
ii. $\Delta_{u} H^{\ominus}[M g O(s)]=-3860 \mathrm{kmol}^{-1}$
iii. $I E_{1}+I E_{2}$ of $M g(g)=2170 \mathrm{kJmol}^{-1}$
iv. $\Delta_{\text {diss }} H^{\ominus}$ of $M g(s)=+494 \mathrm{kJmol}^{-1}$
v. $\Delta_{\text {sub }} H^{\ominus}$ of $M g(s)=+150 \mathrm{kJmol}^{-1}$
A. $+693 \mathrm{kJmol}^{-1}$
B. $-693 \mathrm{kJmol}^{-1}$
C. $+69.3 \mathrm{kJmol}^{-1}$
D. $-69.3 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

1. Which of the following is incorrect ?

A. With increase in atomic size, ionisation energy increases
B. With increase in atomic size, electron affinity increases
C. With increase in atomic size, metallic character increases
D. With increase in atomic size, electronegativity increases

Answer: C
2. Which of the following is incorrect?
A. An element which has high electronegativity always has high electron gain enthalpy.
B. Electron gain enthalpy is the property of an isolated atom.
C. Electronegativity is the property of bonded atom.
D. Both electronegativity and electron gain enthalpy are usually directly related to nuclear
charge and inversely related to atomic size.

Answer: A

- Watch Video Solution

3. The ionisation of hydrogen atom would give rise to
A. Hydride ion
B. Hydronium ion
C. Proton
D. Hydroxyl ion

Answer: C

- Watch Video Solution

4. Chloride of an element A gives neutral solution in watt . In the periodic table, the elements A belong to
A. First group
B. Third group
C. Fifth group
D. First transition group
5. In a period, density first ___then_____ and in a group
it_down the group
A. Decreases, increases, remains constant
B. Increases, decreases, decreases
C. Increases, remaina constant , increases
D. Increases, decreases, increases

Answer: D

- Watch Video Solution

6. In the transformation of $N a(s) \rightarrow N a^{\oplus}(g)$, the energies involved are
A. Ionisation energy
B. Sublimation energy
C. Ionisation energy and sublimation energy
D. Bond dissociation energy

Answer: C

D Watch Video Solution

7. Beryllium and aluminimum exhibit many properties
which are similar . But, the two elements differ in
A. Forming covalent halides
B. Forming covalent hydrides
C. Exhibiting maximum covalency in compounds
D. Exhibiting amphoteric nature in their oxides

Answer: C

8. Among $\mathrm{LiCI}, \mathrm{BeCI}_{2}$ and CCI_{4} the covalent bond

 character varies as .$$
\text { A. } \mathrm{LiCl}>\mathrm{BeCl}_{3}>B C l_{3}>C C l_{4}
$$

B. $\mathrm{LiCl}<\mathrm{BECl}_{2} \mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
C. $\mathrm{LiCl}>\mathrm{BeCl}_{2}>\mathrm{CCl}_{4}>\mathrm{BCL}_{3}$
D. $B E C l_{2}>\mathrm{LiCl}>B C L_{3}>C C l_{4}$

Answer: B

- Watch Video Solution

9. The correct order of decreasing polarisability of ion is
A. $C l^{\ominus}>B r^{\ominus}>I^{\ominus}>F^{\ominus}$
B. $F^{\ominus}>I^{\ominus}>B r^{\ominus}>C l^{\ominus}$
C. $I^{\ominus}>B r^{\ominus}>C l^{\ominus}>F^{\ominus}$
D. $F^{\ominus}>C l^{\ominus}>B r^{\ominus}>I^{\ominus}$

Answer: C

- Watch Video Solution

10. Diagonal relationship is down by
A. All elements with their diagonally opposite elements.
B. All elements of $3 r d$ and $4 t h$ periods
C. Some of the elements of $2 n d$ and $3 r d$ periods
D. Elements of d-block

Answer: C

- Watch Video Solution

Exercises (Assertion Reasoning)

1. Assertion: Helium and beryllium have similar outer electronic configuration of the type $n s^{2}$.

Reason: Both are chemically inert.
A. If both Assertion (A) and (R) are correct and

Reason (R) is the correct explanation of

Assertion (A).
B. If both (A) and (R) are correct but (R) is not
the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If (A) and (R) are correct

Answer: C

2. Assertion (A) : $E A$ of O is less than that of F but greater than that of N.

Reason (R): $I E$ is as follows: $N>O>F$.
A. If both Assertion (A) and (R) are correct and

Reason (R) is the correct explanation of

Assertion (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If (A) and (R) are correct

Answer: C

D Watch Video Solution

3. Assertion (A): $I E_{1}$ of N is lower than O.

Reason (R) : Across a period $Z_{e f f}$ decrease.
A. If both Assertion (A) and (R) are correct and

Reason (R) is the correct explanation of

Assertion (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If both (A) and (R) are correct

Answer: C

- Watch Video Solution

4. Assertion(A) : $I E_{2}$ of $L i$ is the highest in the second period.

Reason (R): $L i^{\oplus}$ haqs nob,le gas i.e., $N E$ gas configuration.
A. If both Assertion (A) and (R) are correct and Reason (R) is the correct explanation of Assertion (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If (A) and (R) are correct

Answer: C

Watch Video Solution

5. Assertion(A) : $I E_{2}$ of C is greater than that of B. Reason (R): Due to penetration effect.
A. If both Assertion (A) and (R) are correct and

Reason (R) is the correct explanation of

Assertion (A).
B. If both (A) and (R) are correct but (R) is not
the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If (A) is incorrect and (R) is correct

Answer: D
6. Assertion (A) : In the mordern periodic table period indicates the value of azimuthal quantum number.

Reason (R): Each period begins with the filling of new shell.
A. If both Assertion (A) and (R) are correct and

Reason (R) is the correct explanation of

Assertion (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If (A) and (R) are correct

Answer: D

- Watch Video Solution

7. Assertion (A) : Anything that influences of the valence electorns will affect the chemistry of the element. So, the nuclear molar mass does not affect the valence shell.

Reason (R) : Nucleus contains protons and neutrons,
whereas protons i.e. nuclear charge affects the valence shell but neutrons doe not.
A. If both Assertion (A) and (R) are correct and Reason (R) is the correct explanation of Assertion (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If (A) and (R) are correct

Answer: A

- Watch Video Solution

8. Assertion (A) : Metallic character order is
$K>M g>A l>B$.
Reason (R) : Along the period (\rightarrow) metallic character increases and decreases down the group (\downarrow).
A. If both Assertion (A) and (R) are correct and

Reason (R) is the correct explanation of

Assertion (A).
B. If both (A) and (R) are correct but (R) is not
the correct explanation for (A).
C. If (A) is correct but (R) is not correct.

D. If (A) and (R) are correct

Answer: C

- Watch Video Solution

9. Assertion (A) : When the transition element ionises, the $4 s$-orbital electrons are removed before the $3 d$-orbital electrons.

Reason (R): The energy of $3 d$-orbital electrons is lower than that of $4 s$-orbital electrons.
A. If both Assertion (A) and (R) are correct and Reason (R) is the correct explanation of

Assertion (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If (A) and (R) are correct

Answer: A

- Watch Video Solution

10. Assertion (A) : Mercurous ion is paramagnetic.

Reason (R): It contains one unpaired electron.
A. If both Assertion (A) and (R) are correct and Reason (R) is the correct explanation of Assertion (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If both (A) and (R) are incorrect

- Watch Video Solution

11. Assertion (A): Lithium chloride is predominantly covalent compound.

Reason (R): electronegativity difference between Li and Cl is small.
A. If both Assertion (A) and (R) are correct and

Reason (R) is the correct explanation of

Assertion (A).
B. If both (A) and (R) are correct but (R) is not
the correct explanation for (A).
C. If (A) is correct but (R) is not correct.
D. If (A) and (R) are correct

Answer: C

D Watch Video Solution

Exercises (Integer)

1. Among the following oxides how many of them are suboxides?
(a) $\mathrm{C}_{3} \mathrm{O}_{2}$, (b) $\mathrm{N}_{2} \mathrm{O}$, (c) NO_{2}, (d) CO
(e) $\mathrm{Fe}_{3} \mathrm{O}_{4}$, (f) $K \mathrm{O}_{2}$

D Watch Video Solution

2. The number of factors that influence the $I E$ are

a. Size of the atom , b. Charge on the nucleus
c. Shielding effect, d. The atomic mass

- Watch Video Solution

3. The number of process (es) rquiring the absorption of energy/are
a. $C l \rightarrow C l^{\ominus}$, b. $O^{\ominus} \rightarrow O^{2-}$
c. $\mathrm{Fe}^{+3} \rightarrow \mathrm{Fe}^{+2}$, d. $\mathrm{Ar} \rightarrow A r^{\ominus}$

D
 Watch Video Solution

4. For an element (X) the successive ionisation energies, $I E_{1}, I E_{2}, I E_{3}, I E_{4} \quad$ and $\quad I E_{5} \quad$ are $800,2427,3658,25024$ and $32824 \mathrm{kJmol}^{-1}$ respectively, then that what is the number of valence electrons present in the element?

- Watch Video Solution

5. The diagonal relationship is shown by the elements upto how many groups only?

- Watch Video Solution

6. The number of the followinjg pairs contains elements with similar atomic radii
a. $C o, N i$, b. $Z n, M o$, c. $R h, I r$, d. $H f, T i$

- Watch Video Solution

7. How many of the following energies are involved in the transformation of $N a(s) \rightarrow N a^{\oplus}(a q)$?
(a) $1 E$, (b) $\Delta_{\text {sub }} H^{\ominus}$, (c) $\Delta_{\text {diss }} H^{\ominus}$, (d) $\Delta_{\text {hyd }} H^{\ominus}$
(e) $\Delta_{u} H^{\ominus}$

- Watch Video Solution

8. Among the following oxides how many of them are

 mixed oxides ?(a) $\mathrm{H}_{2} \mathrm{O}$,
(b) $\mathrm{C}_{3} \mathrm{O}_{2}$,
(c) $\mathrm{Fe}_{3} \mathrm{O}_{4}$,
(d) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(e) $\mathrm{Pb}_{3} \mathrm{O}_{4}$, (f) PbO_{2}, (g) $\mathrm{Co}\left(\mathrm{AlO}_{2}\right)_{2}$, (h) $\mathrm{Mn}_{3} \mathrm{O}_{4}$

- Watch Video Solution

9. Number of species that are isoelectronic with $A r$ is.
10. Among the following oxides, how many of them are amphoteric oxides ?
(a) $B_{2} O_{3}$,
(b) $\mathrm{Al}_{2} \mathrm{O}_{3}$, (c) CaO ,
(d) ZnO
(e) $\mathrm{Ga}_{2} \mathrm{O}_{3}$, (f) SnO_{2}, (g) PbO_{2}, (h) BeO
(i) CuO , (j) $\mathrm{Fe}_{2} \mathrm{O}_{3}$

- Watch Video Solution

11. Among the following elements how many of them
are inner transition elements ?
(a) $S g$,
(b) $B k$,
(c) $E r$, (
(d) $E m$
(e) $F e$, (f) $P b$, (g) $C r$, (h) $C a$
(i) $A r$, (j) $Z r$, (k) $C e$

- Watch Video Solution

12. How many number of pairs of elements exhibit diagonal relationship.

- Watch Video Solution

13. Among $\mathrm{BECO}_{3}, \mathrm{CaCO}_{3}, \mathrm{SrCO}_{3}$ and BaCO_{3}, how many number than of these compounds are thermally more stable than MgCO_{3} ?
14. $I U P A C$ name for the element with $Z=117$ is and its symbol is \qquad .

D Watch Video Solution

2. In the long form of the perodic table, physical and chemical properties of the elements are a periodic function of their \qquad .
3. The property used by Mendeleev to classify the elements in his periodic table is \qquad .

- Watch Video Solution

4. The elements which constitute $5 f$-block are called
\qquad
\qquad -

- Watch Video Solution

5. Elements of s and p blocks are collectively called
6. The group all members of which are in gaseous
state under ordinary conditions is a group.

- Watch Video Solution

7. Lather Meyer drew a graph showing the relation
between atomic \qquad and atomic \qquad .

D Watch Video Solution
8. Ionic radii with increases in atomic number in a period and \qquad in a group.

- Watch Video Solution

9. The electron gain enthalpy of oxygen is that of sulphur.

- Watch Video Solution

10. On Mulliken scale the average of $I P$ and $E A$ is
known as \qquad .
11. On the Pauling's $E N$ scale, the element next to F is \qquad

- Watch Video Solution

12. The $I E$ of $B e$ is ___ than that of B.

- Watch Video Solution

13. The bond angle in SO_{4}^{2-} ion is
14. The angle between two covalent bonds is maximum for $\left(\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}\right)$ \qquad

- Watch Video Solution

15. Second element of group 1 shows diagonal relationship with the first element of group \qquad .

D Watch Video Solution

16. The $E N$ of the elements $C, N, S i$ and P increases in the order of \qquad .
17. The decreasing ordr $I E$ for elements $L i, B e, C B$ is \qquad

- Watch Video Solution

18. The type of magnetism exhibited by
$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion is \qquad

- Watch Video Solution

19. Among the ions $C l^{\ominus}, S^{2-}$ and $N a^{\oplus}$, the largest

 ion is \qquad
D Watch Video Solution

20. The inner electrons are shielded to a

extent than the outer electrons.

- Watch Video Solution

Exercises (True/False)

1. Number of species that are isoelectronic with F^{\ominus} ion are five.

- Watch Video Solution

2. Number of species that are isoelectronics with $S r^{2+}$ ion are four.

- Watch Video Solution

3. Among the elements, $L i, K, C a, C l$ and $K r$, the
element K has the lowest $I E$ and $K r$ has the
highest $I E$.
4. Be and $M g$ atoms do not impart colour to the flame.

- Watch Video Solution

5. Energy is released when electron is added to an isolated gases anion.

- Watch Video Solution

6. van der Waals radius of chlorine is less than that of covalent radius.

- Watch Video Solution

7. The oxides and hydroxides of alkali metals are strong bases.

- Watch Video Solution

8. Lithium is the lightest metal.
9. As the s character of the hybrid orbital decreases, the $E N$ increases.

D Watch Video Solution

10. Ionic bonds are non-directional while covalent bonds are directional.

- Watch Video Solution

Exercises (Archives) Multiple Correct

1. Which of the following statements is/are true for the long form of the periodic table?
A. It refers the sequence of filling the electrons in
the order of sub-energy level s, p, d and f
B. It helps to predict the stable valency states of
the elements.
C. It refers trends in physical and chemical properties of the elements.
D. It helps to predict the relativity ionicity of the
bond between any two elements.

Answer: A::C::D

- Watch Video Solution

2. Sodium sulphate is soluble in water,whereas barium sulphate is sparingly soluble because
A. the hydration energy of sodium sulphate is more than its lattice energy
B. the lattice energy of barium sulphate is more than its hydration energy
C. the lattice energy has no role to play in solubility

D. the hydration energy of sodium sulphate is

less than its lattice energy.

Answer: A::B

D Watch Video Solution

3. Ionic radii of :

A. $\mathrm{Ti}^{4+}<M n^{7+}$
B. . ${ }^{35} C l^{\ominus}<.{ }^{35} C l^{\ominus}$
C. $K^{\ominus}>C l^{\ominus}$
D. $P^{3+}>P^{5+}$

Answer: D

D Watch Video Solution

Exercises (Archives) Single Correct

1. The correct order of the second ionisation potential of carbon, nitrogen, oxygen and fluorine is
A. $C>N>O>F$
B. $O>N>F>C$
C. $O>F>N>C$
D. $F>O>N>C$

Answer: C

- Watch Video Solution

2. Which of the following element has the highest ionisation enregy?
A. Boron
B. carbon
C. nitrogen
D. oxygen
3. The first ionisation potential in electron volts of nitrogen and oxygen atoms are respectively given by
A. $14.6,13.6$
B. $13.6,14.6$
C. $13.6,13.6$
D. $14.6,14.6$

Answer: A

- Watch Video Solution

4. Atomic radil of fluorine and neon in Angstrom units are respectively given by

A. $0.72,1.60$

B. $16.0,1.60$
C. $0.72,0.72$
D. None of these

Answer: A

D Watch Video Solution

5. The electronegativity of the following elements increases in the order

A. C,N,Si,P

B. $\mathrm{N}, \mathrm{Si}, \mathrm{C}, \mathrm{P}$
C. Si,P,C,N
D. P,Si,N,C

Answer: C

D Watch Video Solution

6. The first ionisation potential of $N a, M g, A l$ and $S i$ are in the order

$$
\begin{aligned}
& \text { A. } N a<M g>A l<S i \\
& \text { B. } N a>M g>A l>S i \\
& \text { C. } N a<M g<A l>S i \\
& \text { D. } N a>M g>A l<S i
\end{aligned}
$$

Answer: A

- Watch Video Solution

7. Which one of the following is the smallest in size?
A. N^{3-}
B. O^{2-}
C. F^{\ominus}
D. $N a^{\ominus}$

Answer: D

- Watch Video Solution

8. Among the following statement is not correct for the periodic classification of elements?
A. $[N e] 3 s^{2} 3 p^{1}$
B. $[N e] 3 s^{2} 3 p^{3}$
C. $[N e] 3 s^{2} 3 p^{2}$
D. $[N e] 3 d^{10} 4 s^{2} 4 p^{3}$

Answer: B

- Watch Video Solution

9. Which of the following statements is not correct for the periodic classification of elements?
A. The properties of elements are the periodic
functions of their atoms numbers.
B. Non-metallic elements are lesser in number than metallic elements.
C. The first ionisation energies of elements along
a period do not vary in a regular manner with
the increase in atomic number.
D. For transtion elements the d-subshells are
filled with electrons monotonically with the increase in atomic number.

Answer: D

D Watch Video Solution

10. Which has the most stable +2 oxidation state ?

A. $S n$
B. Pb
C. Fe
D. $A g$

Answer: B

- Watch Video Solution

11. Which of the following has the maximum number of ampaired electrons ?
A. $M g^{2+}$
B. $T i^{3+}$
C. V^{3+}
D. Fe^{2+}

Answer: D

- Watch Video Solution

12. Which of the following statements is wrong?
A. The first ionisationpotential of $A l$ is less than the first ionisation potential of $M g$.
B. The second ionisation potential of $M g$ is
greater than the second ionisation potential of
$N a$
C. The first ionisation potential of $N a$ is less than the first ionsation potential of $M g$.
D. The third ionisation potential of $M g$ is greater than the third ionisation potential of $N a$

Answer: B

D Watch Video Solution

13. The correct order of acid strength is

$$
\begin{aligned}
& \text { A. } \mathrm{Cl}_{2} \mathrm{O}_{7}>\mathrm{SO}_{3}>\mathrm{P}_{4} \mathrm{O}_{10} \\
& \text { B. } \mathrm{CO}_{2}>\mathrm{N}_{2} \mathrm{O}>\mathrm{SO}_{3} \\
& \text { C. } \mathrm{Na} a_{2} \mathrm{O}>\mathrm{MgO}>\mathrm{Al}_{2} \mathrm{O}_{3} \\
& \text { D. } \mathrm{K}_{2} \mathrm{O}>\mathrm{CaO}>\mathrm{MgO}
\end{aligned}
$$

Answer: A

- Watch Video Solution

14. The correct order of radii is
A. $N<B e<B$
B. $F^{\ominus}<O^{2-}<N^{3-}$
C. $N a<L i<K$
D. $\mathrm{Fe}^{3+}<\mathrm{Fe}^{2+}<\mathrm{Fe}^{4+}$

Answer: B

- Watch Video Solution

15. Amongst $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$, the one with the highest boiling point is :
A. $\mathrm{H}_{2} \mathrm{O}$ because of hydrogen bonding
B. $\mathrm{H}_{2} \mathrm{Te}$ because of higher molecular weight
C. $\mathrm{H}_{2} \mathrm{~S}$ because of hydrogen boning
D. $\mathrm{H}_{2} \mathrm{Se}$ because of lower molecular weight

Answer: A

- Watch Video Solution

16. The set representing the correct order of the first ionisation potential is
A. $K>N a>L i$
B. $B e>M g>C a$
C. $B>C>N$
D. $G e>S i>C$

Answer: B

- Watch Video Solution

17. Which of the following represents the correct order of increasing first ionisation enthalpy for $C a, B a, S e$, and $A r$?
A. $S<S e<C a<B a<A r$
B. $B a<C a<S e<S<A r$

C. $C a<B a<S<S e<A r$

D. $C a<S<B a<S e<A r$

Answer: B

- Watch Video Solution

Exercises (Archives) Assertion Reasoning

1. Assertion: F atom has less negative electron gain enthaply than Cl atom.

Reason: Additional eletrons are repelled more
effectively by 3 p-electronic in $C l$ than by 2 pelectrons is F atom.
A. Statement-I is true, Statement-II is true
,Statement -II is the correct explanation for

Statement-I

B. Statement-I is true ,Statement -II is true,

Statement -II is not the correct explanation for
statement -II
C. Statement-I is true. Statement -II is false.
D. Statement-I is false. Statement -II is true.

Answer: C

- Watch Video Solution

2. Assertion: The first ionisation energy of $B e$ is greater than that of B.

Reason: 2 p -orbital is lower in energy than 2 s -orbital.
A. Statement-I is true, Statement-II is true
,Statement -II is the correct explanation for Statement-I
B. Statement-I is true ,Statement -II is true,

Statement -II is not the correct explanation for statement -II
C. Statement-I is true. Statement -II is false.
D. Statement-I is false. Statement -II is true.

Answer: C

- Watch Video Solution

Exercises (Archives) Fill In The Blanks

1. The energy released when an electron is added to a neutral gaseous atom is called.of atom
2. On Mulliken scale the average of $I P$ and $E A$ is known as \qquad .

- Watch Video Solution

3. Ca^{2+} has a smaller ionic radius than K^{\oplus} because it has ‘"........" .

- Watch Video Solution

4. Compounds that formally contain Pb^{4+} are easily reduced to Pb^{+}. The stability of the lower oxidation state is due to

- Watch Video Solution

Exercises (Archives) True/False

1. The softness of group $I A$ metals increase down the group with increasing atomic number.

- Watch Video Solution

2. In group $I A$ of alkali metals, the ionisation potential decrease down the group,Therefore ,lithium is a poor reducing agent.
3. The decreasing order of electron affinity of $F, C l$ and $B r$ is $F>C l>B r$.

D Watch Video Solution

4. The basic nature of the hydroxides of group 13 decreases progessively down the group.

D Watch Video Solution

Exercises (Archives)Subjective

1. Arrange the following in the given order
(a) Decreasing ionic size, $\mathrm{Mg}^{2+}, \mathrm{O}^{2-}, \mathrm{Na}^{\oplus}, \mathrm{F}^{\oplus}$
(b)Increasing first ionisaiton energy :
$M g, A l, S i, N a$
(c) Increasing bond length $\mathrm{F}_{2}, \mathrm{~N}_{2}, \mathrm{Cl}_{2} \mathrm{O}_{2}$
(d) The order of their increasing size:
$C l^{\ominus}, S^{2-}, C a^{2+}, A l^{3+}$

- Watch Video Solution

2. The $I E_{1}$ of C atom is greater than that of boron
(B) atom, whereas the reverse is true for $I E_{2}$.
Explain?
3. Arrange the following as stated: Increasing order of ionic size
$N^{3-}, N a^{\oplus}, F^{\ominus}, O^{2-}, M g^{2+}$

- Watch Video Solution

4. Arrange the following ions in order of their decreasing ionic radii.

$$
L i^{\oplus}, K^{\oplus}, M g^{2+}, A l^{3+}
$$

