© 'doubtnut

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

SOME BASIC CONCEPTS AND MOLE CONCEPT

Solved Examples

1. Calculate the following
a. $\left(6.7 \times 10^{5}\right) \times\left(4.6 \times 10^{4}\right)$
b. $\left(7.6 \times 10^{7}\right) \times\left(3.8 \times 10^{-4}\right)$
c. $\left(6.8 \times 10^{-3}\right) \times\left(5.2 \times 10^{-4}\right)$
d. $\frac{6.7 \times 10^{5}}{4.6 \times 10^{4}}$
e. $\frac{7.6 \times 10^{7}}{3.8 \times 10^{-4}}$
f. $\frac{6.8 \times 10^{-3}}{3.8 \times 10^{-4}}$
g. $7.65 \times 10^{2}+2.72 \times 10^{3}$
h. $7.87 \times 10^{-4}-2.61 \times 10^{-5}$

- Watch Video Solution

2. How many significant figures are there in each of the following numbers?
a. π
b. The sum of $16.4+0.3254$
c. The product of 12×7.435
d. 0.0075
e. 5.033×10^{22}
f. 7.007
g. 6000
h. The subtractin of $19.3-0.4567$
3. What is the difference between 2.0 m and 2.00 m .

D Watch Video Solution

4. Express the result of the following data to the appropriate number of significant figures.
4.84×0.0744 0.016

- Watch Video Solution

5. The density of copper is $7.8 \mathrm{gcm}^{-3}$ and its weight is 5.642 g . Report the volume of copper to correct decimal point.

(D) Watch Video Solution

6. What is the number of significant figures in Avogadro's number $\left(6.0 \times 10^{23}\right)$ and Planck's constant $\left(6.62 \times 10^{-34} \mathrm{Js}\right)$.
7. Express the following to four significant figure:
i. 6.58768×10^{5} ii. $8.35783^{`}$
iii. 98.2350 iv. 0.003586
v. 90000

- Watch Video Solution

8. Express the number 68000 in exponetial notation which shows
i. Two significant figures
ii. Three significant figures.

- Watch Video Solution

9. An analytic balance has uncertainty in measurement equal to $\pm 1 \mathrm{mg}$.

Then report the result in terms of percentage if the weight of a
compound is
a. $1 g$ b. $10 g$ c. $100 g$

- Watch Video Solution

10. Convert the following :
a. $5 L$ of a solution into m^{3}
b. 4 days into seconds
c. 200 lb into kilogram
d. 2.00 km into miles
$(1 \mathrm{mile}=1760 y d, 1 y d=3 f t 1 \mathrm{in}=2.54 \mathrm{~cm})$
e. 0.800 carat intog grams and kilograms
e. 8.0 km into inches $(1 m=1.094 \mathrm{yards}(y d), 1 y d=36 \mathrm{in})$
f. 40 Em (exa metre) (thickness of Milky way galaxy) into metre
g. 1.4 Gm (gigmetre) diametre of sun) into metre
h. 41 Pm (petametre) (distance of nearest star) into metre
i. 1 fg (femotgram) (mass of human $D N A$ molecule) into kilogram
j. 500 Mg (megagram) (mass of a loaded jumbo jet) into kilogram
11. Express the following in $S I$ unit:
a. $6^{\prime} 10$ b. $200 \mathrm{lb}^{\prime}$
c. 60 miles h^{-1} d. $-20^{\circ} C$
e. $2.53 m m$ f. $7.85 m L$
g. 0.0528 in h. $52 \mu g$
i. 5 days j. $5 L$
k. 14lbin ${ }^{-2}$ (atmospheric pressure)
I. $6.86 \mathrm{gcm}^{-3}$ density of metal)

- Watch Video Solution

12. Five grams of KCIO_{3} yield 3.041 g of KCI and 1.36 L of oxygen at standard temperature and pressure. Show that these figures support the law of conservation of mass within limits of $\pm 0.4 \%$ error.
13. $0.22 g$ of a hydrogen (i.e., a compound conatining carbon and hydrogen only) on complete combustion with oxygen gave $0.9 g$ water and $0.44 g$ carbon dioxide. Show that these results are in accordance with the law of conservation of mass (atomic mass of $C=12, H=1, O=16)$.

- Watch Video Solution

14. $0.7 g$ of iron reacts directly with $0.4 g$ of sulphur to form ferrous sulphide. If $2.8 g$ of iron is dissolved in dilute HCl and excess of sodium sulphide solution is added, $4.4 g$ of iron sulphide is precipitated. Prove the law of constant composition.

- Watch Video Solution

15. $1.375 g$ of cupric oxide was reduced by heating in a current of hydrogen and the weight of copper that remained was 1.098 g In
another experiment, $1.179 g$ of copper was dissolved in nitric acid and the resulting copper nitrate converted into cupric oxide by ignition. The weight of cupric oxide formed was 1.476 g . Show that these result illustrate the law of constant composition.

- Watch Video Solution

16. $112 m L$ of hydrogen combines with $56 m L$ of oxygen of form water. When $224 m L$ of hydrogen is passes over hand cupric oxide, the cupric oxide loses. 0.160 g of weight. All volumes are measured at $S T P$. Show that the result agrees with the law of constant composition (22.4L hydrogen and oxygen at $S T P$ weigh, respectively, $2 g$ and $32 g$)

Watch Video Solution

17. Element X and Y form two different compounds. In the first compound, $0.324 g X$ is combined with $0.471 g Y$. In the second
compound, $0.117 g X$ is combined with $0.509 g Y$. Show that these data illusttate the law of multiple proportions.

- Watch Video Solution

18. An element forms two oxides of 2.900 g and 2.250 g of these oxides each of found to contain 1.12 L of O_{2} at $S T P$. Which law of chemical combination is illustrated by these data?

- Watch Video Solution

19. Carbon combines with hydrogen to forom three compounds A, B and C. The percentage of hydrogen in A, B and C is $25,14.3$, and 7.7, respectively. (a) Find the empirical formula of the compounds. (b) Which law of chemical combination does this example illustrate? How?

- Watch Video Solution

20. Two oxides of a metal contain 27.6% and 30.0% of Oxygen, respecttively. If the formula of the first be $M_{3} O_{4}$. Find that of the second.

- Watch Video Solution

21. If the masses of $M n$ of O are in the ratio of $55: 16$ in $M n O$, what is the ratio of O that combines with the same mass of Mn in MnO_{2} and $\mathrm{Mn}_{2} \mathrm{O}_{7}$?

(D) Watch Video Solution

22. Ammonia contains 82.35% of nitrogen and 17.65% of hydrogen. Water contains 88.90% of oxygen 63.15% of oxygen and 36.85% of nitrogen. Show by calculations from these data which law of chemicmal
combination is verified.

- Watch Video Solution

23. Show that the results given below taken together illustrate a law of chemical action: (a) 0.46 g og amgnesium produces 0.77 g . Of magnesium oxide, (b) 0.82 g of magnesium liberates 760 mL of hydrogen at $S T P$ from an acid (weight of $1 m L$ of hydrogen at $S T P=0.00009 g$), and (c) $1.25 g$ results from the union of $1.11 g$ of oxygen and hydrogen.
24. Aluminium oxide contains 52.9% aluminium and carbon dioxide contains 27.27% carbon. Assuming the law of reciprocal proportions, calculalte the percentage of aluminium in aluminium carbide.

- Watch Video Solution

25. Air contains 21% oxygen by volume. Calculate the theoretical volume of air which will be required for burning completely 500 cubic ft of acetylene gas $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ All volumes are measured under the same conditions of temperature and pressure.

- Watch Video Solution

26. One volume of a gaseous compound containing carbon, hydrogen, and oxygen was burnt in the presence of 2 volumes of oxygen. The
resultant gases contained 2 volumes of carbon dixoide and 2 volumes of steam. Find the molecular formula of the compound, if all the volume were measured under the same conditions of temperature and pressure.

(D) Watch Video Solution

27. Calculate molecular mass of the following molecules:
a. Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
b. Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
c. Methane $\left(\mathrm{CH}_{4}\right)$

- Watch Video Solution

28. In $4 g$ atoms of $A g$. calculate
a. Amount of Ag .
b. Weight of one atom of $A g$. (atoic weight of $A g=108$).
29. How many g atoms are there in one atoms?

D Watch Video Solution

30. How many years it would take to spend Avogadro's number of rupees at the rate of 10 lakh rupees per second?

- Watch Video Solution

31. From 200 mg of $\mathrm{CO}_{2}, 10^{21}$ molecules are removed. How many grams and moles of CO_{2} are left.

- Watch Video Solution

32. Calculate the number of Cl^{-}and Ca^{2+} ions in $222 g$ anhydrous CaCl_{2}.

- Watch Video Solution

33. The dot at the end of this sentence has a mass of about one microgram. Assuming that black stuff is carbon, calculate approximate atoms of carbon needed to make such a dot.

- Watch Video Solution

34. Calculate the residue obtained on strongly heating $2.76 \mathrm{Ag}_{2} \mathrm{CO}_{3}$.

- Watch Video Solution

35. By heating $10 g \mathrm{CaCO}_{3}, 5.6 \mathrm{gCaO}$ is formed. What is the weight of CO_{2} obtained in this reaction

- Watch Video Solution

36. On heating 1.763 g of hydrated BaCl_{2} to dryness, 1.505 g of anhyrous salt remained, What is the formula of hydrate?

- Watch Video Solution

37. Calculate the weight of iron which will be converted into its oxide by the reaction of $18 g$ of steam.

- Watch Video Solution

38. Calculate the volume of O_{2} and volume of air needed for combustion of 1 kg carbon at $S T P$.

- Watch Video Solution

39. One litre of CO_{2} is passed over hot coke. The volume becomes 1.4 L
. Find the composition of products, assuming measurement at $N T P$.

- Watch Video Solution

40. $5 m L$ of a gaseous hydrocarbon was exposed to $30 m L$ of O_{2}. The resultant gas, on cooling, is formed to measure 25 mL of which 10 mL is absrobed by NaOH and the remainder by pyrogallol. Determine the molecular formula of hydrocation. All measurements are made at constant pressure and temperature.

- Watch Video Solution

41. When a mixture of 10 moles of $S O_{2}$ and 15 moles of O_{2} was passed over catalyst, 8 moles of SO_{3} was formed. How many moles of SO_{2} and O_{2} did not enter into combination?
42. Calculate mass of sodium which contains same number of atoms as are present in $4 g$ of calcium (Atomic weight $N a=23$, atomic weight $C a=40)$

- Watch Video Solution

43. Calculate the number of moles in each of the following :
a. 11 gofCO 2
b. 3.01×10^{22} molecules of CO_{2}
c. 1.12 LofCO_{2} at $S T P$

- Watch Video Solution

44. Calculate the mass of the following
a. One atom of calcium
b. One molecules of SO_{2}
45. Calculate number of atoms in each of the following"
i. 0.5 mol atom of nitorgen
ii. 0.2 mol molecules of hydrogen
iii. 3.2 g of sulphur

Calculate number of molecules in each of the following:
i. 14 g of nitrogen
ii. 3.4 g of $\mathrm{H}_{2} \mathrm{~S}$

- Watch Video Solution

46. How many moles of O are present in $4.9 g$ of $\mathrm{H}_{3} \mathrm{PO}_{4}$? (Atomic weight of P, O and $H=31,16,1$)
47. What is the molecular mass of a compound X, if its 3.0115×10^{9} molucules weigh $1.0 \times 10^{-12} g$?

(D) Watch Video Solution

48. What is the volume occupied by one CCl_{4} molecule at $20^{\circ} \mathrm{C}$? Density of $C C l_{4}$ is $1.6 /$ at $20^{\circ} \mathrm{C}$

- Watch Video Solution

49. How many grams of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ would you need to take to get
1.00 g of copper? $\mathrm{Cu}=63.5, N=14, O=16$.

(D) Watch Video Solution

50. Calculate the number of atoms of each type that are present in
$3.42 g$ of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.
51. How many molecules of benzene $\left(C_{6} H_{6}\right)$ are there in $1 L$ of benzene ? Specific gravity of benzene is 0.88 .

- Watch Video Solution

52. The volume of a drop of water is $0.04 m L$. How many $\mathrm{H}_{2} \mathrm{O}$ molecules are there in a drop of a water? $d=1.0 \mathrm{gmL}$.

- Watch Video Solution

53. Find the volume of the following at $S T P$.
a. $14 g$ of mitrogen
b. 6.023×10^{22} molecules of NH_{3}
c. 0.1mole of SO_{2}.
54. What is the volume of one molecules of water (density of $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{gcm}^{-3}$)
b. What is the radius of the water molecule assuming it be spherical.
c. Calculate the radius of the oxygen atom, assuming the oxygen atom occupies half of the volume occupied by the water molecule.

- Watch Video Solution

55. Calculate the mass of the carbon present in 0.1 mole of sodium ferricyanide $N a_{3}\left[F e(C N)_{6}\right]$.

(Watch Video Solution

56. Calculate the total number of electrons present in $3.2 g$ of oxygen gas.
57. Calculate the number of molecules present in one drop of $\mathrm{H}_{2} \mathrm{O}$ whose mass is $0.01 g$
b. Calculate the number of molecules leaving the liquid suface per second, if the same drop of water evaporates in one hour.

- Watch Video Solution

58. Calculate the percentage compostion of various elements in the following compounds:

Blue vitriol $\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)$
b. Green vitriol $\left(\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)$
c. White vitriol $\left(\mathrm{ZnSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$
d. Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$
e. Mohr's salt $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]$
59. Calculate the percentage composition of:

Alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, potassium oxide $\left(\mathrm{K}_{2} \mathrm{O}\right)$, and silcia $\left(\mathrm{SiO}_{2}\right)$ in the sample of clay $\left(\mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{K}_{2} \mathrm{O} .6 \mathrm{SiO}_{2}\right)$.
b. Potassium sulphate $\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)$. Aluminium sulphate, and water of crystallisation in the simple of potash alum, $\left(\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}\right)$.

- Watch Video Solution

60. A hydrocarbon contains 10.5 g of carbon per gram of hydrogen. $1 L$ of vapour of the hydrocarbon at $127^{\circ} \mathrm{C}$ and 1 atm pressure weighs
2.8 g . Find the molecular formula of the hydrocarbon.

- Watch Video Solution

61. Calcium carbide reacts with water to give ethyne or acetylene gas and calcium hydroxide. Write the balanced chemical equation for this
reaction.

D Watch Video Solution

62. Magnesium carbide reacts with water to give propyne gas and magnesium hydroxide. Write the balanced chamical reaction.

D Watch Video Solution

63. Calculate the molarity of $K O H$ in solution prepared by dissolving $5.6 g$ in enough water to form $250 m L$ of the solution.

D Watch Video Solution

64. Calculate the molarity of KCl solution prepared by dissolving 7.45 g of KCl in 500 mL of the solution. $\left(d_{\text {sol }}=1.2 g m L^{-1}\right)$
65. Calculate the molality (m) of $3 M$ solution of NaCl whose density is $1.25 \mathrm{gmL}^{-1}$.

- Watch Video Solution

66. Calculate the molarity (M) and normality (N) of a solution of oxalic acid $\left[(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]$ containing 12.6 g of the acid in 500 mL of the solution.

- Watch Video Solution

67. 100 mL of $0.1 \mathrm{MHCl}+100 \mathrm{~mL}$ of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}+100 \mathrm{~mL}$ of $0.1 \mathrm{MHNO}_{3}$ are mixed togther.
a. What is the final conecntration of the solution.
b. What would be the final concentration of the solution. If the solution is made to $1 L$ by adding $\mathrm{H}_{2} \mathrm{O}$?
c. What would be the final concentration of the solution if 700 mL of $\mathrm{H}_{2} \mathrm{O}$ is added to the solution?

- Watch Video Solution

68. 1 L of $0.1 \mathrm{MNaOH}, 1 L$ of 0.2 MKOH , and 2 L of $0.05 \mathrm{MBa}(\mathrm{OH})_{2}$ are mixed together. What is the final concentration of the solution.
A. 0.120 N
B. 0.125 N
C. 0.130 N
D. 0.135 N

Answer: B

- Watch Video Solution

69. 50 mL of $0.2 \mathrm{MHCl}, 50 \mathrm{~mL}$ of $0.2 \mathrm{NH}_{2} \mathrm{SO}_{4}$, and 200 mL of $0.2 \mathrm{MBa}(\mathrm{OH})_{2}$ are mixed together and the volume was made to $1 L$ by adding $\mathrm{H}_{2} \mathrm{O}$. What is the final concentration of the solution, and what is the nature of the final solution: acidic, basic or neutral?

- Watch Video Solution

70. A solution contains 2.5 mol of $\mathrm{H}_{2} \mathrm{O}$. Calculation the mole fraction of each component of the solution.

- Watch Video Solution

71. The percentage composition by mass of a solution is 20% urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right), 40 \%$ glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$, and 40% water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Calculate the mole fraction of each component of the solution.

- Watch Video Solution

72. A solution is prepared by mixing ethanol and water. The mole fraction of ethanol in the mixture is 0.9 .

What is the molality (m) of the solution.
b. Water is added to the above solution such that the mole fraction of water in the solution becomes 0.9 . What is the molality (m) of the solution?

- Watch Video Solution

73. Calculate the molarity (M) and molality (m) of 16% aqueous methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ solution by volume. Density of solution $=0.9 g m L^{-1}$.

- Watch Video Solution

74. 20 mg of K^{\oplus} ions are present in $1 L$ of aqueous solution. Density of the solution is $0.8 m L^{-1}$. What is the concentration of K^{\oplus} ions in

ppm?

- View Text Solution

75. 10 L of hard water requires $0.28 g$ of line (CaO) for removing hardness. Calculate the temporary hardness in ppm of CaCO_{3}.

- Watch Video Solution

76. Calculate the percent free SO_{3} in an oleum which is labelled ${ }^{\prime} 118 \% \mathrm{H}_{2} \mathrm{SO}_{4}{ }^{\prime}$.

- Watch Video Solution

77. If the percent free SO_{3} in an oleum is 20% then label the sample of oleum in terms of percent $\mathrm{H}_{2} \mathrm{SO}_{4}$,
78. 50.0 kg of $\mathrm{N}_{2}(\mathrm{~g})$ and 10 g of $\mathrm{H}_{2}(\mathrm{~g})$ are mixed to produce $\mathrm{NH}_{3}(\mathrm{~g})$. Calculate the $\mathrm{NH}_{3}(\mathrm{~g})$ formed. Identify the limiting reagent.

(D) Watch Video Solution

79. If 0.5 mol of CaBr_{2} is mixed with 0.2 mol of $\mathrm{K}_{3} \mathrm{PO}_{4}$, the maximum nubmer of moles of $C a_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed is:

$$
\text { a. } 0.1 \text { b. } 0.2 \text { c. } 0.5 \text { d. } 0.7
$$

- Watch Video Solution

80. Upon mixming 100.0 mL to 0.1 M potassium solphate solution and 100.0 mL of 0.05 M barium chloride solution, precipitation of barium sulphate takes place. How many moles of barium sulphate are formed? Also, calculate the molar concentration of species left behind in the solution. Which is the limiting reagent?
81. In one process of waterproofing, a fabric is expsoed to $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}$ vapour. The vapour reacts with $(O H)$ groups on the surface of the fabric or with traces of $\mathrm{H}_{2} \mathrm{O}$ to form waterproofing film of by the reaction

Where n is large integer. The waterproofing film is deposited on the fabric layer upon layer. Each layer is $10 \AA$ thich [the thickness of the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiO}$ group]. How much $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ is required to waterproof one side of a piece of a fabric, 1.0 m by 3.0 m , with a film 1000 layers thick? The density of the film is $1.0 \mathrm{gcm}^{-3}$. (Atomic weight of $S i=28$ and $C l=35.5$)

$$
\begin{aligned}
n\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}+2 n \mathrm{OH} \longrightarrow 2 n \mathrm{Cl}^{\ominus} & +n \mathrm{H}_{2} \mathrm{O} \\
& ++\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiOF}_{n}
\end{aligned}
$$

- Watch Video Solution

82. 1.62 g of green algae absorbs $6 \times 10^{-3} \mathrm{~mol} \mathrm{CO}_{2}$ per hour by photosynthesis. If the fixed C atoms are all stroed after photosynthesis as starch $\left(C_{6} H_{10} O_{5}\right)_{n}$, how long will it take for the alge to double their own weigth?
$\left[M w o f\left(C_{6} H_{10} O_{5}\right)_{n}=162 n\right]$

- Watch Video Solution

83. The empirical formula of a commercial ion-exchange resin is $\mathrm{C}_{8} \mathrm{H}_{70 \mathrm{SO}_{3} \mathrm{Na}}$. The resin is used to soften water as follows:
$\mathrm{Ca}^{2+}+2 \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{3} \mathrm{Na} \rightarrow\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{3}\right)_{2} \mathrm{Ca}+\mathrm{Na}^{\oplus} \quad$ expressed \quad in mol / g resin?

- View Text Solution

84. The chemical formula of the chelating agent Versence is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{Na}\right)$ If each mol of this compound could bind 1 mol
of $C a^{2+}$, what would be the rating of pure Versene, expressed as $m g C a C O 3$ bound per g. Of chealting agent? Ca^{2+} is expressed in terms in terms of amount of CaCO_{3} it could form.
$\left[M w\right.$ of vesene $\left.=380, M w \mathrm{ofCaCO}=100 \mathrm{gmol}^{-1}\right]$

- View Text Solution

85. The plastic industry uses large amounts of phthalic anhydride $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{3}$, made by the controlled
$\mathrm{C}_{10} \mathrm{H}_{8}+\frac{9}{2} \mathrm{O}_{2} \rightarrow \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{3}+2 \mathrm{CO}_{2}+\frac{5}{2} \mathrm{H}_{2} \mathrm{O}$
Since some of the naphthalene is oxidised to other products, 80% yield is obtained. What weight of phthalic anhydrid would be produced by the oxidation of 256 g of $\mathrm{C}_{10} \mathrm{H}_{8}$.
$\left[M w \mathrm{of} C_{10} H_{8}=128, M w\right.$ of $\left.C_{8} H_{4} O_{3}=148\right]$

- Watch Video Solution

86. Calculate the weight of CaO required to remove hardness of $10^{6} \mathrm{~L}$ of water containing $1.62 g$ of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ in 1.0 L .
$\left(\mathrm{MwofCa}\left(\mathrm{HCO}_{3}\right)_{2}=162\right.$, mwof $\left.\mathrm{CaO}=56\right)$

- Watch Video Solution

87. A mixture of NaCl and $\mathrm{Na}_{2} \mathrm{CO}$ is given On heating $12 g$ of the mixture with dilute $\mathrm{HCl}, 2.24 \mathrm{~g}$ of CO_{2} is removed. Calculate the amounts of each in the mixture.

- Watch Video Solution

88. A mixture of FeO and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ when heated in air to a constant weight, gains 5% of its weight. Find the composition of the intial mixutre.
89. Igniting MnO_{2} in air converts it quantitatively to $\mathrm{Mn}_{3} \mathrm{O}_{4}$. A sample of pyrolusite is of the following composition: $\mathrm{MnO}_{2}=80 \%, \mathrm{SiO}_{2}$ and other inert constituents $=15 \%$, and rest bearing $\mathrm{H}_{2} \mathrm{O}$. The sample is ignited to constant weight. What is the percent of $M n$ in the ingnited sample?
A. 50.96%
B. 60.48%
C. 59.36%
D. 65.63%

Answer: C

- Watch Video Solution

90. A flash bulb used for taking photograph in poor light contains

30 mL of O_{2} at 780 mm pressure at $27^{\circ} \mathrm{C}$. Suppose that metal wire
flashed in the bulb is pure aluminium (Al) and it is oxidised to $\mathrm{Al}_{2} \mathrm{O}_{3}$ in the process of flashing, calculate the minimun weight of $A l$ wire that is to be used for maximum efficiency.
A. 0.045 g
B. 0.05 g
C. $0.04 g$
D. $0.055 g$

Answer: A

- Watch Video Solution

91. $1 g$ of impure $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in water and the solution is made upto 250 mL . To 50 mL of this solution, 50 mL of 0.1 NHCl is added and the mixture after shaking well required 10 mL of 0.16 NNaOH solution for complete neutralization. Calculation percent purity of the sample of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
92. 5 mL of $8 \mathrm{NHNO}_{3}, 4.8 \mathrm{~mL}$ of 5 NHCl , and a certain volume of $17 \mathrm{mH}_{2} \mathrm{SO}_{4}$ are mixed together and made upto 2 L .30 mL of the acid mixture exactly neutralises 42.9 mL of $\mathrm{Na}_{2 \mathrm{CO}_{3}}$ solution containing 0.1 g of $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$ in 10 mL of water. Calculate:
a. The volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ added to the mixture.
b. The amount (in g) of the sulphate ions in the solution.

- View Text Solution

93. 10.0 L of air of $S T P$ was slowly bubbled through 50 mL of $\mathrm{N} / 25 \mathrm{Ba}(\mathrm{OH})_{2}$ solution and the final solution rendered red with phenoophthalein. After filtering the solution from the precipitated BaCO_{3}, the filtrate requried 22.5 mL of $\mathrm{N} / 12.5 \mathrm{HCl}$ to becomes just colourless. Calculate the $\%$ age by volume of CO_{2} in the air.
94. A mixture of CaCO_{3} and MgCO_{3} weighing $1.84 g$ on heating left a residue weighing 0.96 g . Calculate the percentage of each in the mixture.

- Watch Video Solution

95. A mixture contains equi-molar quantities of carbonates of two bivalent metals. One metal is present the extent of 13.5% by weight in the mixture and 2.50 g of the mixture on heating leaves a residue of 1.18g. Calculate the percentage by weight of the other metal.

- Watch Video Solution

96. 25 mL of solution containing HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required for neutralisation of $25 m L N / 2$ caustic soda solution. $50 m L$ of the same solution on precipitation with BaCl_{2} yielded 2.33 g of BaSO_{4}. What
weight of each acid contained in $1 L$ the solution? (Molecular mass of $\left.\mathrm{BaSO}_{4}=233\right)$

- Watch Video Solution

97. A mixture containing only $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ and weighing $1.22 g$ was dissolved in water to form 100 mL of solution: 20 mL of this solution required 40 mL of 0.1 NHCl for neutralisation.
a. Calculate the weight of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in the mixture.
b. If another $20 m L$ of the same solution is treated with excess of $B a C l_{2}$, what will be the weight of precipitate thus obtained? (Molarcular of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106, \mathrm{~K}_{2} \mathrm{CO}_{3}=138, \mathrm{BaCO}_{3}=197.4$)

Watch Video Solution

98. 2.36 g of sample of dolomite containing only CaCO_{3} and MgCO_{3} were dissolved in 700 mL of 0.1 NHCl . The solution was dilutied to
2.05L. 25 mL of this solution required 20 mL of 0.01 NNaOH solution for complete neutralisation. Find the percent composition of ore.

- Watch Video Solution

99. 4.08 g of a mixture of BaO and an unknown carbonate MCO_{3} was heated strongly. The residue weighed $3.64 g$. This was dissolved in 100 mL of 1 NHCl . The excess of acid required of 16 mL of 2.5 NNaOH for complete neutralisation. Identify the matal M.

- Watch Video Solution

100. $\mathrm{H}_{2} \mathrm{SO}_{2}$ solution (20 mL) reacts quantitatively with a solution of $\mathrm{KMnO}_{4}(20 \mathrm{~mL})$ acidified is just dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. The same volume of the KMnO_{4} solution is just decolourised by 10 mL of MnSO_{4} in neutral medium. simulataneously forming a dark brown precipitate of hydrated MnO_{2}. The brown precipitate is dissolved in 10 mL of 0.2 M sodium oxalate under boiling condition in the presence of dilute
$\mathrm{H}_{2} \mathrm{SO}_{4}$. Write the balanced equations involved in the reactions and calculate the molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution.

- View Text Solution

101. $3 g$ of ethane $C_{2} H_{6}$ on complete combustion gave $8.8 g$ of CO_{2} and $5.4 g$ of water. Show that the results are in accordance with the law of conservation of mass.

- Watch Video Solution

102. Weight of copper oxide obtained by heating $2.16 g$ of metallic copper with HNO_{3} and subsequent ingnition was 2.70 g In another experient, $1.15 g$ of copper oxide on reduction yielded $0.92 g$ of copper. Show that the results illustrance the law of definite proportions.

- Watch Video Solution

103. In experiment on the effect of heating on oxides of lead in a current of hydrogen the following results were obtained. Show that they are in agreement with the law of multiple proportions.
a. $1.393 g$ of litharge (PbO) gave $1.293 g$ of lead
b. 2.173 g of lead peroxide $\left(\mathrm{PbO}_{2}\right)$ gave $1.882 g$ of lead
c. $1.712 g$ of red lead $\left(\mathrm{Pb}_{3} \mathrm{O}_{4}\right)$ gave $1.552 g$ of lead

- Watch Video Solution

104. Two oxides of metal were found to contain 31.6% and 48% of oxygen, respectively. If the formula of first is represented by $\mathrm{M}_{2} \mathrm{O}_{3}$, find that of the other

(D) Watch Video Solution

105. A, B and C are three elements giving compounds $A B, A C$, and $B C . A B$ contains 75% of $A, A C$ contains 57.14% of C and $B C$
contains 11.11% of B. Show that the result illustrate the law of reciprocal proportions.

- Watch Video Solution

106. A metal forms two oxides. The higher oxide contains 80% metal.
$0.72 g$ of the lower oxide gave $0.8 g$ of higher oxide when oxidised.
Calculate the weight of oxygen the combines with the fixed weight of metal in the two oxides, and show that the data supports the law of multiple proportines

- Watch Video Solution

107. 500 mL of 0.2 MNaCl sol. Is added to 100 mL of $0.5 \mathrm{MAgNO}_{3}$ solution resulting in the formation white precipitate of AgCl . How many moles and how many grams of AgCl are formed? Which is the limiting reagent?
108. Upon mixing 50.0 mL of 0.1 M lead nitrate solution with 50.0 mL of 0.05 M chromic sulphate solution, precipitation of lead sulphate takes place. How many moles of lead sulphate are formed? Also, calculate the molar concentration of the species left behind in the final solution. Which is the limiting reagent?

- Watch Video Solution

109. What is the percentage of aluminium in $A l_{2} \mathrm{O}_{3}$? $(A l=27, O=16)$

- Watch Video Solution

110. What is the percentage composition of each element is zincphosphate $Z n_{3}\left(P O_{4}\right)_{2} ?(Z n=65.5, P=31, O=16)$
111. An organic compound consists of 6.023×10^{23} carbon atoms, 1.8069×10^{24} hydrogen atoms, and 3.0115×10^{23} oxygen atoms. What is its simplest formula?

- Watch Video Solution

112. What is the simplest formula of acompound that contains 0.25 g atom of sillicon per 0.50 g atom of oxygen.

- Watch Video Solution

113. $0.1653 g$ aluminium reacts completely with $0.652 g$ chlorine to form chloride of aluminium.
a. What is the empirical formula of the compound?
b. If molecular mass of the compound is 267 amu , calculate the molecular formula of the compound.

- Watch Video Solution

114. A 0.2075 g sample of an oxide of cobalt on analysis was found to contain $0.1475 g$ cobalt. Calculate the empirical formula of the oxide. $(C o=59 \mathrm{amu})$

D Watch Video Solution

115. The molecular mass of iodide of $\operatorname{tin}(S n)$ is 626.5 amu . What is the empirical formula of the substance?

$$
(I=127, S n=118.5)
$$

- Watch Video Solution

116. What is the empirical formula for a compound that contains
$22 \% S$ and $78 \% F ?(S=32, F=19)$
117. A substance used as a water softener has the following mass percentage composition : $42.07 \% N a, 18.9 \% P$, and 39.04% of oxygen. Determine the empirical formula of the compound. $(N a=23, P=31,0=16)$

- Watch Video Solution

118. An orgainc compound contains $43.98 \% C, 2.09 \% H$, and $37.2 \% \mathrm{Cl}$. Calculate its empirical formula.

- View Text Solution

119. A $0.534 g$ of a sample of haemoglobin on analysis was found to contain $0.34 \% \mathrm{Fe}$. If each haemoglobin molecule has four Fe^{2+} ions, what is the molecular mass of haemoglobin ? $(F e=56 \mathrm{amu})$
120. How many g atoms and number of atoms are there n (a) $60 g$ carbon, (b) $22.4 g C u$, an (c) $72.52 g$ lead. Given atomic masses of $C, C u$ and Pb are 12,63.6, and 207.2, respectively. (Avogadro's number $\left.=6.02 \times 10^{23}\right)$.

- Watch Video Solution

121. Find the number of g atoms and weight of an element having 2×10^{23} atoms. Atomic mass of element is 32 .

- Watch Video Solution

122. Calculate the number of atoms and volume of $1 g$ helium gas at $S T P$
123. From 200 mg of $\mathrm{CO}_{2}, 10^{21}$ molecules are removed. How many grams and moles of CO_{2} are left?

- Watch Video Solution

124. Weight of one atom an element is $6.44 \times 10^{23} g$. Calculate g atom of elements in 40 kg .

- Watch Video Solution

125. How many g of S are required to produce 100 mol and $100 g$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ separately?

(D) Watch Video Solution

126. Calculate the number of oxialic acid molecules in 100 mL of 0.02 N oxialic acid
127. Hameoglobin contains 0.25% iron by weight. The molecular weight of hameglobin is 896000 . Calculate the number of iron atom per molecules of haemoglobin.

- Watch Video Solution

128. P and Q are two element that form $P_{2} Q_{3}$ and $P Q_{2}$. If 0.15 mole of $P_{2} Q_{3}$ weighs and 0.15 mole of $P Q_{2}$ weighs $9.3 g$, what are the atomic weights of P and Q ?

- Watch Video Solution

129. A polystryrene, having formula $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{n}$, was perpared heating styrene with tribromobenzoyl peroxide in the absence of air. If it was found to contain 1.46% bromine by weight, find the value of n.
130. One litre of mixture of CO and CO_{2} is passed through red hot charcoal in tube. The new volume becomes 1.4 litre. Find out \% composition of mixture by volume. All measurements are made at same P and T

- Watch Video Solution

131. 1.0 g of metal nitrate gave 0.86 g of metal sulphate. Calculate the equivalent weight of metal.

- Watch Video Solution

132. $2 g$ of a metal in $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives 4.51 g of the metal sulphate. The specific heat of metal is $0.057 \mathrm{calg}^{-1}$. Calculate the valency and atomic weight of metal.
133. $1.878 g$ of $M B r_{X}$ when heated in a stream of HCl gas was comletely converted to chloride $M C l_{X}$ which weighted $1.0 g$ The specific heat of metal is $0.14 \mathrm{calg}^{-1}$. Calculate the molemular weight of the metal bromide.

(D) Watch Video Solution

134. Find the milli equivalent of
a. $\mathrm{Ca}(\mathrm{OH})_{2} \mathrm{in} 74 g$
b. $\mathrm{NaOH} \operatorname{in} 20 g$
c. $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{in} 2.45 \mathrm{~g}$

- Watch Video Solution

135. Calculate the normality of NaOH when $2 g$ is present in 800 mL solution.

(D) Watch Video Solution

136. Calculate normality and molarity of the following:
a. $0.74 g$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ in 5 mL of solution ItbRgt b. 3.65 g of HCl in
$200 m L$ of solution
c. $1 / 10 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 500 mL of solution.

- Watch Video Solution

137. Calculate the normality of the resultin solution made by adding 2 drops $(0.1 \mathrm{~mL})$ of $0.1 \mathrm{NH}_{2} \mathrm{SO}_{4}$ in 1 litre of distilled water.
138. What volume at $S T P$ at ammonia gas will be required to be passed into 30 mL of $\mathrm{NH}_{2} \mathrm{SO}_{4}$ solution to bring down the acid normality to $0.2 N$?

- Watch Video Solution

139. Calculate the normality of mixture obtained by mixing
a. $100 \mathrm{mLof0.1NHCl}+50 \mathrm{mLof} 0.25 \mathrm{NNaOH}$
b. $100 \mathrm{mLof0} .2 \mathrm{MH}_{2} \mathrm{SO}_{4}+200 \mathrm{mLof0} 0 \mathrm{MHCl}$
c. $100 \mathrm{mLof0} 0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}+100 \mathrm{mLof0} .2 \mathrm{MNaOH}$
d. $1 g$ equivalent of $\mathrm{NaOH}+100 \mathrm{mLof} 0.1 \mathrm{NHCl}$

- Watch Video Solution

140. In what ratio should you mix 0.2 MNaNO and $0.1 \mathrm{MCa}\left(\mathrm{NO}_{3}\right)_{2}$ solution so that in resulting solution the concentration of -ve ion is 50
\% greater than the concentration of + ve ions?
141. What volume at water is requried to make 0.20 N solution from 1600 mL of 0.2050 N solution?

- Watch Video Solution

142. $20 \mathrm{mLof0.2} \mathrm{MAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ mixed with 20 mL of $0.6 \mathrm{MBaCl}_{2}$. Calculate the concentration of each ion in solution.

- Watch Video Solution

143. How much BaCl_{2} would be needed to make 250 mL of a solution having same eoncentration of Cl^{\oplus} as the one containing 3.78 g of NaCl per 100 mL .
144. What is the normarlity and nature of a mixutre obtained by mixing 0.62 g of $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{H}_{2} \mathrm{O}$ to 100 mL of $0.1 \mathrm{NH}_{2} \mathrm{SO}_{4}$?

- Watch Video Solution

145. A sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (density $1.787 \mathrm{gmL}^{-1}$) si labelled as 86% by weight. What is the molarity of acid? What volume of acid has to be used to make 1 L of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$?

- Watch Video Solution

146. Mole fraction of I_{2} in $C_{6} H_{6}$ is 0.2 . Calculate molality of I_{2} in $C_{6} H_{6}$. $\left(M w o f C_{6} H_{6}=78 \mathrm{gmol}^{-1}\right)$
147. Calculate molality of 1 litre solution of $93 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by volume. The density of solution is $1.84 g m L^{-1}$.

- View Text Solution

148. What is would be the molality of a solution obtained by mixing equal volumes of 30% by weight $H_{2} S O_{4}\left(d=1.218 g m L^{-1}\right)$ and 70% by weight $\mathrm{H}_{2} \mathrm{SO}_{4}\left(d=1.610 \mathrm{gmL}^{-1}\right)$? If the resulting solution has density $1.425 \mathrm{gmL}^{-1}$, calculate its molality.

- Watch Video Solution

149. To 50 L of $0.2 \mathrm{NNaOH}, 5 \mathrm{~L}$ of 1 NHCl and 15 L of $0.1 \mathrm{NFeCl}_{3}$ solution are added. What weight of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ can be obtained from the precipitate? Also report the nomality of NaOH left in the resultant solution.
150. The molecular mass of an organic acid was determind by the study of its barium salt. 4.290 g of salt was converted to free acid by the reaction with $21.64 m L$ of water of hydration per $B a^{2+}$ ion and the acid is monobasic. What is molecular weight of anhydrous acidgt

- View Text Solution

151. 4.0 g of NaOH is contained in one decilitre of aqueous solution.

Calculate the following in the solution (d of NaOH solution
$=1.038 \mathrm{gmL}^{-1}$)
a. Mole fraction of NaOH
b. Molartiy of NaOH
c. Molality of NaOH

- Watch Video Solution

152. Calculate the mass fraction and mole fraction of ethyl alcohol and $\mathrm{H}_{2} \mathrm{O}$ in a solution containing $9.2 g$ of alcohol in $18.0 g$ of $\mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

153. A solution contains $410.3 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ per litre of the solution at $20^{\circ} \mathrm{C}$. If the density $=1.243 \mathrm{gmL}^{-1}$, what will be its molality and molarity?

- Watch Video Solution

154. Concentrated HNO_{3} is 69% by mass of nitric acid. Calculate the volume of the solution which contains $23 g$ of HNO_{3}. (Density of concentrated HNO_{3} solution is $1.41 \mathrm{gml}^{-1}$)
155. Calculate the molality of a solution obtained by dissolving 15.87 g ehtyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in 168 g of $\mathrm{H}_{2} \mathrm{O}$.

(D) Watch Video Solution

156. What volume of $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight $\left(d=1.85 \mathrm{gmL}^{-1}\right)$ and what mass of water must be taken to prepare 100 mL of 15% solution of $\mathrm{H}_{2} \mathrm{SO}_{4}\left(d=1.10 \mathrm{gmL} L^{-1}\right)$

- Watch Video Solution

157. Calculated the molality of a sulphuric acid solution in which the mole fraction of water is 0.85 .
158. A bottle of commercial sulphuric acid $\left(d=1.787 g m L^{-1}\right)$ is 86% by weight.
a. Whatis molarity of the acid?
b. What volume of the acid has to be used to make 1 L of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$?
c. What is the molality of the acid?

- Watch Video Solution

159. A 6.90 M solution of KOH contains 30% by weight of KOH .

Calculate the density of the solution.

- Watch Video Solution

160. 3.5 litre of 0.01 MNaCl is mixed with 1.5 litre of 0.05 MNaCl .

What is the concentration of the final solution?

- Watch Video Solution

161. The density of 5% aqueous $M g C l_{2}$ solution is $1.043 g m L^{-1}$. What is the molarity and molaltiy of the solution? What is the molality of $C l^{\ominus}$ ions? $(M g=24 \mathrm{amu})$

- Watch Video Solution

162. The density of a $3 \mathrm{MNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (sodium thiosulphate) solution is $1.25 \mathrm{gm} L^{-1}$. Calculate:
a. \% by weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
b. Mole fraction of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
c. Molalities of Na^{\oplus} and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ ions.

- Watch Video Solution

163. The density of $0.06 M$ solution of $K l$ in water is $1.006 \mathrm{gmL}^{-1}$. Determine the molality of this solution ($K=39, I=127 \mathrm{amu}$)
164. $11.2 g$ of carbon reacts with 21.1 litres of oxygen at $18^{\circ} \mathrm{C}$ and 750 mm of Hg . The cooled gases are passed through 2 litre of 2.5 NNaOH . Determine the concetration of NaOH remaining in solution which is not converted to $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Assume that CO does not react with NaOH :
a. Whatis the mole fraction of $C O$ in the gases?
b. What is the concetration of NaOH which is not converted to $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the remaining solution?

(D) Watch Video Solution

165. $15 \mathrm{~mL} 1 \mathrm{NH}_{2} \mathrm{SO}_{4}, 25 \mathrm{~mL}$ of $4 \mathrm{NHNO}_{3}$, and 20 mL of XMHCl were mixed and made up to 1000 mL . Prepared by dissolving 4.725 g of pure $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}$ in water made up to 0.25 litre. What is the molarity of HCl solution (i.e. find X)
166. The acid solution has a specific gravity of 1.8 , when it contains 62% by weight of the acid. The solution is diluted to such an extant this its specific gravity is lowered to 1.2 . what is the \% by weight of the acid new solution.

- Watch Video Solution

167. A solution of KCl has a density of $1.69 \mathrm{gm} L^{-1}$ and is 67% by weight. Find the denisty of the solution if it is diluted so that the percentage by weight of KCl in the diluted solution is $30 \%{ }^{`}$

- Watch Video Solution

168. A gaseous hydrocarbon X, was burnt in excess of oygen. A $0.112 \mathrm{dm}^{2}$ sample of X, at $S T P$ gave $0.88 g$ of CO_{2}. How many C-atoms
are there in one molecule of X ?
a. 1 b. 2 c. 3 d. 4

- Watch Video Solution

169. A mmonia is highly soluble gas in water and gives a alkaline solution of $\mathrm{NH}_{4} \mathrm{OH}$. What volume of NH_{3} gas at $S T P$ will be required to the passed in 100 mL of $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$ to bring down its strength to $0.25 M$?
(For titrations with aqueous NH_{3}, it is assumed that $\mathrm{NH}_{4} \mathrm{OH}$ dissociates to 100% extent)

a. 2.24 L b. 1.68 L c. 1.12 L d. 0.56 L'

- Watch Video Solution

170. The equivalent weight of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ can be
a. $M / 2$ as base b. $M / 1$ as acid
c. Both (a) and (b) d. Neither (a) and (b)

- Watch Video Solution

171. Arrange the following in order of increasing masses.
i. 1 molecules of oxygen ii. 1 atom of nitrogen
iii. 1 mol of water iv. 1×10^{-10} of iron
a. ii lt I lt iii It iv b. ilt iilt ivlt iii
c. ii It ilt ivlt iii d. iltiiltiiiltiv

- Watch Video Solution

172.10.1g of KNO_{3} is dissolved in 500 mL of $\mathrm{H}_{2} \mathrm{O}$. Mass of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ that should be added to this solution of get a molality (m) of 0.3 with respect to $\mathrm{NO}_{3}^{\ominus}$ ion is

$$
\begin{aligned}
& \left(\mathrm{MwofKNO}_{3}=101 \mathrm{gmol}^{-1}, \operatorname{MwofBa}\left(\mathrm{No}_{3}\right)_{2}=261 \mathrm{gmol}^{-1}\right) \\
& \text { a. } \approx 1.3 \mathrm{~g} \text { b. } \approx 13 \mathrm{~g} \mathrm{c} . \approx 6.5 \mathrm{~g} \text { d. } \approx 65 \mathrm{~g}
\end{aligned}
$$

173. One litre of $\mathrm{N} / 2 \mathrm{HCl}$ solution was heated in a beaker. When the volume was reduced to $600 \mathrm{~mL}, 9.125 \mathrm{~g}$ of HCl was lost out the new normality of solution is
a. ≈ 0.4
b. ≈ 0.8
c. $\approx 0.4 \mathrm{~d} . \approx 0.2$

- Watch Video Solution

174. Three metals of alkaline earth metal group (A, B and C) When reacted with a fixed volume of liquid $B r_{2}$ separately gave a product (metal bromides) whose mass is plotted against the mass of metals taken as shown in the figure. From the plot, predict what relation can be concluded between the atomic weight of A, B and C
a. $C>B$
b. $B>A$,
$C<A<B$

Data is insufficient to predict

- Watch Video Solution

175. The following chemical reactions used to be untilized to rapidly produce large amounts of N_{2} gas inside an automobile air bag:
$2 \mathrm{NaN}_{3} \rightarrow 2 \mathrm{Na}+3 \mathrm{~N}_{2}(\mathrm{~g})$
$10 \mathrm{Na}+2 \mathrm{KNO}_{3} \rightarrow \mathrm{~K}_{2}+5 \mathrm{Na}_{2} \mathrm{O}+\mathrm{N}_{2}(g)$
$\mathrm{K}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{O}+\mathrm{SiO}_{2} \rightarrow$ Alkaline silicate (glass)
How many grams of KNO_{3} are needed to produce enough N_{2} to fill a $12.3 L$ air baG AT $27^{\circ} \mathrm{C}$ and 4 atm .
a. $202 g$ b. $81.25 g$
c. $404 g$ d. $25.25 g$

- Watch Video Solution

Ex 1.1 Objective Questions

1. Objective question (only one correct).
I. Which of the following has least mass?
a. 1 mol of S b. 3×10^{23} atom of C
c. $2 g$ atom of nitrogen d. $7.0 g o f A g$
ii. The simplest formula of a compound containing 50% of element A (atomic mass 10) and 50% of element B (atomic mass 20) is:
a. $A B$ b. $A_{2} B$ c. $A_{2} B_{3}$ d. $A B_{3}$
2. A metal M of atomic weight 54.9 has a density of $7.42 \mathrm{gcm}^{-3}$. Calculate the volume occupied and the radius of the atom of this metal assuming it to be sphere.

- Watch Video Solution

3. Til in the blanks
a. The mass of 1 molecule of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is.
b. The number of molecules in 16 g of sulphur dioxide $\left(\mathrm{SO}_{2}\right)$ are
c. The weight of one mole of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ is
d. Moles and g equivalent in 196 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ are \qquad and
e. Moles and g equivalent in $196 g$ of $H_{3} P_{4}$ are \qquad and
f. g atoms in $62 g$ of P_{4} are \qquad
f. g atoms in $24 g$ of magnesium are.

- Watch Video Solution

4. Objective question.
i. A certains compound has the molecular formula $X_{4} O_{6}$. If $10 \mathrm{gof} X_{4} O_{6}$ has $5.72 g X$, then atomic mass of X is:
a. 32 amu b. $42 \mathrm{amuc} \mathrm{c} .98 \mathrm{amu} \mathrm{d}$.
ii. For 109% labelled oleum, if the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and free SO_{3} be p and q, respectively, then what will be the value of $\frac{p-q}{p+q}$
a. $1 / 9$ b. 9 c. 18 d. $1 / 3$
iii. Hydrogen peroxide in aqueous solution decomposes on warming to give oxygen according to the equation,
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
Under conditions where 1 mol gas occupies $24 d \mathrm{~m}^{3}, 100 \mathrm{~cm}^{3}$ of $X M$ solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ produces $3 \mathrm{dm}^{3}$ of O_{2}. Thus, X is a. 2.5 b. 0.5 c. 0.25 d. 1
iv. $4 g$ of sulphur is burnt to form SO_{2} which is oxidised by $C l_{2}$ water. The solution is then treated with $B a C l_{2}$ solution. The amount of BaSO_{4} precipitated is:
a. 0.24 mol b. 0.5 mol
c. 1 mol d. 0.125 mol
v. A reaction occurs between 3 moles of H_{2} and 1.5 moles of O_{2} to give some amount of $\mathrm{H}_{2} \mathrm{O}$. The limiting reagent in this reaction is
a. H_{2} and O_{2} both b. O_{2}
c. H_{2} d. Neither of them
vi. $4 I^{\ominus}+\mathrm{Hg}^{2+} \rightarrow \mathrm{HgO}_{4}^{-}, 1$ mole each of Hg^{2+} and I^{\ominus} will form:
a. 1 mol of HgI_{4}^{2-}
b. 0.5 mol of HgI_{4}^{-2}
0.25 mol of HgI_{4}^{2-}

2 mol of HgI_{4}^{-2}

- Watch Video Solution

5. A 2.0 g of mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} loses 0.248 g when heated to $300^{\circ} \mathrm{C}$, the temperature at which NaHCO_{3} decomposes to $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{2}$, the temperature at which NaHCO_{3} decomposes to $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. What is the percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in mixture?
6. Fill in the blanks.
a. The equivalent weight of NaHCO_{3} is \qquad and of $S O_{2}$ is \qquad
b. 2 mol of 50% pure $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ on heating forms 1 mol of CO_{2}. The $\%$ yield of CO_{2} is \qquad
c. 5 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ was dissolved in 250 mL of solution. The volume of this solution that should be used so that $1.2 g$ of BaSO_{4} be precipitated fromk $B a C l_{2}$ is (molecular mass of $K_{2} S O_{4}=174$ and $\left.\mathrm{BaSO}_{4}=233\right)$
d. The residue obtained on strongly heating $2.76 \mathrm{gAg}_{2} \mathrm{CO}_{3}$ is
$\left[\mathrm{Ag}_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} \mathrm{Ag}+\mathrm{CO}_{2}+\mathrm{O}_{2}\right]$
Atomic mass of $A g=108$

- Watch Video Solution

Ex 1.1 Objective Questions (Single Correct)

1. Objective question (single correct answer).
i. The molarity of a aqueous solution of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is 0.01 To 200 mL of the solution, which of the following should be carried out to make it $0.02 M$?

I. Evaporate $50 m L$ of solution

III. Add 0.180 g of glucose and then evaporate 50 mL of solution
III. Add 50 mL of water

The correct option is:
a. I b. III c. II d. I, II, III
ii. The atomic mass of $C u$ is 63.546 . There are only two naturally occuring isotopes of copper $C u^{63}$ and $C u^{65}$. The percentage of natural abundance of $C u^{63}$ in nearly
a. 30 b. 10 c. 50 d. 73
iii. An aqueous solution of urea $\left(\mathrm{NH}_{2} \mathrm{COH}_{2}\right)$ is 3.0 molal. The mole fraction of urea is a. 0.33 b. 0.25 c. 0.66 d. 0.05
iv $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ is diluted to 1000 times of its initial volume. the final normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
a. 2×10^{-3} b. 2×10^{-4} c. 4×10^{-4} d. 2×10^{-2}
v. Which of the following question are dependant on temperature?
a. Molarlity b. Normality c. Mole fraction d. Molality
vi. A sample of $H_{2} S O_{4}$ density $1.85 m L^{-1}$ is 90% by weight. What is the volume of the acid that has to be used to make $1 \mathrm{Lf} 0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$? a. $16 m L$ b. $18 m L$ c. $12 m L$ d. $10 m L$
vii. The hydrated salt $\mathrm{Na}_{2} \mathrm{SO}_{4} . n \mathrm{H}_{2} \mathrm{O}$ undergoes 55.9% loss in weight on heating and becomes anhydrous. The value of n will be

$$
\text { a. } 5 \text { b. } 7 \text { c. } 3 \text { d. } 10
$$

viii. 0.2 mol of HCl and 0.1 mol of barium chloride is dissolved in water to produce a 500 mL solution. The molarity of $C l^{\ominus}$ is.

$$
\text { a. } 0.06 M \text { b. } 0.12 M \text { c. } 0.09 M \text { d. } 0.80 M
$$

ix. The density of $1 M$ solution of $N a C l$ is $1.055 \mathrm{gmL}^{-1}$. The molality of the solutions is.
a. 1.0585
b. 1.00
c. 0.0585 d. 0.10
x. Hydrochloric acid solution A and B have concentration of $0.5 N$, and $0.1 N$, respectively. The volume of solutions A and B required to make
$2 L$ of $0.2 N$ hydrochloric acid are

$$
\text { a. } 0.5 \operatorname{Lof} A+1.5 o f B
$$

b. $1.0 \operatorname{Lof} A+1.0 \operatorname{Lof} B$
c. $0.75 \operatorname{Lof} A+1.25 \operatorname{Lof} B$
d. $1.5 \operatorname{Lof} A+0.5 L o f B$

- View Text Solution

2. The molality of $1 M$ solution of sodium nitrate is $0.858 \mathrm{molkg}^{-1}$. Determine the density of the solution. How much BaCl_{2} would needed to make $250 L$ of a solution having same concetration of $C l^{\ominus}$ as the one containing 3.78 g of NaCl per 100 mL ?

- Watch Video Solution

3. 49 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is disslved in enough water to make one litre of a soltuion of density $1.049 g c c^{-1}$. Find the molarity, normality, moality, and mole fraction of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the solution.

Ex 1.1 Fill In The Blanks

1. Fill in the blanks. ItbRgt a. The mass of $M g C L_{2}$ should be dissolved in 750 g of water in order to prepare a 1.05 m solution is
b. The percentage composition (by mass) and mole fraction of each component is sugar containing 1000 g of sugar in 2000 g of water is.

- Watch Video Solution

Ex 1.2 Objective Question (Single Correct)

1. Objective question (single correct answer).
i. $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a tribasic acid and one of its salt is $\mathrm{NaH}_{2} \mathrm{PO}_{4}$. What volume of 1 MNaOH solution should be added to $12 g$ of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ to convert in into $\mathrm{Na}_{3} \mathrm{PO}_{4}$?
a. 100 mL b. 2 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ c. Both d. None
iii. The normality of a mixture obtained mixing 100 mL of $0.2 \mathrm{mH}_{2} \mathrm{SO}_{4}$ with 100 mL of 0.2 MNaOH is:
a. $0.05 N$ b. $0.1 N$ c. $0.15 N$ d. $0.2 N$
iv 100 mL solution of 0.1 NHCl was titrated with 0.2 N NaOH solutions. The titration was discontinued after adding 30 mL of NaOH solution. The reamining titration was completed by adding 0.25 NKOH solution. The volume of KOH required from completing the titration is:
a. $70 m L$ b. $35 m L$ c. $32 m L$ d. $16 m L$

- Watch Video Solution

2. 4.0 g of a mixture of Nacl and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was dissolved in water and volume made up to 250 mL . 25 mL of this solution required 50 mL of $\mathrm{N} / 10 \mathrm{HCl}$ for complete neutralisation. Calculate the percentage composition of the original mixture.

- Watch Video Solution

3. 500 mL fo $2 \mathrm{MHCl}, 100 \mathrm{~mL}$ of $2 \mathrm{MH}_{2} \mathrm{SO}_{4}$, and one gram equivalent of a monoacidic alkali are mixed together. 30 mL of this solution requried 20 mL of $143 \mathrm{~g} \mathrm{Na} \mathrm{N}_{2} \mathrm{CO}_{3} . \mathrm{xH}_{2} \mathrm{O}$ in one litre solution. Calculate the water of crystallisation of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$

- View Text Solution

Ex 1.2 Fill In The Blanks

1. Fill in the blanks.
a. $2.24 L$ ammonia at $S T P$ neutralised 100 mL of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The molarity of acid is \qquad
b. The equivalent weight of a metal carbonate $0.84 g$ of which reacts exactly with 40 mL of $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ is
c. 1.575 g , of hydrated oxalic acid $(\mathrm{COOH})_{2} \cdot n \mathrm{H}_{2} \mathrm{O}$ is dissolved in water and the solution is made to 250 mL On titration, 16.68 mL of this solution is required for neutralisation of 25 mL of $\mathrm{N} / 15 \mathrm{NaOH}$. The
value of water crystallisation, i.e., n, is
d. 1 mL of $\mathrm{H}_{3} \mathrm{PO}_{4}$ was diluted to 250 mL . 25 mL this solution requried 40.0 mL of 0.10 NNaOH for neutralisation using phenolphthanlen as indicator. The specific gravity of acid is

The density of 1.48 mass percent calcium hydroxide solution is $1.25 \mathrm{gmL}^{-1}$. The volume of 0.1 MHCl solution required to neutralise $25 m L$ of this solution is

- Watch Video Solution

Exercises Subjective (Laws Of Chemical Combination)

1. $10 m L$ of hydrogen combine with $5 m L$ of oxygen to yield water.

When 200 mL of hydrogen at N.T.P. are passed over heated CuO , the latter loses $0.144 g$ of its mass. Do these results agree with the law of constant composition ?
2. Common salt obtained from Clifton beach contained 6.75% chlorime while 6.40 g of a sample of common salt from Khewra mine contained 3.888 g of chlorine. Show that these data are in accordance with the law of constant composition.

- Watch Video Solution

3. $3.2 g$ sulphur combines with $3.2 g$ of oxygen, to from a compound in one set of conditions. In another set of conditions $0.8 g$ of sulphur combines with $1.2 g$ of oxygen to form another compound. State the law illustrated by these chemical combinations.

- Watch Video Solution

4. 1 g of oxygen combines with 0.1260 g of hydrogen to form $\mathrm{H}_{2} \mathrm{O} .1 \mathrm{~g}$ of nitrogen combines with 0.2160 g of hydrogen to form NH_{3}. Predict the
weight of oxygen required to combine with $1 g$ of nitrogen to form an oxide.

- Watch Video Solution

5. $K C L$ contains 52% of potassium, $K l$ contains 23.6% of potassium, and ICI contains 77.8% of iodine. Show that the above data is in agreement with the law of reciprocal proportions.

D Watch Video Solution

6. What weight of sodium chloride would be decomposed by $4.9 g$ of sulphric acid, if $6 g$ of sodium bisulphate $\left(\mathrm{NaHSO}_{4}\right)$ and $1.825 g$ of hydrogen chloride were produced in the reaction and the law of conservation of mass is true?
7. If the law of constant compositon is true, what weights of calcium carbon, and oxygen are present in 1.5 g of calcium carbonate, if a sample of calcium carbonate from another source contains the following percentage composition: $C a=40.0 \%, C=12.0 \%$, and $O=48.0 \%$?

(D) Watch Video Solution

8. An element forms two oxides containing, 50% \& 40% of oxygen respectively by weight of the element. Does these oxides illustrate the law of multiple proportions :-

- Watch Video Solution

9. Elements A and B combine to form three different compounds:
$0.3 g o f A+0.4 g o f B \rightarrow 0.7 g$ of compound X
$18.0 \mathrm{gof} A+48.0 \mathrm{gof} B \rightarrow 66.0 \mathrm{~g}$ of compound Y
$40.0 \mathrm{gof} A+159.99 \mathrm{gof} B \rightarrow 199.99 \mathrm{~g}$ of compound Z

Show that the law of multiple proportions is illustrated by the data given above.

- Watch Video Solution

10. An impure sample of sodium chloride that weighed 0.50 g gave 0.90 g of silver choride as precipitate on treatment with excess of silver nitrate solution. Calculate the percentage purity of the sample.

D Watch Video Solution

11. How much magnesium sulphide can be obtained from 2.00 g of Mg and 2.00 g of S by the reaction.
$M g+S \rightarrow M g S$. Which is the limiting reagent? Calculate the amount of one of the reactants which remains unreacted?
12. 1.00 g of a hydrated salt contains 0.2014 g of iron, 0.1153 g fo sulphur, $0.2301 g$ of oxygen and $0.4532 g$ of water of crystallisation. Find its empirical formula. ($F e=56, S=32, O=16$)

- Watch Video Solution

13. A compound on analysis gave the following percentage composition by weight: hydrogen $=9.09$, oxygen $=36.36$ carbon $=54.55$

Its $V D$ is 44 . Find the molecular formula of the compound.

- Watch Video Solution

Exercises Subjective (Limiting Reagent)

1. An inorganic substance has the following composition:

$$
N=35 \% H=5 \%, O=60 \%
$$

On being heated, it yielded a gaseous compound containing
$N=63.63 \%$ and $O=36.37 \%$. Suggest a formula for each substance and equation for the chemical change.

- Watch Video Solution

2. A compound of carbon, hydrogen, and nitrogen contains the three elements in the respective ratio of $9: 1: 3.5$ Calculculate the empirical formula. If the molecular weight of the compound is 108 , what its molecular formula?

- Watch Video Solution

Exercises Subjective (Empirical And Molecular Formulae)

1. Carbohydrates are compounds containing only carbon, hydrogen and oxygen having the atomic ratio of $H: O$ as $2: 1$. When heated in the absence of air, these compounds decompose to form carbon and water.
a. If $310 g$ of a carbohydrates leaves a residue of $124 g$ of carbon on
heating in absence of air, whatis the empirical formula of the carbohydrate?

If 0.0833 mole of hte carbohydrate contains $1.0 g$ hydrogen, what is the molecular formula of the carbohydrate?

- Watch Video Solution

2. $0.45 g$ of an orgainc compound containing only C, H and N on combustion gave $1.1 g$ of CO_{2} and $0.3 g$ of $\mathrm{H}_{2} \mathrm{O}$. What is the percentage of C, H and N in the orgainc compound.

- Watch Video Solution

3. A pure sample of cobalt chloride weighting $1.30 g$ was found to contains $0.59 g$ cobalt and $0.71 g$ chloride on quantitative analysis. What is the percentage composition of cobalt chloride?
4. Glucose is a physiological sugar. What is the mass $\% C$ mass $\% H$ and mass $\% ~ O$ in glucose $\left(C_{6} H_{12} O_{6}\right)$?

- Watch Video Solution

Exercises Subjective (Avogadros Hypothesis And Mole Concept)

1. Find the weight of NaOH in its 50 milli equivalents.

- Watch Video Solution

2. Find the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ having 50 milli equivalents in 2 litres.

(D) Watch Video Solution

3. Find the weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1200 mL of a solution of 0.2 N strength.
4. What weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ of 93% purity would be required to neutralise 45.6 mL of 0.235 N acid?

- Watch Video Solution

5. What is the strength in gram per litre of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}, 12 m \mathrm{~L}$ of which neutralised by $15 m L$ of $N / 10 \mathrm{NaOH}$ solution?

- Watch Video Solution

6. Two litre of NH_{3} at $30^{\circ} \mathrm{C}$ and 0.20 atmosphere is neutralised by $134 m L$ of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

7. 1 g of calcium was burnt in excess of O_{2} and the oxide was dissolved in water to make up $1 L$ solution. Calculate the normality of alkaline soluiton.

D Watch Video Solution

8. calculate the amount of KOH requried to neutralise 15 mEq of the following:

a. HCl
b. KHSO_{4}
c. $\mathrm{N}_{2} \mathrm{O}_{5}$ d. CO_{2}

- Watch Video Solution

9. What volume of a solution of hydrochloric acid containing $73 g$ acid per litre would suffice for the exact neutralisation of sodium hydroxide obtained by allowing 0.46 g of metallic sodium to act upon water.
10. Find out the equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in the reaction:

$$
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{CaHPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

- Watch Video Solution

11. What weight of AgCl will be precipitated when a solution containing 4.77 gNaCl is added to a solution of 5.77 g of AgNO_{3}.

- Watch Video Solution

Exercises Subjective (Mole Concept In Solution)

1. A sample of an alloy weighing $0.50 g$ and containing $90 \% A g$ was dissolved in concentrated HNO_{3}. Ag was analysed by volhard method in which $25 m L$ of $K C N S$ was required for complete neutralisation. Determine the normality of $K C N S$.
2. HNO_{3} used as a reagent has specific gravity of $1.42 \mathrm{gmL}^{-1}$ and contains 70% by strength HNO_{3}. Calcualte:
a. Normality of acid
b. volume of acid the contains $63 g$ pure acid
c. volume of water required to make $1 N$ solution fromk $2 m L$ concentration HNO_{3}.

- Watch Video Solution

3. Find the molality fo $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution whose specific gravity is $1.98 \mathrm{gmL} L^{-1}$ and 98% (Weight/volume) $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

4. A piece of Al wieghing 2.7 g is titrated with 75.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (specific gravity $1.8 m L^{-1}$ and $24.7 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight). After the
metal is completely dissolved, the solution is diluted to 400 mL . Calculate the molarity of free $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution.

- Watch Video Solution

5. A $10 m L$ sample of human urine was found to have $5 m g$ of urea on analysis. Calculate the molarity of the given sample w.r.t. urea. (molecular mass of urea $=60$)

D Watch Video Solution

6. Calcualate the molarity and molality of 20% aqueous ehtanol $\left(C_{5} H_{5} \mathrm{OH}\right)$ solution by volume. (density of solution $=0.96 \mathrm{gmL}^{-1}$)

- Watch Video Solution

7. If $4 g \mathrm{NaOH}$ are dissolved in 100 mL of aqueous solution, what will be the differnce in its normality and molarity?

(D) Watch Video Solution

8. An aqueous fo diabasic acid (molecular mass = 118) containing 35.4 g of acid per litre of the solution has density $1.0077 g m L^{-1}$.

Express the concentration in as many ways as you can?

- Watch Video Solution

9. A solution contains 2.80 moles of acetone $\left.\left(\mathrm{CH}_{3} \mathrm{COCH}\right)_{3}\right)$ and 8.20 mole of CHCl_{3}. Calculate the mole fraction of acetone.

- Watch Video Solution

10. The percentage composition (by weight) of a solution is $45 \% X, 15 \% Y$, and $40 \% Z$. Calculate the mole fraction of each component of the solution. (Molecular mass of $X=18, Y=60$, and $Z=60)$

- Watch Video Solution

Exercises Linked Comprehension

1. A sample of urine containing $0.3 g$ of urea was treated with an excess of $0.2 M$ nitrous acid, according to the equation.
$\mathrm{NH}_{2} \mathrm{CONH}_{2}+2 \mathrm{HNO}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
The gass produced passed through aqueous KOH solution and the final valume is measured.
(Given, $M w_{\text {urea }}=60 \mathrm{gmol}^{-1}$, molar volume of gas at standard condition, i.e., at room temperature $25^{\circ} C$ and 1 atm pressure. $R T P$
(room temperature pressure) also is $24.4 L$ or $24400 \mathrm{mLmol}^{-1}$)
What is the volume at $R T P$?
A. $122 m L$
B. $244 m L$
C. $366 m L$
D. $488 m L$

Answer: B

- Watch Video Solution

2. A sample of urine containing $0.3 g$ of urea was treated with an excess of $0.2 M$ nitrous acid, according to the equation.
$\mathrm{NH}_{2} \mathrm{CONH}_{2}+2 \mathrm{HNO}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
The gass produced passed through aqueous KOH solution and the final valume is measured.
(Given, $M w_{\text {urea }}=60 \mathrm{gmol}^{-1}$, molar volume of gas at standard
condition, i.e., at room temperature $25^{\circ} \mathrm{C}$ and 1 atm pressure. $R T P$ (room temperature pressure) also is 24.4 L or $24400 \mathrm{mLmol}^{-1}$)

What is the volume of HNO_{2} consumed by urea?
A. $12.5 m L$
B. $25 m L$
C. $50 m L$
D. $75 m L$

Answer: C

(D) Watch Video Solution

3. Fluoro carbon polymers can be made by fluorinationg polythene.
(i) $\left(\mathrm{CH}_{2}\right)_{n}+4 n \mathrm{CoF}_{3} \rightarrow\left(\mathrm{CF}_{2}\right)_{n}+2 n \mathrm{HF}+4 n \mathrm{CoF}_{2}$

Where n is large integer. The CoF_{3} can be regenarted by the above reaction.
(ii) $2 \mathrm{CoF}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{CoF}_{3}$

If the $H F$ formed in reactionn (i) cannot be reused, calculate the weight of F_{2} consumed by $1.0 g$ of $\left(C F_{2}\right)_{n}$ produced.
A. $2.0 g$
B. $2.52 g$
C. $1.52 g$
D. 3.0 g

Answer: C

- Watch Video Solution

4. Fluoro carbon polymers can be made by fluorinationg polythene.
(i) $\left(\mathrm{CH}_{2}\right)_{n}+4 n \mathrm{CoF}_{3} \rightarrow\left(\mathrm{CF}_{2}\right)_{n}+2 n \mathrm{HF}+4 n \mathrm{CoF}_{2}$

Where n is large integer. The CoF_{3} can be regenarted by the above reaction.
(ii) $2 \mathrm{CoF}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{CoF}_{3}$

If $H F$ can be recovered and electrolyzed to H_{2} and if F_{2}, is used for
regenerating CoF_{3}, what is the net consuption of F_{2} for 1.0 g of $\left(C F_{2}\right)_{n}$.
A. $1.0 g$
B. 1.26 g
C. 0.76 g
D. $1.5 g$

Answer: C

- Watch Video Solution

5. Consider the following series of reaction:
$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O}$
$3 \mathrm{NaClO} \rightarrow 2 \mathrm{NaCl}+\mathrm{NaClO}_{3}$.
$4 \mathrm{NaClO}_{3} \rightarrow 3 \mathrm{NaClO}_{4}+\mathrm{NaCl}$
How much Cl_{2} is needed to prepare $122.5 \mathrm{gNaClO}_{4}$ by above sequence?
A. $284.0 g$
B. $213.0 g$
C. $142.0 g$
D. 71.0 g

Answer: A

- Watch Video Solution

6. How much Cl_{2} in needed to prepare $106.5 \mathrm{gof} \mathrm{NaClO}_{3}$ by the above sequence?
A. $284.0 g$
B. $213.0 g$
C. $142.0 g$
D. 71.0 g

Answer: B

- Watch Video Solution

7. One of the reactions used in the petroleum industry for improving octance number of fuels is
$\mathrm{C}_{7} \mathrm{H}_{14} \rightarrow \mathrm{C}_{7} \mathrm{H}_{8}+3 \mathrm{H}_{2}$
The two hydrocarbons $\mathrm{C}_{7} \mathrm{H}_{14}$ and $\mathrm{C}_{7} \mathrm{H}_{8}$ are liquid, H_{2} formed is gas.
Whatis the percentage reduction in liquid weight accompanying the completion of the above reaction?
A. $\approx 1 \%$
B. $\approx 3 \%$
C. $\approx 5 \%$
D. $\approx 6 \%$

Answer: D

8. In aviation gasoline of 100 octane number, 1.0 mL of tetraethy lead (TEL), $\left(C_{2} H_{5}\right)_{4} P b$, of density $1.615 \mathrm{gmL}^{-1}$, per litre is added to the product. $T E L$ is prepared as follows:
$4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+4 \mathrm{Na}(\mathrm{Pb}) \rightarrow\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~Pb}+4 \mathrm{NaCl}+3 \mathrm{~Pb}$
Calculate the amount of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ required to make enough $T E L$ for $1.0 L$ of gasoline.
A. $0.645 g$
B. $1.29 g$
C. $1.935 g$
D. $2.58 g$

Answer: B

- Watch Video Solution

9. The percentage labelling (mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and SO_{3}) refers to the total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$. The total amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ found after adding calculated amount of water to 100 g oleum is the percentage labelling of oleum. The higher the percentage lebeling of oleum higher is the amount of free SO_{3} in the oleum sample.

What is the amount of free SO_{3} in an oleum sample labelled as ' 118% '.
A. 0.4
B. 0.5
C. 0.7
D. 0.8

Answer: D

- Watch Video Solution

10. The percentage labelling (mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and SO_{3}) refers to the total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$. The total amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ found after adding calculated amount of water to 100 g oleum is the percentage labelling of oleum. The higher the percentage lebeling of oleum higher is the amount of free SO_{3} in the oleum sample.

The percent free SO_{3} is an oleum is 20%. Label the sample of oleum in terms of percent $\mathrm{H}_{2} \mathrm{SO}_{4}$.
A. 1.135
B. 1.045
C. 1.0675
D. 1.2

Answer: B

(D) Watch Video Solution

11. The percentage labelling (mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and SO_{3}) refers to the total mass of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$. The total amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ found after adding calculated amount of water to $100 g$ oleum is the percentage labelling of oleum. The higher the percentage lebeling of oleum higher is the amount of free SO_{3} in the oleum sample.

100 g sample of ' 149% ' oleum was taken and calculated amount of $\mathrm{H}_{2} \mathrm{O}$ was added to make $\mathrm{H}_{2} \mathrm{SO}_{4} .500 \mathrm{~mL}$ solution of $x \mathrm{MKOH}$ solution is required to neutralize the solution. The value of x is.
A. $1 M$
B. $2 M$
C. $4 M$
D. $6 M$

Answer: D

12. Cisplation is used an anticancer agent for the treatment of solid tumors, and its prepared as follows:

$$
\begin{aligned}
& \underset{\substack{\text { Potassium tetra } \\
\text { Chloro platinate }}}{\left.\mathrm{K}_{2} \mathrm{Pt}_{4}\right]}+2 \mathrm{NH}_{3} \rightarrow \underset{\text { Ciplatin }}{\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]}+2 \mathrm{KCl} \\
& \text { Cl }
\end{aligned}
$$

Given 83.0 g of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ is used with 83.0 g of NH_{3}.
Atomic weights: $K=39, P t=415, C l=35.5 N=14]$
Which reactant is the limiting reagent and which is in excess?
A. $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right] \mathrm{NH}_{3}$
B. $\mathrm{NH}_{3} K_{2}\left[\mathrm{PtCl}_{4}\right]$
C. None None
D. Both Both

Answer: A

- Watch Video Solution

13. Cisplation is used an anticancer agent for the treatment of solid tumors, and its prepared as follows:

$$
\begin{gathered}
\underset{\text { Potassium tetra }}{\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]}+2 \mathrm{NH}_{3} \rightarrow \underset{\text { Ciplatin }}{\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]}+2 \mathrm{KCl} \\
\text { Chloro platinate }
\end{gathered}
$$

Given 83.0 g of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ is used with 83.0 g of NH_{3}.
Atomic weights: $K=39, P t=415, C l=35.5 N=14]$
The number of mol of $K_{2}\left[\mathrm{PtCl}_{4}\right]$ and NH_{3} used, respectively, are
A. 0.1,0.2
B. $0.2,0.04$
C. 0.3,0.6
D. 0.03,0.06

Answer: B

- Watch Video Solution

14. Cisplation is used an anticancer agent for the treatment of solid tumors, and its prepared as follows:

$$
\begin{aligned}
& \underset{\text { Potassium tetra }}{\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]}+2 \mathrm{NH}_{3} \rightarrow \underset{\text { Ciplatin }}{\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]}+2 \mathrm{KCl} \\
& \text { Chloro platinate }
\end{aligned}
$$

Given 83.0 g of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ is used with 83.0 g of NH_{3}.
Atomic weights: $K=39, P t=415, C l=35.5 N=14]$
The number of mol of excess reactant is
A. 4.68
B. 4.78
C. 4.58
D. 4.48

Answer: D

- Watch Video Solution

15. Iodine can be prepared by the following reactions.
$2 \mathrm{NaIO}_{3}+5 \mathrm{NaSO}_{3} \rightarrow 2 \mathrm{NaSO}_{4}+2 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
How much NaIO_{3} is reuired to produce $127 g$ is I_{2} ?
A. 1.98 kg
B. 3.96 kg
C. 5.94 kg
D. 0.99 kg

Answer: A

- Watch Video Solution

16. Iodine can be prepared by the following reactions.
$2 \mathrm{NaIO}_{3}+5 \mathrm{NaSO}_{3} \rightarrow 2 \mathrm{NaSO}_{4}+2 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
How much NaHSO_{3} is required to produce 381 g of I_{2} ?
A. $156.0 g$
B. 390.0 g
C. 520.0 g
D. ${ }^{`} 780.0 \mathrm{~g}$

Answer: D

- Watch Video Solution

17. When phosphours $\left(P_{4}\right)$ is heated in limited amount of $O_{2} . P_{4} O_{6}$ (tetraphosphorous hexaoxide) is obtained, and in excess of $O_{2}, P_{4} O_{10}$ (tetraphosphours decaoxide) is obtained.
i. $P+3 O_{2} \rightarrow P_{4} O_{6}$, ii. $P_{4}+5 O_{2} \rightarrow P_{4} O_{10}$

What mass of $P_{4} O_{6}$ will be produced by the combustion of 2.0 g of P_{4} with 2.0 g of O_{2}.
A. 0.0145 mol
B. 0.0072 mol
C. 0.029
D. 0.0048

Answer: B

- Watch Video Solution

18. What mass of $P_{4} O_{10}$ will be produced by the combustion of 2.0 g of P_{4} with 2.0 g of O_{2}
A. $1.04 g$
B. $0.52 g$
C. $2.04 g$
D. $3.04 g$

Answer: C

19. When phosphours $\left(P_{4}\right)$ is heated in limited amount of $O_{2} . P_{4} O_{6}$ (tetraphosphorous hexaoxide) is obtained, and in excess of $O_{2}, P_{4} O_{10}$ (tetraphosphours decaoxide) is obtained.
i. $P+3 O_{2} \rightarrow P_{4} O_{6}$, ii. $P_{4}+5 O_{2} \rightarrow P_{4} O_{10}$

How many moles of O_{2} left unreacted initiallyin reaction (i) ?
A. 0.0145 mol
B. 0.072 mol
C. 0.029 mol
D. 0.0048 mol

Answer: A

- Watch Video Solution

20. Copper (Cu) and (Zn) react differently with HNO_{3} as follows:
$\mathrm{Cu}+4 \mathrm{H}^{\oplus}(a q)+2 \mathrm{NO}_{3}^{\ominus}(a q) \rightarrow 2 \mathrm{NO}_{2}(g)_{C} u^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{Zn}+10 \mathrm{H}^{\oplus}(a q)+2 \mathrm{NO}_{3}^{\ominus}(a q) \rightarrow \mathrm{NH}_{4}^{\oplus}+4 \mathrm{Zn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}$
What volume of $2.0 \mathrm{MHNO}_{3}$ would react with 10.0 g of a brass (90. $\% \mathrm{Cu}, 10.0 \% \mathrm{Zn}$) according to the above equation?
A. $\approx 100 \mathrm{~mL}$
B. $\approx 150 \mathrm{~mL}$
C. $\approx 200 m L$
D. $\approx 300 \mathrm{~mL}$

Answer: D

- Watch Video Solution

21. Copper (Cu) and (Zn) react differently with HNO_{3} as follows:
$\mathrm{Cu}+4 \mathrm{H}^{\oplus}(a q)+2 \mathrm{NO}_{3}^{\ominus}(a q) \rightarrow 2 \mathrm{NO}_{2}(g)_{C} u^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{Zn}+10 \mathrm{H}^{\oplus}(a q)+2 \mathrm{NO}_{3}^{\ominus}(a q) \rightarrow \mathrm{NH}_{4}^{\oplus}+4 \mathrm{Zn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}$
What volume of NO_{2} gas at $27^{\circ} \mathrm{C}$ and 1.0 atm pressure would be produced?
A. $6.97 L$
B. 5.97 L
C. 4.97 L
D. $3.97 L$

Answer: A

- Watch Video Solution

22. In coal, pyrites $\left(\mathrm{Fe}_{2}\right)$ is present as a pollution-causing impurity, which is removed by combustion.
$2 \mathrm{FeS}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{SO}_{2}+2 \mathrm{FeO}$.
Calculate the moles of SO_{2} produced by burning 1.0 metric ton $\left(10^{3} \mathrm{~kg}\right)$ of coal containing 0.05% by mass of pyrites impurity?
A. 8.32 mol
B. 4.16 mol
C. 12.48 mol
D. 2.08 mol

Answer: A

- Watch Video Solution

23. In coal, pyrites $\left(F e S_{2}\right)$ is present as a pollution-causing impurity, which is removed by combustion.
$2 \mathrm{FeS}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{SO}_{2}+2 \mathrm{FeO}$.
What volume of 3.0 MKOH would be required to react with the SO_{2} produced in
A. $2.77 L$
B. $5.54 L$
C. 1.38 L
D. 8.31 L

Answer: B

- Watch Video Solution

24. In coal, pyrites $\left(\mathrm{Fe}_{2}\right)$ is present as a pollution-causing impurity, which is removed by combustion.
$2 \mathrm{FeS}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{SO}_{2}+2 \mathrm{FeO}$.
A process designed to remove orgainc sulphur from coal prior to combustion involves the reaction.
$\mathrm{X}-\mathrm{S}-\mathrm{Y}+2 \mathrm{NaOH} \rightarrow \mathrm{X}-\mathrm{O}-\mathrm{Y}+\mathrm{Na}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
$\mathrm{Na}_{2} \mathrm{~S}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{~S}$
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaOH}$
In the processing in 320 metric tons of a coal having 1.0% sulphur content, how much limestone $\left(\mathrm{CaCO}_{3}\right)$ must be edecomposed to provied enough $\mathrm{Ca}(\mathrm{OH})_{2}$ to regenerate the NaOH used in the original leaching step?
A. 2.0 metric ton
B. 4.0 metric ton
C. 8.0 metric ton
D. 10.0 metric ton

Answer: D

(D) Watch Video Solution

25. In coal, pyrites $\left(F e S_{2}\right)$ is present as a pollution-causing impurity, which is removed by combustion.
$2 \mathrm{FeS}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{SO}_{2}+2 \mathrm{FeO}$.

What mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ can be prepared from 3.0 g of $\mathrm{Cu}_{2} S$ if each atom of S in $\mathrm{Cu}_{2} S$ is converted into 1 molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. $1.85 g$
B. $68.62 g$
C. 3.85 g
D. 4.85 g

Answer: A

- Watch Video Solution

26. Salt cake $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ is prepared as follows:
$2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na} a_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
How much salt cake could be produced from 100.0 g of 90% pure saltin the above reaction?
A. $109.8 g$
B. $54.9 g$
C. $36.6 g$
D. $209.8 g$

Answer: A

27. Salt cake $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ is prepared as follows:
$2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
How much 80% pure salt cake could be produced form 100.0 g of 90% pure salt in the above reaction?
A. $43.92 g$
B. $68.62 g$
C. $87.84 g$
D. $137.25 g$

Answer: D

28. A mixture of a mol of $C_{3} H_{8}$ and $b \mathrm{~mol}$ of $C_{2} H_{4}$ was kept is a container of $V L$ exerts a pressure of 4.93 atm at temperature T. Mixture was burnt in presence of O_{2} to convert $C_{3} H_{8}$ and $C_{2} H_{4}$ into CO_{2} in the container at the same temperature. The pressure of gases after the reaction and attaining the thermal equilirium with atomsphere at temperature T was found to be 11.08 atm. The moles fraction of $C_{3} H_{8}$ in the mixture is
A. 0.25
B. 0.75
C. 0.45
D. 0.55

Answer: A

(Watch Video Solution

29. A mixture of a mol of $C_{3} H_{8}$ and $b \mathrm{~mol}$ of $C_{2} H_{4}$ was kept is a container of $V L$ exerts a pressure of 4.93 atm at temperature T. Mixture was burnt in presence of O_{2} to convert $C_{3} H_{8}$ and $C_{2} H_{4}$ into CO_{2} in the container at the same temperature. The pressure of gases after the reaction and attaining the thermal equilirium with atomsphere at temperature T was found to be 11.08 atm.

The mole fraction of $C_{2} H_{4}$ in the mixture is
A. 0.25
B. 0.75
C. 0.45
D. 0.55

Answer: B

- Watch Video Solution

30. A mixture of a mol of $C_{3} H_{8}$ and $b \mathrm{~mol}$ of $C_{2} H_{4}$ was kept is a container of $V L$ exerts a pressure of 4.93 atm at temperature T.

Mixture was burnt in presence of O_{2} to convert $C_{3} H_{8}$ and $C_{2} H_{4}$ into CO_{2} in the container at the same temperature. The pressure of gases after the reaction and attaining the thermal equilirium with atomsphere at temperature T was found to be 11.08 atm .

The moles of O_{2} needed for combustion at temperature T is equal to
A. $14 a$
B. $14 b$
C. $15 a$
D. $12 b$

Answer: A

- Watch Video Solution

1. Which of the statement are correct?
A. Physical quantity represented by work in joule is $\mathrm{kgm}^{2} \mathrm{~s}^{-2}$
B. physical quantity represented by force in newton is $\mathrm{kgm}^{2} \mathrm{~S}^{-1}$
C. physical quantity represented by work in joule is kgms^{-2}
D. Physical quantity represented by fore in newton is $\mathrm{kgm}^{2} \mathrm{~s}^{-2}$

Answer: A::B

- Watch Video Solution

2. Which of the statements are false?
A. Physical quantity represented by volume is $d m^{3}$
B. The length of pencil is 5 cms .
C. The work done by a system is 5 Joules.
D. Air sometimes is considered as a hetrogeneous mixture due to the presence of dust particles which form a separate phase.

Answer: B::C

- View Text Solution

3. Which of the statement are true?
A. Law of constant compositon is true for all types of compounds.
B. Molar volume of a gas at standard conditions is $22.4 L$.
C. vapour density of a gas is twice of its molecula mass.
D. Atomic masses of most elements are fractional.

Answer: D

4. Which of the statement are true?
A. The equivalent weight of $C a_{3}\left(P O_{4}\right)_{2}$ is $M w / 6$.
B. The equivalent weight of $\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ is $\mathrm{Mw} / 3$.
C. The equivalent weight of $K_{2} S O_{4}$ is $\mathrm{Mw} / 2$.
D. The equivalent weight of potas alum $\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ is $M w / 8$

Answer: A::B::C::D

- Watch Video Solution

5. Which of the statement are ture?
A. Brass is an elements
B. Dry ice is a mixture
C. Aerated drink, e.g., coca cola, is a mixture.
D. Diesel is a mixture

Answer: C::D

- Watch Video Solution

6. Two bulbs A and B contains $16 g O_{2}$ and $16 g O_{3}$, respectively. Which of the statements are ture?
A. Both bulbs contains same number of atoms.
B. Both bulbs contains different number of atoms.
C. Both bulbs contain same number of molecules.
D. Bulb A contains $N_{A} / 2$ molecules while bulb B contains $N_{A} / 3$ molecules. ($N_{A}=$ Avogadro's number).

Answer: A::D

7. A bulb contains $1.6 g$ of O_{2} contains.
A. 0.05 mol of O_{2}
B. 3.011×10^{22} molecules of O_{2}
C. $1.12 L$ of O_{2} at $S T P$
D. $1.22 L$ of O_{2} at $S T P$

Answer: A::B::C::D

- Watch Video Solution

8. Which of the following have same significant figures?
A. 0.07
B. 0.7
C. 7
D. 70

Answer: A::B::C::D

- Watch Video Solution

9. Which of the following have same significant figures?
A. 6.02×10^{23}
B. 7.70×10^{-20}
C. 7.50
D. 0.75

Answer: A::B::C

- Watch Video Solution

10. Which of following relations are correct?
A. $1 e V=9.11 \times 10^{-4} J$
B. $1 L=1 d m^{3}$
C. $1 J=1.98 \mathrm{cal}$
D. $1 \mathrm{~atm}=1.01325 \mathrm{bar}$

Answer: A::B::C::D

(D) Watch Video Solution

11. Which of the following statements are correct?
A. French chemist A. Lavoisier is called th father of chemistry and proposed the law of conservation of mass.
B. French chemist joseph proust proposed the law of definite proportions
C. Dalton proposed the law of multiple proportion.
D. Richter proposed the law of reciprocal proportions.

Answer: A::B::C::D

- Watch Video Solution

12. Whichof the statement are ture about the law of chemical combination?
A. Potassium combines with two isotopes of chlorine $\cdot{ }^{35} \mathrm{Cl}$ and
${ }^{37} \mathrm{Cl}$) to form two samples of KCl . Their formation follows the law of definite composition.
B. Different proportion of oxygen in the varius oxidies of sulphur prove the law of multiple proportiens.
C. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$ contains 11.11% hydrogen and 5.88% hydrogen, respectively, whereas SO_{2} contains 50% sulphur. The above data prove the law of reciprocal proportions.
D. In the decomposition of $\mathrm{NH}_{3}, 2 \mathrm{NH}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2}+3 \mathrm{H}_{2}$, the ratio of volumes of $\mathrm{NH}_{3}, \mathrm{~N}_{2}$ and H_{2} is $2: 1: 3$ The above data proves the Gay Lussac law.

Answer: A::B::C::D

- Watch Video Solution

13. Which of the following statements are wrongs?
A. 1.6 g of a hydrocarbon on combustion in excess of oxygen produces 1.2 of CO_{2} and 0.4 of $\mathrm{H}_{2} \mathrm{O}$. The data illustrates the law of conservation of mass.
B. The product of atomic mass and specific heat of any element is a constant and is approximately 6.4. Thus is known as Dulong Petit's law.
C. The atomic masses of any elements is fractional because they are mixtures of allotropes.
D. The best standard of atomic mass is hydrogen $-1.008^{`}$

Answer: C::D

- Watch Video Solution

14. Which of the following pair of compounds illustrate the law of multiple proportions?
A. SO_{2} and SO_{3}
B. NO_{2} and $\mathrm{N}_{2} \mathrm{O}$
C. MgO and $\mathrm{Mg}(\mathrm{OH})_{2}$
D. NO and $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: A::B::D

15. Which of the following statements are correct?
A. A sample of CaCO_{3} contains $\mathrm{Ca}=40 \%, \mathrm{C}=12 \%$, and
$O=48 \%$. If the law of constant compositon is true, then the
mass of Ca in 10 gCaCO from another source is 4.0 g
B. $12 g$ of carbon is heated in vacuum and there is no change in the mass, is the best example of the law of conservation of mass.
C. Air is heated at constant pressure and there is no change in mass but the increases, is the best example of the law of conservation of mass.
D. SO_{2} gas was prepared by (i) heating Cu with cone $\mathrm{H}_{2} \mathrm{SO}_{4}$
burning sulphur in oxygen, (iii) reacting observed that is each
case, S and O combines in the ratio of 1:1. This data illustrates the law of constant composition.

- View Text Solution

Exercises Multiple Correct (Mole Concept)

1. Which of the following statements is/are correct?
A. Chloropicrin $\left(\mathrm{CCl}_{3} . \mathrm{NHO}_{2}\right)$ can made cheapy for use as an insectide by the following reaction:

$$
\mathrm{CH}_{3} \mathrm{NO}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{3} \mathrm{NO}_{2}+\mathrm{HCl}
$$

B. In a rocket motor fueled with butane $\left(C_{4} H_{10}\right), 0.1 \mathrm{~mol}$ of butane requires $14.56 L$ of O_{2} at $S T P$ for complete combustion.
C. A portable hydrogen generator utilises the reaction:
$\left(\mathrm{CaH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}\right), 2.1 \mathrm{gof} \mathrm{CaH}_{2} \quad$ would produce $2.24 L$ "of" H_{2} at $S T P$
D. In the Mond process for purifying nickel, the volatile nickel
carbonyl $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is produced by the reaction.
$\mathrm{Ni}+\mathrm{Co} \rightarrow \mathrm{Ni}(\mathrm{CO})_{4} .58 .87 \mathrm{~g}$ of Ni utilises 89.6 L of CO at
standard conditions.

Answer: A::B::C

- View Text Solution

2. Which of the following statements is/are correct?
A. $C a C_{2}$ is made in an electric furnace by the reaction

$$
\mathrm{CaO}+\mathrm{C} \rightarrow \mathrm{CaC}_{2}+\mathrm{CO}
$$

16.0 g of $\mathrm{CaC} \mathrm{C}_{2}$ is obtained from 9.0 gofC
B. Polyethene can be proudced form $C a C_{2}$ as follows

$$
\begin{aligned}
& \mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}+\mathrm{HC} \equiv \mathrm{CH} \\
& \mathrm{HC} \equiv \mathrm{CH}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}
\end{aligned}
$$

$n\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right) \rightarrow-\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{2}-$ (polyethen)
$32.0 \mathrm{kgofCaC} \mathrm{C}_{2}$ produces 14.0 kg of polyethene.
C. $1.435 g$ of AgCl is obtained from 17.55 of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$ by the following reaction:
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{AgCl}+2 \mathrm{NH}_{4} \mathrm{NH}_{3}$.
D. Commercial sodium hydrosulfite is 50% pure $N a_{2} S_{2} O_{4}$. It is prepared as follows:
i. $\mathrm{Zn}+2 \mathrm{SO}_{2} \rightarrow \mathrm{ZnS}_{2} \mathrm{O}_{4}$
ii. $\left.\mathrm{ZnS}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{ZnCO}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}\right)$
174.0 metric ton of commerical product $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}\right)$ can be made
from 65.4 metric ton of $Z n$, with a sufficient supply of other
reactants.

Answer: A::B

- Watch Video Solution

3. Which of the following statements is/are corrects?
A. $21.2 g$ sample of impure of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{CaCO}_{3}=0.1 \mathrm{~mol}$.
B. The percentage of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is 60%
C. The number of mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{CaCO}_{3}=0.1 \mathrm{~mol}$
D. The number of moles of NaCl formed is 0.1 mol

Answer: A: C

- Watch Video Solution

4. Which of the following statements is/are correct
A. The reaction.
$\mathrm{Bi}+4 \mathrm{HNO}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}$
2.09 g of Bi in HNO_{3} produces 48.5 g of bismuth nitrate.
(Atomic weight $\mathrm{Bi}=209 \mathrm{~g}, \mathrm{MwofBi}\left(\mathrm{NO}_{3}\right)_{3} .5 \mathrm{H}_{2} \mathrm{O}=485 g$)
B. 4.0 g of $63 \% \mathrm{HNO}_{3}$ by mass is required to react with 2.09 g of Bi
C. The volume of $N O$ gas produced at $S T P$ (1 bar $273 K$) is $0.227 L$
D. The volume of $N O$ gas prodcued at $S A T P$ (1 bar, $298 K$) is $0.247 L$.

Answer: B::C::D

- Watch Video Solution

5. Which of the following statement is/are correct
A. The weight of CaCO_{3} in the original mixture is 0.5 g .
B. The weight of calcium in the original mixture is $0.2 g$
C. The weight percent of calcium in the original mixture is $40 \% \mathrm{Ca}$
D. The weight percent of $C a$ in the original mixture is $20 \% C a$
6. Which of the following statements is/are correct
A. 196.0 g of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required for the production of 365.0 g of conc HCl containing $40 \% \mathrm{HCl}$ by weight.
B. 245.0 g of $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight is required for the production of 365.0 g conc. HCl containing $40 \% \mathrm{HCl}$ be weight
C. 2 mol of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required for the production of 365 g of 40\% HCl
D. 2.5 mol of $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ is required for the production of 36.5 g of $40 \% \mathrm{HCl}$.

Answer: A::B::C::D

- Watch Video Solution

1. Which of the following statements is/arecorrect
A. $F e$ is the limiting reagent.
B. The mass O_{2} left over at the end of the reaction is $1.2 g$
C. The mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ produced is 12.0 g
D. O_{2} is the limiting reagent.

Answer: A::B::C

- Watch Video Solution

2. Which of the following statements is / are correct?

A mixture containing $64.0 \mathrm{gH} \mathrm{H}_{2}$ and $64.0 \mathrm{gO} \mathrm{O}_{2}$ is ignited so that water is formed as follows:
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
A. $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
B. O_{2} is the limiting reagent
C. The reaction mixture contains $72.0 \mathrm{gof} \mathrm{H}_{2} \mathrm{O}$ and 56.0 g of unreacted H_{2}.
D. The reaction mixture contains 56.0 g of $\mathrm{H}_{2} \mathrm{O}$ and 72.0 g of unreacted H_{2}.

Answer: B::C

(D) Watch Video Solution

3. Which of the following statements is / are wrongs?

The following reactions occur:
A. P_{4} is the limiting quantity
B. O_{2} is the limiting quantity
C. mass of $P_{4} O_{10}$ obtained is $2.2 g$
D. Mass ov $P_{4} O_{6}$ obtained is $2.84 g$

Answer: B::C::D

D Watch Video Solution

4. Which of the following is / are correct.

The following reaction occurs: Itrgt $C S_{2}+3 C l_{2} \xrightarrow{\Delta} C C l_{4}+S_{2} C l_{2}$
1.0 g of $C S_{2}$ and 2.0 g of $C l_{2}$ reacts.
A. $0.714 g C S_{2}$ is used in the reaction.
B. $0.286 g C S_{2}$ is in formed.
C. $1.45 \mathrm{gofCCl}_{4}$ is formed
D. $0.8 g \mathrm{Cl}_{2}$ is in excess

Answer: A: B::C

5. Which of the following statements is / are correct"

The following reaction occurs:
$2 \mathrm{Al}+3 \mathrm{MnO} \xrightarrow{\Delta} \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Mn}$.
108.0 g of Al and 213.0 g of MnO was heated to initiate the reaction.
$(M w o f M n O=71$, atomic weight of $A l=13)$
A. $A l$ is present in excess
B. $M n O$ is present is excess.
C. $54.0 g$ of $A l$ is required
D. $159.0 g$ of $M n O$ is in excess.

Answer: A::C

- Watch Video Solution

6. Which of the following statements is / are correct?
i. 21.0 o lithium reacts with $32.0 \mathrm{gof}_{2}$.
$4 \mathrm{Li}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}$
ii. 3.9 g of K reacts with $4.26 \mathrm{gof} \mathrm{Cl}_{2}$
$2 \mathrm{~K}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}$
Atomic weights of $L i=7$ and $K=39 . M w$ of $L i_{2} O=30$ and $K C l=74.5 \mathrm{gmol}^{-1}$
A. In reaction (i), O_{2} is in excess.
B. $45.0 \mathrm{gof} \mathrm{Li}_{2} \mathrm{O}$ is formed in reaction (i)
C. In reaction (ii), $C l_{2}$ is in excess.
D. 7.45 gof KCl is formed is reaction (ii).

Answer: A::B::C::D

- Watch Video Solution

7. Which of the following is / are correct?

The following reaction occurs:
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NACl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
106. $\mathrm{gof} \mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts with 109.5 gofHCl .
A. The HCl is in excess.
B. 117.0 g of NaCl is formed.
C. The volume of CO_{2} produced at 1 bar and 273 K is 22.7 L
D. The volume of CO_{2} produced at 1 bar and 298 K is 24.7 L

Answer: A::B::C::D

- Watch Video Solution

Exercises Multiple Correct (Mole Concept In Solution)

1. Which of the following solution contains approximately equal hydrogen ion concentration
A. $100 \mathrm{mLof} 0.1 \mathrm{MHCl}+50 \mathrm{mLH} \mathrm{H}_{2} \mathrm{O}$
B. $75 \mathrm{mLof0.1MHCl+75mLH}_{2} \mathrm{O}$
C. $50 \mathrm{mLof} 0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+100 \mathrm{mLH} \mathrm{H}_{2}$
D. $100 \mathrm{mLof0} 0.1 \mathrm{NH}_{2} \mathrm{SO}_{4}+50 \mathrm{mLH}_{2} \mathrm{O}$

Answer: C::D

- Watch Video Solution

2. Which of the following solution contains same molar concentration?
A. $166 \mathrm{~g} . \mathrm{KI} / L$ solution.
B. $33.0 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ in 200 mL solution
C. $25.0 \mathrm{gCuSO} \mathrm{C}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ in 100 mL solution
D. $27.0 \mathrm{mg} \mathrm{Al}^{3+}$ per $m L$ solution.

Answer: A::C::D

3. Which of the following have equal mass of $C l^{\ominus}$ ions in $1.0 L$ of each of the following solution?
A. $5 \% \mathrm{NaCl}$ (density $=1.07 g m L^{-1}$)
B. $5 \% K C l\left(d=1.06 g m L^{-1}\right)$
C. 58.5 gNaCl
D. $55.5 \mathrm{gBaCl} l_{2}$

Answer: C::D

(D) Watch Video Solution

4. Which of the following statement is / are correct?

Excess of $\mathrm{H}_{2}(\mathrm{~g})$ is bubbled into 1.0 L of $0.1 \mathrm{MCuCl} \mathrm{C}_{2}$ solution.
$\mathrm{Cu}^{2+}+\mathrm{H}_{2} S(g) \rightarrow \mathrm{CuS}(s)+22 \mathrm{H}^{\oplus}$
A. 9.55 of $C u S$ is produced.
B. The concentratikon of H^{\oplus} ions is $0.2 M$
C. The concentration of H^{\oplus} ions is $0.1 M$
D. $95.5 g C u S$ is produced

Answer: A::B

(D) Watch Video Solution

5. Which of the following statement is / are correct?
20.0 mL of 6.0 MHCl is mixed with 50.0 mL of $2.0 \mathrm{MBa}(\mathrm{OH})_{2}$, and 30 mL of water is added.
A. The concentration of $O H$ remaining in solution is $0.8 M$.
B. The concentration of $C l^{\ominus}$ remaining in solution is $1.2 M$
C. The concentration of Ba^{2+} remaining in solution is 1.0 M
D. 80 mmols of $\stackrel{\ominus}{O} H$ is in excess.
6. Which of the following is / are correct?

100 mL of $3.0 \mathrm{MHClO}_{3}$ reacts with excess of $\mathrm{Ba}(\mathrm{OH})_{2}$ according to the equation:
$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HClO}_{3} \rightarrow \mathrm{Ba}\left(\mathrm{ClO}_{3}\right)+2 \mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{Mw}\right.$ of $\left.\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}=304 \mathrm{gmol}^{-1}\right)$
A. 1.5 mol of $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$ is formed
B. 3 mol of $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$ is formed
C. 45.6 g of $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$ is obtained
D. 4.56 g of $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$ is obtained.

Answer: A::C

7. An excellent solution for cleaning grease stains from cloth of leather consists of the folllowing components: CCl_{4} (80% by volume), ligroin (16\%) and amyl alcohol (4\%) How many $m L$ of each should to taken to make up 80 mL of solution?
A. $64 m L C C l_{4}$
B. $12.8 m L$ ligroin
C. $32 m L$ of amy alcohol
D. $3.2 m L$ of amyl alcohol

Answer: A::B::D

- Watch Video Solution

8. Which of the following statements is / are correct
A. Mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$ needed ot make up 100 mL of an aqueous solution of concentration 27.0 mg of $A l^{3+}$ per $m L$ is $33.3 g$
B. Mass of $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(\mathrm{Mw}=266.5 \mathrm{~g})$ needed ot prepare 1.0 L solution containing $26.0 \mathrm{gCr} r^{3+}$ per litre is 133.25 g . (Atomic weight of $C r=5 g$)
C. Mass of $\mathrm{NH}_{4} \mathrm{Cl}$ needed to prepare 100 ml for solution containing
$80 \mathrm{mg} \mathrm{NH}_{4} \mathrm{Cl}$ per $m L$ is 8.0 g
D. Mass of NH_{3} per $m L$ of solution needed for solution of NH_{3} in water containing $20 \% \mathrm{NH}_{3}$ by weighter (density $=0.8 g m L^{-1}{ }_{-}$ is $0.16 \mathrm{gm} L^{-1}$

Answer: A::B::C::D

9. $100 \mathrm{mlof} 0.06 \mathrm{MCa}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 50 mL of $0.06 \mathrm{MNa}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. After the reaction is complete.
A. 0.003 moles of calcium oxalate will get precipated
B. 0.03 M of excess $C a^{2+}$ will remains in excess.
C. $N a_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is the limiting reagent
D. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is the excess reagent.

Answer: A::C::D

- Watch Video Solution

10. If $100 \mathrm{mLof} 1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution is mixed with 100 mL of 98% (W / W) of $H_{2} S O_{4}$ solution $\left(d=0.1 g m L^{-1}\right)$, then
A. Concentration of solution becomes half.
B. Volume of solution beomces 200 mL .
C. Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is the solution is $98 g$
D. mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the solution is 19.6 g .

Answer: B::D

- Watch Video Solution

11. KClO_{4} can be prepared by following reactions:
i. $\mathrm{Cl}_{2}+2 \mathrm{KOH} \rightarrow \mathrm{KCl}+\mathrm{KClO}+\mathrm{H}_{2} \mathrm{O}$
ii. $3 \mathrm{KClO} \rightarrow 2 \mathrm{KCl}+\mathrm{KClO}_{3}$
iii. $4 \mathrm{KClO}_{3} \rightarrow 3 \mathrm{KlI}_{4}+\mathrm{KCl}$
(Atomic weight of $K, C l$, and O are 369,35.5 and 16)
A. The amount of Cl_{2} required to prepare 277 g of KClO_{4} by above series of reaction is $568 g$.
B. The volume of $K O H$ in litres used by $C l_{2}$, if $K O H$ is $1.5 M$, is $1.067 L$.
C. The amount of Cl_{2} required to prepare $200 \mathrm{gof} \mathrm{KClO}_{4}$ by above
series of reactionis $284 g$
D. The volume of KOH in litres used by Cl_{2}, if KOH is 1.5 M , is $10.76 L$

Answer: A: D

- Watch Video Solution

12. When 100 mL of $0.1 \mathrm{MKNO}_{3}$ and 400 mL of 0.2 MHCl and 500 mL of $0.3 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are mixed, then in the resulting solution
A. The molarity of $K^{\oplus}=0.01 M$
B. The molarity of $\mathrm{SO}_{4}^{2-}=0.15 \mathrm{M}$
C. The molarity of $H^{\oplus}=0.38 M$
D. The molarity of $N O_{3}^{\ominus}=0.08$ and $C l^{\ominus}=0.01 M$

Answer: A:B::C

- Watch Video Solution

13. 100 g sample of clay (containing $19 \% \mathrm{H}_{2} \mathrm{O}, 40 \%$ silica, and inert inpurities as rest) is partically dried so as to contains $10 \% \mathrm{H}_{2} \mathrm{O}$.

Which of the following is / are correct statements (s) ?
A. The percentage of silica in it is 44.4%
B. The mas of partically dried clay is 90.0 g .
C. The precentage of inert impurity in it is 45.6%
D. The mass of water evaporated is 10.0 g

Answer: A::C

Watch Video Solution

14. In which of the following pairs, $10 g$ of each have an equal number of molecules?
A. $\mathrm{N}_{2} \mathrm{O}$ and CO
B. N_{2} and $\mathrm{C}_{3} \mathrm{O}_{2}$
C. N_{2} and $C O$
D. $\mathrm{N}_{2} \mathrm{O}$ and CO_{2}

Answer: C::D

- Watch Video Solution

15. Equal weights of X (atomic weight $=36$) and Y (atomic weight $=24$) are reacted to form the compound $X_{2} Y_{3}$, which of the following is/are correct
A. X is the limiting reagent
B. Y is the limiting reagen.
C. NO reactant is left over.
D. Mass of $X_{2} Y_{3}$ formed is double the mass of X taken.

Answer: C::D

- Watch Video Solution

Exercises Single Correct

1. 10 g of CaCO_{3} contains
A. 10 moles of CaCO_{3}
B. 0.1 g atom of $C a$
C. 6×10^{23} atoms of $C a$
D. 0.1 of equivalent of $C a$

Answer: B

- Watch Video Solution

2. A candle is burnt in a beaker until extinguishers itseft. A sample of gaseous mixutre in the beaker contains 6.08×10^{20} molecules of O_{2}, and 0.50×10^{20} molecules of CO_{2}. The total pressure is 734 mm of Hg . The partial pressure of O_{2} would be
A. 760.0 mmof Hg
B. 76.0 mmofHg
C. 7.6 mmof Hg
D. 0.76 mmofHg

Answer: B

3. Two glucose solution are mixed. One has a volume of 480 mL and a c oncentration of 1.50 M and the second has a volume of 250 mL and concentration 1.20 M . The molarity of final solution is
A. 1.20 M
B. 1.50 M
C. $1.344 M$
D. 2.70 M

Answer: C

- Watch Video Solution

4. $1.0 g$ of a monobasic acid when completely acted upon $M g$ gave $1.301 g$ of anhydrous $M g$ salt. Equivalent weight of acid is
A. 35.54
B. 36.54
C. 17.77
D. 18.27

Answer: B

- Watch Video Solution

5. 0.1 g of metal combines with 46.6 mL of oxygen at $S T P$. The equivalent weight of metal is
A. 12
B. 24
C. 6
D. 36

Answer: A

6. The vapour density of chloride of an element is 39.5 . The $E w$ of the elements is 3.82 . The atomic weight of the elements is
A. 15.28
B. 7.64
C. 3.82
D. 11.46

Answer: B

- Watch Video Solution

7. The $M w$ of a oxide of an element is 44 . The $E w$ of the element is 14 .

The atomic weight of the element is
A. 14
B. 28
C. 42
D. 56

Answer: A

- Watch Video Solution

8. Potassium selenate is isomorphous with potassium sulphate and contains 50.0% of $S e$. The atomic weight of $S e$ is
a. 142, b. 71, c. 47.33 , d. 284
A. 142
B. 71
C. 47.33
D. 284

Answer: A

9. The $E w$ of an element is 13 . It forms an acidic oxide which KOH forms a salt isomorphous with $\mathrm{K}_{2} \mathrm{SO}_{4}$. The Aw of element is
a. 13 , b. 26, c. 52 , d. 78
A. 13
B. 26
C. 52
D. 78

Answer: D

- Watch Video Solution

10. 0.05 g of a piece of metal in dilute acid gave 24.62 mL of H_{2} at $27^{\circ} \mathrm{C}$ and 760 mm pressure. The $E w$ of metal is
A. 25
B. 12.5
C. 50
D. 37.5

Answer: A

- Watch Video Solution

11. An element A (atomic weight $=12$) and B (atomic weight $=35.5$) combines ot form a compound X. If 5 mol of B comibnes with 1 mol of A to give 1 mol of X. The weight of 1 mol of X would be
A. 47.5 g
B. $74.0 g$
C. $154.0 g$
D. $148.0 g$

Answer: C

- Watch Video Solution

12. If $1 L$ of O_{2} at $15^{\circ} \mathrm{C}$ and 750 mm pressure contains N molecules, the number of molecules in 2 litre of SO_{2} under the same conditions of temperature and pressure will be
A. $N / 2$
B. N
C. $2 N$
D. N

Answer: C

13. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is found to be 1 atm . If $3 g$ of another gas B is then heated in the same flask, the total pressure becomes 1.5atm. Assuming ideal gas behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.
A. 1:3
B. 3:1
C. 2:3
D. 3:2

Answer: A

(D) Watch Video Solution

14. How many moles of ferric alum
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} .24 \mathrm{H}_{2} \mathrm{O}$ can be made from the sample of Fe

containing 0.0056 g of it?

A. $10^{-4} \mathrm{~mol}$
B. $0.5 \times 10^{-4} \mathrm{~mol}$
C. $0.33 \times 10^{-4} \mathrm{~mol}$
D. $2 \times 10^{-4} \mathrm{~mol}$

Answer: B

- Watch Video Solution

15. Suppose elements X and Y combine to form two compounds $X Y_{2}$ and $X_{3} Y_{2}$ when 0.1 mole of former weigh $10 g$ while 0.05 mole of the latter weigh $9 g$. What are the atome weights of X and Y.
A. 40,30
B. 60,40
C. 20,30
D. 30,20

Answer: A

- Watch Video Solution

16. In an experiment, 6.67 g of AlCl_{3} was produced and 0.654 g Al remainded unreacted. How many g atoms of $A l$ and $C l_{2}$ were taken originally $(A l=27, C l=35.5)$?
A. $0.07,0.15$
B. $0.07,0.05$
C. 0.02,0.05
D. $0.02,0.15$

Answer: A

17. Nine volumes of gaseous mixture consisting of gaseous organic compound A and just sufficient amount of oxygen required for complete combustion yielded on burning 4 volumes of $\mathrm{CO}_{2}, 6$ volumes of water vapours, and 2 volumes of N_{2}, at all volumes measured at the same temperature and pressure. If the compounds contains C, H, and N only, the molecular formula of compound A is
A. $C_{2} H_{3} N_{2}$
B. $C_{2} H_{6} N_{2}$
C. $C_{3} H_{6} N_{2}$
D. $C_{3} H_{6} \mathrm{~N}$

Answer: B

- Watch Video Solution

18. 27 g of Al will react completely with...... g of O_{2}
A. $8 g$
B. $10 g$
C. $24 g$
D. $49 g$

Answer: C

- Watch Video Solution

19. $2 L$ of air formed $1915 m L$ of ozonised air when passed through Brodio's apparatus. The volume of ozone formed is
A. $85 m L$
B. 170 mL
C. $225 m L$
D. $425=.5 m L$

Answer: B

- Watch Video Solution

20. n - Butance $\left(C_{4} H_{10}\right)$ is produced by monobromation of $C_{2} H_{6}$ followed by the Wurtz reaction. Calculate the volume of ethane at $S T P$ requried to produce $55 g$ of n -butane. The bromination takes place with 90% yield and the Wurtz reaction with 85% yield.
A. $27.75 L$
B. 55.5 L
C. $111 L$
D. 5.55 L

Answer: B

21. $1 g$ of the carbonate of a metal was dissolved in $25 m L$ of $N-H C l$. Te resulting liquid $5 m L$ of $N-N a O H$ for neutralisation. The $E w$ of the metal 'Carbonate is
A. 50
B. 30
C. 20
D. None

Answer: A

- Watch Video Solution

22. 5 mL of $\mathrm{NHCI}, 20 \mathrm{~mL}$ of $\mathrm{N} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ and 30 mL of $\mathrm{N} / 3 \mathrm{HNO}_{3}$ are mixed together and volume made to one litre. The normality of the resulting solution is
A. $N / 5$
B. $N / 10$
C. $N / 20$
D. $N / 40$

Answer: D

- Watch Video Solution

23. The Ew of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in reaction is
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{CaHPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
($C a=40, P=31, O=16$)
A. 49
B. 98
C. 32.66
D. 147
24. 10 g of a sample of a mixture of CaCl_{2} and NaCl is treated to precipitate all the calcium as CaCO_{3}. This CaCO_{3} is heated to convert all the $C a$ to $C a O$ and the final mass of $C a O$ is 1.62 g . The percent by mass of CaCl_{2} in the origial mixture is
A. 0.321
B. 0.162
C. 0.218
D. 0.11

Answer: A

25. A gases mixture contains oxygen and nitrogen in the ratio $1: 4$ by weight. Therefore, the ratio of the number of molecules is:
A. 1:4
B. 1:8
C. $7: 32$
D. $3: 16$

Answer: C

- Watch Video Solution

26. If 0.5 mole of BaCl_{2} mixed with 0.20 mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ the maximum number of moles of $B a_{3}(P O)_{2}$ then can be formed is
A. 0.1
B. 0.2
C. 0.5
D. 0.7

Answer: A

- Watch Video Solution

27. Upon mixing 50.0 mL of 0.1 M lead nitrate solution with 50.0 mL of $0.05 M$ chromic sulphate solution, precipitation of lead sulphate takes place. How many moles of lead sulphate are formed and what is the molar concertration of chromic suplhate left in the solution?
A. $0.0005,0.0084$
B. $0.0084,0.005$
C. $0.005,0.00084$
D. $0.05,0.00084$

Answer: A

28. The melting point of a substance was quoted as $52.5^{\circ} \mathrm{C}$, $52.57^{\circ} \mathrm{C}, 52.571^{\circ} \mathrm{C}$, and $52.5713^{\circ} \mathrm{C}$. Which of these values would be most acceptable and which will have maximum uncertanity?
A. $52.5^{\circ} \mathrm{C}$
B. $52.57^{\circ} \mathrm{C}$
C. $52.571^{\circ} \mathrm{C}$
D. $52.5713^{\circ} \mathrm{C}$

Answer: A::B

- View Text Solution

29. 600 mL of ozonised oxygen at $S T P$ were found to weigh one gram. What is the volume of ozone in the ozonised oxygen?
A. $200 m L$
B. 150 mL
C. 100 mL
D. 50 mL

Answer: A

- Watch Video Solution

30. The weight of $1 L$ of ozonised oxygen at $S T P$ was found to be 1.5 g . When 100 mL of this mixture at $S T P$ was treated with turpentine oil, the volume was reduced to 90 mL . The molecular weight of ozone is
A. 49
B. 47
C. 46
D. 47.9

- Watch Video Solution

31. Calculate the density of NH_{3} at $30^{\circ} \mathrm{C}$ and 5 atm pressure.
A. $3.42 g L^{-1}$
B. $2.42 g L^{-1}$
C. $1.71 g L^{-1}$
D. $3.84 g L^{-1}$

Answer: A

- Watch Video Solution

32. What weight of a metal of equivalent weight 12 will give 0.475 g of its chloide?
A. $0.12 g$
B. $0.24 g$
C. 0.36 g
D. 0.48 g

Answer: A

- Watch Video Solution

33.4.2g of a metallic carbonate MCO_{3} was heated in a hard glass tube and CO_{2} evolved was found to have 1120 mL of volume at $S T P$. The $E w$ of the metal is
A. 12
B. 24
C. 18
D. 15

- Watch Video Solution

34. If 0.5 g of a mixture of two metals. A and B with respective equivalent weights 12 and 9 displace 560 mL of H_{2} at $S T P$ from an acid, the composition of the mixture is
A. $40 \% A, 60 \% B$
B. $60 \% A, 40 \% B$
C. $30 \% A, 70 \% B$
D. $70 \% A, 30 \% B$

Answer: A

35. What is the valency of an element of which the eqivalent weight is 12 and the specific heat is 0.25 ?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

36. The mineral rutile is an oxide of titanium containing 39.35% oxygen and is isomorphous with cassiterite $\left(\mathrm{SnO}_{2}\right)$. The atomic weight of titanium is
A. 68.1
B. 58.1
C. 48.1
D. 38.1

Answer: C

- Watch Video Solution

37. A mixture of ethylene and excess of H_{2} had a pressure of

600 mmHg the mixture was passed over nickel catalyst to convert ethylene to ethane.The pressure of the resultant mixture at the similar conditions of temperature and volume dropped to 400 mmHg The fraction of $C_{2} H_{4}$ by volume in the original mixture is
A. $1 / 3$ rd of the total volume
B. $1 / 4$ th of the total volume
C. $2 / 3 \mathrm{rd}$ of the total volume
D. $1 / 2 \mathrm{nd}$ of the total volume

Answer: A

- Watch Video Solution

38. $13.4 g$ of a sample of unstable hydrated salt $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$ was found to contains $6.3 g$ of $\mathrm{H}_{2} \mathrm{O}$. The number of molecular of water of crystalistion is
A. 5
B. 7
C. 2
D. 10

Answer: B

39. A bag contains $0.32 g$ of oxygen. The same valume of an unknown gas A under similar conditions of temperature and pressure weigh 0.26 g . The gas A is known to contain only C and H in $1: 1$ ratio. The molecular formula of the compound is
A. $C_{2} H_{2}$
B. $C_{4} H_{4}$
C. $C_{3} H_{4}$
D. CH

Answer: A

- Watch Video Solution

40. A mineral consists of an equimolar mixture of the carbonates of two bivalent metals. One metal is present to the extent of 15.0% by
weight, 3.0 g of the mineral on heating lost 1.10 g of CO_{2}. The percent by weight of other metal is
A. 65
B. 25
C. 75
D. 35

Answer: D

- Watch Video Solution

41. One litre of 0.15 MHCl and one Itire of 0.3 MHCl is given. What is the maximum volume of 0.2 MHCl which one can make from these two solution. Now water is added.
A. $1.2 L$
B. $1.5 L^{`}$
C. $1.3 L$
D. 1.4 L`

Answer: B

- Watch Video Solution

42. Ammonia in $0.224 g$ of a compound $\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{x} \mathrm{Cl}_{2}$ is neutralised by 30.7 mL of 0.20 MHCl . The value of x in the formula is
A. 4
B. 5
C. 6
D. 8

Answer: C
43. The normility of a solution that results from mixing $4 g$ of $\mathrm{NaOH}, 500 \mathrm{~mL}$ of 1 MHCl , and 10.0 mL of $\mathrm{H}_{2} \mathrm{O}_{4}$ (specific gravity $1.149 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight) is

The total volume of solution was made to $1 L$ with water)
A. 0.51
B. 0.71
C. 1.02
D. 0.45

Answer: A

(Watch Video Solution

44. A 4: 1 molar mixture of He and CH_{4} is contained in vessel at 20 per pressure. Due to a hole in the vessel the gas mixture leakes out. What is the compostion of mixture effusing out initially.
A. $33.3 \% \mathrm{He}, 66.7 \% \mathrm{CH}_{4}$
B. $66.7 \% \mathrm{He}, 33.3 \% \mathrm{CH}_{4}$
C. $40 \% \mathrm{He}, 60 \% \mathrm{CH}_{4}$
D. $60 \% \mathrm{He}, 40 \% \mathrm{CH}_{4}$

Answer: B

- Watch Video Solution

45. An organic compound contains C, H and O. If $C(\%): H^{\%}=6: 1$, what is the simplest formula of the compound, given that one mole of the compound contains half as much oxygen as would be required to burn all the C and H atoms in it to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$?
A. $\mathrm{CH}_{2} \mathrm{O}$
B. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{3}$
C. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
D. $C_{3} H_{6} O_{2}$

Answer: B

- Watch Video Solution

46. $10 m L$ of a gaseous hydrocarbon is exploded with $100 m L$ of oxygen. The residual gas on cooling is found to measure $95 m L$ of which $20 m L$ is absorbed by caustic soda and the remainder by alkaline pyrollgallol. The fomula of the hydrocarbon is
A. CH_{4}
B. $C_{2} H_{6}$
C. $\mathrm{C}_{2} \mathrm{H}_{4}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: D

47. A mixture of formic acid and oxalic acid is heated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The gas producted is collected and treated with KOH solution, whereby the volume decrease by $1 / 6 t h$. The molar ratio of the two acids (formic acid/oxalic acid) is
A. $4: 1$
B. 1:4
C. 2:1
D. 1:2

Answer: A

- Watch Video Solution

48. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{o}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$

100 mL of X molar $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 3 L of O_{2} gas under the condition when

1 moe occupies $24 L$. The value of X is
A. 2.5
B. 1
C. 0.5
D. 0.25

Answer: D

- Watch Video Solution

49. One mole of potassium chlorote is thermally decomposed and excess of aluminium is burnt in the gaseous product. How many mole(s) of aluminium oxide are formed?
A. 1
B. 1.5
C. 2
D. 3

Answer: A

- Watch Video Solution

50. A certain compound has the molecular formula $X_{4} O_{6}$. If $10 g$ of $X_{4} O_{6}$ has $5.72 g X$, the atomic mass of X is
A. 32 amu
B. 37 amu
C. 42 amu
D. 98 amu

Answer: A

51. 5.6 g of a metal forms 12.7 g of metal chloride. Hence equivalent weight of the metal is
A. 127
B. 254
C. 56
D. 25

Answer: D

- Watch Video Solution

52. The molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 18 M . Its density is $1.8 \mathrm{gmL} L^{-1}$.
A. 36
B. 200
C. 500
D. 18

Answer: C

- Watch Video Solution

53. 10L of hard water required 0.56 g of lime (CaO) for removing hardness. Hence, temporary hardness in p p m (part per million, 10^{6}) of CaCO_{3} is
A. 100
B. 200
C. 10
D. 20

Answer: B

54. How many grams of phosphoric acid would be needed to neutralise 100 g of magnesium hydroxide? (The molecular weight are: $\mathrm{H}_{3} \mathrm{PO}_{4}=98$ and $\left.\mathrm{Mg}(\mathrm{OH})_{2}=58.3\right)$
A. 66.7 g
B. $252 g$
C. $112 g$
D. $168 g$

Answer: C

(D) Watch Video Solution

55. The simplest formula of a compound containing 50% of an element X (atomic weight 10) and 50% of element Y (atomic weight 20) is:
A. $X Y$
B. $X_{2} Y$
C. $X Y_{2}$
D. $X_{2} Y_{3}$

Answer: B

- Watch Video Solution

56. On repeated sparking, 10 mL of a mixture of carbon monoxide and nitrogen required $7 m L$ of oxygen for combustion. What was the volume of nitrogen? (All volumes are measured under identical conditions).
A. $7 / 2 m L$
B. $4 m L$
C. $7 m L$
D. $17 / 2 m L$

Answer: B

- Watch Video Solution

57. When $10 m L$ of ehtyl alcohol (density $=0.7893 \mathrm{gmL}^{-1}$) is mixed with 20 mL of water (density $0.9971 \mathrm{gmL} L^{-1}$) at $25^{\circ} \mathrm{C}$, the final solution has a density of $0.9571 \mathrm{gmL} L^{-1}$. The percentage change in total volume on mixing is
A. 3.1%
B. 2.4%
C. 1%
D. None of these

Answer: A

58. The molality of $1 L$ solution with $x \% H_{2} \mathrm{SO}_{4}$ is equal to 9 . The weight of the solvent present in the solution is $910 g$. The value of x is:
A. 90
B. 80.3
C. 40.13
D. 9

Answer: B

(D) Watch Video Solution

59. The density of $1 M$ solution of $N a C l$ is $1.0585 \mathrm{gmL}^{-1}$. The molality of the solution is
A. 1.0585
B. 1.00
C. 0.10
D. 0.0585

Answer: B

D Watch Video Solution

60. 100 mL of mixture of NaOH and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is neutralised by 10 mL of $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$. Hence, in 100 mL solution is
A. $0.2 g$
B. $0.4 g$
C. $0.6 g$
D. None

Answer: B

61. A organic compound contains 4% sulphur. Its minimum molecular weight is
A. 200
B. 400
C. 800
D. 1600

Answer: C

- Watch Video Solution

62. A gases mixture contains oxygen and nitrogen in the ratio $1: 4$ by weight. Therefore, the ratio of the number of molecules is:
A. 1: 4
B. 1:8
C. $7: 32$
D. $3: 16$

Answer: C

- Watch Video Solution

63. 0.116 g of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}(\mathrm{~A})$ in neutralised by 0.074 g of $\mathrm{Ca}(\mathrm{OH})_{2}$. Hence protonic hydrogen $\left(H^{\oplus}\right)$ in (A) will be
A. 1
B. 2
C. 3
D. 4

Answer: B

64. A hydrate of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ has 50% water by mass. It is
A. $\mathrm{Na}_{2} \mathrm{SO}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Na}_{2} \mathrm{SO}_{3} .6 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{3} .7 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Answer: C

(D) Watch Video Solution

65. 10 g mixture of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ has $1.68 \mathrm{~g} \mathrm{NaHCO} \mathrm{H}_{3}$.

It is heated at 400 K . Weight of the residue will be
A. $9.38 g$
B. $8.32 g$
C. $10.0 g$
D. $1.68 g$

Answer: A

- Watch Video Solution

66. Mole fraction of ethanol is ethanol water mixture is 0.25 . Hence, the percentage concentration of ethanol by weight of mixture is
A. 0.25
B. 0.75
C. 0.46
D. 0.54

Answer: C

67. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Molecular weight of NH_{3} and N_{2} and x_{1} and x_{2}, respectively. Their equivalent weights are y_{1} and y_{2}, respectively. Then $\left(y_{1}-y_{2}\right)$
A. $\left(\frac{2 x_{1}-x_{2}}{6}\right)$
B. $\left(x_{1}-x_{2}\right)$
C. $\left(3 x_{1}-x_{2}\right)$
D. $\left(x_{1}-3 x_{2}\right)$

Answer: A

- Watch Video Solution

68. How may moles of electrons weigh one kilogram?
A. $6.023 \times^{23}$
B. $\frac{1}{9.108} \times 10^{31}$
c. $\frac{6.023}{9.108} \times 10^{54}$
D. $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Answer: D

- Watch Video Solution

69. The weight of 1×10^{22} molecules of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is
A. $4.14 g$
B. $5.14 g$
C. $6.14 g$
D. $7.14 g$

Answer: A

70. How many moles of O_{2} will be liberated by one mole of $\mathrm{CrO} \mathrm{O}_{5}$ is the following reaction:
$\mathrm{CrO}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{5}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
A. 4.5
B. 2.5
C. 1.25
D. None

Answer: D

- Watch Video Solution

71. $\mathrm{BrO}_{3}^{\ominus}+5 \mathrm{Br}^{\ominus} \rightarrow \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

IF $50 \mathrm{~mL} 0.1 \mathrm{MBr} \mathrm{O}_{3}^{\ominus}$ is mixed with 30 mL of $0.5 M B r^{\ominus}$ solution that contains excess of H^{\oplus} ions, the moles of $B r_{2}$ formed are
A. 6.0×10^{4}
B. 1.2×10^{-4}
C. 9.0×10^{-3}
D. 1.8×10^{-3}

Answer: C

- Watch Video Solution

72. To 1 L of 1.0 M impure $\mathrm{H}_{2} \mathrm{SO}_{4}$ sample, 1.0 MNaOH solution was added and a plot was obtained as follows:

The \% purity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the slope of curve, respectively, are:

A. $75 \%,-1 / 2$
B. $75 \%,-1$
C. $50 \%,-1 / 3$
D. $50 \%,-1 / 2$

Answer: B
73. The expression relating mole fraction of solute $\left(\chi_{2}\right)$ and molarity (M) of the solution is: (where d is the density of the solution in $g L^{-1}$ and $M w_{1}$ and $M w_{2}$ are the molar masses of solvent and solute, respectively
A. $x_{2}=\frac{M \times M w_{1}}{M\left(M w_{1} \times M w_{2}\right)+1000 d}$
B. $x_{2}=\frac{M \times M w_{1}}{M\left(M w_{1} \times M w_{2}\right)+d}$
C. $x_{2}=\frac{M \times M w_{1}}{M\left(M w_{1} \times M w_{2}\right)-1000 d}$
D. $x_{2}=\frac{M \times M w_{1}}{M\left(M w_{1} \times M w_{2}\right)-d}$

Answer: B

- Watch Video Solution

74. At $100^{\circ} \mathrm{C}$ and 1 atm , if the density of the liquid water is $1.0 \mathrm{gcm}^{-3}$ and that of water vapour is $0.0006 \mathrm{gcm}^{-3}$, then the volume occupied by water molecules in $1 L$ steam at this temperature is
A. $6 \mathrm{~cm}^{3}$
B. $60 \mathrm{~cm}^{3}$
C. $0.6 \mathrm{~cm}^{3}$
D. $0.06 \mathrm{~cm}^{3}$

Answer: D

- Watch Video Solution

75. Consider the ionisation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ as follow"
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{P} \rightarrow 2 \mathrm{H}_{3} \mathrm{O}^{\oplus} \mathrm{SO}_{4}^{2-}$
The total number of ions furnised by 100 mL of $0.1 \mathrm{M}_{2} \mathrm{SO}_{4}$ will be
A. 1.2×10^{23}
B. 0.12×10^{23}
C. 0.18×10^{23}
D. 1.8×10^{23}

- Watch Video Solution

76. Calculate the number of oxygen atoms requried to combine with
7.0 g of N_{2} to form $\mathrm{N}_{2} \mathrm{O}_{3}$ if 82% of N_{2} is converted into products.
$\mathrm{N}_{2}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{3}$
A. 3.24×10^{23}
B. 3.6×10^{23}
C. 18×10^{23}
D. 6.02×10^{23}

Answer: B

77. $36.5 \% \mathrm{HCl}$ has density has density equal to $1.20 g m L^{-1}$. The molarity (M) and molality (m), respectively, are
A. 15.7,15.7
B. 12,12
C. 15.7,12
D. 12,15.7

Answer: D

- Watch Video Solution

78. 10 mL of $1 \mathrm{MBaCl} l_{2}$ solution and $5 \mathrm{mLO} .5 \mathrm{NK}_{2} \mathrm{SO}_{4}$ are mixed together ot precipitate out BaSO_{4}. The amount of BaSO_{4} precipated will be
A. 0.005 mol
B. $0.00025 \mathrm{~mol}^{-}$
C. 0.025 mol
D. 0.0025 mol

Answer: D

(D) Watch Video Solution

79. Mole fraction of a solute in an aqueous solution is 0.2 . The molality of the solution will be
A. 13.88
B. 1.388
C. 0.138
D. 0.0138

Answer: A

80. An exess of NaOH was added to 100 mL of a FeCl_{3} solution which gives $2.14 \mathrm{ofFe}(\mathrm{OH})_{3}$. Calculate the normality of FeCl_{3} solution.
A. $0.2 N$
B. 0.3 N
C. 0.6 N
D. 1.8 N

Answer: C

D Watch Video Solution

81. Two samples of HCl of 1.0 M and 0.25 M are mixed. Find volumes of these samples taken in order to prepare 0.75 MHCl solution. Assume no water is added.
(I) $20 m L, 10 m L$ (II) $100 \mathrm{~mL}, 50 \mathrm{mLk}$
(III) $40 m L, 20 m L$ (IV) $50 m L, 25 m L$
A. IIII,IV
B. I,II
C. II,III,IV
D. I,IIIIII,IV

Answer: D

- Watch Video Solution

82. If 100 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 100 mL of $\mathrm{H}_{2} \mathrm{O}$ are mixed, the mass percent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the resulting solution $\left(d_{H_{2} \mathrm{SO}_{4}}=0.09 \mathrm{gmL}^{-1}, d_{\mathrm{H}_{2} \mathrm{O}}=1.0 m L^{-1}\right)$
A. 90
B. 47.36
C. 50
D. 60

Answer: B

- Watch Video Solution

83. 12.5 mL of a solution containing 6.0 g of a dibasic acid in 1 L was found to be neutralized by 10 mL a decinormal solution of NaOH . The molecular weight of the acid is
A. 150
B. 120
C. 110
D. 75

Answer: A

84. One litre of a sample of hard water contains 5.55 mg of $C a C l_{1}$ and 4.75 mg of MgCl_{2}. The total harness of ppm of CaCO_{3} is
A. 5 ppm
B. 10 ppm
C. 20 ppm
D. None of these

Answer: B

- Watch Video Solution

85. 10 mL of 0.2 NHCl and 30 mL of 0.1 NHCl to gether exaclty neutralises 40 mL of solution of $N a O H$, which is also exactly neutralised by a solution in water of $0.61 g$ of an organic acid. What is the equivalent weight of the organic acid?
A. 61
B. 91.5
C. 122
D. 183

Answer: C

- Watch Video Solution

86. A metal oxide has the formul $Z_{2} O_{3}$. It can be reduced by hydrogen to give free metal and water. $0.2 g$ of the metal oxide requires 12 mg of hydrogen for complete reduction. The atomic weight of the metal is
A. 52
B. 104
C. 26
D. 78

- Watch Video Solution

87. The reaction between yttrium metal and dilute HCl produces $H_{2}(g)$ and Y^{3+} ions. The molar ratio of yttrium to that hydrogen produced is
A. $2: 3$
B. 3:2
C. 1:2
D. 2:1

Answer: A

88. What volume of H_{2} at 273 K and 1 atm will be consumed in obtaining $21.6 g$ of elemental boron (atomic mass of $B=10.8$) from the reduction of BCl_{3} with H_{2}.
A. $89.6 L$
B. $67.2 L$
C. 44.8 L
D. 22.4 L

Answer: B

- Watch Video Solution

Exercises Assertion-Reasoning

1. Assertion (A): Atomic mass of potassium is 39 .

Reason (R): An atom of postassium is 39 times heavier than $1 / 2$ th of
the mass of carbon atom $\left(C^{12}\right)$.
A. If both (A) and (R) are correct and (R) is the correct explantion for (A)
B. If both (A) and (R) are correct but (R) is not the correct explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: A

- Watch Video Solution

2. Assertion (A): Both $138 g$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $12 g$ of carbon have some number of carbon atoms.

Resaon (R): Both contains $1 g$ atom of carbon which contains 6.022×10^{23} carbon atoms.
A. If both (A) and (R) are correct and (R) is the correct explantion for (A)
B. If both (A) and (R) are correct but (R) is not the correct explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: A

- Watch Video Solution

3. Assetion (A): 1 Avogram is equal to 1 amu.

Reason (R): Avogram is reciprocal of Avogadro's
Reason (R): Avogram is reciprocal of Avogadro's number.
A. If both (A) and (R) are correct and (R) is the correct explantion
B. If both (A) and (R) are correct but (R) is not the correct explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: C

- Watch Video Solution

4. Assertion (A): $1 g$ of O_{2} and $1 g$ atom of O_{3} have equal number of molecules.

Reason (R): Mass of 1 mol atom is equal to its gram atomic mass.
A. If both (A) and (R) are correct and (R) is the correct explantion
for (A)
B. If both (A) and (R) are correct but (R) is not the correct explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: B

- Watch Video Solution

5. Assetion (A): $1 \mathrm{~mol} H_{2}$ and N_{2} have same volume at same temperature and pressure.

Reason (R): 1 mol gas at $S T P$ occupies $24.4 L$ volume.
A. If both (A) and (R) are correct and (R) is the correct explantion for (A)
B. If both (A) and (R) are correct but (R) is not the correct
explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: B

- Watch Video Solution

6. Assertion (A): The equivalent mass of element is varialbe.

Reason (R): It depents on the valency of the element.
A. If both (A) and (R) are correct and (R) is the correct explantion for (A)
B. If both (A) and (R) are correct but (R) is not the correct
explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: A

7. Assertion (A): Calmel is a chemical compound whereas brass is a mixture.

Reason (R): Calomel always contains 5.6 times as much mercury as chlorine by weight. Brass can be made with widely different ratios of copper and zine.
A. If both (A) and (R) are correct and (R) is the correct explantion
for (A)
B. If both (A) and (R) are correct but (R) is not the correct explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: A

(D) Watch Video Solution

8. Assertion (A): pure water obtained from different states of india always contains hydrogen and oxygen in the ration of 1:8 by mass.

Reason (R): Total mass of reactants and products during chemical change is always the same.
A. If both (A) and (R) are correct and (R) is the correct explantion for (A)
B. If both (A) and (R) are correct but (R) is not the correct explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: B

- Watch Video Solution

9. Assertion (A): The standard unit of expressing the mass of atom is amu.

Reason (R): amu is also called as avogram.
A. If both (A) and (R) are correct and (R) is the correct explantion
for (A)
B. If both (A) and (R) are correct but (R) is not the correct explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: B

- Watch Video Solution

10. Assertion (A) : If 30 mL of H_{2} and 20 mL of O_{2} react to form water, $5 m L$ of H_{2} is left at the end of the reaction.

Reason (R): H_{2} is the limiting reagent.
A. If both (A) and (R) are correct and (R) is the correct explantion for (A)
B. If both (A) and (R) are correct but (R) is not the correct explantion for (A)
C. If (A) is correct but (R) is incorrect.
D. If (A) and (R) are incorrect.

Answer: D

(D) Watch Video Solution

Exercises Integers

1. What volume of 90% alcohol by weight $\left(d=0.8 g m L^{-1}\right)$ must be used to prepared 80 mL of 10% alcohol by weight $\left(d=0.9 g m L^{-1}\right)$
2. 50 mL of $1 \mathrm{MHCl}, 100 \mathrm{~mL}$ of $0.5 \mathrm{MHNO}_{3}$, and xmL of $5 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are mixed together and the total volume is made upto $1.0 L$ with water. 100 mL of this solution exactly neutralises 10 mL of $\mathrm{M} / 3 \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$. Calculate the value of x.

- Watch Video Solution

3. How many $m L$ of a solution of concertration $100 \mathrm{mgCo}^{2+}$ per $m L$ is needed to prepare 10 mL of a solution of concentration $20 \mathrm{mgCo}^{2+}$ per $m L$.

- Watch Video Solution

4. HCl gas is passed into water, yielding a solution of density $1.095 \mathrm{gmL}^{-1}$ and containing $30 \% \mathrm{HCl}$ by weight. Calculate the
molarity of the solution.

- Watch Video Solution

5. A solution contains 75 mgNaCl per mL . To what extent must it be diluted to give a solution of concentration 15 mgNaCl per $m L$ of solution.

- Watch Video Solution

6. To prepare 100 g of a 92% by weight solution of NaOH how many g of $\mathrm{H}_{2} \mathrm{O}$ is needed?

- Watch Video Solution

7. To make a benzene soluble cement, $60 g$ rosion is melted in an ion pot and $68 g$ beeswax and $12 g$ shellac are added. How much of shellac
should be taken to makes $35 g$ cement?

- Watch Video Solution

8. In the reaction: $2 \mathrm{Al}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$,
4.98 g of Al reacted with $20.0 \mathrm{gCr} r_{2} \mathrm{O}_{3}$. How much grams of reactant ramains at the completion of the reaction?

- Watch Video Solution

9. Silver is removed from the solutions of its salts with metallic zinc, according to the reaction
$Z n+2 A g^{\oplus} \rightarrow Z n^{2+}+2 A g$.
A $65.4 g$ piece of $Z n$ is put into a $100 L$ vat containing $3.25 g \mathrm{Ag}^{\oplus}$ per litre. How amny moles of reactant remained unreacted?

- Watch Video Solution

10. A sample contains a mixtrure of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

HCl is added to 15.0 g .of the sample, yielding 11.0 g of NaCl . What percent of the sample is $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
$\left[\begin{array}{l}\text { Reaction are } \\ \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{NaHCO} \\ 2+\mathrm{HCl} \rightarrow \mathrm{NaCL}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\end{array}\right]$
$M w$ of $\mathrm{NaCl}=58.5, \mathrm{MwofNaHCO} \mathrm{H}_{3}=84, \mathrm{MwofNa} \mathrm{CO}_{3}=106 \mathrm{gmol}^{-1}$

- Watch Video Solution

11. A person takes $6.1 g$ of an anta-acid tablet comprising bicarbonate ion at 20.8%. The volume of CO_{2} evolved at (1 atm and $25^{\circ} \mathrm{C}$) in the stomach (on neutralisation) multipled by a factor of '10' will be $x L$.

Calculate the approximate (integer) value of x.

- Watch Video Solution

12. The specific gravity of a salt solution is 1.025 . If $V m L$ of water is added to $1 L$ of this solution to make its density $10.2 g m L^{-1}$, what
value of V in $m L$ approxmately?

(D) Watch Video Solution

13. A $19.6 g$ of a given gaseous sample contains $2.8 g$ of molecules $\left(d=0.75 g L^{-1}\right), 11.2 g$ of molecules $\left(d=3 g L^{-1}\right)$ and $5.6 g$ of molecules $\left(d=1.5 g L^{-1}\right)$. All density measurements are made at $S T P$. Calculate the total number of molecules (N) present in the given sample. Report your answer in $10^{23} \mathrm{~N}$

Assume Avogardro's number as 6×10^{23}.

- Watch Video Solution

Archives Single Correct

1. The largest number of molecules in
A. $36 g$ of water
B. $28 g$ of carbon monoxide
C. $46 g$ of ethly alcohol
D. $54 g$ of nitrogen pentoxide

Answer: A

- Watch Video Solution

2. When the same amount of zinc is treated separately with excess of sulphric acid and excess of sodium hydroxide, the ratio of volume of hydrogen evolved is
A. $1: 1$
B. 1:2
C. 2:1
D. 9:4
3. The total number of electrons in one molecular of carbon dioxide is
A. 22
B. 44
C. 66
D. 88

Answer: C

4. When 2.76 g of silver carbonate is strongly heated, it yields a residue weighing
A. $2.16 g$
B. $2.48 g$
C. $2.32 g$
D. $2.64 g$

Answer: A

- Watch Video Solution

5. Equal weights of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fractin of the total pressure exerted by oxygen is
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3} \times \frac{273}{298}$
6. If 0.50 mol of BaCl_{2} is mixed with 0.20 mol of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum number of moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed is
A. 0.7
B. 0.5
C. 0.2
D. 0.1

Answer: D

- Watch Video Solution

7. An isotope of $G e_{32}^{76}$ is
A. Ge. ${ }_{32}^{77}$
B. As. ${ }_{32}^{77}$
C. Se. ${ }_{32}^{77}$
D. Se. ${ }_{34}^{78}$

Answer: A

- Watch Video Solution

8. A molal solution is one that contains 1 mol of a solute in
A. 1000 g of solvent
B. $1 L$ of solven
C. $1 L$ of solution
D. $22.4 L$ of solution

Answer: A

9. In which mode of expression, the concentration of a solution remains independent of temperature?
A. Molarity
B. Normality
C. Formality
D. Molality

Answer: D

- Watch Video Solution

10. The normality of 0.3 M phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ is
A. 0.1
B. 0.9
C. 0.3
D. 0.6

Answer: D

- Watch Video Solution

11. At $100^{\circ} \mathrm{C}$ and 1 atm , if the density of the liquid water is $1.0 \mathrm{gcm}^{-3}$ and that of water vapour is $0.00006 \mathrm{gcm}^{-3}$, then the volume occupied by water molecules in $1 L$ steam at this temperature is
A. $6 \mathrm{~cm}^{3}$
B. $60 \mathrm{~cm}^{3}$
C. $0.6 \mathrm{~cm}^{3}$
D. $0.06 \mathrm{~cm}^{3}$

Answer: D

12. An aqueous solution of $6.3 g$ oxalic acid dihydrate is made up to 250 mL . The volume of 0.1 NNaOH required to completely neutralise 10 mL of this solution is
A. $40 m L$
B. $20 m L$
C. $10 m L$
D. $4 m L$

Answer: A

- Watch Video Solution

13. How many moles of electrons weigh 1 kg ?
A. 6.023×10^{23}
B. $\frac{1}{9.108} \times 10^{31}$
c. $\frac{6.023}{9.108} \times 10^{54}$
D. $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Answer: D

- Watch Video Solution

14. A mixture x containing 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ was prepared in 2 L of solution.
$1 L$ of mixture $\mathrm{X}+$ excess $\mathrm{AgNO}_{3} \rightarrow Y$
$1 L$ of mixture $X+$ excess $\mathrm{BaCl}_{2} \rightarrow Z$
The number of moles of Y and Z are
A. $0.01,0.01$
B. 0.02,0.01
C. 0.01,0.02
D. 0.02,0.02

- Watch Video Solution

15. Which of the following has the maximum number of atoms?
A. 24 g of $C(12)$
B. 56 g of $\mathrm{Fe}(56)$
C. 27 of $A l(27)$
D. 108 g of $A g(108)$

Answer: A

- Watch Video Solution

16. Given that the abundacne of isotopes $.{ }^{54} \mathrm{Fe}, .{ }^{56} \mathrm{Fe}$, and.${ }^{57} \mathrm{Fe}$ is $5 \%, 90 \%$ and 5% respectively. The atomic mass of $F e$ is
A. 55.58
B. 55.95
C. 55.75
D. 55.05

Answer: B

- Watch Video Solution

17. Dissolving $120 g$ of urea $(M w=60)$ in $1000 g$ of water gave a solution of density $1.15 \mathrm{gmL}^{-1}$. The molarity of solution is:
A. $1.78 M$
B. 2.00 M
C. $2.05 M$
D. $2.22 M$

Answer: C

- Watch Video Solution

Archives Integer

1. The value of n in the molecular formula $\mathrm{Be}_{n} \mathrm{Al}_{2} \mathrm{SiO}_{18}$ is

- Watch Video Solution

2. A student of performs a titration with different burettes and finds titre values of $25.2 \mathrm{~mL}, 25.25 \mathrm{~mL}$, and 25.0 mL . The number of significant figures in the average titre value is
3. Silver (atomic weight $108 \mathrm{gmol}^{-1}$) has a density of $10.5 \mathrm{gcm}^{-3}$. The number of silver atoms on a surfaces of area $10^{-12} \mathrm{~m}^{2}$ can be expressed in scientific notation as $Y \times 10^{-x}$, The value of x is

- Watch Video Solution

4. Among the following, what is the number of elements showing only one non-zero oxidation state?

- Watch Video Solution

Archives Fill In The Blanks

1. The total number of electrons present in $18 m L$ of water is
2. The modern atomic mass unit if based on the mass of

- Watch Video Solution

3. Three grams of salt of molecular weight 30 is dissolved in 250 g of water. The molality of the solution is....

- Watch Video Solution

4. The weight of 1×10^{22} molecules of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is

- Watch Video Solution

Archives Subjective

1. What is the molarityk and molality of a 13% solution (by weight) of sulphric acid with a density of $1.02 m L^{-1}$? To what volume should

100 mL of this acid be diluted in order to preapre a 1.5 N solution?

- Watch Video Solution

2. Calculate the density of NH_{3} at $30^{\circ} \mathrm{C}$ and 5 atm pressure.

- Watch Video Solution

3. When 4.215 g of a metallic carbonate was heated in a hard glass tube, the CO_{2} evolved was found to measure 1336 mL at $27^{\circ} \mathrm{C}$ and 700 mm pressure. What is the equivalent weight of the metal?

- Watch Video Solution

4. The density of $3 M$ sodium of thiosulphate solution $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ is
$1.25 \mathrm{gmL}^{-1}$. Calculate
a. The precentage by weight of sodium thiosulphate.
b. The mole fraction of sodium thiosulphate.
c. The molalities of Na^{\oplus} and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ ions.

- Watch Video Solution

5. A sugar syrup of weight $214.2 g$ contains $34.2 g$ of sugar $\left(C_{12} H_{22} O_{11}\right)$.

Calculate
a. the molal concentration.
b. the mole fraction of the sugar in the syrup.

- Watch Video Solution

6. Calculate the molality of 1 L solution of $93 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (Weight/volume) The density of the solution is $1.84 g$.

- Watch Video Solution

7. Calculate the volume occupied by 5.0 g of acetylene gas at $50^{\circ} \mathrm{C}$ and 740 mm pressure.

- Watch Video Solution

8. On mixing 45.0 mL of 0.25 M lead nitrate solution with 25.0 mL of $0.10 M$ chromic sulphate solution, precipitation of lead sulphate are formed? Also calculate the molar concentration of the species left behind solution. Assume the lead sulphate is completely insoluble.

- Watch Video Solution

9. When $0.575 \times 10^{-2} \mathrm{~kg}$ of Glaube's salt is dissolved in water, we get $1 \mathrm{dm}^{3}$ of a solution of density $1077.2 \mathrm{kgm}^{-3}$. Calculate the molarity, molality, and mole fraction of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the solution.

- Watch Video Solution

10. Calculate the molarity of water if its density is $1000 \mathrm{kgm}^{-3}$

- Watch Video Solution

11. Calculate the amount of calcuium oxide required when it reacts with $852 g$ of $P_{4} O_{10}$.
