©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

REDOX REACTIONS

Solved Examples

1. Calculate the oxidation number of all the atoms in the following compounds and ions:
a. PbSO_{4}, b. CrO_{4}^{2-}, c. $\mathrm{Sb}_{2} \mathrm{O}_{5}$, d. NH_{4-} (2) SO_{4}

- Watch Video Solution

2. Determine the oxidation number of following underline elements:
a. $H C \underline{N}$
b. $H \underline{N} C$
c. HNO_{3}
d. $K \underline{O}_{2}$
e. $\underline{\mathrm{Fe}_{3} \mathrm{O}_{4}}$
f. $K \underline{I_{3}}$
g. $\underline{N_{3}} H$
h. $\underline{F e}(C O)_{5}$
i. $\underline{\mathrm{Fe}_{0.94} \mathrm{O}}$
j. $\mathrm{NH}_{2} \mathrm{NH}_{2}$
k. $\underline{\mathrm{Fe}} \mathrm{SO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} 6 \mathrm{H}_{2} \mathrm{O}$
I. $\underline{N O C I}$
m. NOClO_{4}
n. $N a_{2}\left[\underline{F e}(C N)_{5} N O\right]$
o. $\left[\underline{\mathrm{Fe}}(\mathrm{NO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] S O_{4}$
p. $N a_{2 \underline{S_{4}}} O_{6}$
q. $\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{SO}}$
r. $\mathrm{NaS}_{2} \mathrm{O}_{3}$
s. CaOCl_{2}.
3. Using stock notation, represent the following compounds:
a. $H A u B r_{4}$,
b. $T l_{2} O$,
c. FeO , d. $\mathrm{Fe}_{2} \mathrm{O}_{3}$, e. CuBr , f. CuO
g. MnO , h. MnO_{2}

- View Text Solution

4. Which of the following species do not show disproportionation reaction and why?
BrO^{\ominus} (hypobromirte ion), $\mathrm{BrO}_{2}^{\ominus}$ (bromite ion), $\mathrm{BrO} \mathrm{O}_{3}^{\ominus}$ (bromate ion), and $\mathrm{BrO}_{4}{ }^{\ominus}$ (perbromate ion)

- Watch Video Solution

5. Classify the following redox reactions:
a. $N_{2}(g)+O_{2}(g) \rightarrow 2 N O(g)$
b. $2 \mathrm{~Pb}(\mathrm{NO})_{3}(s) \rightarrow 2 \mathrm{PbO}(s)+2 \mathrm{NO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
c. $\mathrm{NaH}(\mathrm{s}) \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NaOH}(a q)+\mathrm{H}_{2}(\mathrm{~g})$
d. $2 \mathrm{NO}_{2}(g)+2 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}(a q) \rightarrow \mathrm{NO}_{2}^{\ominus}(a q)+\mathrm{NO}_{3}^{\ominus}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

- Watch Video Solution

6. Why following two reaction proced differently?
$\mathrm{Pb}_{3} \mathrm{O}_{4}+8 \mathrm{HCl} \rightarrow 3 \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
and
$\mathrm{Pb}_{3} \mathrm{O}_{4}+4 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

7. Use the arbitrary method to balance the following equations:
a. $\mathrm{KIO}_{3}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KI}_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{Pb}\left(\mathrm{N}_{3}\right)_{2}+\mathrm{Co}\left(\mathrm{MnO}_{4}\right)_{3} \rightarrow \mathrm{CoO}+\mathrm{MnO}_{2}+\mathrm{Pb}_{3} \mathrm{O}_{4}+\mathrm{NO}$
C.
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{KOH}+\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{Ce}(\mathrm{OH})_{3}+\mathrm{K}_{2} \mathrm{CO}_{3}$
8. Balance the following reactions by oxidation number method

$$
\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HCl} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}
$$

(Watch Video Solution

9. Balance the following reaction by oxidation number method:
$\mathrm{CrO}_{4}^{2-}+\mathrm{I}^{\ominus} \rightarrow \mathrm{Cr}^{3+}+\mathrm{IO}_{3}^{\ominus}$ (in alkaline or basic medium)

- Watch Video Solution

10. Complete and balance the following in acidic medium:
$\mathrm{Ag}^{\oplus}+\mathrm{AsH}_{3} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{3}$

- Watch Video Solution

11. Balance the following reaction in acidic medium.

$$
\mathrm{CuS}+\mathrm{NO}_{3}^{\ominus} \rightarrow \mathrm{cu}^{2+}+\mathrm{S}_{8}=\mathrm{NO}
$$

- Watch Video Solution

12. Balance the following by ion electron method is basic medium. $\mathrm{NO}_{3}^{\ominus}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{\oplus}$.

Watch Video Solution

13. Balance the following by ion electron method (acidic medium).
$\mathrm{Mn}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \rightarrow \mathrm{MnO}_{4}^{\ominus}+\mathrm{HSO}_{4}^{\ominus}$

- Watch Video Solution

14. Balance the following by ion electron method in acidic medium.

$$
\mathrm{CIO}_{3}^{\ominus}+I_{2} \rightarrow I O_{3}+C I^{\ominus}
$$

- Watch Video Solution

15. Which of the following are examples of disproportionation reactions?
a. $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{\oplus}+2 H^{\oplus} \rightarrow A g^{\oplus}+2 \stackrel{\oplus}{N} H_{4}$
b. $\mathrm{Cl}_{2}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{ClO}^{\ominus}+\mathrm{Cl}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
c. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
d. $2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$
e. $\mathrm{Cu}_{2}+2 \mathrm{H}^{\oplus} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$
f. $\mathrm{CuS}+\mathrm{O}_{2} \rightarrow \mathrm{Cu}+\mathrm{SO}_{2}$
g. $2 \mathrm{HCuCl}_{2}+$ dilute with $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}+4 \mathrm{Cl}^{\ominus}+2 \mathrm{H}^{\oplus}$
h. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

- Watch Video Solution

16. Balance the following by ion electron method (basic medium):
$\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{IO}_{3}^{\ominus} \rightarrow \mathrm{I}^{\ominus}+\mathrm{CrO}_{4}^{2-}$

- Watch Video Solution

17. $\mathrm{H}_{2} \mathrm{SO}_{4}$ acts as an oxidising agent, a dehydrating agent, and an acid.

Among each of the following reactions, which behaviour is shown by $\mathrm{H}_{2} \mathrm{SO}_{4}$?
a. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{SO}_{4}($ conc $) \rightarrow 6 \mathrm{C}+6 \mathrm{H}_{2} \mathrm{O}$
b. $5 \mathrm{H}_{2} \mathrm{SO}_{4}($ conc $)+4 \mathrm{Zn} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{Zn}^{2+}+4 \mathrm{SO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{H}_{2} \mathrm{SO}_{4}($ dil $)+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2}+\mathrm{SO}_{4}^{2-}$
d. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{dil}) \mathrm{ZnCO}_{3} \rightarrow \mathrm{Zn}^{2+}+\mathrm{CO}_{2}+\mathrm{CO}_{2}+\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

18. Balance the following reaction by ion electrons method (acidic medium).
$A s_{2} \mathrm{~S}_{3}-\mathrm{NO}_{3}^{\ominus} \rightarrow \mathrm{S}+\mathrm{NO}_{2}+\mathrm{AsO}_{4}^{3-}$

- Watch Video Solution

19. For the reaction
$3 \mathrm{Br}_{2}+6 \mathrm{OH}^{\ominus} \prec \mathrm{Br}^{\ominus}+\mathrm{BrO}_{3}^{\ominus}+3 \mathrm{H}_{2} \mathrm{O}$

Equivalent weight of $B r_{2}$ (molecular weitht M) is
A. $\frac{M}{2}$
B. $\frac{M}{10}$
C. $\left(\frac{M}{2}+\frac{M}{10}\right)$
D. $\left(\frac{M}{6}\right)$

Answer: C

- Watch Video Solution

20. $\mathrm{P}_{4}+3 \stackrel{\ominus}{\mathrm{O}} \mathrm{H}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{2} \mathrm{PO}_{2}^{\ominus}+\mathrm{PH}_{3}$

Equivalent weight of P_{4} is
A. $\frac{M}{4}$
B. $\frac{M}{12}$
C. $\left(\frac{M}{4}+\frac{M}{12}\right)$
D. $\left(\frac{M}{2}+\frac{M}{6}\right)$

D Watch Video Solution

21. $3 \mathrm{KClO}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{KHSO}_{4}+\mathrm{HClO}_{4}+2 \mathrm{ClO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Equivalent weight of KClO_{3} is
A. $\frac{M}{4}$
B. $\frac{M}{2}$
C. $\left(M+\frac{M}{2}\right)$
D. $\left(\frac{M}{4}+\frac{M}{2}\right)$

Answer: C

- Watch Video Solution

22. $\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{MnO}_{4}^{\ominus} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Mn}^{2+}+\mathrm{SO}_{2}$

The equivalent weight of $C u_{2}$ is
A. $\frac{M}{2}$
B. $\frac{M}{6}$
c. $\frac{M}{8}$
D. $\frac{M}{4}$

Answer: C

- Watch Video Solution

23.

$\mathrm{As}_{2} \mathrm{~S}_{3}+7 \mathrm{NaClO}_{3}+12 \mathrm{NaOH} \rightarrow 2 \mathrm{Na}_{3} \mathrm{AsO}_{4}+7 \mathrm{NaClO}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}+$
The equivalent weight of $A s_{2} S_{3}$ is
A. $\frac{M}{24}$
B. M
C. $\frac{M}{2}$
D. $\frac{M}{28}$

- Watch Video Solution

24. The equivalent weight of HNO_{3} (molecular weight $=63$) in the following reaction is
$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
A. $\frac{4 \times 63}{3}$
B. $\frac{63}{5}$
C. $\frac{63}{3}$
D. $\frac{63}{8}$

Answer: D

25. The equivalent weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the following reaction is $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+3 \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
A. 98
B. $\frac{98}{6}$
C. $\frac{98}{2}$
D. $\frac{98}{8}$

Answer: B

- Watch Video Solution

26. The equivalent weight of potash alum
$\left(\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}\right)$ is
A. M
B. $\frac{M}{2}$
C. $\frac{M}{6}$
D. $\frac{M}{8}$

Answer: B

- Watch Video Solution

27. Calculate the number of moles of Cu and HNO_{3} to give NO and NO_{2} in the (2:1) molar ratio.

- Watch Video Solution

28. Balance the following equations:
a. $\mathrm{BaCrO}_{4}+\mathrm{KI}+\mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+\mathrm{I}_{2}+\mathrm{KCl}+\mathrm{CrCl}_{3}+\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{SO}_{2}+\mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{I}_{2}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{CHI}_{3}+\mathrm{HCO}_{2}^{\ominus}+\mathrm{H}_{2} \mathrm{O}+I^{\ominus}$ (Basic)
d. $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$
e. $\ldots \ldots+\mathrm{HC}_{2} \mathrm{O}_{4}^{\ominus} \rightarrow \mathrm{CO}_{3}^{2-}+\mathrm{Cl}^{\ominus}$ (Acidic)
f. $\mathrm{HgS}+\mathrm{HCl}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{HgCl}_{4}+\mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$ g. $\mathrm{Mn}_{2} \mathrm{O}_{7} \rightarrow \mathrm{MnO}_{2}+\mathrm{O}_{2}$

- View Text Solution

29. Balance the following equations:
i. $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{NaClO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{AsO}_{4}+\mathrm{NaClO}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
ii. If M is the molecular mass of $A s_{2} S_{3}$, the equivalent weight of $A s_{2} S_{3}$ is
a. $M / 24$, b. M,c. $M / 2$,d. $M / / 28^{\prime}$.

- Watch Video Solution

30. Write a balanced equaiton when copper reacts with nitric acid, a brown gas is fromed and the solution turns blue.

31. Balance the following redox equaiton by both methods.
$\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{\ominus}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$ (basic medium)

- Watch Video Solution

32. Balance the following reactions:
a.
$U\left(\mathrm{SO}_{4}\right)_{2}+\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{MNSO}_{4}+U \mathrm{O}_{2} \mathrm{SO}_{4}$
b. $\mathrm{Bi}_{2} \mathrm{O}_{3}+\mathrm{NaOH}+\mathrm{NaOCl} \rightarrow \mathrm{NaBiO}_{3}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{Ca}(\mathrm{Ocl})_{2}+\mathrm{KI}+\mathrm{HCI} \rightarrow \mathrm{I}_{2}+\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{KCI}$
d. $\mathrm{MnO}+\mathrm{PbO}_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{HMnO}_{4}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
(e) $\mathrm{CeI}_{3}+\mathrm{KOH}+\mathrm{Cl}_{20 \rightarrow \mathrm{~K}_{2} \mathrm{CrO}_{3}+\mathrm{KIO}_{4}+\mathrm{Kcl}+\mathrm{H}_{2} \mathrm{O}}$
(g) $\mathrm{Na}_{2} \mathrm{HasO}_{3}+\mathrm{NaI}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{KBr}+\mathrm{H}_{3} \mathrm{AsO}_{4}$
(g) $\mathrm{Na}_{2} \mathrm{TeO}_{3}+\mathrm{Nal} \rightarrow \mathrm{NaCl}+\mathrm{Te}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
(h)
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{KOH} \rightarrow \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{K}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(i) $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
(j) $\mathrm{HNO}_{3}+\mathrm{HI} \rightarrow \mathrm{NO}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
(k) $\mathrm{MnSO}_{4}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+\left(\mathrm{NH}_{4}\right)_{4}$
${ }^{(\mathrm{I}) \mathrm{CuO}}+\mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cu}$
m. $\mathrm{NaHSO}_{4}+\mathrm{Al}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{~S}+\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
n. $\mathrm{CoCl}_{2}+\mathrm{Na}_{2} \mathrm{O}_{2}+\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Co}(\mathrm{OH})_{3}+\mathrm{NaCl}$
o.
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}+\mathrm{KCN}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{KCl}+\mathrm{KCNO}+\mathrm{K}_{2}$
p. $\mathrm{Sb}_{2} \mathrm{O}_{3}+\mathrm{KIO}_{3}+\mathrm{HCI}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HSb}(\mathrm{OH})_{6}+\mathrm{KCI}+\mathrm{ICI}$
q. $\mathrm{WO}_{3}+\mathrm{SnCl}_{2}+\mathrm{HCl} \rightarrow \mathrm{W}_{3} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{SnCl}_{6}+\mathrm{H}_{2} \mathrm{O}$
r. $\mathrm{CoCl}_{2}+\mathrm{KNO}_{2}+\mathrm{CI} \rightarrow \mathrm{K}_{3} \mathrm{Co}\left(\mathrm{CNO}_{2}\right)_{6}+\mathrm{NO}+\mathrm{KCI}+\mathrm{H}_{2} \mathrm{O}$
s. $\mathrm{V}(\mathrm{OH})_{4} \mathrm{Cl}+\mathrm{FeCl}_{2}+\mathrm{HCl} \rightarrow \mathrm{VOCl}_{2}+\mathrm{FeCl}_{2}+\mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{O}$
t. $\mathrm{Ag}+\mathrm{KCN}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{KOH}$
u. $\mathrm{KClO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KHSO}_{4}+\mathrm{O}_{2}+\mathrm{ClO}_{2}+\mathrm{H}_{2} \mathrm{O}$
v. $\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{KNO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{CO}_{2}+\mathrm{KNO}_{2}$
w. $A u+C N^{\ominus}+O_{2} \rightarrow\left[A u(C N)_{4}\right]^{\ominus}$ (aqueous solution)
x. $\mathrm{Zn}+\mathrm{ReO}_{4}{ }^{\ominus} \rightarrow \mathrm{Re}^{\ominus}+\mathrm{Zn}^{2+}$ (acidic medium)

- View Text Solution

33. Complete and balance the following equations:
34. $\mathrm{ClO}_{2}+\mathrm{O}_{2}^{2-} \rightarrow \mathrm{ClO}_{2}^{\ominus}+$? (Basic medium)
35. $\mathrm{Cl}_{2}+I O_{3}^{\ominus} \rightarrow I O_{4}^{\ominus}+$? (Basic medium)
36. $\mathrm{Cu}+\mathrm{NO}_{3}^{\Theta}+? \rightarrow \mathrm{Cu}^{2+}+\mathrm{NO}_{2}+$?
37. $\mathrm{H}_{2} \mathrm{~S}+\mathrm{K}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$?
38. $\mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{\ominus} \rightarrow \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+$?
39. $\mathrm{Zn}+\mathrm{HNO}_{3} \rightarrow$? $+\mathrm{N}_{2} \mathrm{O}+$?
40. $\mathrm{HI}+\mathrm{HNO}_{3} \rightarrow ?+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

Ex 21

1. Identify the oxidant and the reductant in the following reactions:
a. $Z n(s)+\frac{1}{2} O_{2}(g) \rightarrow Z n(s)$
b. $Z n(s)+2 H^{\oplus}(a q) \rightarrow Z n^{2+}(a q)+H_{2}(g)$
2. Find the oxidation number of sulphur in the following compounds: $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{~S}_{2} \mathrm{O}_{4}^{2-}, \mathrm{S}_{2} \mathrm{O}_{8}^{2-}, \mathrm{HSO}_{3}^{\ominus}$.

Watch Video Solution

3. Find the oxidation number of Cl in $\mathrm{HCl}, \mathrm{HClO}, \mathrm{ClO}_{4}^{\ominus}$, and $C a(O c l) C l$.

- Watch Video Solution

4. Find the oxidation number of carbon in the following compounds:
$\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{HCOOH}, \mathrm{C}_{2} \mathrm{H}_{2}$.

- Watch Video Solution

5. Find the oxidation number of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and in $\mathrm{Fe}(\mathrm{III})_{4}\left[\mathrm{Fe}(\mathrm{II})(\mathrm{CN})_{6}\right]_{3}$.
6. Identify the oxidant and reductant in the following reactions:
a.

$$
10^{\oplus}(a q)+4 Z n(s)+N O_{3}^{\ominus}(a q) \rightarrow 4 Z n^{2+}(a q)+N H_{4}^{\oplus}(a q)+3 H_{2} O(l)
$$

b. $I_{2}(g)+H_{2} S(g) \rightarrow 2 H l(g)+S(s)$

- Watch Video Solution

7. Identify the species undergoing oxidation and reduction.
a. $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{S}(\mathrm{s})$
b. $3 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+8 \mathrm{Al}(\mathrm{s}) \rightarrow 9 \mathrm{Fe}(\mathrm{s})+4 \mathrm{Al}_{2} \mathrm{O}_{3}(s)$
c. $2 \mathrm{Na}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaH}(\mathrm{s})$

- Watch Video Solution

8. Justify that the reaction
$2 \mathrm{Cu}_{2} \mathrm{O}_{s}+\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s}) \rightarrow 6 \mathrm{Cu}(s)+\mathrm{SO}_{2}(g)$ a redox reaction. Identify the
species oxidised / reduced. Which acts as an oxidanat and which acts as a reductant?

- Watch Video Solution

9. Which of the following represents oxidation?
a. $\mathrm{NO}_{2}^{\ominus} \rightarrow \mathrm{N}_{2}$, b. $V O_{2}^{\ominus} \rightarrow V O_{3}^{\ominus}$
c. $\mathrm{ClO}^{\ominus} \rightarrow \mathrm{Cl}^{\ominus}$, d. $\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$

Watch Video Solution

10. Using stock notation, represent the following compounds and write their names also.
a. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$,
b. $\mathrm{Mn}_{2} \mathrm{O}_{7}$,
c. $\mathrm{V}_{2} \mathrm{O}_{5}$, d. $\mathrm{K}_{2} \mathrm{CrO}_{4}$
e. $\mathrm{Cr}_{2} \mathrm{O}_{3}$, f. FeSO_{4}, g. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, h. CuBr_{2}
i. $C u_{2} B r_{2}$

- Watch Video Solution

1. Indicate the species which are oxidised and reduced in the following reactions:
(a) $\mathrm{CN}^{\ominus}+\mathrm{OCl}^{\ominus} \rightarrow \mathrm{N}_{2}+\mathrm{HCO}_{3}^{\ominus}+\mathrm{Cl}^{\ominus}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{O}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(c) $I^{\ominus}+O_{3} \rightarrow O_{2}+I_{2}$
(d) $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{Cl}_{2} \rightarrow \mathrm{HSO}_{4}^{\ominus}+\mathrm{Cl}^{\ominus}$
(e) $\mathrm{C}+\mathrm{ZnO} \rightarrow \mathrm{Zn}+\mathrm{CO}$

- Watch Video Solution

2. What is the oxidation stae of $C l$ in
(a) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$, (b) HClO_{4}
(c) $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$, (d) $\mathrm{Cl}_{2} \mathrm{O}_{7}$

- Watch Video Solution

3. Balance the following half-reactions in acidic medium:
(a) $I O_{3}^{\ominus}(a q) \rightarrow I_{3}^{\ominus}(a q)$
(b) $\mathrm{NO}_{3}^{\ominus}(\mathrm{aq}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
(c) $V O^{2-}(a q) \rightarrow B^{3+}(a q)$

- Watch Video Solution

4. Write balanced redox reactions for each of the following reactions:
(a) Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ reacts with hydroiodic acid (HI) to produce potassium iodide, chromium (III) iodide, and solid iodine, $I_{2}(s)$.
(b) A purple solution of aqueous potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ reacts with aqueous sodium sulphite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$ in basic solution to yield the green magnanate ion $\left(\mathrm{MnO}_{4}^{2-}\right)$ and sulphate ion $\left(\mathrm{SO}_{4}^{2-}\right)$. (c) $\mathrm{Sn}^{2+}(a q)$ reduce $I_{4}^{\Theta}(a q)$ to $I^{\ominus}(a q)$ and is oxidised to $S n^{4+}$.
(d) $\mathrm{H}_{2} \mathrm{O}_{2}(a q)$ oxidises $\mathrm{Mn}^{2+}(a q)$ to MnO_{2} in basic medium.
(e) $\mathrm{H}_{2} \mathrm{O}_{2}(a q)$ reduces $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)$ to green coloured $\mathrm{Cr}^{3+}(a q)$ in acidic medium.
5. Balance the following chemical reactions (by ion electron method)
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{MnO}_{4}^{\ominus} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
(b) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-+} \stackrel{\mathrm{N}_{2} \mathrm{H}_{4}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right)\right]^{4-}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}}{ }$
(c) $\mathrm{CN}^{\ominus}+\mathrm{MnO}_{4}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MnO}_{2}+\mathrm{CNO}^{\ominus}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
(d) $\mathrm{CuO}+\mathrm{NH}_{3} \rightarrow \mathrm{Cu}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$
(e) $\mathrm{HI}+\mathrm{HNO}_{3} \rightarrow \mathrm{I}_{2}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
(f) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \rightarrow \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

6. Write balanced ionoic half equation (oxidation and reduction) for each of the following reactions:
(a) $\mathrm{Mn}^{3+}(a q) \rightarrow \mathrm{MnO}_{2}(s)+\mathrm{Mn}^{2+}(a q)$
(b) $\mathrm{Mn}(\mathrm{s})+\mathrm{NO}_{3}^{\ominus}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{NO}_{2}(g)$
(c) $\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{Fe}^{2+}(a q) \rightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
(d) $\mathrm{Te}(s)+\mathrm{NO}_{3}^{\ominus}(a q) \rightarrow \mathrm{TeO}_{2}(s)+\mathrm{NO}(g)$

Watch Video Solution

7. Balance the following half reactions in basis medium:
(a) $\mathrm{CrO}_{4}^{2-}(a q) \rightarrow \mathrm{Cr}(\mathrm{OH})_{4}^{\ominus}(a q)$
(b) $C I O^{\ominus}(a q) \rightarrow C l^{\ominus}(a q)$
(c) $\mathrm{Bi}^{3+}(a q) \rightarrow \mathrm{BiO}_{3}^{\Theta}(a q)$

Watch Video Solution

8. Write balanced net ionic equations for the following reactions in basic solution:
(a) $\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{ClO}_{4}^{\ominus}(a q) \rightarrow \mathrm{ClO}_{2}^{\ominus}(a q)+\mathrm{O}_{2}(g)$
a. $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{ClO}_{4}{ }^{\ominus}(\mathrm{aq}) \longrightarrow \mathrm{ClO}_{2}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$
b. $\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})$
(b)

(c) $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{N}_{2} \mathrm{H}_{4}(a q) \rightarrow \mathrm{Cu}(s)+\mathrm{N}_{2}(g)$
(d) $\mathrm{MnO}_{4}^{\ominus}+I O_{3}^{\ominus}(a q) \rightarrow M n O_{2}(s)+I O_{4}^{\ominus}(a q)$
9. Balanced the following equations:
(a) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}^{\oplus}+\mathrm{Fe}^{2+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Fe}^{3+}$
(b) $\mathrm{Ibr}+\mathrm{BrO}_{3}^{\Theta}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{IO}_{3}^{\Theta}+\mathrm{Br}^{\ominus}+\mathrm{H}^{\oplus}$
(c) $I^{\ominus}+I O_{3}^{\ominus}+H^{\oplus} \rightarrow \mathrm{H}_{2} \mathrm{O}+I_{2}$
(d) $\mathrm{O}_{2}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightarrow \stackrel{\ominus}{\mathrm{O}} \mathrm{H}+\mathrm{O}_{2}$ superoxide ion
(e) $\mathrm{HS}{ }^{\ominus}+\mathrm{HSO}_{3}^{\ominus} \rightarrow \mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O}$

(Watch Video Solution

10. For the redox reaction:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{\oplus}+\mathrm{Ni} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Ni}^{2}+\mathrm{H}_{2} \mathrm{O}
$$

The correct coefficient of the reactants for the balanced reaction are:
A. $C r_{2} O_{7}^{2-}=1, N i=3, H^{\oplus}=14$
B. $C r_{2} O_{7}^{2-}=3, N i=3, H^{\oplus}=12$
C. $C r_{2} O_{7}^{2-}=2, N i=3, H^{\oplus}=14$
D. $C r_{2} \mathrm{O}_{7}^{2-}=1, N i=1, H^{\oplus}=16$

- Watch Video Solution

11. SO_{2} under atomspheric condition changes to SO_{x}^{2-}. If oxidation number of S in $S O_{x}^{2-}$ is +6 , what is the value of x in $S O_{x}^{2-}$?
A. 2
B. 1
C. 3
D. 4

Answer: A

- Watch Video Solution

12. Which of the following can act as an oxidising agent as well as a reducing agent?
13. $\mathrm{H}_{2} \mathrm{O}_{2}$, 2. $\mathrm{H}_{2} \mathrm{~S}$, 3. SO_{2}, 4. HNO_{2}
A. $1,2,3$
B. 2, 3, 4
C. 1, 3, 4
D. All

Answer: C

- Watch Video Solution

13. Sulphur has highest oxidation state in
A. SO_{2}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
D. $N a_{2} S_{2} \mathrm{O}_{3}$
14. The number of electrons involved in the reduction of nitrate $\left(\mathrm{NO}_{3}^{\ominus}\right)$ to hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is
A. 8
B. 7
C. 3
D. 5

Answer: B

- Watch Video Solution

15. Oxidation number of P in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
A. +2
B. +3
C. +1
D. -1

Answer: C

- Watch Video Solution

16. Which of the following is a disproportional reactions ?
A. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{\oplus} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{2}^{2-}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CaCO}_{3}+2 \mathrm{H}^{\oplus} \rightarrow \mathrm{Ca}^{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
D. $\mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}^{\oplus} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

17. In balancing the half reaction
$C N^{\ominus} \rightarrow C N O^{\ominus}$ (skeltan)
The number of electrosn that must be added is
A. 1 on the right
B. 0
C. 1 on the left
D. 2 on the right

Answer: D

- Watch Video Solution

18. Which of the following changes requires a reducing agent ?
A. $\mathrm{H}_{3} \mathrm{AsO}_{3} \rightarrow \mathrm{HAsO}_{4}^{2-}$
B. $\mathrm{BrO}_{3}^{\ominus} \rightarrow \mathrm{BrO}^{\ominus}$
C. $\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
D. $\mathrm{Al}(\mathrm{OH})_{3} \rightarrow\left[\mathrm{Al}[\mathrm{OH})_{4}\right]^{\ominus}$

Answer: B

- Watch Video Solution

Exercise

1. In the following reactions:
a. $3 \mathrm{MnO}_{2}+4 \mathrm{Al} \rightarrow 3 \mathrm{Mn}+2 \mathrm{Al}_{2} \mathrm{O}_{3}$
b. $2 \mathrm{MnO}_{4}^{\ominus}+16 \mathrm{H}^{\oplus}+10 \mathrm{Cl}^{\ominus} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

Which species is reduced and which is oxidised?

Watch Video Solution

2. Which of the following are redox reactions?
A. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
B. $\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl} \rightarrow \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Ag}^{\oplus}+\mathrm{I}^{-} \rightarrow \mathrm{Agl}$
D. Disproportionation of $C u^{\oplus}$ in aqueous solution.

Answer: A:D

- Watch Video Solution

3. What is the sum of oxidation numbers of various elements in $\mathrm{HCO}_{3}^{\ominus}$ (bicarbonate) ion?

- Watch Video Solution

4. What is the oxidation numbr of iodine in each of the following compounds: $I F_{7}, I F_{5}, \mathrm{KI}, \mathrm{I}_{2}, \mathrm{ICI}, \mathrm{HIO}_{4}$?

- Watch Video Solution

5. What is the oxidation number of $M n$ is $\mathrm{KMnO}_{4} \quad \mathrm{~K}_{2} \mathrm{MNO}_{4} \quad \mathrm{MnSO}_{4} \quad \mathrm{MnO}_{2}$, and $\mathrm{Mn}_{3} \mathrm{O}_{4}$?

- Watch Video Solution

6. What is the oxidation number of $M g$ and N in magnesium nitride?

- Watch Video Solution

7. What is the oxidation number and valency of carbon in methanal (HCHO)?

- Watch Video Solution

8. Write the following redox reactions using half equations:
a. $\mathrm{Zn}(\mathrm{s})+\mathrm{PbCl}_{2}(a q) \rightarrow \mathrm{Pb}(s)+\mathrm{ZnCl}_{2}(a q)$.
b. $2 \mathrm{Fe}^{3+}(a q)+2 I^{\theta}(a q) \rightarrow I_{2}(a q)+2 \mathrm{Fe}^{2+}(a q)$
c. $2 N a(s)+C l_{2}(g) \rightarrow 2 N a C l(s)$
d. $M g(s)+C l_{2}(g) \rightarrow M g C l_{2}(s)$
e. $Z n(s)+2 H^{\oplus}(a q) \rightarrow Z n^{2+}(a q)+H_{2}(g)$.

(Watch Video Solution

9. In the reaction given in euaqution 8 , mention:
I. Which reactant is oxidised? To what?
II. Which reactant is the oxidiser?
III.Which reactant is reduced? To what?
IV. What reactant is the reducer?

- Watch Video Solution

10. Write correctly balanced equaitons for the following redox reaction.

Using half reaction:
a. $\mathrm{H}_{2} \mathrm{~S}+\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+}+S \downarrow+\mathrm{H}^{\oplus}$
b. $I^{\ominus}+I O_{3}^{\ominus}+H^{\oplus} \rightarrow I_{2}+H_{2} O$
c. $\mathrm{Bi}(\mathrm{s})+\mathrm{NO}_{3}^{\ominus}+\mathrm{H}^{\oplus} \rightarrow \mathrm{NO}_{2}+\mathrm{Bi}^{3+}+\mathrm{H}_{2} \mathrm{O}$
d. $I^{\ominus}+\mathrm{O}_{2}(g)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{I}_{2}+\stackrel{\ominus}{O} \mathrm{H}$
e. $C u(s)+A u^{\oplus} \rightarrow A u(s)+C u^{2+}$

- Watch Video Solution

11. In question 10, state which element is oxidised by which element and what is reduced to what in the reactions expressed by the respective equaitons.

- Watch Video Solution

12. Balance the following redox reactions.

Coppoer reacts with nitric acid, a brown, gas is formed and solution turns blue.
a. $\mathrm{Cu}+\mathrm{NO}_{3}^{\ominus} \rightarrow \mathrm{NO}_{2}+\mathrm{Cu}^{2+}$
b. $\mathrm{Cr}(\mathrm{OH})_{4}^{\ominus}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$ (basic solutions)
c. $\mathrm{SnO}_{2}+\mathrm{C} \rightarrow \mathrm{Sn}+\mathrm{CO}$
d. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{C} \rightarrow \mathrm{Fe}+\mathrm{CO}$
13. Write correctly balanced half reactions and overall equations for the following skeletal equations:
a. $\mathrm{NO}_{3}^{\ominus}+\mathrm{Bi}(s) \rightarrow \mathrm{Bi}^{3+}+\mathrm{NO}_{2}$ (in acid solution)
b. $\mathrm{Fe}(\mathrm{OH})_{3}(s)+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}(\mathrm{OH})(s)+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ (in basic medium)
c. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{Cr}^{3+}$ (in acid solutions)
d. $\mathrm{MnO}_{4}^{\ominus}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2} \uparrow$ (in acid solutions)
e. $\mathrm{Al}(s)+\mathrm{NO}_{3}^{\ominus} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{\ominus}+\mathrm{NH}_{3}$ (in basic solution)
f. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cr}^{3+}$ (in acid solution)
g. $\mathrm{MnO}_{4}^{\Theta}+\mathrm{Br}^{\ominus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Br}_{2}$ (in acid solution)
h. $\mathrm{PbO}_{2}+\mathrm{Cl}^{\ominus} \rightarrow \mathrm{ClO}^{\ominus}+\left[\mathrm{Pb}(\mathrm{OH})_{3}\right]^{\ominus}$ (in basic solution)

- Watch Video Solution

14. Starting with correctly balanced half reactions, write the overall net ionic reaction in the following changes:
a. Chloride ion is oxidised to Cl_{2} by $\underline{\mathrm{Mn}} \mathrm{O}_{4}^{\ominus}$ in acid solution.
b. Nitrous acid $\left(\mathrm{H}_{\mathrm{NO}}^{2}\right)$ reduce $\mathrm{MnO}_{4}^{\ominus}$ in acidsolution.
c. Nitrous acid ($H \underline{N O_{2}}$) oxidises I^{\ominus} to I_{2} in acid solution.
d. Chlorate ion $\left(\underline{\mathrm{ClO}_{3}^{\ominus}}\right)$ oxidises Mn^{2+} to $\mathrm{MnO}_{2}(s)$ in acid solution.
e. Chromine ion $\left(\underline{\mathrm{C}} r \mathrm{O}_{3}^{\ominus}\right)$ is oxidation numbers of the basic solution.

Also find out the change in oxidation numbers of the underline atoms.

- Watch Video Solution

15. Assign oxidation numbers to the elements in the following ionic compounds.
a. NaBr , b. MgO , c. AlF_{3}

- Watch Video Solution

16. Calculate the oxidation number of the underlines elements:
a. $\underline{P} H_{3}$, b
b. $\underline{M g O}$,
c. $\mathrm{H}_{\underline{N O}}^{3}$, d. $\mathrm{H}_{3} \underline{P} O_{4}$

- Watch Video Solution

17. Calculate the oxidation number of the underlined elements in the following compounds:
a. KMnO_{4}, b. $\underline{\mathrm{Cr}} \mathrm{O}_{2} \mathrm{Cl}_{2}$, c. $\mathrm{Na} \underline{\mathrm{I}} \mathrm{O}_{3}$

- Watch Video Solution

18. What is the oxidation number of the underlined elements?
a. $\mathrm{H}_{2} \underline{\mathrm{~S}}$, b. $\mathrm{H}_{2} \underline{S_{O}} \mathrm{O}_{4}$ c. $\mathrm{Na} \underline{\mathrm{S}_{2}} \mathrm{O}$
d. $\mathrm{Na}_{2} \underline{\mathrm{~S}_{4}} \mathrm{O}_{6}$ e. $\mathrm{Ca}\left(\mathrm{H} \underline{\mathrm{S}} \mathrm{O}_{3}\right)_{2}$ f. $\mathrm{H}_{2} \underline{\mathrm{~S}_{2}} \mathrm{O}_{8}$

e. $\mathrm{Ca}\left(\mathrm{HSO}_{3}\right)_{2}$

g. $\mathrm{H}_{2} \underline{\mathrm{~S}} \mathrm{O}_{5}$, h.
, i. $\underline{N} H_{4} \underline{N} O_{3}$, j. $H-\underline{C} \equiv N$, k. $H-N \underset{\longrightarrow}{=}$, l. $\underline{H} \underline{N} O_{4}$

- Watch Video Solution

19. Balance the following equation stepwise:
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{2+}++\mathrm{H}^{\oplus} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
20. Balance the following equation in a basic solution stepwise:
$\mathrm{NO}_{3}^{\ominus}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{\oplus}$

Watch Video Solution

21. Balance the following equations by the ion electron method:
a. $\mathrm{MnO}_{4}^{\ominus}+\mathrm{Cl}^{\ominus}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
b. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{I}^{\ominus}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
c. $\mathrm{H}^{\oplus}+\mathrm{SO}_{4}^{2-}+I^{\ominus} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
d. $\mathrm{MnO}_{4}^{\ominus}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

22. Balance the following equations by oxidation number method:
a. $\mathrm{Fe}^{2+}+S n^{+2} \rightarrow S n^{4+}+f e^{2+}$
b. $\mathrm{MnO}_{4}^{\ominus}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}+\mathrm{Mn}^{2+}$
c. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{I}^{\ominus} \rightarrow 2 \mathrm{Cr}^{3+}+\mathrm{I}_{2}$
d. $\mathrm{Zn}+\mathrm{NO}_{3}^{\ominus} \rightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{\oplus}$
e. $\mathrm{MnO}_{4}^{\ominus}+\mathrm{SO}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{MnO}_{2}$
f. $C l_{2}+I O_{3}^{\ominus} \rightarrow I O_{4}^{\ominus}$ (in basic medium)

- Watch Video Solution

23. Balance the following equations by ion electron method:
a. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}+\mathrm{H}^{\oplus} \rightarrow 2 \mathrm{Cr}^{3+}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}^{\oplus}+\mathrm{NO}_{3}^{\ominus} \rightarrow \mathrm{Cu}^{2+}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

24. Balance the following equations by ion electron (half reaction) method for each of the following equations:
a. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{\ominus}+\mathrm{H}^{\oplus} \rightarrow \mathrm{H}_{2} \mathrm{O}+{ }_{2}$
c. $\mathrm{AsO}_{3}^{3-}+\mathrm{H}^{\oplus}+\mathrm{IO}_{3}^{\ominus} \rightarrow \mathrm{AsO}_{4}^{3-}+I^{\ominus}$ (in acid medium)
d. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{\oplus}+\mathrm{Cl}^{\ominus} \rightarrow 3 \mathrm{Cr}^{3+}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
e. $\mathrm{MnO}_{4}^{\ominus}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}$ (in alkaline medium)

- Watch Video Solution

25. Indicate in the following reactions which of the reactants, if any, are oxidised or reduced:
a. $2 \mathrm{HI}(a q)+\mathrm{Cl}_{2}(a q) \rightarrow \mathrm{I}_{2}(s)+2 \mathrm{HCl}(a q)$
b. $2 \mathrm{MnO}_{2}+4 \mathrm{Al} \rightarrow 3 \mathrm{Mn}+2 \mathrm{Al}_{2} \mathrm{O}_{3}$
c. $2 \mathrm{MnO}_{4}^{\ominus}+10 \mathrm{Cl}^{\ominus}+16 \mathrm{H}^{\oplus} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
d. $2 \mathrm{Cu}^{2+}+2 \mathrm{Br}^{\ominus}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CuBr}+4 \mathrm{H}^{\oplus}$

- Watch Video Solution

26. One mole of $N_{2} H_{4}$ loses ten moles of electrons to form a new compound A. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in A ? (There is no change in the oxidation state of hydrogen.)
A. +1
B. -3
C. +3
D. +5

Answer: C

- Watch Video Solution

27. In the reaction:
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{\oplus}+6 \mathrm{I}^{\ominus} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}$
Which element is reduced?
A. $C r$
B. H
C. O
D. I

Answer: A
28. In the following equation, MnO_{2} acts as
$\mathrm{MnO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{E}^{-} \rightarrow \mathrm{MnO}_{2}+4 \stackrel{\ominus}{O} \mathrm{H}$
A. Oxidising agent
B. Reducing agent
C. Both oxidising and reducing agent.
D. Neither oxidising nor reducing agent.

Answer: B

- Watch Video Solution

29. Balance the following equations by ion electron method:
a. $\mathrm{CuO}+\mathrm{NH}_{3} \rightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
b. $\mathrm{HNO}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{HIO}_{3}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
30. Consider the following unbalanced redox reaction:
$\mathrm{H}_{2} \mathrm{O}+\mathrm{AX}+\mathrm{BY} \rightarrow \mathrm{HA}+\mathrm{OY}+\mathrm{X}_{2} B$
The oxidation number of X is -2 and niether X nor water is involved in the redox process.

The elements(s) undergoing oxidation is / are
A. A
B. B
C. Y
D. B or Y or both

Answer: D

(D) Watch Video Solution

2. Consider the following unbalanced redox reaction:
$\mathrm{H}_{2} \mathrm{O}+\mathrm{AX}+\mathrm{BY} \rightarrow \mathrm{HA}+\mathrm{OY}+\mathrm{X}_{2} B$
The oxidation number of X is -2 and niether X nor water is involved in the redox process.

The positive oxidation states of B and Y in $B Y$ are respectively,
A. $+1,-1$
B. $+2,-2$
C. $+3, \quad-3$
D. All of these

Answer: D

- Watch Video Solution

3. Consider the following unbalanced redox reaction:
$\mathrm{H}_{2} \mathrm{O}+\mathrm{AX}+\mathrm{BY} \rightarrow \mathrm{HA}+\mathrm{OY}+\mathrm{X}_{2} B$
The oxidation number of X is -2 and niether X nor water is involved in
the redox process.
If the above reaction is balanced with smallest whole number coefficients, the sum of the stoichiometric coefficients of all the compound is
A. 9
B. 8
C. 7
D. 6

Answer: B

- Watch Video Solution

4. Oxidation reaction involves loss of electrons, and reduction reaction involves gain of electrons. The reaction in which a species disproportinates into two oxidation states (lower and higher) is called disproportionation reaction.

Which of the following statements is wrong?
A. An acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ paper on being exposed to SO_{2} turns green.
B. Mercuric chloride and stannous chloride cannot exist as such.
C. Iron turning on addition to CuSO_{4} solution decolourises the blue colour.
D. $\left[\mathrm{CuI}_{4}\right]^{2-}$ is formed but $\left[\mathrm{CuCl}_{4}\right]^{2-}$ is not.

Answer: D

- Watch Video Solution

5. Oxidation reaction involves loss of electrons, and reduction reaction involves gain of electrons. The reaction in which a species disproportinates into two oxidation states (lower and higher) is called disproportionation reaction.

Which of the following statements is wrong?
A. Acidified KMnO_{4} solutions decolourises on the addition of sodium oxalate.
B. In the reaction between $B r_{2}$ and $C s I, B r_{2}$ is an oxidising agent and $C s I$ is a reducing agent.
C. In the reaction $2 \mathrm{~K}_{2} \mathrm{SO}_{3}+I_{2} \rightarrow 2 \mathrm{KI}+K_{2} S_{4} O_{6}$, the change in the oxidation number of S is 0.5 .
D. C has the same oxidation number in both CH_{4} and CO_{2}

Answer: D

- Watch Video Solution

6. Oxidation reaction involves loss of electrons, and reduction reaction involves gain of electrons. The reaction in which a species disproportinates into two oxidation states (lower and higher) is called disproportionation reaction.

Which of the following statements is correct?
A. An element in the lowest oxidation state acts only as a reducing agent.
B. An element in the highest oxidation state acts only as a reducing agent.
C. The oxidation number of V is $R b_{4} K\left(H V_{10} O_{28}\right) i s+4$.
D. The oxidation number and valency of $H g$ in calomel is +1

Answer: A

D Watch Video Solution

7. Oxidation reaction involves loss of electrons, and reduction reaction involves gain of electrons. The reaction in which a species disproportinates into two oxidation states (lower and higher) is called disproportionation reaction.

Which of the following statements is wrong?
A. The algebraic sum of the oxidation numbers of all atoms in an iron is zero.
B. The oxidation number is an arbitrary number. It can have positive, negative, zero, or fractional values.
C. When a negative ion changes to neutral species, the process is oxidation.
D. The oxidation number of phosphorous can very from $-3 t o+5$.

Answer: A

- Watch Video Solution

8. Oxidation reaction involves loss of electrons, and reduction reaction involves gain of electrons. The reaction in which a species disproportinates into two oxidation states (lower and higher) is called disproportionation reaction.

Which of the following is not a dispropotional reaction?
A. $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}+\mathrm{Br}_{2} \rightarrow \mathrm{Br}^{\ominus}+\mathrm{BrO}_{3}^{\ominus}$
B. $\mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}^{\oplus} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$
C. $(\mathrm{CN})^{\ominus} \rightarrow \mathrm{CO}_{3}^{2-}+\mathrm{NO}_{3}^{\ominus}$

ө
D. $(\mathrm{CN})_{2}+2 \mathrm{OH} \rightarrow \mathrm{CN}^{\ominus}+\mathrm{CNO}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

9. The valancy of carbons is generally 4 , but its oxidation state may be $-4,-2,0,+2,-1$, etc. In the compounds containing C, H, and O, the oxidation number of C is calculated as

Oxidation number of $C=\frac{2 n_{O}-n_{H}}{n_{C}}$
Where n_{O}, n_{H} and n_{C} are the numbers of oxygen, hydrogen, and carbons, atoms, respectively.

Teh oxidation of C in diamonds is
A. 0
B. +1
C. -1
D. +2

Answer: A

- Watch Video Solution

10. The valancy of carbons is generally 4 , but its oxidation state may be $-4,-2,0,+2,-1$, etc. In the compounds containing C, H, and O, the oxidation number of C is calculated as
Oxidation number of $C=\frac{2 n_{O}-n_{H}}{n_{C}}$
Where n_{O}, n_{H} and n_{C} are the numbers of oxygen, hydrogen, and carbons, atoms, respectively.

In which of the following compounds is the valency of C two?
A. Ketenes
B. Alkenes
C. Allenes
D. Carbenes

Answer: D

- Watch Video Solution

11. The valancy of carbons is generally 4 , but its oxidation state may be $-4,-2,0,+2,-1$, etc. In the compounds containing C, H, and O, the oxidation number of C is calculated as

Oxidation number of $C=\frac{2 n_{O}-n_{H}}{n_{C}}$
Where n_{O}, n_{H} and n_{C} are the numbers of oxygen, hydrogen, and carbons, atoms, respectively.

In which of the following compounds is the oxidation state of carbon is zero?
A. CH_{4}
B. $\mathrm{CH}_{3} \mathrm{OH}$
c. HCOOH
D. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Answer: D

- Watch Video Solution

12. The valancy of carbons is generally 4 , but its oxidation state may be $-4,-2,0,+2,-1$, etc. In the compounds containing C, H, and O, the oxidation number of C is calculated as

Oxidation number of $C=\frac{2 n_{O}-n_{H}}{n_{C}}$
Where n_{O}, n_{H} and n_{C} are the numbers of oxygen, hydrogen, and carbons, atoms, respectively.

In which of the following compounds is the oxidation state of C highest?
A. HCOOH
B. HCHO
C. $\mathrm{CH}_{3} \mathrm{OH}$
D. CH_{4}

Answer: A

13. The valancy of carbons is generally 4, but its oxidation state may be
$-4,-2,0,+2,-1$, etc. In the compounds containing C, H, and O, the oxidation number of C is calculated as

Oxidation number of $C=\frac{2 n_{O}-n_{H}}{n_{C}}$
Where n_{O}, n_{H} and n_{C} are the numbers of oxygen, hydrogen, and carbons, atoms, respectively.

In which of the following compounds is the oxidation state of C a fraction?
A. $C O$
B. CO_{2}
C. Carbon suboxide
D. All

Answer: C

14. Redox equations are balanced either by ion-electron method or by oxidation number method. Both methods lead to the correct from of the balanced equation. The ion electron methodd has two advantages. So some chemists prefer to use the ion-electron method for redox reactions carried out in dilute aqueous solutions, where free ions have more or less independent existance.

The oxidation state method for redox reactions is mostly used for solid chemicals or for reactions in concentrated acid media.

For the reaction
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{\ominus}$
the n-factor is
A. 1
B. 11
C. $\frac{5}{3}$
D. 61

Answer: D

15. Redox equations are balanced either by ion-electron method or by oxidation number method. Both methods lead to the correct from of the balanced equation. The ion electron methodd has two advantages. So some chemists prefer to use the ion-electron method for redox reactions carried out in dilute aqueous solutions, where free ions have more or less independent existance.

The oxidation state method for redox reactions is mostly used for solid chemicals or for reactions in concentrated acid media.

For the reaction
$\mathrm{FeS}_{2} \rightarrow \mathrm{Fe}^{3+}+\mathrm{SO}_{2}$
the n-factor is
A. 1
B. 11
C. 28
D. 61

Answer: B

D Watch Video Solution

16. Redox equations are balanced either by ion-electron method or by oxidation number method. Both methods lead to the correct from of the balanced equation. The ion electron methodd has two advantages. So some chemists prefer to use the ion-electron method for redox reactions carried out in dilute aqueous solutions, where free ions have more or less independent existance.

The oxidation state method for redox reactions is mostly used for solid chemicals or for reactions in concentrated acid media.

For the reaction $\mathrm{Br}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaBrO}_{3}+\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{O}$
n-factor is
A. 11
B. 28
C. 61
D. $\frac{5}{3}$

Answer: D

- Watch Video Solution

17. Redox equations are balanced either by ion-electron method or by oxidation number method. Both methods lead to the correct from of the balanced equation. The ion electron methodd has two advantages. So some chemists prefer to use the ion-electron method for redox reactions carried out in dilute aqueous solutions, where free ions have more or less independent existance.

The oxidation state method for redox reactions is mostly used for solid chemicals or for reactions in concentrated acid media.

For the reaction
$A s_{2} S_{3} \rightarrow A s^{5+}+\mathrm{SO}_{4}^{2-}$
the n-factor is
A. 11
B. 28
C. 61
D. $\frac{5}{3}$

Answer: B

- Watch Video Solution

18. Cartain materials such as turpentine oil, unsaturated organic compound, phosophorus, metals such as $Z n$, and Pb , etc., can absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to $\mathrm{H}_{2} \mathrm{O}_{2}$. This is called autoxidation. Intermolecular redox reactions are those in which one molecule is oxidised and the other is reduced. Intramolecular redox reactions are those in which oen atom of a molecule is oxidised and the other atom is reduced.

Which of the following reactions is//are intramolecular redox reactions (s) ?
A. $2 \mathrm{Mn}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}$
B.
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+30 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}^{3+}+6 \mathrm{CO}_{2}+6 \mathrm{NO}_{3}^{\ominus}+60 \mathrm{H}^{\oplus}+60 e$
C. $2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$
D. $\mathrm{PhCHO} \xrightarrow{\mathrm{NaOH}} \mathrm{PhCH}_{2} \mathrm{OH}+\mathrm{PhCOONa}$

Answer: A:C

- Watch Video Solution

19. Cartain materials such as turpentine oil, unsaturated organic compound, phosophorus, metals such as $Z n$, and $P b$, etc., can absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to $\mathrm{H}_{2} \mathrm{O}_{2}$. This is called autoxidation. Intermolecular redox reactions are those in which one molecule is oxidised and the other is reduced. Intramolecular redox reactions are those in which oen atom of a molecule is oxidised and the other atom is reduced.

Which of the following reactions is / are disproportionation reactions (s)
?
A. $\mathrm{Cl}_{2}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{Cl}^{\ominus}+\mathrm{ClO}^{\ominus}+\mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{HCuCl}_{2} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+} 4 \mathrm{Cl}^{\ominus}+2 \mathrm{H}^{\oplus}$
C. $\mathrm{HCHO}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOO}^{\ominus}$
D. $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$

Answer: A: B::C

- Watch Video Solution

20. Cartain materials such as turpentine oil, unsaturated organic compound, phosophorus, metals such as $Z n$, and Pb , etc., can absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to $\mathrm{H}_{2} \mathrm{O}_{2}$. This is called autoxidation. Intermolecular redox reactions are those in which one molecule is oxidised and the other is reduced. Intramolecular redox reactions are those in which oen atom of a molecule is oxidised and the
other atom is reduced.

Which of the following reactions is / are intermolecular redox reaction (s)
A. $5 \mathrm{KI}+\mathrm{KIO}_{3}+6 \mathrm{HCl} \rightarrow 3 \mathrm{I}_{2}+6 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Fe}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{NH}_{3}+\mathrm{Fe}(\mathrm{OH})_{2}$
C. $\mathrm{NO}_{3}^{\ominus}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{\oplus} \rightarrow \mathrm{NH}_{4}^{\oplus}+\mathrm{HSO}_{4}^{\ominus}$
D. $\mathrm{CrO}_{7}^{2-}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$ s

Answer: A::B::C

- Watch Video Solution

21. Cartain materials such as turpentine oil, unsaturated organic compound, phosophorus, metals such as $Z n$, and $P b$, etc., can absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to $\mathrm{H}_{2} \mathrm{O}_{2}$. This is called autoxidation. Intermolecular redox reactions are those in which one molecule is oxidised and the other is reduced. Intramolecular redox reactions are those in which oen atom of a molecule is oxidised and the
other atom is reduced.

Which of the following reactions is / are auto redox or induced oxidation reaction (s)
A. $\mathrm{Pb}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PbO}+\mathrm{H}_{2} \mathrm{O}_{2}$
B. $N a_{2} \mathrm{SO}_{3}+N a_{3} A s O_{3}+O_{2} \rightarrow N a_{2}{S O_{4}+N a_{3} A s O_{4}}^{2}$
C. $\mathrm{RCH}=\mathrm{CHR}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{RCH}=\mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}_{2}$
D.

Answer: A::B::C::D

- Watch Video Solution

22. Cartain materials such as turpentine oil, unsaturated organic compound, phosophorus, metals such as $Z n$, and $P b$, etc., can absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to $\mathrm{H}_{2} \mathrm{O}_{2}$. This is called autoxidation. Intermolecular redox reactions are those in which one molecule is oxidised and the other is reduced. Intramolecular redox
reactions are those in which oen atom of a molecule is oxidised and the other atom is reduced.

Which of the following reactions is / are none of the reactions mentioned in the question?
A. $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{\oplus} \xrightarrow{2 H^{\oplus}} A g^{\oplus}+N H_{4}^{\oplus}$
B. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\stackrel{\ominus}{2} \mathrm{O} \mathrm{H} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NH}_{4}^{\oplus} \rightarrow \mathrm{NH}_{3}$
D. $2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$

Answer: A: $: B:: C:: D$

D Watch Video Solution

23. Cartain materials such as turpentine oil, unsaturated organic compound, phosophorus, metals such as $Z n$, and Pb , etc., can absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to $\mathrm{H}_{2} \mathrm{O}_{2}$. This is called autoxidation. Intermolecular redox reactions are those in which one
molecule is oxidised and the other is reduced. Intramolecular redox reactions are those in which oen atom of a molecule is oxidised and the other atom is reduced.

Which of the following statements about the reaction is / are correct?
$2 A s C l_{4}^{\ominus}+3 Z n \rightarrow 2 A u+3 \mathrm{Zn}^{2+}+8 C l^{\ominus}$
A. $A u C l_{4}^{\ominus}$ is reduced to $A u$
B. $Z n$ is oxidised to $Z n^{2+}$
C. $C l^{\ominus}$ is a spectator ion.
D. It is an intermolecular redox reaction.

Answer: A::B::C::D

- Watch Video Solution

24. Cartain materials such as turpentine oil, unsaturated organic compound, phosophorus, metals such as $Z n$, and Pb , etc., can absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to absorb O_{2} from air in the presence of $\mathrm{H}_{2} \mathrm{O}$, which is converted to $\mathrm{H}_{2} \mathrm{O}_{2}$. This is called
autoxidation. Intermolecular redox reactions are those in which one molecule is oxidised and the other is reduced. Intramolecular redox reactions are those in which oen atom of a molecule is oxidised and the other atom is reduced.

Which of the following reactions has / have spectator ions?
A. $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}$
B. $\mathrm{KIO}_{3}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{KI}_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
C.
$2 \mathrm{KMnO}_{4}+10 \mathrm{KCl}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Cl}_{2}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{~K}_{2} \mathrm{~S}$
D. $\left[\mathrm{CrCl}_{6}\right]^{3-}+\mathrm{Zn}\left[\mathrm{ZnCl}_{4}\right]^{2-}+\mathrm{Cr}^{2+}$

Answer: A::B::C::D

- Watch Video Solution

1. Which of the following compounds can be oxidised further with a strog oxidising agent?
A. CrO_{3}
B. $\mathrm{Al}_{2} \mathrm{O}_{3}$
C. SO_{2}
D. MnO_{3}

Answer: C::D

- Watch Video Solution

2. Which of the following statements is / are correct?
A. The oxidation state of H in LiAlH_{4} is -1
B. The oxidation state of H in LiAlH_{4} is +1
C. The reaction of hydrogen in that oxidation state with $\mathrm{H}_{2} \mathrm{O}$ is

$$
H^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\stackrel{\ominus}{O} \mathrm{H}
$$

D. The reaction of hydrogen in that oxidation state with $\mathrm{H}_{2} \mathrm{O}$ is

$$
\mathrm{H}^{\oplus}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}
$$

Answer: A::C

D Watch Video Solution

3. Which of the following statements is / are correct?
A. The oxidation states of N in $\mathrm{NH}_{3}, H N_{3}$, and $N_{2} H_{4}$ are $-3,-1 / 3$
, and -2 , respectively.
B. The oxidation state of N in $\mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{4}$, and $\mathrm{NO}(2)^{\wedge}(-) a r e+4,+4$
, and +3 , respectively.
C. The oxidation states of N in $\mathrm{NH}_{2} \mathrm{OH}, \mathrm{NO}$, and HNO_{3} are $-1,+2$, and +5 , respectively.
D. The oxidation states of N in $N_{2} O$ and $H C N$ are +1 and -3 , respectively.

D Watch Video Solution

4. Which of the following reactions should be balanced in basic medium?
A. $\mathrm{NH}_{3}+\mathrm{MnO}_{4}^{\ominus} \rightarrow \mathrm{MnO}_{2}+\mathrm{NO}_{2}$
B. $\mathrm{Cr}(\mathrm{OH})_{2}+\mathrm{I}_{2} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+2 I^{\ominus}$
C. $\mathrm{HNO}_{3}+\mathrm{Fe}^{3+}+\mathrm{NO}_{2}$
D. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Fe}^{3+} \rightarrow \mathrm{O}_{2}+\mathrm{Fe}^{2+}$

Answer: A::B

Watch Video Solution

5. Which of the following reactions is not a redox reaction?

$$
\text { A. } \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{KOH} \rightarrow \mathrm{KHO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

B. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{3} \xrightarrow{\Delta} \mathrm{CaCO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}$

Answer: A::B::C

- Watch Video Solution

6. No reaction occurs in which of the following equations?
A. $I^{\ominus}-\mathrm{Fe}^{2+} \rightarrow$
B. $\mathrm{F}_{2}+2 \mathrm{NaCl} \rightarrow$
C. $\mathrm{Cl}_{2}+2 \mathrm{NaF} \rightarrow$
D. $I_{2}+2 N a B e \rightarrow$

Answer: A::C::D

7. Which of the following satements is / are correct?
A. In the reaction $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}_{2} \rightarrow I^{\ominus}+$? the missing product is O_{2}.
B. In the above reaction (a), the missing product is $\mathrm{H}_{2} \mathrm{O}$
C. In the reaction $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+$?, the missing product is O_{2}
D. In the above reaction (c), the missing product is $\mathrm{H}_{2} \mathrm{O}$

Answer: A: D

- Watch Video Solution

8. Which of the following statements is / are correct?
A. In the reaction $\mathrm{MnO}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+$? the missing product is $\mathrm{MnO}_{4}^{\ominus}$.
B. In the above reaction (a), the missing product is MnO_{2}.
C. In the reaction $\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}+$?
the missing product is $\mathrm{NO}_{3}^{\ominus}$.
D. In the above reaction (c), the missing product is $\mathrm{i} N O_{2}^{\ominus}$.

Answer: A: C

D Watch Video Solution

9. Which of the following statements is / are correct? In the reaction $x \mathrm{Cu}_{3} \mathrm{P}+y \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cu}^{2+}+\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Cr}^{3+}$
A. $C u$ in $C u_{3} P$ is oxidised to $C u^{2+}$ whereas P in $C u_{3} P$ is also oxidised to PO_{4}^{3-}.
B. $C u$ in $C u_{3} P$ is oxidised to $C u^{2+}$ whereas P in $C u_{3} P$ is reduced to $\mathrm{H}_{3} \mathrm{PO}_{4}$.
C. In the conversion of $\mathrm{Cu}_{3} \mathrm{P}$ to Cu^{2+} and ${ }^{\text {'H_(3)PO_(4),11 "electrons" }}$ are involved.
D. The value of x is 6

Answer: A::C::D

- Watch Video Solution

10. Which of the following statements is / are correct about the following reactions?
I. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}(\text { conc })} 6 \mathrm{C}+6 \mathrm{H}_{2} \mathrm{O}$
II. $\mathrm{H}_{2} \mathrm{SO}($ dil $)+\mathrm{ZnCO}_{3} \rightarrow \mathrm{Zn}^{2+}+\mathrm{CO}_{2}+\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
III. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{dil})+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2}+\mathrm{SO}_{4}^{2-}$
IV. $5 \mathrm{H}_{2} \mathrm{SO}_{4}($ conc $)+4 \mathrm{Zn} \rightarrow \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{Zn}^{2+}+4 \mathrm{SO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
A. In reaction (I), $\mathrm{H}_{2} \mathrm{SO}_{4}$ acts as a dehydrating agent.
B. In reaction (II), $\mathrm{H}_{2} \mathrm{SO}_{4}$ acts as an acid.
C. In reaction (III), $\mathrm{H}_{2} \mathrm{SO}_{4}$ acts both as an acid and an oxidising agent.
D. In reaction (IV), $\mathrm{H}_{2} \mathrm{SO}_{4}$, acts as an oxidising agent.

Answer: A::B::C::D

- Watch Video Solution

11. In the reaction
$\mathrm{I}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{CHI}_{3}+\mathrm{HCOO}^{\ominus}+\mathrm{H}_{2} \mathrm{O}+I^{\ominus}$
Which of the following statements is / are correct?
A. The coefficients of $\stackrel{\ominus}{O} H$ and I^{\ominus} in the given in balanced equation are, respectively, 6 and 5 .
B. The coefficients of $\stackrel{\ominus}{O} H$ and I^{\ominus} in the given balanced equation are, respectively, 5 and 6 .
C. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is oxidised to CHI_{3} and HCOO^{\ominus}.
D. The number of electrons in the conversion of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to CHI_{3} and HCOO^{\ominus} is 8

- Watch Video Solution

12. Which of the following statements is / are correct?
A. PbO_{2} reacts with HCl to evolve Cl_{2} gas.
B. PbO_{2} reacts with HNO_{3} to form O_{2} gas.
C. $\mathrm{Pb}_{3} \mathrm{O}_{4}$ reacts with HCl to evolve Cl_{2} gas.
D. $\mathrm{Pb}_{3} \mathrm{O}_{4}$ reacts with HNO_{3} to form PbO_{2}, but O_{2} is not liberated.

Answer: A::B::C::D

- Watch Video Solution

13. Which of the following statements about the following reaction is / are Wrong?
$2 \mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s}) \rightarrow 6 \mathrm{Cu}(\mathrm{s})+5 \mathrm{O}_{2}(\mathrm{~g})$
A. Both $C u_{2}$ and $C u_{2} S$ are reduced.
B. Only $C u_{2} S$ is reduced.
C. $C u_{2} S$ is the oxidant.
D. Only $\mathrm{Cu}_{2} \mathrm{O}$ is reduced.

Answer: B::C::D

D Watch Video Solution

14. The oxidation number of $C r$ is +6 in
A. $\mathrm{FeCr}_{2} \mathrm{O}_{4}$
B. $\mathrm{KCrO} \mathrm{O}_{3} \mathrm{Cl}$
C. CrO_{5}
D. $\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{\ominus}$

Answer: B::C

15. The oxidation number of carbon is zero in
A. HCHO
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. CrO_{5}
D. $C_{12} H_{22} O_{11}$

Answer: A::B::C::D

- Watch Video Solution

16. Which of the following has//have been arranged in order of decreasing oxidation number of sulphur?
A. $H_{2} S_{2} O_{7}>N a_{2} S_{4} O_{6}>N a_{2} S_{2} O_{3}>S_{8}$
B. $\mathrm{SO}^{2+}>\mathrm{SO}_{4}^{2-}>\mathrm{SO}_{3}^{2-}>\mathrm{HSO}_{4}^{\ominus}$
C. $\mathrm{H}_{2} \mathrm{SO}_{5}>\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{SCl}_{2}>\mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

Answer: A:C

- Watch Video Solution

17. The oxidation number of carboxylic carbon atom in $\mathrm{CH}_{3} \mathrm{COOH}$ is
A. +2
B. +4
C. +1
D. +3

Answer: D

- Watch Video Solution

18. Which of the following is//are autoredox reactions?
A. $\mathrm{P}_{4}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{2}^{\ominus}+\mathrm{PH}_{3}$
B. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{S}$
C. $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
D. $\mathrm{AgCl}+\mathrm{NH}_{3} \rightarrow\left[\mathrm{Ag}(\mathrm{NH})_{3}-(2)\right] \mathrm{Cl}$

Answer: A::B::C

- Watch Video Solution

19. Which of the following is / disproportionatin reactions?
A. $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
B. $4 \mathrm{KClO}_{3} \rightarrow 3 \mathrm{KClO}_{4}+\mathrm{KCl}$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
D. $2 \mathrm{KO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{KOH}+3 \mathrm{O}_{2}$

Answer: A::B::C::D

20. For the reaction $\mathrm{KO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{KHCO}_{3}+\mathrm{O}_{2}$, the mechanism of reaction suggest.
A. Acid-base reaction
B. Disproportionation reaction
C. Hydrolysis
D. Redox change

Answer: A::B::C::D

- Watch Video Solution

21. Which of the following can be used both as an oxidant and a reductant?
A. HNO_{2}
B. SO_{2}
C. O_{2}
D. $C O$

Answer: A::B::C::D

- Watch Video Solution

22. Which molecule represent by the bold atoms are in their highest oxidation state?
A. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
B. $P_{4} O_{10}$
C. $\mathrm{F}_{2} \mathrm{O}$
D. $\mathrm{Mn}_{2} \mathrm{O}_{7}$

Answer: A::B::D

- Watch Video Solution

23. Which molecule represent by the bold atoms are in their lowest oxidation state?
A. $F_{2} O$
B. $H_{2} S$
C. PH_{3}
D. $\mathrm{N}_{2} \mathrm{H}_{4}$

Answer: B::C

- Watch Video Solution

24. Which of the following statements is / are correct about $\mathrm{CH}_{2}=\mathrm{CCl}_{2}$
A. Both carbons are in +2 oxidation state.
B. Both carbons are in -2 oxidation state
C. The first carbons has +2 and the second has -2 oxidation states.
D. The average oxidation number of carbon is zero.

- Watch Video Solution

25. Which of the following statemetns about tailing of Hg is / are correct?
A. It is due to $\mathrm{Hg}_{2} \mathrm{O}$.
B. It is due to HgO
C. It is removed by $\mathrm{H}_{2} \mathrm{O}_{2}$
D. It is removed by O_{3}

Answer: A::C

- Watch Video Solution

26. Which of the following is / are disproportionation redox changes?

$$
\text { A. }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}
$$

B. $5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{CIO}_{2}+2 \mathrm{OH} \rightarrow 2 \mathrm{Cl}^{\ominus}+5 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
C. $3 \mathrm{ClO}^{\ominus} \rightarrow \mathrm{ClO}_{3}^{\ominus}+\mathrm{Cl}^{\ominus}$
D. $2 \mathrm{HCuCl} 2 \underset{\text { with water }}{\text { Dilution }} \mathrm{Cu}+\mathrm{Cu}^{2+}+4 \mathrm{Cl}^{\ominus}+2 \mathrm{H}^{\oplus}$

Answer: C::D

- Watch Video Solution

27. Which of the following statements about the reaction is / are correct?
$\mathrm{HgS}+\mathrm{HCl}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{HgCl}_{4}+\mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
A. $H g$ is reduced.
B. Sulphide is oxidised.
C. N is reduced
D. HNO_{3} is an oxidant.

Answer: B::C::D

28. Which of the following substances undergo(s) disproportionation reactions under basic medium?
A. F_{2}
B. P_{4}
C. S_{8}
D. $B r_{2}$

Answer: B::C::D

- Watch Video Solution

29. Which of the following represents redox reactions?
A. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{SO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \rightarrow \mathrm{SO}_{4}^{2-}+2 \mathrm{I}^{\ominus}+2 \mathrm{H}^{\oplus}$
C. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{Ca}(\mathrm{Ocl})_{2}+\mathrm{CaCl}_{2}$
D. $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$

Answer: B::C::D

- Watch Video Solution

30. Consider the redox reaction
$2 S_{2} O_{3}^{2-}+I_{2} \rightarrow S_{4} O_{6}^{2-}+2 I^{\ominus}$
A. $S_{2} O_{3}^{2-}$ gets reduced to $S_{4} O_{6}^{2-}$
B. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ gets oxidised to $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
C. I_{2} gets reduced to I^{\ominus}
D. I_{2} gets oxidised to I^{\ominus}

Answer: B::C

- Watch Video Solution

31. Which of the following compounds acts both as an oxidising as wll as a reducing agent?
A. HNO_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $H_{2} S$
D. SO_{2}

Answer: A::B::D

- Watch Video Solution

32. Which of the following reactions does not involve oxidation-reduction ?
A. $2 \mathrm{Rb}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{RbOH}+\mathrm{H}_{2}$
B. $2 \mathrm{CuI}_{2} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$
C. $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
D. $4 \mathrm{KCN}+\mathrm{Fe}(\mathrm{CN})_{2} \rightarrow \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Answer: C::D

- Watch Video Solution

Exercises Single Correct

1. Which of the following represents a redox reaction?
A. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
C. $\mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Answer: D

2. In the reaction
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
the substance oxidised is
A. $H_{2} S$
B. SO_{2}
C. S
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

3. In the reaction
$3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NaClO}_{3}+5 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O}$
the element which loses as well as gains electrons is
A. $N a$
B. O
C. Cl
D. None of these

Answer: C

- Watch Video Solution

4. The oxidation number of oxygen in $O F_{2}$ is
A. +2
B. -2
C. +1
D. -1

Answer: A

5. An oxidation process involves
A. Increase in oxidation number
B. Decrease in oxidation number
C. Both decrease and increase in oxidation number
D. No change in oxidation number

Answer: A

- Watch Video Solution

6. Which of the following is the strongest reducing agent in aqueous medium?
A. $M g$
B. $N a$
C. $L i$
D. `Ca

Answer: C

- Watch Video Solution

7. Which of the following is the strongest oxidising agent?
A. I_{2}
B. F_{2}
C. Cl_{2}
D. $B r_{2}$

Answer: B

- Watch Video Solution

8. The oxidation number of phosphorus do not involve oxidation reduction?
A. +3
B. +2
C. +1
D. -1

Answer: C

- Watch Video Solution

9. Which of the following reactions do not involve oxidation reduction ?
I. $2 \mathrm{Cs}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CsOH}+\mathrm{H}_{2}$
II. $2 \mathrm{CuI} \mathrm{I}_{2} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$
III. $\mathrm{NH}_{4} \mathrm{Br}+\mathrm{KOH} \rightarrow \mathrm{KBr}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
IV. $4 \mathrm{KCN}+\mathrm{Fe}(\mathrm{CN})_{2} \rightarrow \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
A. $I, I I$
B. I, III
C. I, III, IV
D. $I I I, I V$

Answer: D

- Watch Video Solution

10. For the redox reaction
$\mathrm{MnO}_{4}^{\ominus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactions for the balanced reaction are
A. $\mathrm{MnO}_{4}^{\ominus}=2, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=5, H^{\oplus}=16$
B. $M n O_{4}^{\ominus}=16, C_{2} O_{4}^{2-}=5, H^{\oplus}=2$
C. $M n O_{4}^{\ominus}=5, C_{2} O_{4}^{2-}=16, H^{\oplus}=2$
D. $\mathrm{MnO}_{4}^{\ominus}=2, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=16, \mathrm{H}^{\oplus}=5$

Answer: A

- Watch Video Solution

11. The oxidation state of nitrogen is correctly given for
A. Compound $=\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$, Oxidation state $=0$
B. Compound $=\mathrm{NH}_{2} \mathrm{OH}$, Oxidation state $=-2$
C. Compound $=\left(\mathrm{N}_{2} \mathrm{H}_{5}\right){ }_{2} \mathrm{SO}_{4}$, Oxidation state $=+2$
D. Compound $=M g_{3} N_{2}$, Oxidation state $=-3$

Answer: D

- Watch Video Solution

12. The oxidation state of chrominium in $\mathrm{Cr}(\mathrm{CO})_{6}$ is
A. 0
B. +2
C. -2
D. +6

- Watch Video Solution

13. Which of the following is not a redox reaction?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_{2}$
D. $\mathrm{MnCl}_{3} \rightarrow \mathrm{MnCl}_{2}+(1 / 2) \mathrm{Cl}_{2}$

Answer: A

Watch Video Solution

14. In the chemical reaction,
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+x \mathrm{H}_{2} \mathrm{SO}_{4}+y \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+z \mathrm{H}_{2} \mathrm{O}$
x, y, and z are
A. $1,3,1$
B. $4,1,4$
C. $3,2,3$
D. $2,1,2$

Answer: A

- Watch Video Solution

15. One mole of $N_{2} H_{4}$ loses ten moles of electrons to form a new compound A. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in A ? (There is no change in the oxidation state of hydrogen.)
A. -1
B. -3
C. +3
D. +5

Answer: C

- Watch Video Solution

16. When copper is treated with a certain concentration of nitric acid, nitric oxide and nitrogen dioxide are liberated in equal volumes according to the equation
$x \mathrm{Cu}+y \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
The coefficients x and y are
A. 2 and 3
B. 2 and 6
C. 1 and 3
D. 3 and 8

Answer: B

17. In which of the following pairs in there the greatest difference in the oxidation numbers of the underlined elements?
A. NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$
B. $\left.\underline{P}_{2}\right) O_{5}$ and $\underline{P_{4}} O_{10}$
C. $\underline{\mathrm{N}_{2}} \mathrm{O}$ and $\underline{\mathrm{NO}}$
D. $\underline{S} O_{2}$ and $\underline{S} O_{3}$

Answer: D

- Watch Video Solution

18. In the reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{\ominus}+\mathrm{BrO}_{3}^{\ominus}+6 \mathrm{HCO}_{3}^{\ominus}$
A. Bromine is oxidised and carbonate is reduced
B. Bromide is reduced and water is oxidised
C. Bromine is neither reduced nor oxidised
D. Brominde is both reduced and oxidised

Answer: D

(Watch Video Solution

19. In the reaction
$2 \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{S}$
A. $F e C l_{3}$ acts as an oxidising agent
B. Both $\mathrm{H}_{2} \mathrm{~S}$ and FeCl_{3} are oxidised
C. FeCl_{3} is oxidised while $\mathrm{H}_{2} \mathrm{~S}$ is reduced
D. $H_{2} S$ acts as an oxidising agent

Answer: A

- Watch Video Solution

20. The oxidation number of cobalt in $\mathrm{K}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ is
A. +1
B. +3
C. -1
D. -3

Answer: C

- Watch Video Solution

21. Which of the following is not a disproprotionation reaction?
I. $\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
II. $\mathrm{P}_{4} \xrightarrow{\Delta} P \mathrm{H}_{3}+\mathrm{HPO}_{2}^{\ominus}$
III. $\mathrm{PCl}_{5} \xrightarrow{\Delta} \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
IV. $I O_{3}^{\ominus}+I^{\ominus} \rightarrow I_{2}$
A. $I, I I$
B. $I, I I I, I V$
C. II, IV
D. I, III

Answer: B

- Watch Video Solution

22. which of the following represent redox reactions?
I. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 2 \mathrm{CrO} \mathrm{O}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
II. $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}$
III. $\mathrm{MnO}_{4}^{\ominus}+3 \mathrm{Mn}^{2+}+4 \stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 5 \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
IV. $2 C u^{\oplus} \rightarrow C u+C u^{2+}$
A. $I, I I$
B. I, III
C. III, IV
D. $I I, I I I, I V$

Answer: D

- Watch Video Solution

23. In which of the following cases is the oxidation state of N atom wrongly calculated?
A. Compound= $\mathrm{NH}_{4} \mathrm{Cl}$, Oxidation state $=-3$
B. Compound= $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4}$, Oxidation state $=+2$
C. Compound= $M g_{3} N_{2}$, Oxidation state $=-3$
D. Compound= $\mathrm{NH}_{2} \mathrm{OH}$, Oxidation state $=-1$

Answer: B

- Watch Video Solution

24. Which of the following is not a disproprotionation reaction?
A. $\mathrm{KO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{KHCO}_{3}+\mathrm{O}_{2}$
B. $\mathrm{KClO}_{3} \rightarrow \mathrm{KClO}_{4}+\mathrm{KCl}$
C. $\mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PbO}+\mathrm{H}_{2} \mathrm{O}_{2}$
D. $\mathrm{OHC}-\mathrm{COOH} \xrightarrow{\stackrel{\ominus}{\mathrm{OH}}} \mathrm{HOH}_{2} \mathrm{C}-\mathrm{COOH}+\stackrel{\ominus}{\mathrm{O}} \mathrm{OC}-\mathrm{COO}^{\ominus}$

Answer: C

- Watch Video Solution

25. The number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by 1 mol of Sn^{2+} ions is
A. $1 / 3$
B. 3
C. $1 / 6$
D. 6

Answer: A

26. Which of the following is redox reaction?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ with NaOH
B. In atmosphere, O_{3} from O_{2} by lighting
C. Nitrogen oxides from nitrogen and oxygen by lightning
D. Evaporation of $\mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

27. The oxidation state of Fe in $\mathrm{Fe}(\mathrm{CO})_{5}$ is
A. 0
B. +2
C. -2
D. +6

Answer: A

- Watch Video Solution

28. In which of the following pairs is there the greatest difference in the oxidation numbers of the underlined elements?
A. $\underline{N O}_{2}$ and $\underline{N_{2}} \mathrm{O}_{4}$
B. $\underline{S} O_{3}^{2}$ and $\underline{S} O_{4}^{2-}$
C. \underline{S}^{2-} and $\underline{S} O_{3}^{2-}$
D. \underline{S}^{2-} and $\underline{S} O_{4}^{2-}$

Answer: D

- Watch Video Solution

29. [Which of the following is not an intermolecular redox reaction?
A. $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
B. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{K}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KOH}+(1 / 2) \mathrm{H}_{2}$
D. $M n B r_{3} \rightarrow M n B r_{2}+(1 / 2) B r_{2}$

Answer: A

- Watch Video Solution

30. The number of moles of KMnO_{4} required to oxidise 1 mol of $\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ in acidic medium is
A. 0.6
B. 1.67
C. 0.2
D. 0.4

- Watch Video Solution

31. In the reaction
$K+\mathrm{O}_{2} \rightarrow \mathrm{KO}_{2}$
A. O_{2} acts as an oxidising agent
B. Both K and O_{2} are oxidised
C. O_{2} is oxidised while K is reduced
D. K acts as an oxidising agent

Answer: A

- Watch Video Solution

32. Which of the following is the best description of the behaviour of bromine in the reaction given below?
A. Proton acceptor only
B. Both oxidised and reduced
C. Oxidised only
D. Reduced only

Answer: B

- View Text Solution

33. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{X} \xrightarrow{\mathrm{H}^{\oplus}} \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}+$ oxidised productof X, X in the above reaction cannot be
A. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
B. $F e^{2+}$
C. SO_{4}^{2-}
D. SO_{2-}

Answer: C

34. The oxidation state of chrominium in the final product formed in the reaction between $K I$ and acidified potassium dichromate soluttion is
A. +4
B. +6
C. +2
D. +3

Answer: D

- Watch Video Solution

35. The number of moles of KMnO_{4} reduced by 1 mol of KI in alkaline medium is
A. 1
B. 2
C. 5
D. $1 / 5$

Answer: B

- Watch Video Solution

36. In the balanced chemical reaction
$\mathrm{IO}_{3}^{\ominus}+a I^{\ominus}+b \mathrm{H}^{\ominus} \rightarrow c \mathrm{H}_{2} \mathrm{O}+d I_{2}$
a, b, c, and d, respectively, correspond to
A. $5,6,3,3$
B. $5,3,6,3$
C. $3,5,3,6$
D. $5,6,5,5$
37. For the reaction
$M^{x+}+M n O_{4}^{\ominus} \rightarrow M O_{3}^{\ominus}+\mathrm{Mn}^{2+}+(1 / 2) O_{2}$
if 1 mol of $\mathrm{MnO}_{4}^{\ominus}$ oxidises 1.67 mol of M^{x+} to $M O_{3}^{\ominus}$, then the value of x in the reaction is
A. 5
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

38. $a \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+b \mathrm{KCl}+c \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow x \mathrm{CrO}_{2} \mathrm{Cl}_{2}+y \mathrm{KHSO}_{4}+z \mathrm{H}_{2} \mathrm{O}$

The above equation balances when
A. $a=2, b=4, c=6$ and $x=2, y=6, z=3$
B. $a=4, b=2, c=6$ and $x=6, y=2, z=3$
C. $a=6, b=4, c=2$ and $x=6, y=3, z=2$
D. $a=1, b=4, c=6$ and $x=2, y=6, z=3$

Answer: D

- Watch Video Solution

39. The oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is
A. 0
B. 2
C. 3
D. 5

Answer: A

40. Excess of KI reacts with CuSO_{4} solution and $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution is added to it. Which of the following statements in incorrect for the reaction?
A. Evolved I_{2} is reduced
B. CuI_{2} is formed.
C. $N a_{2} S_{2} O_{3}$ is oxidised.
D. $C u_{2} I_{2}$ is formed.

Answer: B

- Watch Video Solution

41. The oxidation number of S in $H_{2} S O_{5}$ is
A. +8
B. +6
C. +4
D. +2

Answer: B

- Watch Video Solution

42. The number of peroxide bonds in perxenate ion $\left[\mathrm{XeO}_{6}\right]^{4-}$ is
A. 0
B. 2
C. 3
D. 1

Answer: A

43. The oxidation number of Pr in $\operatorname{Pr}_{6} O_{11}$ is
A. $\frac{22}{6}$
B. $\frac{20}{6}$
C. 3
D. 4

Answer: A

- Watch Video Solution

44. In which of the following is the highest oxidation state not possible?
A. $\left[\mathrm{XeO}_{6}\right]^{4-}$
B. XeF_{8}
C. OSO_{4}
D. RuO_{4}

Answer: B

- Watch Video Solution

45. which of the following statements is not correct about the reaction given below?
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \xrightarrow{\text { Oxidation }} \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{\ominus}$
A. Fe is oxidised from Fe^{2+} to Fe^{3+}
B. Carbon is oxidised from C^{2+} to C^{4+}
C. N is oxidised from N^{3-} to N^{5+}
D. carbenes

Answer: D

- Watch Video Solution

46. Which of the following is not a disproportionation reaction ?
A. $\mathrm{P}_{4}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{2}^{\ominus}+\mathrm{PH}_{3}$
B. $\mathrm{Cl}_{2}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{Cl}^{\ominus}+\mathrm{ClO}^{\ominus}$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
D. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Answer: D

- Watch Video Solution

47. Which of the following is not an intramolecular redox reaction?
A. $\mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{Mn}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}$
C. $2 \mathrm{KCIO}_{3} \rightarrow 2 \mathrm{KCl}+3 o_{2}$
D. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Answer: D

48. In the equation
$N_{2}^{\ominus}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{\ominus}+2 \mathrm{H}^{\oplus}+\neq^{-}$
n stands for
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

49. Which of the following is an intermolecular redox reaction?
A. $2 \mathrm{OCH}-\mathrm{CHO} \xrightarrow{\stackrel{\ominus}{\mathrm{O}} \mathrm{H}} \mathrm{HOCH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$
B. $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{\mathrm{Al}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
C. $\left.4 \mathrm{CrO}_{5}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Cr}_{2}(\mathrm{SO})_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}+7 \mathrm{O}_{2}$
D. $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$

Answer: D

- Watch Video Solution

50. The oxidation state of A, B, and C in a compound are $+2,+5$, and -2 , respectively. The compounds is
A. $A_{2}(B C)_{2}$
B. $A_{2}(B C)_{3}$
C. $A_{3}\left(B C_{4}\right)_{2}$
D. $A_{2}\left(B C_{4}\right)_{3}$

Answer: C

51. The number of electrons lost in the following change is
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
A. 2
B. 4
C. 6
D. 8

Answer: D

- Watch Video Solution

52. The oxidation number of $P t$ in $\left.\left[P t\left(C_{2} H_{4}\right) C l_{3}\right)\right]^{\Theta}$ is
A. +1
B. +2
C. +3
D. +4

Answer: B

- Watch Video Solution

53. The oxidation number of P in $\mathrm{Mg}_{2} P_{2} O_{7}$ is
A. +3
B. +2
C. +5
D. -3

Answer: C

54. The oxidation number of phosphorus in $\mathrm{PO}_{4}^{3-}, \mathrm{P}_{4} \mathrm{O}_{10}$, and $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$ is

$$
\text { A. }+5
$$

B. +3
C. -3
D. +2

Answer: A

- Watch Video Solution

55. which of the following leads to redox reaction ?
A. $\mathrm{AgNO}_{3}+\mathrm{HCl}$
B. $\mathrm{KOH}+\mathrm{HCl}$
C. $K I+C l_{2}$
D. $\mathrm{NH}_{3}+\mathrm{HCl}$

Answer: C

56. The oxidation number of sulphur in $N a_{2} S_{4} O_{6}$ is
A. +0.5
B. 2.5
C. +4
D. +6

Answer: B

- Watch Video Solution

57. The oxidiant state of iodine in $H_{4} I O_{6}^{\ominus}$ is
A. +7
B. -1
C. +5
D. +1

- Watch Video Solution

58. When iron is rusted, it is
A. Oxidised
B. Reduced
C. Evaporated
D. Decomposed

Answer: A

- Watch Video Solution

59. An element that never has a positive oxidation state in any of its compounds is
A. Boron
B. Oxygen
C. Chlorine
D. Fluorine

Answer: D

D Watch Video Solution

60. Starch iodide paper is used to test for the presence of
A. lodine
B. lodide ion
C. Oxidising agnet
D. Reducing agent

Answer: C

61. Which of the following acids possesses oxidising, reducing, and complex forming properties ?
A. HNO_{3}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $H C L$
D. HNO_{2}

Answer: D

- Watch Video Solution

62. In the reaction
$8 \mathrm{Al}+3 \mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}+9 \mathrm{Fe}$
the number of electrons transferred from the reductant to the oxidant is
A. 8
B. 4
C. 16
D. 24

Answer: D

- Watch Video Solution

63. Which of the following examples does not represent disproportionation?
A. $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
C. $4 \mathrm{KClO}_{3} \rightarrow 3 \mathrm{KCiO}_{4}+\mathrm{KCl}$
D. $3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

Answer: A

64. Which of the following statements is not correct ?
A. The oxidation number of S in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is +6 .
B. The oxidation number of $O \mathrm{~s}$ in OsO_{4} is +8 .
C. The oxidation number of S in $H_{2} S O_{5}$ is +8 .
D. The oxidation number of O in $K O_{2}$ is $-1 / 2$.

Answer: C

- Watch Video Solution

65. The oxidant which cannot act as a reducing agent is
A. SO_{2}
B. NO_{2}
C. CO_{2}
D. ClO_{2}

Answer: C

D Watch Video Solution

66. The coordination number and oxidation number of $C r$ in $K_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ are, respectively,
A. 4 and +2
B. 6 and +3
C. 3 and -3
D. 3 and 0

Answer: B

- Watch Video Solution

67. Which of the following reactions does not involve either oxidation or reduction ?
A. $\mathrm{VO}^{2+} \rightarrow \mathrm{V}_{2} \mathrm{O}_{3}$
B. $N a \rightarrow N a^{\oplus}$
C. $\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
D. $\mathrm{Zn}^{2+} \rightarrow Z n$

Answer: C

- Watch Video Solution

68. In which of the following processess is nitrogen oxidised ?
A. $\mathrm{NH}_{4}^{\oplus} \rightarrow \mathrm{N}_{2}$
B. $\mathrm{NO}_{3}^{\ominus} \rightarrow \mathrm{NO}$
C. $\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2}^{\ominus}$
D. $\mathrm{NO}_{3}^{\ominus} \rightarrow \mathrm{NH}_{4}^{\ominus}$

Answer: A

69. The oxidation number of C in $H N C$ is
A. +2
B. -3
C. +3
D. 0

Answer: A

D Watch Video Solution

70. The oxidation number of Fe in $\mathrm{Fe} e_{0.94} \mathrm{O}$ is
A. 200
B. $200 / 94$
C. $94 / 200$
D. None

Answer: B

- Watch Video Solution

71. The oxidant number of Fe in $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$ is
A. +2
B. +1
C. +3
D. -2

Answer: A

- Watch Video Solution

72. The oxidation number of Cl in CaOCl_{2} is
A. -1 and +1
B. +2
C. -2
D. None

Answer: A

- Watch Video Solution

73. The equivalent weight of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in the change $\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}$ is
A. $M / 3$
B. $M / 6$
C. $M / 2$
D. $M / 1$
74. The oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{8}$ is
A. $3 / 2$
B. $4 / 5$
C. $5 / 4$
D. $16 / / 3$

Answer: D

- Watch Video Solution

75. In which of the following compounds, the oxidation state of transition metal is zero ?
A. CrO_{5}
B. $4 / 5$
C. FeSO_{4}
D. $\mathrm{Fe}(\mathrm{CO})_{5}$

Answer: D

- Watch Video Solution

76. The oxidation state of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is
A. +2
B. +4
C. +6
D. +7

Answer: C

77. Which of the following is not a disproportionation reaction ?
A. $2 \mathrm{PhCHO} \xrightarrow{\mathrm{Al}(\mathrm{OEt})_{3}} \mathrm{PhCOOCH}_{2} \mathrm{Ph}$
B. $\mathrm{COOH}_{\mathrm{CHO}}^{\mathrm{CH}}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow{\underset{\mathrm{COO}}{ }}_{\mathrm{CH} \mathrm{OH}}^{\mathrm{COO}^{\ominus}}{ }_{\mathrm{CO}}^{\mathrm{COO}}$
C. $\mathrm{NaH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
D. All

Answer: C

- Watch Video Solution

78. Which of the following is a disproporationation reaction ?
A. $\mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}^{\oplus} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{\oplus} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CaCO}_{3}+2 \mathrm{H}^{\oplus} \rightarrow \mathrm{Ca}^{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$

D Watch Video Solution

79. When KMnO_{4} acts as an oxidising agnet and ultimetely from $\mathrm{MnO}_{4}^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$, and Mn^{2+}, then the number of electrons transferred in each case, respectively, are
A. $4,3,1,5$
B. $1,5,3,7$
C. $1,3,4,5$
D. $3,5,7,1$

Answer: C

- Watch Video Solution

80. which of the following is a redox reaction ?
A. $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{KCl}$
B. $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$
D. $Z n+2 A g C N \rightarrow 2 A g+Z n(C N)_{2}$

Answer: D

- Watch Video Solution

81. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $S_{2} O_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
B. $\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}$
82. For decolourisation of 1 mol of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C

- Watch Video Solution

83. A metal ion M^{3+} loses three electrons, its oxidation number will be
A. +3
B. +6
C. 0
D. -3

Answer: B

- Watch Video Solution

84. To an acidic solution of an anion, a few drops of Kmno_{4} solution are added. Which of the following, if present, will not decolourise the KMnO_{4} solution?
A. CO_{3}^{2-}
B. $\mathrm{NO}_{2}^{\ominus}$
C. S^{2-}
D. $C l^{\ominus}$

Answer: A

85. The number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by 1 mol of Sn^{2+} ions is
A. $1 / 6$
B. $1 / 3$
C. $2 / 3$
D. 1

Answer: C

- Watch Video Solution

86. Which of the following is not a reducing agent ?
A. SO_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. CO_{2}
D. NO_{2}

Answer: C

D Watch Video Solution

87. The oxidation state of chromium is $\left[\mathrm{Cr}\left(P \mathrm{Ph} h_{3}\right)_{3}\right]$ is
A. +3
B. +8
C. 0
D. +5

Answer: C

88. The values of the x and y in the following redox reaction.
$x \mathrm{Cl}_{2}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{ClO}_{3}^{\ominus}+y \mathrm{Cl}^{\ominus}+3 \mathrm{H}_{2} \mathrm{O}$
A. $x=2, y=4$
B. $x=5, y=3$
C. $x=3, y=5$
D. $x=4, y=2$

Answer: C

- Watch Video Solution

89. Which gas is evolved when PbO_{2} is treated with conc HNO_{3} ?
A. NO_{2}
B. O_{2}
C. N_{2}
D. $\mathrm{N}_{2} \mathrm{O}$

Answer: B

90. The equivalent mass of oxidising agent in the following reaction is
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
A. 32
B. 64
C. 16
D. 8

Answer: C

- Watch Video Solution

91. In alkaline medium, ClO_{2} oxidises $\mathrm{H}_{2} \mathrm{O}_{2}$ to O_{2} and is itself reduced to Cl^{\ominus}. How many moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ are oxidised by 1 mol of ClO_{2} ?
A. 1
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C

- Watch Video Solution

Exercises Assertion Reasoning

1. Assertion (A): $\mathrm{H}_{2} \mathrm{O}_{2}$ acts only as an oxidising agnet.
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}$
Reason (R): All peroxides behave as oxidising agnets only.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If both (A) and (R) are incorrect.

Answer:

- Watch Video Solution

2. Assertion (A): KMnO_{4} is a stronger oxidising agent than $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

Reason (R): This is due to increasing stability of the lower species to which they are reduced.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer:

3. Assertion (A): $S O_{2}$ and $C l_{2}$ are both bleaching agents.

Reason (R): Both are reducing agents.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: C

- Watch Video Solution

4. Assertion (A): F_{2} undergoes disproportionation reaction.

Reason (R): Fluorine shows both positive and negative oxidation states.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If both (A) and (R) are incorrect.

Answer: D

- Watch Video Solution

5. Assertion (A): Sn reacts with HCl to produce H_{2} gas.

Reason (R): $S n$ is a better reducing agent than H_{2} gas.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: A

- Watch Video Solution

6. Assertion (A): In aqueous solution, SO_{2} reacts with $\mathrm{H}_{2} \mathrm{~S}$ liberating sulphur

Reason (R): $S O_{2}$ is an effective reducing agent.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: B

- Watch Video Solution

7. Assertion (A): PbCl_{4} is more stable than PbCl_{2}.

Reason (R): PbCl_{4} is a powerful oxidising agent.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: A

8. Assertion (A): O_{2} is stronger reducing agent than F_{2}

Reason (R): F_{2} is more electronegative.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: D

- Watch Video Solution

9. Assertion (A): The two Fe atoms in $\mathrm{FeO}_{3} \mathrm{O}_{4}$ hace different oxidation numbers.

Reason (R): Fe^{2+} ions decolourise KMnO_{4} solution.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: B

- Watch Video Solution

10. Assertion (A): HNO_{3} acts only as an oxidising agent, while HNO_{2} acts both as an oxidising agnet and a reducing agent.

Reason (R): The oxidation number of N in HNO_{3} is mximum.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: A

- Watch Video Solution

11. Assertion (A): O_{3} can act as an oxidising agent as wll as a reducing agent, but SO_{2} can act only as an oxidant.

Reason (R): The oxidation number of O in O_{3} is zero, and the oxidiation number of S in $S O_{2}$ is +4 .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If both (A) and (R) are incorrect.

Answer: D

- Watch Video Solution

12. Assertion (A): Sodium perxenate $\left(N a_{4} \mathrm{XeO}_{6}\right)$ reacts with NaF in acidic medium to give XeO_{3} and F_{2}

Reason (R): XeO_{6}^{4-} is a stronger oxidant than F_{2}.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: A

- Watch Video Solution

13. Assertion (A): In the process of drying dishes with a towel, the wetting agent is the dish and the drying agent is the towel.

Reason (R): The wetting agent gets wet during the process.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: C

Watch Video Solution

14. Assertion (A): A reaction between $F e$ and I_{2} occurs, but a reaction between Fe^{2+} and I^{\ominus} does not occur.

Reason (R): $F e$ is a better reducing agent than I^{θ}.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: A

- Watch Video Solution

15. Assertion: (A): The reactions between NH_{3} and $\mathrm{MnO}_{4}^{\ominus}$ occurs in an acidic medium.
$\mathrm{NH}_{3}+\mathrm{MnO}_{4}^{\ominus} \rightarrow \mathrm{MnO}_{2}+\mathrm{NO}_{2}$
Reason (R): $M n O_{4}^{\ominus}$ is reduced to MnO_{2} in acidic medium.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct but (R) is not the correct explanation of (A).
C. If (A) is correct but (R) is incorrect.
D. If both (A) and (R) are incorrect.

Answer: D

- Watch Video Solution

Exercises Integers

1. Among the following, what is the total number of compounds having
+3 oxidation state of the underlined elements?
a. $K_{4} \underline{P_{2}} O_{7}$
b. $N a \underline{A u C l} l_{4}$
c. $R b_{4} N a\left[H V \underline{V_{10}} O_{28}\right]$
d. $\underline{I C l}$
e. $\mathrm{Ba}_{2} \mathrm{Xe}_{6}$
f. $\underline{O} F_{2}$
g. $\mathrm{Ca}\left(\mathrm{CO}_{2}\right)_{2}$
h. $\mathrm{NO}_{2}^{\ominus}$

- Watch Video Solution

2. Among the following, what is the total number of compounds having +3 oxidation state of the underlined elements?
a. $K_{4} \underline{P_{2}} O_{7}$
b. $N a \underline{A u C l} l_{4}$
c. $R b_{4} \mathrm{Na}\left[H V \underline{V_{10}} O_{28}\right]$
d. $\underline{I C l}$
e. $\mathrm{Ba}_{2} \underline{\mathrm{Xe}} \mathrm{O}_{6}$
f. $\underline{O} F_{2}$
g. $\mathrm{Ca}\left(\mathrm{CO}_{2}\right)_{2}$
h. $\underline{N} O_{2}^{\ominus}$

- Watch Video Solution

3. Among the following, what is the total number of compounds having zero oxidation state of the underlined elements?
a. $\underline{S} O_{3}^{2-}$
b. $\mathrm{H}_{2} \underline{\mathrm{CO}}$
c. $\underline{C} \mathrm{H}_{2} \mathrm{Cl}_{2}$
d. $\mathrm{Na}_{2} \underline{\mathrm{cl}_{2}}$
e. \underline{O}_{3}

- Watch Video Solution

4. Among the following, what is the total number of compounds having zero oxidation state of the underlined elements?
a. $\underline{S_{O}^{2-}}{ }_{3}^{2-}$
b. $\mathrm{H}_{2} \underline{\mathrm{C}} \mathrm{O}$
c. $\underline{C} \mathrm{H}_{2} \mathrm{Cl}_{2}$
d. $N a_{2} \underline{c l_{2}}$
e. \underline{O}_{3}

- Watch Video Solution

5. Among the following elements, what is the total number of elements having the lowest oxidation state of zero?
$T a b$. Tec. Tcd. Tie. Tı

- View Text Solution

6. Among the following, what is the total number of speices which are very good oxidising agents?
a. F_{2}
b. F^{\ominus}
c. $N a$
d. $N a^{\oplus}$
e. $M n O_{4}^{\ominus}$
f. I^{\ominus}
$C l^{\ominus}$
h. $C e^{4+}$
i. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
j. CrO_{4}^{2-}
k. HNO_{3}
I. $F e^{2+}$

Watch Video Solution

7. Among the following, what is the total number of speices which are very good oxidising agents/reducing agents/neither oxidising nor reducing ones ?
a. F_{2}
b. F^{\ominus}
c. $N a$
d. $N a^{\oplus}$
e. $M n O_{4}^{\ominus}$
f. I^{\ominus}

$C l^{\ominus}$

h. $C e^{4+}$
i. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
j. CrO_{4}^{2-}
k. HNO_{3}
I. $F e^{2+}$

- Watch Video Solution

8. Among the following, what is the total number of speices which are very good oxidising agents/reducing agents/neither oxidising nor reducing ones ?
a. F_{2}
b. F^{\ominus}
c. $N a$
d. $N a^{\oplus}$
e. $M n O_{4}^{\ominus}$
f. I^{\ominus}
$C l^{\ominus}$
h. $C e^{4+}$
i. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
j. CrO_{4}^{2-}
k. HNO_{3}
I. $F e^{2+}$

Watch Video Solution

9. Balance the following equation in a basic solution stepwise:
$\mathrm{NO}_{3}^{\ominus}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{\oplus}$

- Watch Video Solution

10. $C N^{\ominus}$ ion is oxidised by a powerful oxidising agent to $N O_{3}^{\ominus}$ and $C O_{2}$ or CO_{3}^{2-} depending on the acidity of the reaction mixture.
$C N^{\ominus} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}_{3}^{\ominus}+\mathrm{H}^{\oplus}+\not{ }^{-}$
What is the number (n) of electrons involved in the process, divided by $10 ?$
11. What is the n-factor for the phenol in the following reaction? phenol $\xrightarrow{\left(N H_{4}\right)_{2} C r_{2} O_{7}}$?

- Watch Video Solution

Archives Single Correct

1. The oxidation number of C in $\mathrm{CH}_{2} \mathrm{O}$ is
A. -2
B. +2
C. 0
D. +4
2. The brown ring complex compound is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}_{5}\right) \mathrm{No}\right] \mathrm{SO}_{4}$. The oxidation state of Fe is
A. 1
B. 2
C. 3
D. 0

Answer: A

- Watch Video Solution

3. The equivalent weight of MnSO_{4} is half its molecular weight when it is converted to
A. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
B. MnO_{2}
C. $\mathrm{MnO}_{4-}(4)^{\ominus}$
D. MnO_{4}^{2-}

Answer: B

- Watch Video Solution

4. Oxidation number of P in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
A. +3
B. +2
C. +1
D. -1

Answer: A

5. The oxidation states of the most electronegative elements in the products of the reaction between BaO_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are
A. 0 and -1
B. -1 and -2
C. -2 and 0
D. -2 and +1

Answer: B

- Watch Video Solution

6. For the redox reaction
$\mathrm{MnO}_{4}^{\ominus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactions for the balanced reaction are
A. $2,5,16$
B. $16,5,2$
C. $5,16,2$
D. $2,16,5$

Answer: A

- Watch Video Solution

7. In the compound $\mathrm{Yba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ which shows superconductivity, what is the oxidation state of $C u$?

Assume that the rare earth element yttrium is in its usual +3 oxidation state.
A. $+\frac{7}{3}$
B. $-\frac{7}{3}$
C. $\frac{5}{3}$
D. $-\frac{5}{2}$

Answer: A

8. In the reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{\ominus}+\mathrm{BrO}_{3}^{\ominus}+6 \mathrm{HCO}_{3}^{\ominus}$
A. $B r_{2}$ is oxidised and CO_{3}^{2-} is reduced.
B. Br_{2} is reduced and $\mathrm{H}_{2} \mathrm{O}$ is oxidised.
C. $B r_{2}$ is neither reduced nor oxidised.
D. $B r_{2}$ is both reduced and oxidised.

Answer: D

- Watch Video Solution

9. The number of moles of KMnO_{4} that will be needed to react with 1 mol of sulphite ion in acidic solution is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. 1

Answer: A

- Watch Video Solution

10. The oxidation number of S in $S_{8}, S_{2} F_{2}$, and $H_{2} S$, respectively, are
A. $0,+1$ and -2
B. $+2,+1$ and -2
C. $0,+1$ and +2
D. $-2,+1$ and -2

Answer: A

11. Among the following identify the species with an atom in +6 oxidation state.
A. $M n O_{4}^{\ominus}$
B. $\left[C r(C N)_{6}\right]^{3-}$
C. $\left[N i F_{6}\right]^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

Answer: D

Watch Video Solution

12. In the neutralization of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by idometry, the equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
A. $M / 2$
B. $M / 6$
C. $M / 3$
D. M

Answer: B

- Watch Video Solution

13. The reaction

$3 \mathrm{ClO}^{\ominus}(a q) \rightarrow \mathrm{ClO}_{3}(a q)+2 \mathrm{Cl}^{\ominus}(a q)$
is an example of
A. Oxidation
B. Reduction
C. Disproprtionation
D. Decomposition

Answer: C

- Watch Video Solution

14. Maximum oxidation state is present in
A. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and $\mathrm{MnO}_{4}^{\ominus}$
B. MnO_{2}
c. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
D. MnO

Answer: A

- Watch Video Solution

15. Which of the following will not be oxidised by O_{3} ?
A. $K I$
B. FeSO_{4}
C. KMnO_{4}
D. $\mathrm{K}_{2} \mathrm{MnO}_{4}$

Answer: C

- Watch Video Solution

16. Oxidation states of the metal in the minerals haematite and magnetite, respectively, are
A. $I I, I I I$ in haematite and III in magnetite
B. $I I, I I I$ in heamatite and II in magnitite
C. $I I$ in haematite and $I I, I I I$ in magnetite
D. $I I I$ is haematite and $I I, I I I$ in magnetite

Answer: D

D Watch Video Solution

1. The difference in the oxidation numbers of two types of sulphul atoms in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is.....
