©゙doubtnut

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

STATES OF MATTER

Solved Example

1. A ballon is filled with hydrogen at room
temperature. It will burst if pressure exceeds
0.2 bar. If at I bar pressure, the gas occupies
$2.27 L$ volume, up to what volume can the balloon be expanded?

D Watch Video Solution

2. A manomete is connected to a gas containing bulb. The open arm reads 40.0 cm where as the arm connected to the bulb reads
15.0 cm . If barometric pressure is 74.0 cm Hg , then what is the pressure of gas in bar?
3. A spherical ballon of 21 cm diameter is to be filled with hydrogen at $S T P$ from a cylinder containing the gas at 20 atm and $27^{\circ} \mathrm{C}$. If the cylinder can hold $2.82 L$ of water, calculate the number of balloons that can be filled up .

- Watch Video Solution

4. At fixed temperature and 600 mm pressure,
the density of a gas is 42 . At the same
temperature and 700 mm pressure, what is the density of the gas?

- Watch Video Solution

5. $5 g$ of He at $27^{\circ} C$ is subjected to a pressure change from $0.5 a t m$ to $2 a t m$. The initial volume of the gas is $10 \mathrm{dm}^{3}$. Calculate the change in volume of the gas.
(Watch Video Solution
6. Among the plots of $P v s V$ given below, which one corresponds to Boyle's law?

- Watch Video Solution

7. Draw a graph of $\log P$ and $\log (1 / V)$ for a fixed amount of gas at constant temperature.
8. What is the volume of a sample of oxygen at a pressure of 3.5 bar if its volume at 1 bar is $3.15 L$ at th same temperature?

- Watch Video Solution

9. A gas occupies a volume of $2.5 L$ at $9 \times 10^{5} \mathrm{Nm}^{-2}$. Calculate the additional pressure required to decrease the volume of the gas to $1.5 L$, Keeping temperature constant.
10. A Vessel of $120 m L$ capacity contains a certain mass of gas at $20^{\circ} \mathrm{C}$ and 75 mm pressure. The gas was transferred to a vessel whose volume is 180 mL . Calculate the pressure of the gas at $20^{2} C$

D Watch Video Solution

11. $103 m L$ of carbon dioxide was collected at
$27^{\circ} \mathrm{C}$ and 763 mm pressure. What will be its
volume if the pressure is changed to 721 mm at the same temperature?

- Watch Video Solution

12. A gas at $300 K$ is compressed to reduce its
volume to half of its volume. At what temperature, will ut become double of its initial volume?

D Watch Video Solution

13. The volume of a given amount of gas at
$57^{\circ} \mathrm{C}$ and constant pressure is $425.8 \mathrm{~cm}^{3}$. If
the temperature is decreased to $37^{\circ} C$ at constant pressure, then the volume will be.

D Watch Video Solution

14. At what temperature, the volume of a given amount of gas at $25^{\circ} \mathrm{C}$ becomes twice when pressure is kept constant?
15. An open vessel at $27^{\circ} C$ is heated until $3 / 5$ of the air in it is expelled. Assuming that the volume of the vessel remains constant, find the temperature to which the vessel has been heated.

D Watch Video Solution

16. A flask having a volume of 250.0 mL and
containing air is heated to $100^{\circ} C$, immered in
water, and opened. What volume of water will
be drawn back into the flask, assuming the pressure remaining constant?

- Watch Video Solution

17. The volume expansivity of a gas under constant pressure is 0.0037 . Calculate its volume at- $100^{\circ} \mathrm{C}$ if its volume at $100^{\circ} \mathrm{C}$ is $685 \mathrm{~cm}^{3}$.
18. In terms of Charles' law, explain why $-273^{\circ} C$ is the lowest possible temperature?

- Watch Video Solution

19. A sample of gas is found to occupy a volume of $900 \mathrm{~cm}^{-3}$ at $27^{\circ} \mathrm{C}$. Calculate the temperature at which it will occupy a volume of $300 \mathrm{~cm}^{3}$, provided the pressure is kept constant.
20. It is desired to increase the volume of $80 \mathrm{~cm}^{3}$ of a gas by 20% without changing pressure. To what temperature the gas be heated if its initial temperature is $25^{\circ} C$?

- Watch Video Solution

21. A cylinder containing cooking gas can withstand a pressure of 15 atm . The pressure gauge of the cylinder indicates 12 atm at $27^{\circ} \mathrm{C}$
. Due to a sudden fire in the building, the
temperature starts rising. At what temperature will the cylinder explode?

D Watch Video Solution

22. Two flacks of equal volume connected by a narrow tube of negligible volume are filled with N_{2} gas. When both are immersed in boiling water, the gas pressure inside the system is 0.5 atm . Calculate the pressure of the system when one of the flasks is immersed in
an ice-water mixture keeping the other in boiling order.

D Watch Video Solution

23. An iron tank contains helium at a pressure of $2 a t m$ at $25^{\circ} \mathrm{C}$. The tank can withstand a maximum pressure of 10 atm . The building in which the tank has been placed catches fire.

Perdice whether the tank will blow up first or melt. (The melting point of iron is $2235 K$).
24. A steel tank contains air at a pressure of 15 bar at $20^{\circ} \mathrm{C}$. The tank is provided with a safety valve which can withstand a pressure of 30 bar .

Calculate the temperature to which the tank can be safely heated.

D Watch Video Solution

25. A ballon blown up with 1 mole of gas has a
volume of 480 mL at $5^{\circ} \mathrm{C}$ The balloon is filled to $(7 / 8)$ th of its maximum capacity Suggest
(a) Will the balloon burst at $30^{\circ} \mathrm{C}$
(b) The minimum temperature at which it will burst
(c) The pressure of gas inside the balloon at $5^{\circ} C$
(d) The pressure of gas when balloon bursts .

D Watch Video Solution

26. 20 mL of hydrogen measured at $15^{\circ} \mathrm{C}$ is
heated to $35^{\circ} C$. What is the new volume at the same pressure?
27. At what temperature in centigrade will the volume of a gas at $0^{\circ} \mathrm{C}$ double itself, pressure remaining constant?

- Watch Video Solution

28. A $10.0 L$ container is filled with a gas to a pressure of 2.00 atm at $0^{\circ} \mathrm{C}$. At what temperature will the pressure inside the container be 2.50 atm ?
29. Which of the following is true about the number of molecules in A and B ?
A. Flask A contains eight times more molecules than flasks B.
B. Flask B contains eight times more molecules than flask A.
C. Both flasks contain an equal number if molecules.
D. Flasks A contains four times more molecules than flasks B.

D View Text Solution

30. Which of the following is true about pressures in flasks A and B ?
A. The pressure in flask A is four times that in flask B.
B. The pressure in flask B is four times that in flask A.
C. Both flasks have some pressure.
D. The pressure in flask A is eight times that in flask B.

- View Text Solution

31. Which of the following graphs is consistent with ideal gas behaviour?

A.
 a. $\prod_{P}^{\mid} \underset{V}{ }$

B.

32. Boyle's Law for an ideal gas can be plotted
as shown (\rightarrow) (n : moles, T : temperature)
Note: T and n are kept constant along line L_{1},
L_{2}, and L_{3},
It follows from the above graph:

A. $T_{1}>T_{2}>T_{3}$
B. $T_{1}<T_{2}<T_{3}$
C. $T_{1}=T_{2}=T_{3}$
D. None of these

D Watch Video Solution

33. A sample of nitrogen occupies a volume of $320 \mathrm{~cm}^{3}$ at $S T P$. Calculate its volume at $546.3 K$ and 0.5 bar pressure.
34. 1.0 mol of pure dinitrogen gas at $S A T P$ conditions was put into a vessel of volume
$24.8 m^{3}$ maintained at the temperature of 596.3 K . What is the pressure of the gas in the vessel?

D Watch Video Solution
35. A sample of gas occupies a volume of $320 \mathrm{~cm}^{3}$ at $S T P$. Calculate its volume at $66^{\circ} C$ and $0.825 a t m$ pressure.

- Watch Video Solution

36. Determine the value of gas constant R when pressure is expressed in Torr and volume in $d m^{3}$

D Watch Video Solution

37. How many moles of oxygen are present in
$400 \mathrm{~cm}^{3}$ sample of the gas at a pressure of
760 mmHg and a temperature of $27^{\circ} \mathrm{C}$. (The
value of R is given to be $8.31 \mathrm{kPadm} \mathrm{K}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

D Watch Video Solution

38. A gas having a molecular mass of $84.5 \mathrm{gmol}^{-1}$ enclosed in a flask at $27^{\circ} \mathrm{C}$ has a pressure of 1.5 atm . Calculate the density of the gas.

D Watch Video Solution

39. The drain cleaner Drainex contains small
bits of aluminimum which react with caustic
soda to form hydrogen. What volume of hydrogen at $20^{\circ} \mathrm{C}$ and 1 bar will be released when $0.15 g$ of aluminimum reacts?

- Watch Video Solution

40. The temperature at the foot of a mountain
is $30^{\circ} \mathrm{C}$ and pressure is 760 mmHg , whereas
at the top of the densities of air at the foot and top of the mountain.

- Watch Video Solution

41. The density of a certain gaseous oxide of
1.5 bar pressure and $10^{\circ} C$ is same as that of dioxygen at $20^{\circ} \mathrm{C}$ and 4.5 bar pressure.

Calculate the molar mass of the gasesous oxide.

- Watch Video Solution

42. Density of a gas is found to be $5.46 / d m^{3}$ at $27^{\circ} \mathrm{C}$ at 2 bar pressure What will be its density at $S T P$? .

- Watch Video Solution

43. The density of a gas is found to be $1.56 \mathrm{~g} L^{-1}$ at 745 mm pressure and $60^{\circ} \mathrm{C}$. Calculate the molecular mass of the gas.
44. At which of the following four conditions will the density of nitrogen be the largest?
A. $S T P$
B. 273 K and 2 atm
C. 546 K and 1 atm
D. 546 K and 2 atm
45. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is
found to be $1 a t m$. If $3 g$ of another gas B is then heated in the same flask, the total pressure becomes 1.5 atm . Assuming ideal gas behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.

D Watch Video Solution

46. Calculate the weight of methane in a $9 L$
cylinder at 16 atm and $27^{\circ} \mathrm{C}$ temperature. (

$R=0.08 \operatorname{LatmK}^{-1} \mathrm{~mol}^{-1}$)

- Watch Video Solution

47. Calculate the volume occupied by 5.0 g of acetylene gas at $50^{\circ} \mathrm{C}$ and 740 mm pressure.

D Watch Video Solution

48. An open vessel at $27^{\circ} C$ is heated until $3 / 5$ of the air in it is expelled. Assuming that the volume of the vessel remains constant, find the
temperature to which the vessel has been heated.

D Watch Video Solution

49. What percent of a sample of nitrogen must be allowed to escape if its temperature, pressure, and volume are to be changed from $220^{\circ} \mathrm{C}, 3 \mathrm{~atm}$, and 1.65 L to $110^{\circ} \mathrm{C}, 0.7 \mathrm{~atm}$, and $1 L$, respectively?
A. 41.4%

$$
\text { B. } 8.18 \%
$$

C. 4.14%
D. 81.8%

D Watch Video Solution

50. Isobutane $\left(C_{4} H_{10}\right)$ undergoes combustion
in oxygen according to the following reaction:
$2 \mathrm{C}_{4} \mathrm{H}_{10}(g)+13 \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(e)$
When 10.00 L of isobutane is burnt at $27^{\circ} \mathrm{C}$
and 1^{-}pressure, calculate the volume of CO_{2} produced at $120^{\circ} \mathrm{C}$ and 4.0^{-}pressure.

D Watch Video Solution

51. What mass of potassium chlorate must be decomposed to produce $2.40 L$ of oxygen at 0.82 bar and $300 K$?
52. Calculate the number of gasesous molecules left in a volume of $1 \mathrm{~mm}^{3}$ if it is pumped out to give a vacuum of $10^{-6} \mathrm{mmHg}$ at 298 K .

D Watch Video Solution

53. What volume of air containing 21% of oxygen by volume is required to completely burn 1 Kg of sulphur $\left(S_{8}\right)$ which contains 4% incombustible material? Sulphur burns
according to the reaction
$\frac{1}{2} S_{8}+O_{2} \rightarrow S O_{2}$

D Watch Video Solution

54. A gas cylinder contains 370 g oxygen at 30.0 atm pressure and $25^{\circ} \mathrm{C}$. What mass of oxygen will escape if the cylinder is first heated to $75^{\circ} \mathrm{C}$ and then the valve is held open until gas pressure becomes 1.0atm, the temperature being maintained at $75^{\circ} \mathrm{C}$?
55. A refrigeration tank holding 5.00 L feron gas $\left(\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{4}\right)$ at $25^{\circ} \mathrm{C}$ and 3.00 atm pressure developed a leak. When the leak was discovered and repaired, the tank has lost 76.0 g of the gas. What was the pressure of the gas remaining in the tank at $25^{\circ} \mathrm{C}$?

- Watch Video Solution

56. A quantity of hydrogen gas occupies a volume of 30.0 mL at a certain temperature
and pressure. What volume would half of this mass of hydrogen occupy at triple the initial temperature, if the pressure was one-ninth that of the original gas?

- Watch Video Solution

57. A $10.0 L$ cylinder of oxygen at 4.0 atm pressure and $17^{\circ} C$ developed a leak. When the leak was repaired, 2.50 atm of oxygen remained in the cylinder, still at $17^{\circ} C$. How many moles of gas escaped?
58. A certain quantiy of gas occupies a volume of $0.8 L$ collected over water at $300 K$ and a pressure 0.92 bar. The same gas occupies a volume of $0.08 L$ at $S T P$ in dry conditions.

Calculate the aqueous tension at $300 K$.

D Watch Video Solution

59. At sea level, the composition of dry air is approximately $N_{2}=75.5 \%, \quad O_{2}=23.2 \%$,
and $A r=1.3 \%$ by mass. If the total pressure at sea level is 1 bar, what is the partial pressure of each component?

D Watch Video Solution

60. A $2 L$ flask contains 1.6 g of methane and
$0.5 g$ of hydrogen at $27^{\circ} \mathrm{C}$. Calculate the partial pressure of each gas in the mixture and hence calculate the total pressure.
61. 20 g of hydrogen and 128 g of oxygen are contained in a 20 L flask at $200^{\circ} \mathrm{C}$. Calculate
the total pressure of the mixture. If a spark ignites the mixture, what will be the final pressure?

D Watch Video Solution

62. The total pressure of a gaseous mixture of
$2.8 g N_{2}, 3.2 g O_{2}$, and $0.5 g H_{2}$ is 4.5atm.

Calculate the partial pressure of each gas.
63. Equal molecules of N_{2} and O_{2} are kept in a
closed container at pressure P. If N_{2} is removed from the system, then what will be the pressure of the container?
A. P
B. $2 P$
C. $P / 2$
D. P^{2}

- Watch Video Solution

64. Dalton's law of partial pressures is not applicable to
A. Mixture of H_{2} and N_{2}
B. Mixture of H_{2} and Cl_{2}
C. Mixture of H_{2} and CO_{2}
D. None
65. Equal volumes of all gases under the same conditions of temperature and pressure contain equal number of
A. Atoms
B. Molecules
C. Radicals
D. Compound atoms
66. 0.5 mol of $\mathrm{H}_{2}, \mathrm{SO}_{2}$, and CH_{4} is kept in a container. A hole was made in the container.

After 3 hours, the order of partial pressure in the container will be
A. $P_{S O_{2}}>P_{C H_{4}}>P_{H_{2}}$
B. $P_{H_{2}}>P_{S O_{2}}>P_{C H_{4}}$
C. $P_{C H_{4}}>P_{S O_{2}}>P_{H_{2}}$
D. $P_{C H_{4}}>P_{H_{2}}>P_{S O_{2}}$

67. Why dry air is heavier than moist air?

D Watch Video Solution

68. A vessel of 4.00 L capacity contains 4.00 g of methane and 1.00 g of hydrogen at $27^{\circ} \mathrm{C}$.

Calculate the partial pressure of each gas and also the total pressure in the container.
69. Compare the rates of diffusion of ${ }^{י 235} U F_{6}$ and ${ }^{~}{ }^{238} U F_{6}$

D Watch Video Solution

70. The relative densities of oxygen and carbon
dioxide are 16 and 22 ,respectively. If $25 \mathrm{~cm}^{3}$ of carbon dioxide effuses out in $75 s$, What volume of oxygen will effuse out in $96 s$ under similar condition?

D

71. A mixture of 50 mL of H^{2} and 50 mL of O^{2} is allowed to effuse through an effusiometer till the residual gas occupies 90 mL . What is the composition of (a) effused gas, (b) the residual gas?

- Watch Video Solution

72. A straight glass tube has two inlets x and y at two ends. The length of the tube is 200 cm .

HCl gas through inlet x and NH_{3} gas through inlet y are allowed to enter the tube
at the same time. White flames first appear at
a point P inside the tube. Find the distance of
P from x.

D Watch Video Solution

73. One mole of nitrogen gas at 0.8 atm takes $38 s$ to diffuse through a pinhole, while 1 mol of an unknown fluoride of xenon at 1.6 atm takes
$57 s$ to diffuse through the same hole.

Calculate the molecular formation of the compound.
74. A balloon filled with ethylene is pricked with a needle and quickly dropped in a tank of
H_{2} gas under indentical conditions. After a while, the balloon will
A. Shrunk
B. Enlarge
C. Completely collapse
D. Remain unchanged in size

- Watch Video Solution

75. A 4:1 molar mixture of He and CH_{4} is contained in a vessel at 20^{-}pressure. Due to a hole in the vessel, the gas mixture leaks out. What is the composition of the mixture effusing out initially?

- Watch Video Solution

76. The volumes of ozone and chlorine diffusing in the same time are $35 m L$ and $29 m L$, respectively. If the molecular weight of chlorine is 71 , calculate the molecular weight of ozone.

D Watch Video Solution

77. At $20^{\circ} C$, two balloons of equal volume and porosity are filled to a pressure of $2 a t m$, one with $14 k g N_{2}$ and the other with 1 Kg of H_{2}.

The N_{2} balloon leaks to a pressure of $1 / 2 a t m$
in 1 hour. How long will it take for the H_{2} balloon to reach a pressure of $1 / 2 \mathrm{~atm}$?

D Watch Video Solution

78. Two balloon are filled with equal moles of
hydrogen and helium. Which balloon will contract first if holes of same size are made in them?

D Watch Video Solution

79. A bottle of dry NH_{3} and another bottle of dry HCl connected through a long tube are opened simultaneously at both ends of the tube. The white ring $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ first formed will be
A. At the centre of the tube
B. Near the HCl bottle
C. Near the ammonia bottle
D. Throughout the length of the tube
80. A cinema hall has equidistant rows $1 m$ apart. The length of the cinema hall is $287 m$ and it has 287 rows. From one side of the cinema hall, laughing gas $\left(\mathrm{N}_{2} \mathrm{O}\right)$ is released and from the other side, weeping gas
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{Cl}\right)$ is released. In which rows, spectors will be laughing and weeping simultaneously?

81. Calculate the average kinetic energy of $8 g$ molecules of methane at $27^{\circ} C$ in joule. $\left(R=8.314 J K^{-1} \mathrm{~mol}^{-1}\right)$

D Watch Video Solution

82. For a gas containing 10^{23} molecules (each
having mass $10^{-22} \mathrm{~g}$) in a volume of $1 \mathrm{dm}^{3}$, calculate the total kinetic energy of molecules
if their root mean square speed is $10^{5} \mathrm{cms}^{-1}$. What will be its temperature?

- Watch Video Solution

83. Calculate the pressure exerted by 10^{23} gas molecules each of mass $10^{-22} g$ in a container of volume 1 litre the rms speed is $10^{5} \mathrm{cms}^{-1}$
84. The average velocity of CO_{2} at the temperature $T_{1} K$ and maximum (most) proable velocity of CO_{2} at the temperature $T_{2} K$ is $9 \times 10^{4} \mathrm{cms}^{-1}$. Calculate the values of T_{1} and T_{2}.

D Watch Video Solution

85. The energy of an ideal gas is
A. Completely Kinetic
B. Completely potential
C. $K E+P E$

D. All of the above

D Watch Video Solution

86. Calculate the temperature at which the root mean square velocity, the average velocity, and the most proable velocity of oxygen gas are all equal to $1500 \mathrm{~ms}^{-1}$.
87. Calculate the temperature at which the average velocity of oxygen equals that of hydrogen at $20 K$.

- Watch Video Solution

88. Which of the following gases will have the highest $R M S$ velocity at $25^{\circ} C$?
A. O_{2}
B. CO_{2}
C. SO_{2}

D. $C O$

D Watch Video Solution

89. Which of the following expressions
correctly represents the relationship between
the average molar kinetic energies $(K E)$ of
$C O$ and N_{2} molecules at the same temperature?
A. $\overline{K E}_{C O}=\overline{K E}_{N_{2}}$
B. $\overline{K E}_{C O}>\overline{K E}_{N_{2}}$
C. $\overline{K E}_{C O}<\overline{K E}_{N_{2}}$
D. All of the above

D Watch Video Solution

90. The ratio of the root mean square velocity of H_{2} at 50 K to that of O_{2} at 800 K is
A. 4
B. 2
C. 1
D. $\frac{1}{4}$

D Watch Video Solution

91. If or two gases of molecular weights M_{A} and M_{B} at temperature T_{A} and T_{B}, $T_{A} M_{B}=T_{B} M_{A}$, then which of the following properties has the same magnitude for both the gases?
(a) Density
(b) Pressure
(c) $K E$ per mole
(d) $u_{r m s}$

D Watch Video Solution

92. Arrange the following in order of increasing density:

Oxygen at $25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$, Oxygen at $0^{\circ} \mathrm{C}, 2 \mathrm{~atm}$,
Oxygen at $273^{\circ} \mathrm{C}, 1 \mathrm{~atm}$
93. How is the pressure of a gas in a mixture related to the total pressure of the mixture?

- Watch Video Solution

94. What would have happened to the pressure of a gas if the collisions of its molecules had not been elastic?
95. Two bulbs A and B of equal capacity are
filled with He and SO_{2}, respectively, at the
same temperature.
(a) If the pressures in the two bulbs are same, what will be the ratio of the velocities of the molecules of the two gases?
(b)At what temperature will the velocity of
SO_{2} molecules become half of the velocity of
He molecules at $27^{\circ} C$?
(c) How will the velocities be affected if the volume of B becomes four times that of A ?
(d) How will the velocities be affected if half of
the molecules of $S O_{2}$ are removed from B ?

- Watch Video Solution

96. Calculate the root mean square velocity of nitrogen at $27^{\circ} \mathrm{C}$ and 70 cm pressure. The density of Hg is $13.6 \mathrm{gcm}^{-3}$.

- Watch Video Solution

97. Calculate the $R M S$ velocity of chlorine molecules at $17^{\circ} \mathrm{C}$ and 800 mm pressure.
98. What is the value of b (van der Waals constant) if the diameter of a molecule is 2.0
A. $\approx 2.4 m \mathrm{Lmol}^{-1}$
B. $\approx 4.8 \mathrm{mLmol}^{-1}$
C. $\approx 7.2 \mathrm{mLmol}^{-1}$
D. $\approx 9.6 \mathrm{mmol}^{-1}$
99. Two flasks A and B have equal volume. A is maintained at $300 K$ and B at $600 K$. While A
contains H_{2} gas, B has an equal mass of CH_{4} gas. Assuming ideal behaviour for both the gases, which of the following statement is true about the velocities of molecules?
A. The molecules in flasks A and B are moving with the same veocity.
B. The molecules in flask A are moving two
times faster than the molecules in flask B.
C. The molecules in flask B are moving two
times faster than the molexules in flask
A.
D. The molecules in flask A are moving four
times faster than the molecules in flask
B.
100. Two flasks A and B of equal volume are at temperature 100 K and 200 K containing H_{2} and CH_{4}, respectively. Which of the following is true about $K E$ per mole ($K E=$ Kinetic energy).
A. $K E$ per mole of H_{2} is twice that of CH_{4}
B. $K E$ per mole of CH_{4} is twice that of H_{2}
C. $K E$ per mole of H_{2} is equal to that of
CH_{4}
D. $K E$ per mole of CH_{4} is thrice that of H_{2}

- Watch Video Solution

101. Two flasks A and B of equal volume containing equal masses of H_{2} and CH_{4} gases are at $100 K$ and $200 K$ temperature, respectively. Which of the following is true about the total $K E$ (Kinetic energy)?
A. Total $K E$ of H_{2} is four times that of
CH_{4}.
B. Total KE of CH_{4} is four times that of
H_{2}.
C. Total KE of H_{2} is two times that of CH_{4}
D. Total KE of CH_{4} is two times that of H_{2}
102. The kinetic energy of molecules at constant tempreature in gaseous state is
A. More than those in the liquid state
B. Less than those in the liquid state
C. Equal to those in the liquid state
D. None of these
103. 1 mol of SO_{2} occupies a volume of 350 mL at 300 K and 50 atm pressure. Calculate the compressibility factor of the gas.

- Watch Video Solution

104. Calculate the pressure exerted by $8.5 g$ of ammonia $\left(\mathrm{NH}_{3}\right)$ contained in a $0.5 L$ vessel at $300 K$. For ammonia, $a=4.0 \mathrm{atmL}^{2} \mathrm{~mol}^{-2}$, $b=0.036 \mathrm{Lmol}^{-1}$.
105. 2 mol of chlorine gas occupies a volume of 800 mL at 300 K and $5 \times 10^{6} \mathrm{~Pa}$ pressure.

Calculate the compressibility factor of the gas.
$\left(R=0.083 L \operatorname{bar} K^{-1} \mathrm{~mol}^{-1}\right)$.
Comment,
whether the gas is more compressible or less
compressible under these conditions.

D Watch Video Solution

106. Can we use Boyle's law to calculate the
volume of a real gas from its initial state to
final state during adiabatic expansion?

- Watch Video Solution

107. The compressibility factor of gases is less
than unity at $S T P$. Therefore,
A. $V_{m}>22.4 L$
B. $V_{m}<22.4 L$
C. $V_{m}=22.4 L$
D. $V_{m}=4.8 L$

- Watch Video Solution

108. The density of steam at $100^{\circ} \mathrm{C}$ and $10^{5} \mathrm{~Pa}$ pressure is $0.6 \mathrm{Kgm}^{-3}$. Calculate the compresibility factor of steam.

- Watch Video Solution

109. The compressibility factor
$(Z=P V / n R T)$ for N_{2} at $223 K$ and $81.06 M P a$ is 1.95 , and at 373 K and
$20.265 M P a$, it is 1.10 . A certain mass of N_{2}
occupies a volume of $1.0 \mathrm{dm}^{3}$ at 223 K and 81.06MPa. Calculate the volume occupied by the same quantity of N_{2} at 373 K and 20.265MPa.

- Watch Video Solution

110. Calculate the pressure exerted by $22 g$ of
CO_{2} in $0.5 \mathrm{dm}^{3}$ at 300 K using (a) the ideal gas
law and (b) the van der Waals equation. Given
$a=300.0 k P a d m^{6} \mathrm{~mol}^{-2}$
$b=40.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

D Watch Video Solution

111. Two van der Waals gases have the same
value of b but different values of a. Which of
these will occupy greater volume under identical conditions. If the gases have the same value of a but different values of b, which of them will be more compressible?

112. Calculate the molecular diameter of helium

from its van der Waals constant b. $\left(b=24 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

113. The internal pressure loss of 1 mol of van der Waals gas over an ideal gas is equal to
A. Zero
B. b^{2}
C. $\frac{a}{V^{2}}$
D. $b-\frac{a}{R T}$

D Watch Video Solution

114. The van der Waals equation for CH_{4} at low pressure is
A. $P V=R T-P b$
B. $P V=R T-\frac{a}{V}$
C. $P V=R T+\frac{a}{V}$

D. $P V=R T+P b$

D Watch Video Solution

115. Which of the following can be must readily
liquefied? The given value of a for NH_{3} is 4.17,
CO_{2} is $3.59, S O_{2}$ is 6.71 , and Cl_{2} is 6.49 .
116. Out of NH_{3} and N_{2}, which will have
(a) larger value of a
(b) larger value of b

- Watch Video Solution

117. One way of writing the equation of state
for real gases is
$P V=R T\left[1+\frac{B}{V}+\ldots.\right]$
where B is a constant. Derive an approximate
expression for B in terms of the van der Waals constants a and b.

D Watch Video Solution

118. If volume occupied by CO_{2} molecules is negligible, then calculate pressure $\left(\frac{P}{5.277}\right)$ exerted by one mole of CO_{2} gas at 300 K .
$\left(a=3.592 a t m L^{2} \mathrm{~mol}^{-2}\right)$

D Watch Video Solution

119. The curve drawn below shows the variations of P as a function of $1 / V$ for a fixed mass and temperature of an ideal gas. It follows from the curve that:

A. $T_{3}>T_{2}>T_{1}$
B. $T_{1}>T_{2}>T_{3}$
C. $T_{1}=T_{2}=T_{3}$
D. Nothing can be predicted about temperatures

D Watch Video Solution

120. The critical constants for water are $647 K$, $22.09 M P a, \quad$ and $\quad 0.0566 d m^{3} \operatorname{mol}(-1)$.

Calculate the values of a, b and R and explain the abnormal value of R.

D Watch Video Solution

121. The critical temperature $\left(T_{c}\right)$ and pressure
$\left(P_{c}\right)$ of $N O$ are $177 K$ and $6.48 M P a$, respectively, and that of $\mathbb{C l} l_{4}$ are $550 K$ and
4.56MPa, respectively. Which gas (a) has the
smaller value for the van der Waals constant b,
(b) has the smaller value for constant $a,(c)$
has the larger critical volume, and (d) is most
nearly ideal in behaviour at $300 K$ and 1.013MPa.

D Watch Video Solution
122. Calculate the volume occupied by 2.0 mol of N_{2} at 200 K and $10.1325 M P a$ pressure if $\frac{P_{c} V_{c}}{R T_{c}}=\frac{3}{8}$ and $\frac{P_{r} V_{r}}{T_{r}}=2.21$.

D Watch Video Solution

123. The van der Waals constants for a substance are $a=300.003 \mathrm{kPadm} \mathrm{mol}^{-2}$
and $b=40.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$. Find the critical
constants of this substance.

D Watch Video Solution

124. The temperature below which a gas does not obey ideal gas laws is
A. Critical temperature
B. Inversion temperature

C. Boyle temperature

D. Reduced temperature

D Watch Video Solution

125. An ideal gas obeying the kinetic theory of gases can be liquefied if
A. Its temperature is more than its critical
temperature $\left(T_{c}\right)$
B. Its pressure is more than its critical pressure $\left(P_{c}\right)$
C. Its pressure is more than P_{c} at a temperature less than T_{c}

D. It cannot be liquefied at any value of P

and T
126. Which of the following realtions is incorrect?

$$
\text { A. } a=3 P_{c} V_{c}^{2}
$$

$$
\text { B. } b=V_{c} / 3
$$

C. $T_{c}=8 a / 27 R b$
D. $b=3 V_{c}$

127. The critical temperature of a substance is

A. The temperature above which a

substance can exist only as a gas
B. Boiling point of the substance
C. All are wrong.
D.
128. Considering the graph, which of the following gases have the highest critical temperature T_{c} ?

A. i
B. $i i$
C. $i i i$
D. $i v$

D Watch Video Solution

129. Calculate the values of σ, l (mean free path), Z_{1} and Z_{11} for oxygen at $300 K$ at a pressure of $\quad 1 \mathrm{~atm}$.

Given
$b=3.183 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$.
130. Which of the following has the maximum
value of mean free path?
A. H_{2}
B. N_{2}
C. O_{2}
D. $C l_{2}$
131. The average free path at 1 atm pressure is
L. What should be its value at 5 atm pressure?

- Watch Video Solution

132. If X is the total number of collisions that
a gas molecule registers with other molecules
per unit time under particular conditions, then
what is the collision frequency of the gas
containing N molecules per unit volume is ?
133. Two flasks A and B have equal volumes.

The molecules in flask A are moving two times
faster than the molecules in flask B. The number of molecules in flask A is eight times
the number of molecules in flask B. Which of the following is true about the number of collisions with the walls?
A. The number of collisions with the walls
in flask A is four times that in flasks B.
B. The number of collisions with the walls in flask B ia four times that in flask A.
C. The number of collisions with the walls in flask A is $16 \times$ that in flask B.
D. The number of collisions with the walls in flask B is $16 \times$ that in flask A.

D Watch Video Solution

134. Two flasks A and B have equal volume at $100 K$ and 200 K and have $4 a t m$ and 1 atm pressures, respectively. The flasks A contains
H_{2} gas and B contains CH_{4} gas. The collision diameter of CH_{4} is twice that of H_{2}.
(i) Which of the following is true about the mean free path (λ) of the molecules?
(a) λ of H_{2} is twice that of CH_{4}.
(b) λ of CH_{4} is twice that of H_{2}.
(c) λ of H_{2} is four times that of CH_{4}.
(d) λ of CH_{4} is four times that H_{2}.
(ii) Which of the following is true about the
viscosity of the gases?
(a) Viscosity of $H_{2}=2 \times$ viscosity of CH_{4}
(b) Viscosity of $\mathrm{H}_{2}=3 \times$ viscosity of CH_{4}
(c) Viscosity of $\mathrm{H}_{2}=$ viscosity of CH_{4}
(d) Viscosity of $H_{2}=\frac{1}{2} \times$ viscosity of CH_{4}

- Watch Video Solution

135. Two equal volume flasks cotaining equal masses of H_{2} and CH_{4} are at 100 K and 200 K , repectively. The molecular diameter of CH_{4} is twice that of H_{2}.
(i) Which of the following statement about Z_{1}
(number of collisions per molecule per cm^{3}
per second) is true? (a) Z_{11} of $H_{2}=2 Z_{1}$ of
CH_{4}
(b) Z_{11} of $H_{2}=4 Z_{1}$ of $C H_{4}$
(c) Z_{11} of $H_{2}=Z_{1}$ of CH_{4}
(d) Z_{11} of $H_{2}=8 Z_{1}$ of $C H_{4}$
(ii) Which of the following statement about
Z_{11} (number of bimolecular collisions per cm^{3}
per second) is true?
(a) Z_{1} of $H_{2}=4 Z_{11}$ of CH_{4}
(b) Z_{11} of $H_{2}=8 Z_{11}$ of CH_{4}
(c) Z_{1} of $H_{2}=16 Z_{11}$ of $C H_{4}$
(d) Z_{1} of $H_{2}=32 Z_{11}$ of CH_{4}

- Watch Video Solution

136. Two equal-volume flasks A and B containing equal masses of H_{2} and CH_{4} are at $100 K$ and $200 K$, respectively. Assuming ideal behaviour, which of the following statements about the compressibility factor (Z) is true?
A. Z of $H_{2}=Z$ of CH_{4}

$$
\begin{aligned}
& \text { B. } Z \text { of } H_{2}=4 Z \text { of } \mathrm{CH}_{4} \\
& \text { C. } Z \text { of } H_{2}=16 Z \text { of } C H_{4} \\
& \text { D. } Z \text { of } H_{2}=2 Z \text { of } C H_{4}
\end{aligned}
$$

D Watch Video Solution

137. The mean free path of the molecules of a certain gas at $300 K$ is $2.6 \times 10^{-5} \mathrm{~m}$. The collision diameter of the molecule is 0.26 m .

Calculate (a) the pressure of the gas and (b)
the number per unit volume of the gas.
138. By now much will the mean free path of a gas molecule in a vessel at constant T change if the pressure is reduced by 10% ?
A. 10% increase
B. 10% decrease
C. 11.1% increase
D. 11.1% decrease
139. By how much will the mean free path of a gas molecule is a vessel at constant P change
if the temperature is reduced by 20% ?
A. 12.5% decrease
B. 12.5% increase
C. 80% decrease
D. 80% increase
140. If the pressure of a gas is doubled and the temperature is tripled, by how much will the mean free path of a gas molecule in a vessel change?
A. Increase 3 times
B. Decrease 3 times
C. Increase 1.5 times
D. Decrease 1.5 times

- Watch Video Solution

141. If P is doubled and T is reduced to half at constant volume, what will be its effect on the mean free path (λ) of a gas molecule?
A. λ will decrease
B. λ will increase
C. no effect on λ
D. Cannot predict
142. The number of collisions made by a single molecule with other molecules per cm^{3} per second. Is Z_{1}. At constant temperature by how much will Z_{1} change if the pressure is doubled in the vessel.
A. Increase 2 times
B. Decrease 2 times
C. Increase 0.5 times
D. Decrease 0.5 times

- Watch Video Solution

143. The number of bimolecular collisions per cm^{3} per second is Z_{11}. At constant temperature, by how much will Z_{11} change if the pressure is tripled in the vessel?
A. Increase 3 times
B. Decrease 3 times
C. Increase 9 times

D. Decrease 9 times

D Watch Video Solution

144. If two gases have the same value of b but different values of a (a and b are van der Waals constants), which of the following statements is wrong?
A. The gas having a larger value of a will occupy less volume.
B. The gas having a larger value of a will
occupy more volume.
C. The gas having a larger value of a will
have higher forces of attraction.
D. The gas having a larger value of a will
have lesser distance between the molecules.
145. If two gases have the same value of b but different values of a (a and b are van der Waals constants), which of the following statements is wrong?
A. The gas having a smaller value of b has
larger compressibility.
B. The gas having a smaller value of b will occupy lesser volume.
C. The gas having a smaller value of b has
lesser compressibility.
D. Both (a) and (b).

D Watch Video Solution

146. Which gas will liquefy easily (a and b are van der Waals constants)?
A. Larger values of a and b
B. Smaller value of a but larger value of b
C. Smaller values of a and b
D. Larger value of a but smaller value of b

- Watch Video Solution

147. The rise is compressibility factor (Z) with increasing pressure of a gas is due to
A. van der Waals constant a
B. van der Waals constant b
C. Both (a) and (b)
D. Not related to either a or b

D Watch Video Solution

148. At which of the following conditions can a gas be liquified? T_{c} and P_{c} are critical temperature and pressure.
A. $T=T_{c}$ and $P<P_{c}$
B. $T<T_{c}$ and $P=P_{c}$
C. $T>T_{c}$ and $P<P_{c}$
D. $T<T_{c}$ and $P<P_{c}$
149. A monoatomic ideal gas undergoes a process in which the ratio of P to V at any istant is constant and equal to unity. The molar heat capacity of the gas is
A. $\frac{5 R}{2}$
B. $\frac{3 R}{2}$
C. $\frac{4 R}{2}$
D. Zero

- Watch Video Solution

150. Why liquids have a definite volume but no definite shape?

D Watch Video Solution

151. At a particular temperature why is the vapour pressure of acetone less than that of ether?

D Watch Video Solution
152. A liquid is transferred from a smaller vessel to a bigger vessel at the same temperature. What will be the effect on the vapour pressure?

- Watch Video Solution

153. Why vegetables are cooked with difficulty at a hill station?
154. What is the approximate relationship between the heat of vaporisation and the boiling point of a liquid?

- Watch Video Solution

155. What is the effect of temperature on
surface tension and viscosity?
156. Why are falling liquid drops spherical?

- Watch Video Solution

157. Why liquids diffuse slowly as compared to gases?

D Watch Video Solution

158. What is the binding force between molecules if a subsatance is a gas under
ordinary conditions of temperature and pressure?

D Watch Video Solution

159. $100 m L$ of hydrogen was confined in a diffusion tube and exposed to air, and at equilibrium, a volume of $26.1 m L$ of air was measured in the tube. Again, when 100 mL of
CO_{2} was placed in the same tube and exposed to air, $123 m L$ of air was measured in the tube
at the equilibrium. Find the molecular weight of CO_{2}.

- Watch Video Solution

160. A given volume of oxygen containing
20% by volume of ozone required $175 s$ to effuse when an equal volume of oxygen took 167 s only, under similar conditions. Find the density of ozone.
161. A gas- filled freely collapsible balloon is pushed from the surface level of a lake to a depth of 100 m . Approximately what percentage of its original volume will the balloon finally have? Assume that the gas behaves ideally

- Watch Video Solution

162. $1 L$ of a gaseous mixture is effused in
$5 \min 11 s$, while $1 L$ of oxygen takes 10 min.
The gaseous mixture contains methane and
hydrogen. Calculate
(a) The density of gaseous mixture.
(b) The percentage by volume of each gas in mixture.

D Watch Video Solution

163. Two flasks A and B have equal volumes.

Flask A containing H_{2} gas is maintained at
$27^{\circ} C$ while B containing an equal mass of
$C_{2} H_{6}$ gas is maintained at $627^{\circ} \mathrm{C}$. In which flask and by how many times are molecules
moving faster, assuming ideal behaviour for both the gases?

- Watch Video Solution

164. The compression factor (compressibility factor) for 1 mol of a van der Waals gas at $0^{\circ} \mathrm{C}$ and 100 atm pressure is found to be 0.5 . Assuming that the volume of a gas molecule is neligible, calculate the van der Waals constant a.
165. Calculate the pressure exerted by one mole of CO_{2} gas at 273 K van der Waals constant $\quad a=3.592 d^{6}$ atmmol $^{-2}$. Assume that the volume occupied by CO_{2} molecules is negligible.

D Watch Video Solution

166. (a) One mole of nitrogen gas at $0.8 a t m$ takes $38 s$ to diffuse through a pinhole, whereas one mole of an unknown compound
of xenon with fluorine at 1.6 atm takes 57 s to
diffuse through the same hole. Calculate the molecular formula to the compound.
(b) The pressure exerted by $12 g$ of an ideal gas
at temperature $t^{\circ} C$ in a vessel of volume

Vlitre is 1atm. When the temperature is increased by $10^{\circ} C$ at the same volume, the pressure increases by 10%. Calculate the temperature t and volume V. (Molecular weight of the gas is 120 .)

D Watch Video Solution

167. An evacuated glass vessel weighs $50.0 g$ when empty, 148.0 g when filled with a liquid of density $0.98 \mathrm{gm} L^{-1}$, and $50.5 g$ when filled with an ideal gas at 760 mmHg at 300 K . Determine the molar mass of the gas.

- Watch Video Solution

168. Using van der Waals equation, calculate
the constant a when 2 mol of a gas confined in
a $4 L$ flasks exerts a pressure of 11.0 atm at a
temperature of $300 K$. The value of b is $0.05 \mathrm{Lmol}^{-1}$.

D Watch Video Solution

169. For the equation
$\mathrm{N}_{2} \mathrm{O}_{5}(g)=2 \mathrm{NO}_{2}(g)+(1 / 2) \mathrm{O}_{2}(g)$, calculate
the mole fraction of $\mathrm{N}_{2} \mathrm{O}_{5}(g)$ decomposed at a constant volume and temperature, if the initial pressure is 600 mmHg and the pressure at any time is 960 mmHg . Assume ideal gas behaviour.
170. At a constant temperature, a gas occupies
a volume of 200 mL at a pressure of 0.720 bar .
It is subjected to an external pressure of 0.900 bar . What is the resulting volume of the gas?

- Watch Video Solution

171. What is the increase in volume, when the temperature of 600 mL of air increases from
$27^{\circ} \mathrm{C}$ to $47^{\circ} \mathrm{C}$ under constant pressure?

D Watch Video Solution

172. Calculate the number of nitrogen molecules present in $2.8 g$ of nitrogen gas.

D Watch Video Solution

173. If the density of a gas at the sea level at
$0^{\circ} \mathrm{C}$ is $1.29 \mathrm{kgm}^{-3}$, what is its molar mass?
(Assume that pressure is equal to 1 bar.)

- Watch Video Solution

174. A 2.5 L flask contains 0.25 mol each of sulphur dioxide and nitrogen gas at $27^{\circ} \mathrm{C}$.

Calculate the partial pressure exerted by each gas and also the total pressure.

- Watch Video Solution

175. Which of the two gases, ammonia and hydrogen chloride, will diffuse faster and by

what factor?

D Watch Video Solution

176. What volume of air will be expelled from a vessel containing $400 \mathrm{~cm}^{3}$ at $7^{\circ} \mathrm{C}$ when it is
heated to $27^{\circ} \mathrm{C}$ at the same pressure?

- Watch Video Solution

177. Calculate the root mean square, average, and most proable speeds of H_{2} molecules. The
density of the gas at $101.325 k P a$ is
$0.09 \mathrm{gdm}^{-3}\left(0.09 \mathrm{kgm}^{-3}\right) . \quad$ Assume ideal behaviour.

D Watch Video Solution

178. Calculate the pressure excerted by 5 mol of
$C O_{2}$ in $1 L$ vessel at $47^{\circ} C$ using van der Waals equation. Also report the pressure of gas if it behaves ideally in nature.

$$
\left(a=3.592 a t m L^{2} \mathrm{~mol}^{-2}, b=0.0427 \mathrm{Lmol}^{-1}\right)
$$

179. The van der Waals constant b of $A r$ is
$3.22 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1} . \quad$ Calculate the molecular diameter of $A r$.

D Watch Video Solution

180. Two gases in adjoining vessels were brought into correct by opening a stopcock between them. The one vessel measured $0.25 L$ and contained $N O$ gas at 800 torr and $220 K$,
the other measured $0.1 L$ contained O_{2} gas at

600 torr and $220 K$. The reaction to form
$\mathrm{N}_{2} \mathrm{O}_{4}(s)$ exhausts the limiting reagent completely,
(a) Neglacting the vapour pressure of $\mathrm{N}_{2} \mathrm{O}$,
what is the pressure of the gas remaining at
$220 K$ after complection of the reaction?
(b) What weight of $\mathrm{N}_{2} \mathrm{O}$ is formed?

D Watch Video Solution

181. A mixture of $\mathrm{H}_{2} \mathrm{O}$ vapour, CO_{2} and N_{2} was
trapped in a glass apparatus with a volume of
0.731 mL . The pressure of the total mixture was $1.74 a t m$ at $27^{\circ} C$. The sample was transferred to a bulb in contact with dry ice ($-75^{\circ} \mathrm{C}$) so that the $\mathrm{H}_{2} \mathrm{O}$ vapour was frozen out. When the sample was returned to the measured volume, the pressure was
1.32 mmHg . The sample was then transferred to a bulb in contact with liquid nitrogen
$\left(-95^{\circ} \mathrm{C}\right)$ to freeze out the CO_{2}. On the measured volume, the pressure was
0.53 mmHg . How many moles of each consituent there are in the mixture?
182. Find the temperatures at which methane and ethane will have the same rms speed as carbon dioxide at $400^{\circ} \mathrm{C}$. Also calculate the mean velocity and most probable velocity of methane molecules at $400^{\circ} \mathrm{C}$.

D Watch Video Solution

183. A gas bulb of $1 L$ capacity contains 2.0×10^{11} molecules of nitrogen exerting a
pressure of $7.57 \times 10^{3} \mathrm{Nm}^{-2}$. Calculate the root mean square (rms) speed and the temperature of the gas molecules. If the ratio of the most probable speed to the root mean square is 0.82 , calculate the most probable speed for these molecules at this temperature.

D Watch Video Solution

184. A mixture of ethane $\left(C_{2} H_{6}\right)$ and ethene
$\left(C_{2} H_{4}\right)$ occupies $40 L$ at 1.00 atm and at 400 K .
The mixture reacts completely with $130 g$ of O_{2}
to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Assuming ideal gas behaviour, calculate the mole fractions of $C_{2} H_{4}$ and $C_{2} H_{6}$ in the mixture.

D Watch Video Solution

185. 1 mol of a gas is changed from its initial
state $(15 L, 2 a t m)$ to final state $(4 L, 10 a t m)$.
If this change can be represented by a straight
line in $P-V$ curve, calculate the maximum
temperature that, the gas attained.

D Watch Video Solution

186. $1 g$ of an alloy of $A l$ and $M g$ reacts with excess HCl to form $\mathrm{AlCl}_{3}, \mathrm{MgCl}_{2}$, and H_{2}.

The evolved H_{2} collected over mercury at $0^{\circ} \mathrm{C}$
occupied 1200 mL at 699 mmHg . What is the composition of alloy?

D Watch Video Solution

187. A gasesous mixture of helium and oxygen
is found to have a density of $0.518 \mathrm{gdm} \mathrm{m}^{-3}$ at
$25^{\circ} \mathrm{C}$ and 720 torr. What is the precent by mass of helium in this mixture?

D Watch Video Solution
188. 1 mol of $C C l_{4}$ vapours at $77^{\circ} \mathrm{C}$ occupies a
volume of $35.0 L$. If van der Waals constants
are $a=20.39 L^{2} a t m m o l-2$
and
$b=0.1383 \mathrm{Lmol}^{-1}$, calculate compressibility
factor Z under
(a) Low pressure region
(b) High pressure region

D Watch Video Solution

189. At $20^{\circ} C$, two balloons of equal volume
and porosity are filled to a pressure of $2 a t m$,
one with $14 k g N_{2}$ and the other with 1 Kg of
H_{2}. The N_{2} balloon leaks to a pressure of $1 / 2 a t m$ in 1 hour. How long will it take for the H_{2} balloon to reach a pressure of $1 / 2 a t m$?

D Watch Video Solution

190. The density of the vapour of a substance
at 1 atm pressure and 500 K is $0.36 \mathrm{kgm}^{-3}$.

The vapour effuses through a small hole at a rate of 1.33 times faster than oxygen under the same condition.
(a) Determine (i) the molecular weight, (ii) the molar volume (iii) the compression factor (Z) of the vapour, and (iv) which forces among the gas molecules are dominating, the attractive or the repulsive?
(b) If the vapour behaves ideally at $100 K$, determine the average translational kinetic energy of a molecule.

D Watch Video Solution

191. A $100 \mathrm{dm}^{3}$ flask contains 10 mol each of N_{2}
and H_{2} at 700 K . After equilibrium was
reached, partial pressure of H_{2} was 1 atm . At
this point, 5 L of $\mathrm{H}_{2} \mathrm{O}(l)$ was injected and gas
mixture was cooled to $298 K$. Find out the gas
pressure.

- Watch Video Solution

Exercises

1. 100 mL of gas is collected at 750 mm pressure. What volume will it occupy at 74.5 mm pressure?

D Watch Video Solution

2. $5 L$ of nitrogen measured at 750 mm have to be compressed into an iron cylinder of $1 L$ capacity. If temperature is kept constant, calculate the pressure in atmospheres required to do so.
3. The temperature of a given mass of air was changed from $15^{\circ} \mathrm{C}$ to $-15^{\circ} \mathrm{C}$. If the pressure remains unchanged and the initial volume was $100 m L$, what should be the final volume?

- Watch Video Solution

4. The density of a gas at $27^{\circ} \mathrm{C}$ and 760 mm pressure is 24 . Calculate the temperature at
which it will be 18 , the pressure remaining constant.

- Watch Video Solution

5. Calculate kinetic energy of $4 g N_{2}$ at $-13^{\circ} C$.

D Watch Video Solution

6. What volume will a sample of gas occupy at $87^{\circ} \mathrm{C}$ and 720 mm pressure if its volume at $27^{\circ} \mathrm{C}$ and 750 mm pressure is 250 mL ?

- Watch Video Solution

7. 152 mL of a gas at $S T P$ was taken to $20^{\circ} \mathrm{C}$ and 729 mm pressure. What was the change in volume of the gas?

- Watch Video Solution

8. A certain mass of dry gas at $27^{\circ} \mathrm{C}$ and

760 mm pressure has density 28 . What will be its density at $7^{\circ} \mathrm{C}$ and 740 mm ?
9. It is desired to fill a cylinder of $1 L$ capacity at $82 a t m$ and $27^{\circ} \mathrm{C}$ with hydrogen. What will be the density of the hydrogen in the cylinder? What will be the volume of hydrogen under standard conditions of temperature and pressure?
10. Hydrogen gas obtained by electrolysis of $18 g$ of water is heated to $127^{\circ} \mathrm{C}$ at a pressure of $2 a t m$. Calculate the volume it would occupy.

D Watch Video Solution

11. Calculate the volume in $m L$ hydrogen peroxide labelled 10 volume required to
liberate 600 mL of oxygen at $27^{\circ} \mathrm{C}$ and 760 mm .
12. Exactly $100 m L$ of oxygen is collected over water of $23^{\circ} \mathrm{C}$ and 800 mm pressure. Calculate the volume of dry oxygen at $N T P$. (Vapour pressure of water at $23^{\circ} \mathrm{C}$ is 21 mm .)

D Watch Video Solution

13. 250 mL of nitrogen gas maintained at

720 mm pressure and 380 mL of oxygen gas maintained at 650 mm pressure are put together in $1 L$ flask. If temperature is kept
constant, what will be the final pressure of the

mixture?

D Watch Video Solution

14. A mixture of gases in a cyliner at 760 mm pressure contains 65% nitrogen, 15% oxygen, and 20% carbon dioxide by volume. What is the partial pressure of each gas in $m m$?
15. Calculate the total pressure in a mixture of
$4 g$ of oxygen and $2 g$ of hydrogen confined in a total volume of $1 L$ at $0^{\circ} C$.

D Watch Video Solution

16. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is
found to be 1 atm . If $3 g$ of another gas B is
then heated in the same flask, the total pressure becomes 1.5 atm . Assuming ideal gas
behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.

- Watch Video Solution

17. A certain quantity of gas occupies $50 m L$ when collected over water at $15^{\circ} \mathrm{C}$ and

750 mm pressure. It occupies 45.95 mL in the dry state at $N T P$. Find the partial pressure of water vapour at $15^{\circ} C$.
18. The relative rates of diffusion of ozone as compared to chlorine is $6: 5$. If the density of
$C l_{2}$ is 35.5 , find out the density of ozone.

- Watch Video Solution

19. $127 m L$ of a certain gas diffuses in the same
time as $100 m L$ of chlorine under the same
conditions. Calculate the molecular weight of the gas.
20. 50 volumes of hydrogen take 20 min of diffuse out of a vessel. How long will 40 volumes of oxygen take to diffuse out from the same vessel under the same conditions?

- Watch Video Solution

21. Calculate the molecular weight of a gas X
which diffuses four times as fast as another gas Y, which in turn diffuses twice as fast as another Z. Molecular weight of the gas Z is 128.

- Watch Video Solution

Exercises (Linked Comprehensive)

1. The figure given below shows three glass chambers that are connected by valves of negligible volume. At the outset of an experiment, the valves are closed and the
chambers contain the gases as detailed in the diagram. All the chambers are at the temperature of 300 K and external pressure of 1.0atm.

What will be the work done by N_{2} gas when
valve 2 is opened and value 1 remains closed?
A. 8.2Latm
B. -8.2 atm
C. 0
D. 3.28 Latm
2. The figure given below shows three glass chambers that are connected by valves of negligible volume. At the outset of an experiment, the valves are closed and the chambers contain the gases as detailed in the diagram. All the chambers are at the temperature of 300 K and external pressure of 1.0atm.

Which of the following represents the total
kinetic energy of all the gas molecules after both valves are opened?
(
$R=0.082 \mathrm{atmLK}{ }^{-1} \mathrm{~mol}^{-1}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
)
A. 2836.2 J
B. 3280.0 J
C. 4520.6 J
D. $4988.4 J$
3. The figure given below shows three glass chambers that are connected by valves of negligible volume. At the outset of an experiment, the valves are closed and the chambers contain the gases as detailed in the diagram. All the chambers are at the temperature of 300 K and external pressure of 1.0 atm .

What is the total pressure in chamber B after valve 1 is opened?
A. 0.31 atm
B. 2.05 atm
C. 2.46 atm
D. 3.10 atm
4. The distribution of the molecular velocities of gas molecules at any temperature T is shown below. (The plot below is known as Maxwell's distribution of molecular speeds.)

where
v is molecular velocity
n is number of molecules having velocity v

Let us define ΔN_{v}, which is equal to the number of molecules between the velocity
range v and $v+\Delta v$, given by
$\Delta N_{v}=4 \pi N a^{3} e^{-b v^{2}} v^{2} \Delta v$
where
N is total number of molecules
$a=\sqrt{\frac{M_{0}}{2 \pi R T}}$ and $b=\frac{M_{0}}{2 R T}$
R is universal gas constant
T is temperature of the gas
M_{0} is molecular weight of the gas

Answer the following question:
$S I$ units of a are
A. M^{3}

$$
\text { B. } m^{-1} s
$$

C. $m^{2} s^{-2}$
D. $m s^{2}$

D View Text Solution

5. The distribution of the molecular velocities
of gas molecules at any temperature T is
shown below. (The plot below is known as

Maxwell's distribution of molecular speeds.)

where
v is molecular velocity
n is number of molecules having velocity v

Let us define ΔN_{v}, which is equal to the number of molecules between the velocity range v and $v+\Delta v$, given by
$\Delta N_{v}=4 \pi N a^{3} e^{-b v^{2}} v^{2} \Delta v$
where
N is total number of molecules
$a=\sqrt{\frac{M_{0}}{2 \pi R T}}$ and $b=\frac{M_{0}}{2 R T}$
R is universal gas constant
T is temperature of the gas
M_{0} is molecular weight of the gas

Answer the following question:
$S I$ units of b are
A. $m^{-2} s^{-2}$
B. $m^{2} s^{2}$
C. $m^{2} s^{-2}$

D. $m s^{-1}$

D View Text Solution

6. The distribution of the molecular velocities of gas molecules at any temperature T is
shown below. (The plot below is known as

Maxwell's distribution of molecular speeds.)
R
where
v is molecular velocity
n is number of molecules having velocity v

Let us define ΔN_{v}, which is equal to the number of molecules between the velocity range v and $v+\Delta v$, given by
$\Delta N_{v}=4 \pi N a^{3} e^{-b v^{2}} v^{2} \Delta v$
where
N is total number of molecules
$a=\sqrt{\frac{M_{0}}{2 \pi R T}}$ and $b=\frac{M_{0}}{2 R T}$
R is universal gas constant
T is temperature of the gas
M_{0} is molecular weight of the gas

Answer the following question:

$$
\text { If } \frac{P}{P_{c}}=P_{r}, \frac{T}{T_{c}}=T_{r} \text {, and } \frac{V_{m}}{V_{m, c}}=V_{r} \text { where }
$$

A. P_{r} ia reduced pressure, P_{c} is critical
pressure
B. T_{r} ia reduced temperature, T_{c} is critical temperature
C. V_{r} is reduced volume, V_{c} is critical
volume
D. then the temperature of state (or van
der Waals equation), only in terms of P_{r},
T_{r}, and V_{r} is
7. Two flasks A and B have equal volume. A is maintained at $300 K$ and B at $600 K$. While A contains H_{2} gas, B has an equal mass of CH_{4} gas. Assuming ideal behaviours for both the gases, answer the following:

Flask containing greater number of molecules
A. A
B. B
C. Both A and B

D. None

D Watch Video Solution

8. Two flasks A and B have equal volume. A is maintained at $300 K$ and B at $600 K$. While A contains H_{2} gas, B has an equal mass of CH_{4} gas. Assuming ideal behaviours for both the gases, answer the following:

Flask in which pressure is higher
A. A
B. B
C. Both A and B
D. None

D Watch Video Solution

9. Two flasks A and B have equal volume. A is
maintained at $300 K$ and B at $600 K$. While A
contains H_{2} gas, B has an equal mass of CH_{4}
gas. Assuming ideal behaviours for both the gases, answer the following:

Flask in which the compressibility factor is greater
A. A
B. B
C. Both A and B
D. None
10. Two flasks A and B have equal volume. A is
maintained at 300 K and B at 600 K . While A
contains H_{2} gas, B has an equal mass of $C H_{4}$ gas. Assuming ideal behaviours for both the gases, answer the following:

Flask in which the total kinetic energy is greater
A. A
B. B
C. Both A and B
D. None

- Watch Video Solution

11. Two flasks A and B have equal volume. A is maintained at $300 K$ and B at $600 K$. While A contains H_{2} gas, B has an equal mass of CH_{4} gas. Assuming ideal behaviours for both the gases, answer the following:

Flask with greater molar kinetic energy
A. A
B. B

C. Both A and B

D. None

D Watch Video Solution

12. Two flasks A and B have equal volume. A is
maintained at $300 K$ and B at $600 K$. While A
contains H_{2} gas, B has an equal mass of CH_{4}
gas. Assuming ideal behaviours for both the gases, answer the following:

Flask in which molecules are moving faster
A. A
B. B
C. Both A and B
D. None

D Watch Video Solution

13. The van der Waals constant for gases A, B, and C are as follows

Answer the following:

Which gas has the highest critical
temperature?
A. A
B. B
C. C
D. None
14. The van der Waals constant for gases A, B, and C are as follows

Answer the following:

Which gas has the largest molecular volume?
A. A
B. B
C. C
D. None
15. The van der Waals constant for gases A, B, and C are as follows

Answer the following:
Which gas has the most ideal behaviour around $S T P$?
A. A
B. B
C. C

D. None

D Watch Video Solution

16. For the given ideal gas equation
$P V=n R T$, answer the following questions:

In the above equation, the value of universal gas constant depends only upon
A. The nature of the gas
B. The pressure of the gas
C. The temperature of the gas
D. The units of measurement

D Watch Video Solution

17. For the given ideal gas equation $P V=n R T$, answer the following questions:

At constant temperature, in a given mass of an ideal gas
A. The ratio of pressure and volume always
remains constant
B. Volume always remains constant
C. Pressure always remain constant
D. The product of pressure and volume always remains constant
18. For the given ideal gas equation
$P V=n R T$, answer the following questions:
Which of the following does not represent ideal gas equation?
A. $P V=\frac{1}{3} m N v$
B. $P V=n R T$
C. $P=\rho \frac{R T}{M}$
D. $P V=R T$
19. For the given ideal gas equation
$P V=n R T$, answer the following questions:

An ideal gas will have maximum density when
A. $P=1 \mathrm{~atm}, T=300 \mathrm{~K}$
B. $P=2 a t m, T=150 K$
C. $P=0.5 \mathrm{~atm}, T=600 \mathrm{~K}$
D. $P=1.0 \mathrm{~atm}, T=500 \mathrm{~K}$
20. For the given ideal gas equation
$P V=n R T$, answer the following questions:
which of the following is incorrect according to the ideal gas equation?
A. $V \propto T$
B. $P \propto \frac{1}{T}$
C. $P \propto V$
D. $V \propto n$
21. Using van der Waals equation
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T, \quad$ answer the
following questions:
The van der Waals equation explains the behaviour of
A. Ideal gases
B. Real gases
C. Vapours
D. Non-real gases
22. Using van der Waals equation
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T, \quad$ answer the
following questions:
The term that accounts for intermolecular
forces in the van der Waals equation for nonideal gas is
A. $R T$

$$
\text { B. } V-b
$$

C. $\left(P+\frac{a}{V^{2}}\right)$
D. $R T^{-1}$

- Watch Video Solution

23. Using van der Waals equation
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T, \quad$ answer the
following questions:
The term that accounts for effective volume in
the van der Waals equation for non-ideal gas is
A. $R T$
B. $V-b$
C. $\left(P+\frac{a}{V^{2}}\right)$
D. $R T^{-1}$

D Watch Video Solution

24. Using van der Waals equation
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T, \quad$ answer the
following questions:

At high pressure, the van der Waals equation gets reduced to
A. $\left(P+\frac{a}{V^{2}}\right) V=R T$
B. $P(V-b)=R T$
C. $P V=R T$
D. $\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$
25. Compressibility factor $Z=\frac{P V}{R T}$.

Considering ideal gas, real gas, and gases at critical state, answer the following questions:

The cpmpressibility factor of an ideal gas is
A. 0
B. 1
C. 2
D. 3

26. Compressibility factor $Z=\frac{P V}{R T}$.

Considering ideal gas, real gas, and gases at critical state, answer the following questions:

The compressibility factor of a real gas is
A. 0
B. 1
C. $\neq 1$
D. None
27. Compressibility factor $Z=\frac{P V}{R T}$.

Considering ideal gas, real gas, and gases at critical state, answer the following questions:

The cpmpressibility factor of a gas is less than unity at $S T P$, therefore
A. $V_{m}>22.4 L$
B. $V_{m}<22.4 L$
C. $V_{m}=22.4 L$
D. $V_{m}=4.8 L$

- Watch Video Solution

28. Compressibility factor $Z=\frac{P V}{R T}$.

Considering ideal gas, real gas, and gases at critical state, answer the following questions:
Z_{c} at T_{c}, P_{c}, and V_{c} is
A. $3 / 8$
B. $4 / 8$
C. 1

D. 0

D Watch Video Solution

29. Two gaseous molecules A and B are traveling towards each other. Let the mean
free path of the molecule be σ and Z be the collision number with other molecules at pressure 1atm. Answer the following questions

The free path of gas molecule is the distance
A. Between the two opposite walls of the container
B. That molecules travel in one second
C. Through which a molecule moves
between two successive collisions
D. None of these
30. Two gaseous molecules A and B are traveling towards each other. Let the mean
free path of the molecule be σ and Z be the collision number with other molecules at pressure 1 atm . Answer the following questions

If the mean free path is σ at 1 atm pressure, then its value at 5 atm pressure is
A. 5σ
B. $\frac{2}{5} \sigma$
C. $\frac{\sigma}{5}$

D. None

D Watch Video Solution

31. Two gaseous molecules A and B are traveling towards each other. Let the mean
free path of the molecule be σ and Z be the collision number with other molecules at pressure 1atm. Answer the following questions

If Z is the total number of collisions which a
gas molecule registers with others per unit
time under particular conditions, then the collision frequency of the gas containing N molecules per unit volume is
A. $\frac{Z}{N}$
B. $N Z$
C. $2 N Z$
D. $\frac{N Z}{2}$
32. Two gaseous molecules A and B are traveling towards each other. Let the mean
free path of the molecule be σ and Z be the collision number with other molecules at pressure 1atm. Answer the following questions

If the collision frequency of a gas at 1 atm pressure is Z, then its collision frequency at 0.5 atm is
A. $1.0 Z$
B. $0.707 Z$

C. $2 Z$

D. $0.5 Z$

D Watch Video Solution

33. The constant motion and high velocities of gas particles lead to some important practical consquences. One such consquences is that gases mix rapidly when they come in contact.

Take the stopper off a bottle of perfume, for instance, and the odour will spread rapidly
through the room as perfume molecules mix
with the molecules in the air. This mixing of different gases by random molecular motion and with frequent collision is called diffusion.

A similar process in which gas molecules escape without collision through a tiny hole into a vacuum is called effusion. Both the processes follow Graham's law which is mathematically put as $r \propto \sqrt{1 / d}$. The average distance travelled by molecules between successive collisions is called mean free path.

Answer the following questions on the basis of the above information:

The stop cocks of the bulbs X (containing
NH_{3}) and Y (containing HCl), both under indentical conditions, are opened
simultaneously. White fumes of $\mathrm{NH}_{4} \mathrm{Cl}$, are
formed at point B. If $A B=36.5 \mathrm{~cm}$, then $B C$
is approximately

A. 18.0 cm
B. 25.0 cm
C. 20.0 cm
D. 36.5 cm

D Watch Video Solution

34. The constant motion and high velocities of gas particles lead to some important practical consquences. One such consquences is that gases mix rapidly when they come in contact.

Take the stopper off a bottle of perfume, for instance, and the odour will spread rapidly through the room as perfume molecules mix
with the molecules in the air. This mixing of different gases by random molecular motion and with frequent collision is called diffusion.

A similar process in which gas molecules escape without collision through a tiny hole into a vacuum is called effusion. Both the processes follow Graham's law which is mathematically put as $r \propto \sqrt{1 / d}$. The average distance travelled by molecules between successive collisions is called mean free path.

Answer the following questions on the basis of the above information:

Select the incorrect statement(s).
A. The larger the size of the molecules, the
smaller the mean free path
B. The greater the number of molecules per
unit volume, smaller the mean free path
C. The larger the temperature, the larger
the mean free path
D. The larger the temperature, the smaller the mean free path.
35. The constant motion and high velocities of
gas particles lead to some important practical
consquences. One such consquences is that gases mix rapidly when they come in contact.

Take the stopper off a bottle of perfume, for instance, and the odour will spread rapidly through the room as perfume molecules mix with the molecules in the air. This mixing of different gases by random molecular motion and with frequent collision is called diffusion.

A similar process in which gas molecules escape without collision through a tiny hole
into a vacuum is called effusion. Both the processes follow Graham's law which is mathematically put as $r \propto \sqrt{1 / d}$. The average distance travelled by molecules between
successive collisions is called mean free path.

Answer the following questions on the basis of the above information:

Select the correct statement(s).
A. All gases diffuse spontaneously into one another when they are brought into contact.
B. Diffusion into a vacuum will take place much more rapidly than diffusion into another gas
C. The rates of diffusion and effusion of a goes depend on its molar mass.
D. All of the above statements are correct.
36. The constant motion and high velocities of
gas particles lead to some important practical
consquences. One such consquences is that gases mix rapidly when they come in contact.

Take the stopper off a bottle of perfume, for instance, and the odour will spread rapidly through the room as perfume molecules mix with the molecules in the air. This mixing of different gases by random molecular motion and with frequent collision is called diffusion.

A similar process in which gas molecules escape without collision through a tiny hole
into a vacuum is called effusion. Both the processes follow Graham's law which is mathematically put as $r \propto \sqrt{1 / d}$. The average distance travelled by molecules between
successive collisions is called mean free path.

Answer the following questions on the basis of the above information:
$\mathrm{XmLH} \mathrm{H}_{2}$ effuses through a hole in a container in $5 s$. The time taken for the effusion of the same volume of the gas specified below under identical conditions is
A. $10 s: H e$
B. $20 s: O_{2}$
C. $25 \mathrm{~s}: C O$
D. $55 \mathrm{~s}: \mathrm{CO}_{2}$

D Watch Video Solution

37. The constant motion and high velocities of gas particles lead to some important practical consquences. One such consquences is that gases mix rapidly when they come in contact.

Take the stopper off a bottle of perfume, for
instance, and the odour will spread rapidly through the room as perfume molecules mix with the molecules in the air. This mixing of different gases by random molecular motion and with frequent collision is called diffusion.

A similar process in which gas molecules escape without collision through a tiny hole into a vacuum is called effusion. Both the processes follow Graham's law which is mathematically put as $r \propto \sqrt{1 / d}$. The average distance travelled by molecules between successive collisions is called mean free path.

Answer the following questions on the basis of
the above information:

When CO_{2} under high pressure is released
from a fire extinguisher, particles of solid CO_{2}
are formed, despite the low sublimation
temperature $\left(-77^{\circ} C\right)$ at 1 atm because
A. The gas does work pushing back the
atmosphere using kinetic energy of
molecules and thus lowering the
temperature
B. The volume of the gas is decreased
rapidly, hence, temperature is lowered
C. Both (a) and (b) are correct reasons.
D. Neither (a) nor (b) is the correct reason.

D Watch Video Solution

38. The behaviour of ideal gas is goverened by
various gas laws which are described by mathematical statements as given below:
(i) $P V=k$ (constant) at constant n and T
(ii) $V / T=k_{2}$ (constant) at constant n and P
(iii) $V / n=k_{3}$ (constant) at constant T and
P
(iv) $P V=n R T$
(v) $P / T=k_{4}($ cons $\tan t)$ atcons $\tan t \mathrm{n}$ and \vee

Answerthefollow $\in g$ Thevalueofk_(2)' is
A. Independent of nature and amount of
gas
B. Depends on temperature and pressure conditions
C. Depends on pressure and amount of gas
D. Depends only on nature of gas

- View Text Solution

39. The behaviour of ideal gas is goverened by
various gas laws which are described by mathematical statements as given below:
(i) $P V=k$ (constant) at constant n and T
(ii) $V / T=k_{2}$ (constant) at constant n and P
(iii) $V / n=k_{3}$ (constant) at constant T and
P
(iv) $P V=n R T$
(v) $P / T=k_{4}($ cons $\tan t)$ atcons $\tan t n$ and

Answer the following

Avogadro's law is represented by the expression
A. (i)
B. (iii)
C. (v)
D. (ii)
40. The behaviour of ideal gas is goverened by
various gas laws which are described by mathematical statements as given below:
(i) $P V=k$ (constant) at constant n and T
(ii) $V / T=k_{2}$ (constant) at constant n and P
(iii) $V / n=k_{3}$ (constant) at constant T and
P
(iv) $P V=n R T$
(v) $P / T=k_{4}$ (constant) at constant n and V

Answer the following
A cylinder of $10 L$ capacity at $300 K$ containing
the gas is used to fill balloons till finally the
cylinder recorded a pressure of 10 m bar. The number of $H e$ atoms still present in the cylinder is
A. 4.82×10^{21}
B. 2.41×10^{23}
C. 2.41×10^{21}
D. 4.82×10^{23}

D Watch Video Solution
41. The behaviour of ideal gas is goverened by
various gas laws which are described by mathematical statements as given below:
(i) $P V=k$ (constant) at constant n and T
(ii) $V / T=k_{2}$ (constant) at constant n and P
(iii) $V / n=k_{3}$ (constant) at constant T and
P
(iv) $P V=n R T$
(v) $P / T=k_{4}$ (constant) at constant n and V

Answer the following

The expression (ii) represents
A. Charles's law
B. Amonton's law
C. Dalton's law
D. Boyle's law

D Watch Video Solution

42. The behaviour of ideal gas is goverened by
various gas laws which are described by mathematical statements as given below:
(i) $P V=k$ (constant) at constant n and T
(ii) $V / T=k_{2}$ (constant) at constant n and P
(iii) $V / n=k_{3}$ (constant) at constant T and
P
(iv) $P V=n R T$
(v) $P / T=k_{4}$ (constant) at constant n and V

Answer the following

If we plot a graph between volume (L) and temperature ($(\circ) C$) by studying their variation for 2.0 g of certain ideal gas at 1^{-} pressure, the graph obtained is a straight line which is
A. Parallel to the temperature axis
B. Parallel to the volume axis
C. Meets the temperature axis where

$$
T=0, V=0
$$

D. Meets the temperature axis where

$$
V=0, T=273.15
$$

43. Consider the adjacent diagram. Initially,
flask A contained oxygen gas at $27^{\circ} C$ and 950 mm of Hg , and flask B contained neon gas at $27^{\circ} \mathrm{C}$ and 900 mm . Finally, two flask were joined by means of a narrow tube of negligible volume equipped with a stopcock and gases were allowed to mixup freely. The final pressure in the combined system was found to be 910 mm of Hg .

Which of the following statements concerning
oxygen and neon gas is true in the begining, when the stopcock was just opened?
A. O_{2} moved at faster rate toward flask B.
B. $N e$ moved at faster rate towards flask A.
C. Both O_{2} and $N e$ gases moves at equal rate.
D. Insufficient information to compare the rate of effusion.
44. Consider the adjacent diagram. Initially,
flask A contained oxygen gas at $27^{\circ} C$ and 950 mm of $H g$, and flask B contained neon gas at $27^{\circ} \mathrm{C}$ and 900 mm . Finally, two flask were joined by means of a narrow tube of negligible volume equipped with a stopcock and gases were allowed to mixup freely. The final pressure in the combined system was found to be 910 mm of Hg .

What is the correct relationship between volumes of the two flasks?
A. $V_{B}=2 V_{A}$
B. $V_{B}=4 V_{A}$
C. $V_{B}=5 V_{A}$
D. $V_{B}=5.5 V_{A}$
45. Consider the adjacent diagram. Initially,
flask A contained oxygen gas at $27^{\circ} C$ and 950 mm of $H g$, and flask B contained neon gas at $27^{\circ} \mathrm{C}$ and 900 mm . Finally, two flask were joined by means of a narrow tube of negligible volume equipped with a stopcock and gases were allowed to mixup freely. The final pressure in the combined system was found to be 910 mm of Hg .

If flask B were heated to $127^{\circ} C$, maintaining
flask A at constant temperature of $27^{\circ} \mathrm{C}$, final pressure (in $m m H g$) in the combined system would have been
A. 1007
B. 1250
C. 1137.5
D. 1990
46. The system shown in the figure is in equilibrium, where A and B are isomeric
liquids and form an ideal solution at $T K$.
Standard vapour pressures of A and B are P_{A}^{0}
and P_{B}^{0}, respectively, at $T K$. We collect the
vapour of A and B in two containers of
volume V, first container is maintained at
$2 T K$ and second container is maintained at $3 T / 2$. At the temperature greater than $T K$, both A and B exist in only gaseous form.

We assume than collected gases behave ideally at $2 T K$ and there may take place an
isomerisation reaction in which A gets converted into B by first-order kinetics
reaction given as:
$A \xrightarrow{k} B$, where k is a rate constant.

In container (II) at the given temperature
$3 T / 2, A$ and B are ideal in nature and non reacting in nature. A small pin hole is made into container. We can determine the initial rate of effusion of both gases in vacuum by the expression
$r=K . \frac{P}{\sqrt{M_{0}}}$
where $P=$ pressure differences between
system and surrounding
$K=$ positive constant
$M_{0}=$ molecular weight of the gas
If partial vapour pressure of A is twice that of
partial vapour pressure of B and total vapour
pressure 2 atm at $T K$, where $T=50 K$ and
$V=8.21 L$, then the number of moles of A
and B in vapour phase is:

$$
\begin{aligned}
& \text { A. } \frac{8}{3}, \frac{4}{3} \\
& \text { B. } \frac{4}{3}, \frac{1}{3} \\
& \text { C. } \frac{2}{3}, \frac{1}{4}
\end{aligned}
$$

$$
\text { D. } \frac{10}{3}, \frac{4}{3}
$$

D View Text Solution

47. The system shown in the figure is in equilibrium, where A and B are isomeric liquids and form an ideal solution at $T K$. Standard vapour pressures of A and B are P_{A}^{0} and P_{B}^{0}, respectively, at $T K$. We collect the vapour of A and B in two containers of volume V, first container is maintained at
$2 T K$ and second container is maintained at
$3 T / 2$. At the temperature greater than $T K$,
both A and B exist in only gaseous form.
We assume than collected gases behave ideally
at $2 T K$ and there may take place an isomerisation reaction in which A gets
converted into B by first-order kinetics
reaction given as:
$A \xrightarrow{k} B$, where k is a rate constant.
In container (II) at the given temperature
$3 T / 2, A$ and B are ideal in nature and non reacting in nature. A small pin hole is made into container. We can determine the initial
rate of effusion of both gases in vacuum by the expression
$r=K \cdot \frac{P}{\sqrt{M_{0}}}$
where $P=$ pressure differences between
system and surrounding
$K=$ positive constant
$M_{0}=$ molecular weight of the gas
Vapours of A and B are passed into a container of volume $8.21 L$, maintained at $2 T K$
, where $T=50 K$ and after 5 min , moles of
$B=8 / 3$. The pressure developed into the cotainer after two half lives is
A. 3 atm
B. $4 a t m$
C. 5 atm
D. 0.5 atm

D View Text Solution

48. The system shown in the figure is in equilibrium, where A and B are isomeric liquids and form an ideal solution at $T K$.

Standard vapour pressures of A and B are P_{A}^{0}
and P_{B}^{0}, respectively, at $T K$. We collect the vapour of A and B in two containers of volume V, first container is maintained at
$2 T K$ and second container is maintained at
$3 T / 2$. At the temperature greater than $T K$,
both A and B exist in only gaseous form.

We assume than collected gases behave ideally
at $2 T K$ and there may take place an isomerisation reaction in which A gets converted into B by first-order kinetics reaction given as:
$A \xrightarrow{k} B$, where k is a rate constant.

In container (II) at the given temperature $3 T / 2, A$ and B are ideal in nature and non
reacting in nature. A small pin hole is made into container. We can determine the initial rate of effusion of both gases in vacuum by the expression

R
$r=K . \frac{P}{\sqrt{M_{0}}}$
where $P=$ pressure differences between
system and surrounding
$K=$ positive constant
$M_{0}=$ molecular weight of the gas

If vapours are collected in a container of
volume $8.21 L$ maintained at $3 T / 2 K$, where $T=50 K$, then the ratio of initial rate of effusion of gases A and B is given as
A. $2: 1$
B. 1: 1
C. $4: 3$
D. 2: 4

D View Text Solution

1. Which of the following statements is/are correct?
A. The van der Waals constant a is a measure of attractive force.
B. The van der Waals constant b is also
called co- volume or excluded volume.
C. b is expressed in $L m o l{ }^{-1}$.
D. b is one-third of ciritical volume.

- Watch Video Solution

2. Point A in the given curve shifts to higher value of velocity if

A. T is increased
B. P is decreased

C. V is decreased

D. Molecular weight M is decreased

D Watch Video Solution

3. Which of the following processes would lead to an increase in the average speed of the molecules of an ideal gas system?
A. Decreasing the temperature of the

B. Compressing the gas with a piston

C. Expanding the gas into a vacuum
D. Heating the system keeping V and P
constant.

D Watch Video Solution

4. According to the kinetic theory of gases
A. Pressure of a gas is due to collisions of molecules with each other
B. Kinetic energy is proportional to square
root of the temperature
C. Pressure of a gas is due to collisions of
molecules against the sides of the
container
D. There is no force of attraction between
gas molecules
5. For two gases A and B with molecular weights M_{A} and M_{B}, respectively, it is observed that at a certain temperature T, the mean velocity of A is equal to the $V_{r m s}$ of B.

Thus, the mean velocity of A can be made equal to the mean velocity of B, if
A. A is at temperature T and B is at T^{\prime} such that $T>T^{\prime}$
B. Temperature of A is lowered to T_{2} while
B is at T such that $T_{2}<T$
C. Both A and B are raised to a higher temperature
D. Heat energy supplied to A

D Watch Video Solution

6. Which of the following statements is/are true?
A. The ratio of the mean speed to the rms
speed is independent of the
temperature.
B. The square of the mean speed of the
molecules is equal to the square of the
rms speed at a certain temperature.
C. Mean kinetic energy of the gas molecules
at any given temperature is independent of the mean speed.
D. The difference between the rms speed
and the mean speed at any temperature
for different gases diminishes as larger,
and yet larger molar masses are considered.

D Watch Video Solution

7. If for two gases of molecular weights M_{A} and M_{B} at temperature T_{A} and T_{B},
respectively, $\quad T_{A} M_{B}=T_{B} M_{A}$, then which property has the same magnitude for both the gases?
A. $P v$ if mass of gases taken are same
B. Pressure
C. $K E$ per mole
D. $V_{r m s}$
8. Molecular attraction and size of the molecules in a gas are not negligible at
A. Critical point
B. High pressure
C. High temperature and low pressure
D. Low temperature and high pressure
9. If $10 g$ of a gas at atmospheric pressue is cooled from $273^{\circ} C$ to $0^{\circ} C$, keeping the volume constant, its pressure would become
A. $1 / 273 \mathrm{~atm}$
B. $2 a t m$
C. $\frac{1}{2} \mathrm{~atm}$
D. $5.05 \times 10^{4} \mathrm{Nm}^{-2}$
10. The compressibility factor of a gas is greater than unity at $S T P$. Therefore
A. $V_{m}>22.4 L$
B. $V_{m}<22.4 L$
C. $V_{m}=22.4 L$
D. The gas will become less liquefiable
11. Select the correct statements
A. Vapour may be condensed to liquid by
the application of pressure.
B. To liquefy a gas one must lower the
temperature below T_{c} apply pressure.
C. At T_{c}, there is no distinction between
liquid and vapour states.
D. At the T_{c}, density of liquid is very high as
compared to its gaseous state.

- Watch Video Solution

12. Which of the following statement is/are correct ?
A. All real gases are less compressible than
ideal gases at high pressure.
B. Hydrogen and helium are more
compressible than ideal gases for all
values of pressure.
C. Except H_{2} and $H e$, the compressibility
factor $Z\left(=\frac{P V}{n R T}\right)<1$ for all gases at low pressure.

D. The compressibility factor of real gases is

 independent of temperature.
D Watch Video Solution

13. Precisely 1 mol of helium and 1 mol of neon are placed in a container. Indicate the correct
statements about the system.
A. Molecules of the two gases strike the
wall of the container with same
frequency.
B. Molecules of helium strike the wall more
frequently.
C. Molecules of helium have greater average molecular speed.
D. Helium exerts larger pressure.

Watch Video Solution

14. Which of the following statements is/are true?
A. Hydrogen diffuses four times faster than oxygen.
B. The temperature of a real gas changes
when it expands adiabatically in vacuum.
C. An ideal gas undergoes cooling effect when it suffers an adiabatic expansion in
vacuum
D. The Joule-Thomson coeffcient $\left(\frac{d T}{d P}\right)_{H}$ of an ideal gas is zero.

D Watch Video Solution

15. The root mean square velocity of an ideal gas in a closed container of fixed volume is increased from $5 \times 10^{4} \mathrm{cms}^{-1}$ to
$10 \times 10^{4} \mathrm{cms}^{-1}$. Which of the following
statements correctly explains how the change is accomplished?
A. By heating the gas, the temperature is doubled.
B. By heating the gas, the pressure is quadrupled.
C. By heating the gas, the temperature is
quadrupled.
D. By heating the gas, the pressure is doubled.

- Watch Video Solution

16. In the equation $P V=R T$, the value of R will not depend upon
A. The nature of the gas
B. The temperture of the gas
C. The pressure of the gas
D. Units of measurement
17. Which is the value of R ?

A. 1.99 $\mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$
B. $0.0821 \mathrm{Latmdeg}^{-1} \mathrm{~mol}^{-1}$
C. $9.8 \mathrm{kcaldeg}^{-1} \mathrm{~mol}^{-1}$
D. $8.3 \mathrm{Jdeg}^{-1} \mathrm{~mol}^{-1}$

18. Boyle's law may be expressed as

> A. $(d P / d V)_{T}=K / V$
> B. $(d P / d V)_{T}=-K / V^{2}$
> C. $(d P / d V)_{T}=-K / V$
> D. $V \propto 1 / P$

D Watch Video Solution

19. Which forces of attraction are responsible for liquefaction of H_{2} ?
A. Coulombic forces
B. Dipole forces
C. Hydrogen bonding
D. van der Waals forces

D Watch Video Solution

20. According to Charles's law
A. $(d V / d T)_{P}=K$

$$
\begin{aligned}
& \text { В. }(d V / d T)_{P}=-K \\
& \text { С. }(d V / d T)_{P}=-K / T \\
& \text { D. } V \propto T
\end{aligned}
$$

D Watch Video Solution

21. In van der Waals equation of gases, the
kinetic equation for gas is modified with respect to
A. Repulsive forces
B. Attractive forces between the gaseous molecules
C. Actual volume of the gas
D. Pressure of the molecules

D Watch Video Solution

22. Which of the following is/are correct about

Charles's law?
A. $(\partial V / \partial T)_{P}=C o n s \tan t$
B. $V \propto T$ at constant P and n
C. $V \propto P$ at constant T, n
D. $V \propto T$ is constant at constant P, n

D Watch Video Solution

23. Which of the following gases is/are heavier
than dry air?
A. Moist air
B. Oxygen
C. Moist nitrogen
D. Hydrogen sulphide

D Watch Video Solution

24. One mole of which of the following will have 22.7 L at $S T P$ (1 bar, $273.15 K$)?
A. SO_{2}
B. He
C. $\mathrm{H}_{2} \mathrm{O}$

D. CCl_{4}

- Watch Video Solution

25. The gas constant has units

A. $\operatorname{LatmK}^{-1} \mathrm{~mol}^{-1}$
B. $\mathrm{Latm}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
C. $a t m \mathrm{~cm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
D. $\operatorname{erg} K^{-1}$
26. Which of the following pair of gases will
have same rate of diffusion under similar conditions?
A. H_{2} and He
B. CO_{2} and $\mathrm{N}_{2} \mathrm{O}$
C. CO and $\mathrm{C}_{2} \mathrm{H}_{4}$
D. $N O$ and $C O$
27. Which of the following statements is/are correct about real gases?
A. The molecules do cause attractive forces on each another.
B. They obey gas laws at low temperature
and high pressure.
C. They show deviations from ideal
behaviour.
D. The molecules have negligible mass.

D Watch Video Solution

28. At very high pressure, the van der Waals
equation reduces to
A. $P V=R T+P b$
B. $P V=\frac{a R T}{V^{2}}$
C. $P=\frac{R T}{V-b}$
D. $P V=R T-\frac{a}{V}$

- Watch Video Solution

29. To which of the following mixtures Dalton's law is not applicable?
A. CO_{2} and CO at room temperature
B. Ammonia and hydrogen chloride at room
temperature
C. NH_{3} and steam at room temperature
D. $H e$ and H_{2}

D Watch Video Solution

30. Which of the following plots is/are correct?

A.

B.

C.

D.

D Watch Video Solution

31. Which of the following plots is/are correct?
A.

B. $\underbrace{\text { b. } \stackrel{\uparrow}{P}}_{T \rightarrow}$

- Watch Video Solution

32. A quantity of heat is confined in a chamber of constant volume. When the chamber is immersed in a bath of melting ice, the pressure of the gas is $1000 \rightarrow r r$. Final temperature when the pressure manometer indicates an absolute pressure of $400 \rightarrow r r$ is
A. $109 K$
B. $273 K$

C. $373 K$

D. $0 K$

(Watch Video Solution

Exercises (Single Correct)

1. At what temperature will both celsius and
fahrenheit scales read the same value?
A. $100^{\circ} \mathrm{C}$

$$
\text { B. } 180^{\circ} \mathrm{C}
$$

C. $40^{\circ} \mathrm{C}$

$$
\text { D. }-40^{\circ} C
$$

D Watch Video Solution

2. At the top of the mountain, the
thermometer reads $0^{\circ} C$ and the barometer reads 710 mmHg . At the bottom of the mountain the temperature is $30^{\circ} \mathrm{C}$ and the
pressure is 760 mmHg . The ratio of the density of air at the top with that at the bottom is
A. 1:1
B. 1.04: 1
C. 1: 1.04
D. $1: 1.5$
3. A quantity of gas is collected in a gradutated tube over the mercury. The volume of the gas at $20^{\circ} \mathrm{C}$ is 50.0 mL and the level of the mercury in the tube is 100 mm above the outside mercury level. The barometer reads 750 mm . Volume at $S T P$ is
A. $39.8 m L$
B. $40 m L$
C. $42 m L$
D. $60 m L$

- Watch Video Solution

4. Which of the following contains gretest number of N atoms?
A. $22.4 L$ nitrogen gas at $S T P$
B. 500 mL of $2.00 \mathrm{MNH}_{3}$
C. 1.00 mol of $\mathrm{NH}_{4} \mathrm{Cl}$
D. 6.02×10^{23} molecules of NO_{2}
5. What weight of hydrogen at $S T P$ could be contained in a vessel that holds $4.8 g$ oxygen at $S T P ?$
A. $4.8 g$
B. $3.0 g$
C. $0.6 g$
D. $0.3 g$
6. At low pressures, the van der Waals equation is written as $\left[P+\frac{a}{V^{2}}\right] V=R T$

The compressibility factor is then equal to
A. $\left(1-\frac{a}{R T V}\right)$
B. $\left(1-\frac{R T V}{a}\right)$
C. $\left(1+\frac{a}{R T V}\right)$
D. $\left(1+\frac{R T V}{a}\right)$
7. Ideal gas equation in terms of $K E$ per unit volume, E, is
A. $\frac{3}{2} R T$
B. $\frac{2}{3} E$
C. $\frac{2}{3} R T$
D. $\frac{3}{2} E$
8. For 1 mol of an ideal gas, $V_{1}>V_{2}>V_{3}$ in
fig. (I), $T_{1}>T_{2}>T_{3}$ in fig. (II), $P_{1}>P_{2}>P_{3}$
in fig. (III), and $T_{1}>T_{2}>T_{3}$ in fig. (IV),
then which curves are correct.

A. $I, I I$
B. $I, I I, I I I$

C. $I I, I V$

D. $I, I I I, I V$

- Watch Video Solution

9. $I, I I$, and $I I I$ are three istherms, respectively, at T_{1}, T_{2}, and T_{3}. Temperature will
be in order

A. $T_{1}=T_{2}=T_{3}$
B. $T_{1}<T_{2}<T_{3}$
C. $T_{1}>T_{2}>T_{3}$
D. $T_{1}>T_{2}=T_{3}$
10. A quantity of hydrogen gas occupies a volume of 30.0 mL at a certain temperature and pressure. What volume would half of this mass of hydrogen occupy at triple the initial temperature, if the pressure was one-ninth that of the original gas?
A. $270 m L$
B. 90 mL
C. $405 m L$

D. 137 mL

D Watch Video Solution

11. A gas in an open container is heated from
$27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$ The fraction of the original amount of gas remaining in the container will be .
A. $3 / 4$
B. $1 / 2$
C. $1 / 4$
D. $1 / 8$

D Watch Video Solution

12. The density of neon gas will be highest at
A. $S T P$
B. $0^{\circ} \mathrm{C}, 2 \mathrm{~atm}$
C. $273^{\circ} \mathrm{C}, 1 \mathrm{~atm}$

D. $273^{\circ} \mathrm{C}, 2 \mathrm{~atm}$

D Watch Video Solution

13. A mixture of $S O_{2}$ and O_{2} in the molar ratio

16:1 is diffused through a pin hole for successive effusion three times to give a molar ratio 1:1 of diffused mixture. Which one are not correct if diffusion is made at same P and T in each operation?
(I) Eight operation are needed to get $1: 1$
molar ratio.
(II) Rate of diffusion for $\mathrm{SO}_{2}: \mathrm{O}_{3}$ after eight operations in 0.707 .
(III) Six operations are needed to get $2: 1$ molar ratio for SO_{2} and O_{2} in diffusion mixture.
(IV) Rate of diffusion for SO_{2} and O_{2} after six operations is 2.41 .
A. $I, I I, I I I$
B. $I I, I I I$
C. I, III

D. $I V$

D View Text Solution

14. A graph is plotted between $\log V$ and $\log T$
for 2 mol of gas at constant pressure of
$0.0821 \mathrm{~atm} . V$ and T are in litre and K. Which
of the following statements are not correct?
(I) The curve is straight line with slope -1 .
(II) The curve is straight line with slope +1 .
(III) The intercepet on Y - axis is equal to 2 .
(IV) The intercepet on Y - axis is equal to 0.3010 .
A. $I, I I$
B. $I I I, I V$
C. $I I, I V$
D. $I, I I I$
15. A gas obeys $P(V-b)=R T$. Which of the following are correct about this gas?
(I) Isochoric curves have slop $=\frac{R}{V-b}$.
(II) Isobaric curves have slope $\frac{R}{P}$ and intercept b.
(III) For the gas compressibility factor

$$
=1+\frac{R b}{R T} .
$$

(IV) The attraction forces are overcome by repulsive forces.
A. I
B. $I I, I I I$

C. III

D. $I, I I, I I I, I V$

D Watch Video Solution

16. The pressure of real gas is less than the pressure of an ideal gas because of
A. Increase in collisions
B. Increase in intermolacular forces
C. Infinite size of molecules

D. Statement is incorrect

D Watch Video Solution

17. O_{2} gas at $S T P$ contained in a flask was replaced by SO_{2} under same conditions. The weight of SO_{2} will be
A. Equal to that of O_{2}
B. Half that of O_{2}
C. Twice that of O_{2}

D. One-fourth of O_{2}

D Watch Video Solution

18. At what temperature will hydrogen
molecules have the same $K E$ as nitrogen molecules at $280 K$?
A. $280 K$
B. $40 K$
C. 400 K

D. 50 K

- Watch Video Solution

19. Select the correct statements.
(I) Greater is humidity, lesser will be rate of evaporation of water.
(II) Greater is humidity, lesser will be density of air.
(III) If room temperature $=$ dew point, realtive humidity $=100 \%$.
(IV) Dew point is the temperature at which
the gas a given atmospheric condition becomes staturted with $\mathrm{H}_{2} \mathrm{O}(v)$
A. $I, I I$
B. II,IV
C. All
D. None
20. The temperature to which a gas must be cooled before it can be liquified by compression is called
A. Boyle's temperature
B. Critical temperature
C. Liquefaction temperature
D. Inversion temperature
21. Distribution of molecules with velocity is represented by the curve

Velocity corresponding to point A is

> A. $\sqrt{\frac{3 R T}{M}}$
> B. $\sqrt{\frac{2 R T}{M}}$
> C. $\sqrt{\frac{8 R T}{\pi M}}$
D. $\sqrt{\frac{R T}{M}}$

- Watch Video Solution

22. The volume of helium is $44.8 L$ at
A. $100^{\circ} \mathrm{C}$ and 1 atm
B. $0^{\circ} \mathrm{C}$ and 1 atm
C. $0^{\circ} \mathrm{C}$ and 0.5 atm
D. $100^{\circ} \mathrm{C}$ and 0.5 atm
23. Which gas shows real behaviour?
A. $8 g O_{2}$ at $S T P$ occupies $5.6 L$.
B. $1 g \mathrm{H}_{2}$ in 0.5 L flask exerts a pressure of
24.63 atm at 300 K .
C. $1 \mathrm{molNH}_{3}$ at 300 K and 1 atm occupies
volume $22.4 L$.
D. 5.6 L of CO_{2} at $S T P$ is equal to $11 g$.
24. For the non-zero volume of the molecules, real gas equation for $n \mathrm{~mol}$ of the gas will be
A. $\left(P+\frac{a}{V^{2}}\right) V=R T$
B. $P V=n R T+n b P$
C. $P(V-n b)=n R T$
D. Both (b) and (c) are true.
25. Actual graph for the given parameters in
(Q.25) will be

A. I, III
B. $I, I I$
C. II
D. I

D Watch Video Solution

26. For the non-zero value of the force of attraction between gas molecules, gas equation will be

$$
\begin{aligned}
& \text { A. } P V=n R T-\frac{n^{2} a}{V} \\
& \text { В. } P V=n R T+n b P
\end{aligned}
$$

C. $P V=n R T$
D. $P=\frac{n R T}{V-b}$

D Watch Video Solution

27. If X_{M}, X_{P}, and X_{V} are mole fraction, pressure fraction and volume fraction respectively of a gaseous mixture, then:

$$
\begin{aligned}
& \text { A. } X_{M}=\frac{1}{X_{P}}=\frac{1}{X_{V}} \\
& \text { B. } X_{M}=\left(X_{P}\right)=\frac{1}{X_{V}} \\
& \text { C. } X_{M}=X_{P}=X_{V}
\end{aligned}
$$

$$
\text { D. } \frac{1}{X_{M}}=\frac{1}{X_{P}}=\frac{1}{X_{V}}
$$

- Watch Video Solution

28. The average molecular speed is gretest in
which of the following gas samples?
A. $1.0 \mathrm{~mol} \mathrm{~N}_{2}$ at 560 K
B. 0.50 mol of Ne at 500 K
C. 0.20 mol of CO_{2} at 440 K
D. 2.0 mol of Ke at 140 K

D Watch Video Solution

29. A gas in an open container is heated from
$27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$ The fraction of the original
amount of gas remaining in the container will be .
A. $3 / 4$
B. $1 / 2$
C. $1 / 4$
D. $1 / 8$

D Watch Video Solution

$$
\begin{aligned}
& \text { 30. } \begin{array}{c}
\text { Virial } \\
P V_{M}=R T\left[A+\frac{B}{V_{M}}+\frac{C}{V_{M^{2}}}+\ldots\right], \text { where }
\end{array}
\end{aligned}
$$

A, B, C, \ldots are first second,third, ... virial coefficent, respectively, For an ideal gas
A. $A=$ unity and B, C are zero.
B. A, B, C are all equal to unity.
C. A is dependent of temperature.
D. All A, B, C depend on temperature.

D Watch Video Solution

31. A ballon filled with ethyne is pricked with a sharp point and quickly dropped in a tank of H_{2} gas under indentical conditions. After a while the balloon will
A. Shrink

B. Enlarge

C. Completely collapse

D. Remain unchanged in size

D Watch Video Solution

32. A flask containing $12 g$ of a gas relative molecular mass 120at a pressure of 100atm was evacuated by means of a pump until the pressure was 0.01 atm . Which of the following in the best estimate of the number of
molecules left in the flask

$$
\left(N_{0}=6 \times 10^{23} \mathrm{~mol}^{-1}\right) ?
$$

A. 6×10^{9}
B. 6×10^{18}
C. 6×10^{17}
D. 6×10^{13}
33. For an ideal gas, the value of compressibility factor $Z\left(=\frac{p V m}{R T}\right)$ is
A. 0
B. 1
C. $>$
D. Between 0 and 1
34. NH_{3} gas is liquefied more easily than N_{2}.

Hence
A. van der Waals constant a and b of
$\mathrm{NH}_{3}>$ that of N_{2}
B. van der Waals constant a and b of
$\mathrm{NH}_{3}<$ that of N_{2}
C. $a\left(N H_{3}\right)>a\left(N_{2}\right)$ but $b\left(N H_{3}\right)<b\left(N_{2}\right)$
D. $a\left(N H_{3}\right)<a\left(N_{2}\right)$ but $b\left(N H_{3}\right)>b\left(N_{2}\right)$

35. The van der Waals equation for one mol of

CO_{2} gas at low pressure will be
A. $\left(P+\frac{a}{V^{2}}\right) V=R T$
B. $P(V-b)=R T-\frac{a}{V^{2}}$
C. $P=\frac{R T}{V-b}$
D. $P=\left(\frac{R T}{V-b}-\frac{a}{V^{2}}\right)$
36. If v is the volume of one molecule of a gas under given conditions, then van der Waals constant b is
A. $4 v$
B. $4 v / N_{0}$
C. $N_{0} / 4 v$
D. $4 v N_{0}$
37. Which of the following has the maximum value of mean free path?
A. CO_{2}
B. H_{2}
C. O_{2}
D. N_{2}
38. The compressibility factor for definite amount of van der Waals' gas at $0^{\circ} \mathrm{C}$ and 100 atm is found to be 0.5 . Assuming the volume of gas molecules negligible, the van der Waals' constant a for gas is
A. $1.256 L^{2} \mathrm{~mol}^{-2} \mathrm{~atm}$
B. $0.256 L^{2} \mathrm{~mol}^{-2} \mathrm{~atm}$
C. $2.256 L^{2} \mathrm{~mol}^{-2} \mathrm{~atm}$
D. $0.0256 L^{2} \mathrm{~mol}^{-2} \mathrm{~atm}$
39. The critical temperature of water is higher than that of O_{2} because the $\mathrm{H}_{2} \mathrm{O}$ molecule has
A. Fewer electrons than O_{2}
B. Two covalent bonds
C. V-shape
D. Dipole moment
40. The pressure exerted by 1 mol of CO_{2} at $273 K$ is 34.98 atm . Assuming that volume occupied by CO_{2} molecules is negligible, the value of van der Waals constant for attraction of CO_{2} gas is
A. $3.59 \mathrm{dm}^{6} \mathrm{atmmol}^{-2}$
B. $2.59 \mathrm{dm}^{6} \mathrm{atmmol}^{-2}$
C. $1.25 \mathrm{dm}^{6} \mathrm{atmmol}^{-2}$
D. $1.59 \mathrm{dm}^{6} \mathrm{atmmol}^{-2}$

- Watch Video Solution

41. Relative humidity of air is $60^{\circ} \mathrm{C}$ and the saturation vapour pressure of water vapour in air is $3.6 k P a$. The amount of water vapours present in $2 L$ air at $300 K$ is
A. $52 g$
B. $31.2 g$
C. $26 g$
D. $5.2 g$

- Watch Video Solution

42. A 3:2 molar mixture of N_{2} and $C O$ is present in a vessel at 500bar pressure. Due to hole in the vessel, the gas mixture leaks out.

The composition of mixture effusing out initially is

$$
\text { A. } n_{N_{2}}: n_{C O}:: 1: 2
$$

$$
\begin{aligned}
& \text { B. } n_{N_{2}}: n_{C O}:: 6: 1 \\
& \text { C. } n_{C O}: n_{N_{2}}:: 1: 2 \\
& \text { D. } n_{C O}: n_{N_{2}}:: 2: 3
\end{aligned}
$$

D Watch Video Solution

43. Number of N_{2} molecules present L vessel at $N T P$ when compressibility factor is 1.2 is
A. 2.23×10^{24}
B. 2.23×10^{22}
C. 2.7×10^{22}

$$
\text { D. } 2.7 \times 10^{24}
$$

D Watch Video Solution

44. A spherical air bubble is rising from the depth of a lake when pressure is Patm and temperature is $T K$. The percentage increase in the radius when it comes to the surface of a lake will be (Assume temperature and pressure
at the surface to be, respectively, $2 T K$ and $P / 4$.
A. 100%
B. 50%
C. 40%
D. 200%
45. When the temperature is increased, surface tension of water:
A. Increases
B. Decreases
C. Remains constant
D. Shows irregular behaviour
46. Boltzmann constant (k) is given by
A. $k=R \times N_{A}$
B. $k=1.3807 \times 10^{-21} J K^{-1}$
C. $k=N_{A} / R$
D. $k=R / N_{A}$
47. It is eaiser to liquefy oxygen than hydrogen because.
A. Oxygen has a higher critical temperature
and lower inversion temperature than
hydrogen.
B. Oxygen has a lower critical temperature
and higher inversion temperature than
hydrogen.
C. Oxygen has a higher critical temperature and higher inversion temperature than
hydrogen.
D. The critical temperature and inversion temperature of oxygen is very low.

D Watch Video Solution

48. $2 \mathrm{~mol}{ }^{\prime} \mathrm{H}_{2}$ is mixed with 2 gm of H_{2}. The molar heatr capacity at constant pressure for the mixture is

$$
\text { A. } \frac{17 R}{6}
$$

B. $\frac{11 R}{6}$
C. $4 R$
D. $\frac{3 R}{2}$

(Watch Video Solution

49. Which of following correctly represents the
relation between capillary rise h and capillary
radius r ?

B.

c.

d. h

50. There is a depression in the surface of the liquid in a capillary when
A. The cohesive force is smaller than the adhesive force.
B. The cohesive force is greater than the adhesive force.
C. The cohesive and adhesive forces are equal.
D. None of the above is true.
C. The size of surface
D. Concentration
51. Which among of the following has least surface tension?
A. Benzene
B. Acetic acid
C. Diethyle ether
D. Chlorobenzene
52. The $S I$ unit of the coefficent of viscosity is
A. $N s^{-1} m^{-1}$
B. $N s m^{-2}$
C. $N s^{-2} m^{-2}$
D. $N s^{-1} m^{-2}$

D Watch Video Solution

54. The quantity $\left(P V / K_{B} T\right)$ represents
A. Number of molecules in the gas
B. Mass of the gas
C. Number of moles of the gas
D. Translational energy of the gas

D Watch Video Solution

55. 1 of $N O_{2}$ and $7 / 8 L$ of O_{2} at the same temperature and pressure were mixed
together. What is the relation between the mases of the two gases in the mixture?
A. $M_{N_{2}}=3 M_{O_{2}}$
B. $M_{N_{2}}=8 M_{O_{2}}$
C. $M_{N_{2}}=M_{O_{2}}$
D. $M_{N_{2}}=16 M_{O_{2}}$
56. The value of $P V$ for $5.6 L$ of an ideal gas is $R T$ at $N T P$.
A. 0.25
B. 0.30
C. 1.0
D. 0.45
57. If a gas expended at constant temperature
A. The pressures decreases
B. The kinetic energy of the molecules
remains the same
C. The kinetic energy of the molecules
decreases
D. The number of molecules of the gas
increases
58. The density of a gas A is twice that of a gas
B at the same temperature. The molecular mass of gas B is thrice that of A. The ratio of the pressure acting on A and B will be
A. $1: 6$
B. 7:8
C. 2:5
D. 1: 4

D Watch Video Solution

59. Which of the following expression at constant pressure represents Charles's law?
A. $V \propto \frac{1}{T}$
B. $V \propto \frac{1}{T^{2}}$
C. $V \propto T$
D. $V=d$
60. A gas volume 100 is kept in a vessel at
pressure $10.4 P a$ maintained at temperature
$24^{\circ} C$. Now, if the pressure is increased to
$105 P a$, keeping the temperature constant, then the volume of the gas becomes
A. 10
B. 100
C. 1
D. 1000
61. A sample of gas occupies 100 mL at $27^{\circ} \mathrm{C}$
and 740 mm pressure. When its volume is changed to 80 mL at 740 mm pressure, the temperature of the gas will be
A. $21.6^{\circ} C$
B. $240^{\circ} C$
C. $-33^{\circ} C$
D. $89.5^{\circ} \mathrm{C}$

- Watch Video Solution

62. At $25^{\circ} \mathrm{C}$ and 730 mm pressure, 730 mL of dry oxygen was collected. If the temperature is
kept constant what volume will oxygen gas occupy at 760 mm pressure?
A. $701 m L$
B. $449 m L$
C. $569 m L$

D. 621 mL

D Watch Video Solution

63. The density of a gas at $27^{\circ} \mathrm{C}$ and 1 atm is d
. Pressure remaining constant, at which of the
following temperture will its density become
$0.75 d ?$
A. $20^{\circ} C$
B. $30^{\circ} \mathrm{C}$

C. 400 K

D. $300 K$

D Watch Video Solution

64. The kinetic theory of gases predicts that total kinetic energy of a gaseous assembly depends on
A. Pressure of the gas
B. Temperature of the gas

C. Volume of the gas

D. Pressure, temperature, and volume of the gas

D Watch Video Solution

65. At $S T P$, the order of mean square velocity of molecules of $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$, and HBr is

$$
\text { A. } H_{2}>N_{2}>O_{2}>H B r
$$

$$
\text { B. } H B r>O_{2}>M_{2}>H_{2}
$$

$$
\text { C. } \mathrm{HBr}>\mathrm{H}_{2}>\mathrm{O}_{2}>\mathrm{N}_{2}
$$

$$
\text { D. } N_{2}>O_{2}>H_{2}>H B r
$$

D Watch Video Solution

66. Which of the following statements is wrong for gases?
A. Gases do not have a definite shape and volume.
B. Volume of the gas is equal to volume of container confining the gas.
C. Confining gas exerts uniform pressure
on the walls of container in all directions
D. Mass of gas cannot be determined by
weighing a container in which it is
enclosed.
67. $3.2 g$ oxygen is diffused in 10 min . In
similar conditions, $2.8 g$ nitrogen will diffuse in
A. 9.3 min
B. 8.2 min
C. 7.6 min
D. 11.8 min
68. At what temperature will the molar kinetic energy of 0.3 mol of ' He ' be the same as that of 0.4 mol of argon at 400 K ?
A. $700 K$
B. $500 K$
C. $800 K$
D. $400 K$
69. Which of the following statements is not correct about the three states of matter, i.e., solid, liquids and gas?
A. Molecules of solid posses least energy
whereas those of a gas posses highest
energy.
B. The density of a solid is highest whereas
that of gases is lowest.
C. Gases like liquids posses definite
volumes.

D. Molecules of a solid possess vibratory

 motion.
D Watch Video Solution

70. Which of the following is true about gaseous state?
A. Thermal energy $=$ Molecular attraction

B. Thermal energy \gg Molecular

C. Thermal energy \ll Molecular attraction
D. Molecular forces \gg Those in liquids

D Watch Video Solution

71. Which of the following is not a correct postulate of kinetic theory of gases?
A. The molecules of a gas are continously moving in different directions with
different velocities.
B. The average kinetic energy of the gas
molecules is directly porportional to the absolute temperature of the gas.
C. The volume of the gas is due to the large
number of molecules present in it.
D. The pressure of the gas is due to the collision of the molecules on the walls of the container.
72. In the van der Waals equation
A. b is the volume occupied by the gas molecules
B. b is four times the volume occupied by
the gas molecules
C. b is the correction factor for
intermolecular attraction
D. None of these

Answer: B

- Watch Video Solution

73. According to kinetic theory of gases, for a datomic molecule.
A. The pressure exerted by the gas is proportional to the mean velocity of the molecule.
B. The pressure exerted by the gas is proportional to the root mean velocity of
the molecule.
C. The root mean square velocity of the
molecule is inversely proportional to the temperature.
D. The mean translational kinetic energy of
the molecule is proportional to the absolute temperature.
74. A vessel is filled with a mixture of oxygen and nitrogen. At what ratio of partial pressures will the mass of gases be identical?
A. $P\left(O_{2}\right)=0.785 P\left(N_{2}\right)$
B. $P\left(O_{2}\right)=8.75 P\left(N_{2}\right)$
C. $P\left(O_{2}\right)=11.4 P\left(N_{2}\right)$
D. $P\left(O_{2}\right)=0.875 P\left(N_{2}\right)$
75. Select one correct statement. In the gas equation, $P V=n R T$
A. n is the number of molecules of a gas.
B. n moles of the gas have a volume V.
C. V denotes volume of one mole of the
gas.
D. P is the pressure if the gas when only one mole of gas is present.
76. When is deviation more in the behaviour of
a gas from the ideal gas equation $P V=n R T$?
A. At high temperature and low pressure.
B. At low temperature and high pressure.
C. At high temperature and high pressure.
D. At low temperature and low pressure.
77. An ideal gas obeying the kinetic theory of gases can be liquefied if
A. Its temperature is more than its critical
temperature (T_{c})
B. Its pressure is more than its critical
pressure $\left(P_{c}\right)$
C. Its pressure is more than P_{c} at a temperature less than T_{c}

D. It cannot be liquefied at any value of P

and T

D Watch Video Solution

78. Which of the following expressions correctly represents the relationship between the average molar kinetic energies $(K E)$ of $C O$ and N_{2} molecules at the same temperature?
A. $K E_{C O}=K E_{N_{2}}$
B. $K E_{C O}>K E_{N_{2}}$
C. $K E_{C O}<K E_{N_{2}}$
D. Cannot be predicted unless volumes of
the gases are given

- Watch Video Solution

79. Which expression gives average speed of gas molecules?
A. $\sqrt{\frac{8 R T}{M}}$
B. $\frac{3 R T}{M}$
C. $\left[\frac{8 R T}{\pi M}\right]^{1 / 2}$
D. $\frac{8 R T}{3.14 M}$

Answer: C

D Watch Video Solution

80. Under similar conditions, which of the following gas will have same value of $\mu_{r m s}$ as CO_{2} ?
A. $N O$
B. $C_{3} H_{8}$
C. $C O$
D. N_{2}

D Watch Video Solution

81. $15 L$ of gas at $S T P$ is subjected to four different conditions of temperature and
pressure as shown below. In which case the volume will remain unaffected?
A. $273 K$, 2 bar pressure
B. $273^{\circ} \mathrm{C}, 0.5 \mathrm{~atm}$ pressure
C. $546^{\circ} \mathrm{C}, 1.5 \mathrm{~atm}$ pressure
D. $273^{\circ} \mathrm{C}, 2 \mathrm{~atm}$ pressure
82. A gaseous mixture contains oxygen and nitrogen in the ratio of $1: 8$ by mass. The ratio of their respective number of molecules $\left(N_{O_{2}}: N_{H_{2}}\right)$ is
A. $1: 8$
B. 1: 1
C. 7: 64
D. 1:2
83. Among the plots of $P v s V$ given below, which one corresponds to Boyle's law?
A.

b. l

C.

D.

- Watch Video Solution

84. The pressure of a gas is due to

A. Rapid intermolecular collisions
B. Molecular impacts against the walls of
vessel
C. Voids between the gas molecules
D. Ideal behaviour of gases
85. V vs T curves at different pressures P_{1} and
P_{2} for an ideal gas are shown below:

Which one of the following is correct?
A. $P_{1}>P_{2}$
B. $P_{1}<P_{2}$

C. $P_{1}=P_{2}$

$$
\text { D. } P_{2} / P_{1}=1 / 2
$$

(Watch Video Solution

Exercises (Assertion-Reasoning)

1. Assertion: The heat absorbed during the
isothermal expansion of an ideal gas against
vacuum is zero.

Reason: The volume occupied by the molecules of an ideal gas is zero.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D
2. Assertion: The pressure of a fixed amount of an ideal gas is proportional to its temperature.

Reason: Frequency of collisions and their impact both increase in proportion of the square root of temperature.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution

3. Assertion: $C_{P}-C_{V}=R$ for an ideal gas.

Reason: $\left(\frac{\partial E}{\partial V}\right)_{T}=0$ for an ideal gas.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).

B. If both (A) and (R) are correct, but (R) is

 not the correct explanation of (A).C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution

4. Assertion: A lighter gas diffuses more rapidly than heavier gas.

Reason: At a given temperature, the rate of
diffusion of a gas is inversely proportional to
the square root of its density.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D
5. Assertion: On cooling, the brown colour of nitrogen dioxide disappears.

Reason: On cooling, NO_{2} undergoes dimerisation resulting in the pairing of the odd electron in NO_{2}.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

- Watch Video Solution

6. Assertion: Sulphur dioxide and chlorine are
bleaching agents.

Reason: Both are reducing agents.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution
7. Assertion: Nitrogen is unreactive at room temperature but becomes reactive at elevated temperature (on heating or in the presence of catalysts).

Reason: In nitrogen molecule, there is extensive delocalisation of electrons.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution

8. Assertion: Noble gases can be liquefied.

Reason: Attractive forces can exist between nonpolar molecules.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution
9. Assertion: Under similar conditions of temperature and pressure, O_{2} diffuses 1.4
times faster than SO_{2}.

Reason: Density of $S O_{2}$ is 1.4 times greater than that of O_{2}.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution

10. Assertion: On compressing a gas to half the volume, the number of molecules is halved.

Reason: The number of moles present decreases with decrease in volume.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution
11. Assertion: The plot of volume (V) versus pressure (P) at constant temperature is a hyperbola in the first quadrant.

Reason: $V \propto 1 / P$ at constant temperature.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

- Watch Video Solution

12. Assertion: At constant temperature, if pressure on the gas is doubled, density is also doubled.

Reason: At constant temperature, molecular mass of a gas is directly proportional to the density and inversely proportional to the pressure
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution
13. Assertion: If H_{2} and Cl enclosed separately in the same vessel exert pressure of 100 and 200 mm respectively, their mixture in the same vessel at the same temperature will exert a pressure of 300 mm

Reason: Dalton's law of partial pressures states
that total pressure is the sum of partial pressures.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).

B. If both (A) and (R) are correct, but (R) is

 not the correct explanation of (A).C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution

14. Assertion: Most probable velocity is the velocity possessed by maximum fraction of molecules at the same temperature.

Reason: On collision, more and more molecules acquire higher speed at the same temperature.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

15. Assertion: Compressibility factor (Z) for non ideal gases is always greater than 1.

Reason: Non-ideal gases always exert higher pressure than expected.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

- Watch Video Solution

16. Assertion: van der Waals equation is applicable only to non-ideal gases.

Reason: Ideal gases obey the equation
$P V=n R T$.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution
17. Assertion: Helium shows only positive deviations from ideal behaviour.

Reason: Helium is an inert gas.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

D Watch Video Solution

18. Assertion: Gases are easily absorbed on the
surface of metals, especially transition metals.

Reason: Transition metals have free valencies
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

- Watch Video Solution

19. Assertion: SO_{2} gas is easily liquefied while
H_{2} is not.
Reason: $S O_{2}$ has low critical temperature while H_{2} has high critical temperature.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution
20. Assertion: All molecules of an ideal gas
more with the same speed.

Reason: There is no attraction between the molecules in an ideal gas.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution

21. Assertion: In van der Waals equation
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$
pressure
correction $\left(a / V^{2}\right)$ is due to the force of attraction between molecules.

Reason: Volume of gas molecule cannot be neglected due to force of attraction.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution
22. Assertion: A lighter gas diffuse more rapidly than a heavier gas.

Reason: At a given temperature, the rate of diffusion of a gas is inversely proportional to the square root of its density.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution

23. Assertion: A gas can be easily liquefied at any temperature below is critical temperature.

Reason: Liquification of a gas takes place when
the average kinetic energy of the molecules is
low.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

D Watch Video Solution
24. Assertion: At absolute zero temperature,
vapour pressure, kinetic energy, and heat content of the gas reduce to zero.

Reason: At absolute zero, temperature velocity reduces to zero.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

Answer: A::B::C::D

- Watch Video Solution

Exercises (Integer)

1. The ratio of the inversion temperature of a
gas to its Boyle temperature is
A. 1
B. 2
C. 3
D. 4

D Watch Video Solution

2. A certain gas is at a temperature of $350 K$. If
the temperature is raised to $700 K$, the average translational kinetic energy of the gas will increase by
A. 2
B. 3
C. 4
D. 5

(Watch Video Solution

3. The value of compressibility factor (Z) for an
ideal gas is
A. 2
B. 1
C. 3
D. 4

(Watch Video Solution

4. The ratio of excluded volume (b) to molar volume of a gas molecule is
A. 1
B. 2

C. 3

D. 4

D Watch Video Solution

5. What is the ratio of rate of diffusion of gas
A and B. The molecular mass of A is 11 and molecular mass of B is 44 .
A. 1
B. 2

C. 3

D. 4

D Watch Video Solution

6. Initial volume of a gas is $1 L$ at temperature
$100 K$. What is the volume of a gas at $300 K$.
A. 1
B. 2
C. 3
D. 4

D Watch Video Solution

7. What is the average speed of a molecule,
having a molecular mass of $529.5 \mathrm{gmol}^{-1}$. At temperature 100 K
A. 1
B. 2
C. 3
D. 4

D Watch Video Solution

8. Calculate the moles of an ideal gas at pressure $2 a t m$ and volume $1 L$ at a temperature of $97.5 K$
A. 1
B. 2
C. 3

D. 4

D View Text Solution

9. A $10 L$ box contains $41.4 g$ of a mixture of gases $C_{x} H_{8}$ and $C_{x} H_{12}$. The total pressure at
$44^{\circ} \mathrm{C}$ in flask is 1.56 atm . Analysis revelated
that the gas mixture has 87% total C and
13% total H. Find out the value of x
A. 1
B. 3
C. 5
D. 2

- Watch Video Solution

10. The rate of diffusion of methane is twice
that of X. The molecular mass of X is divided
by 32 . What is value of x is ?
A. 1
B. 2
C. 3
D. 4

(Watch Video Solution

Archives (Multiple Correct)

1. If a gas expands at constant temperature
A. The pressure decreases
B. The kinetic energy of the molecules remains the same
C. The kinetic energy of the molecules decreases
D. The number of molecules of the gas increases
2. The given graph represents the variations of compressibility factor $Z=P V / n R T$ vs P for three real gases A, B, and C.

Identify the incorrect statements.
A. For gas $A, a=0$ and its dependence on
p is linear at all pressures.
B. For gas $B, b=0$ and its dependence on p is linear at all pressures.
C. For gas C, which is a typical real gas, neither a nor $b=0$. By knowing the minima and power of intersection with $Z=1, a$ and b can be calculated.
D. At high pressure, the slope is positive for all real gases.
3. A gas described by van der Waals equation
A. behaves similar to an ideal gas in the
limit of large molar volumes.
B. behaves similar to an ideal gas in the
limits of large pressures.
C. is characterised by van der Waals
coefficients that are dependent on the
identity of the gas but are independent
of the temperature.
D. has pressure that is lower than the pressure exerted by the same gas behaving ideally.

- Watch Video Solution

Archives (Single Correct)

1. The ratio of root mean square velocity of average velocity of a gas molecule at a
particular temperture is
A. $1.086: 1$
B. 1:1.086
C. $2: 1.086$
D. $1.086: 2$

- Watch Video Solution

2. The temperature at which a real gas obeys
the ideal gas laws over a wide range of
pressure is called

A. Critical temperature

B. Boyle temperature
C. Inversion temperature
D. Reduced temperature

D Watch Video Solution

3. Equal weights of methane and oxygen are mixed in an empty container at $25^{\circ} C$. The
fraction of the total pressure exerted by oxygen is
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3} \times \frac{273}{298}$
4. A helium atom is two times heavier than a hydrogen molecule. At $298 K$, the average kinetic energy of a helium atom is
A. Two times that of a hydrogen molecule
B. Same as that of a hydrogen molecule
C. Four times that of a hydrogen molecule
D. Half that of a hydrogen molecule
5. When an ideal gas undergoes unrestrained expansion, no cooling occurs because the molecules
A. Are above the inversion temperature
B. Exert no attractive forces on each other
C. Do work equal to loss in kinetic energy
D. Collide without losing energy
6. Equal weights of methane and hydrogen are
mixed in an empty container at $25^{\circ} C$. The
fraction of the total pressure exerted by
hydrogen is
A. $\frac{1}{2}$
B. $\frac{8}{9}$
C. $\frac{1}{9}$
D. $\frac{16}{17}$
7. A liquid is in equilibrium with its vapour at its boiling point. On average, the molecules in the two phases have equal
A. Intermolecular forces
B. Potential energy
C. Kinetic energy
D. Total energy
8. The rate of diffusion of a gas is
A. Directly proportional to its density
B. Directly proportional to its molecular weight
C. Directly proportional to the square root of its molecular weight
D. Inversely proportional to the square root of its molecular weight
9. The average velocity of an ideal gas molecule at $27^{\circ} \mathrm{C}$ is $0.3 m s^{-1}$. The average velocity at $927^{\circ} C$ will be
A. $0.6 m s^{-1}$
B. $0.3 m s^{-1}$
C. $0.9 m s^{-1}$
D. $3.0 m s^{-1}$

Answer: A
10. In van der Waals equation of state for a non-ideal gas, the term that accounts for intermolecular forces is
A. $V-b$
B. $R T$
C. $p+\frac{a}{V^{2}}$
D. $(R T)^{-1}$
11. A bottle of dry ammonia and a bottle of dry hydrogen chloride connected through a long tube are opened simultaneously at both ends.

The white ammonium chloride ring first formed will be
A. At the center of the tube
B. Near the hydrogen chloride bottle
C. Near the ammonia bottle
D. Throughout the length of the tube
12. The value of van der Waals constant a for the gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NH}_{3}$, and CH_{4} are 1.360 , 1.390, 4.170, and $2.253 L^{2} \mathrm{atmmol}^{-2}$, respectively. The gas which can most easily be liquefied is
A. O_{2}
B. N_{2}
C. NH_{3}

D. CH_{4}

- Watch Video Solution

13. The density of neon will be highest at
A. $S T P$
B. $0^{\circ} \mathrm{C}, 2 \mathrm{~atm}$
C. $273^{\circ} \mathrm{C}, 1 \mathrm{~atm}$
D. $273^{\circ} \mathrm{C}, 2 \mathrm{~atm}$
14. The rate of diffusion of methane at a given
temperature is twice that of a gas X. The molecular weight of X is
A. 64.0
B. 32.0
C. 4.0
D. 8.0
15. Accoring to the kinetic theory of gases, for a diatomic molecule
A. The pressure exerted by the gas is proportional to the mean velocity of the molecule.
B. The pressure exerted by the gas is proportional to the root mean velocity of the molecule.
C. The root mean square velocity of the molecule is inversely proportional to the
temperature.
D. The mean translational kinetic energy of
the molecule is proportional to the absolute temperature.
16. At constant volume, for a fixed number of moles of a gas, the pressure of the gas increases with the rise in temperature due to
A. Increase in average molecular speed
B. Increase in the rate of collisions among
the molecules
C. Increase in the molecular attraction
D. Decrease in the mean free path
17. Equal weights of ethane and hydrogen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by hydrogen is
A. $1: 2$
B. 1: 1
C. $1: 16$
D. $15: 16$
18. The ratio between the root mean square speed of H_{2} at 50 K and that of O_{2} at 800 K is
A. 4
B. 2
C. 1
D. $1 / 4$
19. XmL of H_{2} gas effuses through a hole in a container in $5 s$. The time taken for the effusion of the same volume of the gas specified below, under identical conditions, is
A. $10 s, \mathrm{He}$
B. $20 s, O_{2}$
C. $25 s, C O$
D. $55 \mathrm{~s}, \mathrm{CO}_{2}$
20. The compressibility factor for an ideal gas
is
A. 1.5
B. 1.0
C. 2.0
D. ∞

Answer: B
21. According to Graham's law, at a given temperature, the ratio of the rates of diffusion
r_{A} / r_{B} of gases A and B is given by
A. $\left(\frac{P_{A}}{P_{B}}\right)\left(\frac{M_{A}}{M_{B}}\right)^{1 / 2}$
B. $\left(\frac{M_{A}}{M_{B}}\right)\left(\frac{P_{A}}{P_{B}}\right)^{1 / 2}$
C. $\left(\frac{P_{A}}{P_{B}}\right)\left(\frac{M_{B}}{M_{A}}\right)^{1 / 2}$
D. $\left(\frac{M_{A}}{M_{B}}\right)\left(\frac{P_{B}}{P_{A}}\right)^{1 / 2}$
22. A gas will approach ideal behaviour at
A. Low temperature and low pressure
B. Low temperature and high pressure
C. High temperature and low pressure
D. High temperature and high pressure

D Watch Video Solution

23. The rms velocity of hydrogen is $\sqrt{7}$ times
the rms velocity of nitrogen. If T is the temperature of the gas, then

$$
\begin{aligned}
& \text { А. } T_{H_{2}}=T_{N_{2}} \\
& \text { B. } T_{H_{2}}>T_{N_{2}} \\
& \text { с. } T_{H_{2}}<T_{N_{2}} \\
& \text { D. } T_{H_{2}}=\sqrt{7} T_{N_{2}}
\end{aligned}
$$

24. The compressibility of a gas is less than unity at $S T P$.
A. $V_{m}>22.4 L$
B. $V_{m}<22.4 L$
C. $V_{m}=22.4 L$
D. $V_{m}=44.8 L$

D Watch Video Solution

25. At $100^{\circ} \mathrm{C}$ and 1 atm , if the density of the liquid water is $1.0 \mathrm{gcm}^{-3}$ and that of water vapour is $0.0006 \mathrm{gcm}^{-3}$, then the volume occupied by water molecules in $1 L$ of steam at this temperature is
A. 6
B. 60
C. 0.6
D. 0.06
26. The root mean square velocity of an ideal gas to constant pressure varies with density (d) as
A. d^{2}
B. d
C. \sqrt{d}
D. $1 / \sqrt{d}$

27. Which of the following volume-temperature

($V-I$) plots represents the behaviour of
1mole of an ideal gas at the atmospheric pressure?
A.

C.

D Watch Video Solution

28. When the temperature increases, the surface tension of water
A. Increases
B. Decreases
C. Remains constant

D. Shows irregular behaviour

D Watch Video Solution

29. Positive deviation from ideal behaviour takes place because of
A. The molecular interaction between atom
and $P V / n R T>1$

B. The molecular interaction between atom

and $P V / n R T<1$
C. The finite size of atoms and

$$
P V / n R T>1
$$

D. The finite size of atoms and

$$
P V / n R T<1
$$

- Watch Video Solution

30. For a monatomic gas, kinetic energy $=E$.

The relation with $r m s$ velocity is

$$
\text { A. } u=\left(\frac{2 E}{m}\right)^{1 / 2}
$$

> B. $u=\left(\frac{3 E}{2 m}\right)^{1 / 2}$
> C. $u=\left(\frac{E}{2 m}\right)^{1 / 2}$
> D. $u=\left(\frac{E}{3 m}\right)^{1 / 2}$

- Watch Video Solution

31. The ratio of the rate of diffusion of helium and methane under identical conditions of pressure and temperature will be
A. 4
B. 2
C. 1
D. 0.5

Answer: B

- Watch Video Solution

32. The term that is correct for the attractive
forces present in a real gas in the van der Waals equation is
A. $n b$
B. $\frac{a n^{2}}{V^{2}}$
C. $-\frac{a n^{2}}{V^{2}}$
D. $-n b$

(Watch Video Solution

Archives (Assertion-Reasoning)

1. Assertion: The value of van der Waals constant a is larger for ammonia than for nitrogen.

Reason: Hydrogen bonding is present in ammonia.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.

D. If (A) is incorrect, but (R) is correct.

D Watch Video Solution

2. Assertion: The pressure of a fixed amount of an ideal gas is proportional to its temperature.

Reason: The Frequency of collisions and their impact both increase in proportion of the square root of temperature.
A. If both (A) and (R) are correct and (R) is
the correct explanation of (A).
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

Archives (Integer)

1. At 400 K , the root mean square $(r m s)$ speed of a gas X (molecular weight $=40$) is equal to the most probable speed of gas Y at $60 K$.

Calculate the molecular weight of the gas Y.

- Watch Video Solution

Archives (Subjective)

1. If 3.7 g of a gas at $25^{\circ} \mathrm{C}$ occupies the same volume as $0.814 g$ of hydrogen at $17^{\circ} \mathrm{C}$ and at
the same pressure, then what is the molecular weight of the gas?

- Watch Video Solution

2. Calculate the density of NH_{3} at $30^{\circ} \mathrm{C}$ and

5 atm pressure.

- Watch Video Solution

3. When $4.215 g$ of a metallic carbonate was
heated in a hard glass tube, the CO_{2} evolved
was found to measure 1336 mL at $27^{\circ} \mathrm{C}$ and

700 mm pressure. What is the equivalent weight of the metal?

D Watch Video Solution

4. A hydrogen contains $10.5 g$ of carbon per gram of hydrogen. If $1 L$ of the vapour of the hydrocarbon at $127^{\circ} \mathrm{C}$ at 1 atm pressure weights $2.8 g$, then find the molecular formula of the hydrocarbon.
5. The pressure in a bulb dropped from 2000 to

1500 mmHg in 47 min when the contained oxygen leaked through a small hole. The bulb was then evacuated. A mixture of oxygen and another gas of molecular weight 79 in the molar ratio of $1: 1$ at a total pressure of 4000 mm of mercury was introduced. Find the molar ratio of the two gases remaining in the bulb after a period of 74 min .
6. At room temperature, ammonia gas at 1 atm
pressure and hydrogen chloride gas at Patm pressure are allowed to effuse through identical pin holes from opposite ends of a glass tube of $1 m$ length and of uniform crosssection. Ammonium chloride is first formed at a distance of 60 cm from the end through which HCl gas is sent in. What is the value of P ?

- Watch Video Solution

7. Calculate the average kinetic energy (in joule) per molecule in 8.0 g of methane at $27^{\circ} C$.

D Watch Video Solution

8. Oxygen is present in a $1 L$ flask at a pressure of $7.6 \times 10^{-10} \mathrm{mmHg}$. Calculate the number of oxygen molecules in the flask at $0^{\circ} C$.

- Watch Video Solution

9. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is found to be 1 atm . If $3 g$ of another gas B is then heated in the same flask, the total pressure becomes 1.5atm. Assuming ideal gas behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.

- Watch Video Solution

10. The density of mercury is $13.6 \mathrm{gmL} L^{-1}$.

Calculate the approximate diameter of an
atom of mercury assuming that each atom is occupying a cube of edge length equal to the diameter of the mercury atom.

D Watch Video Solution

11. Give reasons for the following in one or two sentences.
(a) A bottle of liquor ammonia should be cooled before open it the stopper.
(b) Equal volumes of gases contain equal number of moles.
12. Calculate the root mean square velocity of ozone kept in a closed vessel at $20^{\circ} \mathrm{C}$ and 82 cmHg pressure.

D Watch Video Solution

13. A spherical ballon of 21 cm diameter is to be
filled with hydrogen at $S T P$ from a cylinder containing the gas at 20 atm and $27^{\circ} \mathrm{C}$. If the
cylinder can hold $2.82 L$ of water, calculate the number of balloons that can be filled up .

D Watch Video Solution

14. The average velocity of CO_{2} at the temperature T_{1} Kelvin and the most probable veloctiy at T_{2} Kelvin is $9.0 \times 10^{4} \mathrm{cms}^{-1}$. Calculate the values of T_{1} and T_{2}.

D Watch Video Solution

15. Calculate the volume occupied by 5.0 g of acetylene gas at $50^{\circ} \mathrm{C}$ and 740 mm pressure.

D Watch Video Solution

16. At room temperature, the following reaction proceeds nearly to completion:
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$

The dimer, $\mathrm{N}_{2} \mathrm{O}_{4}$, solidfies at 262 K . A 250 mL
flask and a 100 mL flask are separated by a stopcock. At $300 K$, the nitric oxide in the larger flask exerts a pressure of 1.053 atm and
the smaller one contains oxygen at 0.789 atm .

The gase are mixed by opening the stopcock and after the end of the reaction the flasks are cooled to $220 K$. Neglecting the vapour pressure of the dimer, find out the pressure and composition of the gas remaining at $220 K$
. (Assume the gases to behave ideally)

D Watch Video Solution

17. At $27^{\circ} C$, hydrogen is leaked through a tiny
hole into a vessel for 20 min . Another
unknown gas at the same temperature and pressure as that of hydrogen is leaked through
the same hole for 20 min . After the effusion of the gases, the mixture exerts a pressure of 6 atm . The hydrogen content of the mixture is
0.7 mol . If the volume of the container is $3 L$, what is the molecular weight of the unknown gas?

D Watch Video Solution
18. A gas bulb of $1 L$ capacity contains
2.0×10^{11} molecules of nitrogen exerting a pressure of $7.57 \times 10^{3} \mathrm{Nm}^{-2}$. Calculate the root mean square (rms) speed and the temperature of the gas molecules. If the ratio of the most probable speed to the root mean square is 0.82 , calculate the most probable speed for these molecules at this temperature.
19. An $L P G$ cylinder weighs 14.8 kg when empty. When full it weighs 29.0 kg and the weight of the full cylinder reduces to 23.2 kg .

Find out the volume of the gas in cubic metres
used up at the normal usage conditions and the final pressure inside the cylinder. Assume $L P G$ to be n-butane with normal boiling point of $0^{\circ} C$.

- Watch Video Solution

20. A 4:1 molar mixture of He and CH_{4} is contained in a vessel at 20^{-}pressure. Due to a hole in the vessel, the gas mixture leaks out.

What is the composition of the mixture effusing out initially?

D Watch Video Solution

21. A mixture of ethane $\left(C_{2} H_{6}\right)$ and ethene
$\left(C_{2} H_{4}\right)$ occupies $40 L$ at 1.00 atm and at 400 K .
The mixture reacts completely with 130 g of O_{2}
to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Assuming ideal gas
behaviour, calculate the mole fractions of $C_{2} H_{4}$ and $C_{2} H_{6}$ in the mixture.

D Watch Video Solution

22. The composition of the equilibrium mixture
$\left(C l_{2} 2 C l\right)$, which is attained at $1200^{\circ} C$, is determined by measuring the rate of effusion
through a pin hole. It is observed that a 1.80 mmHg pressure, the mixture effuses
$1.16 \times$ as fact as krypton effuses under the same conditions. Calculate the fraction of
chlorine molecules dissociated into atoms
(atomic weight of $K r$ is 84).

D Watch Video Solution

23. A mixture of ideal gases is cooled up to
liquid helium temperature $(4.22 K)$ to form an ideal solution. Is this statement true or false? Justify your answer in not more than two lines.

D Watch Video Solution

24. One way of writing the equation of state for real gases is
$P V=R T\left[1+\frac{B}{V}+\ldots\right]$
where B is a constant. Derive an approximate expression for B in terms of the van der Waals constants a and b.

- Watch Video Solution

25. An evacuated glass vessel weighs $50.0 g$ when empty, 148.0 g when filled with a liquid of
density $0.98 g m L^{-1}$, and $50.5 g$ when filled with an ideal gas at 760 mmHg at 300 K . Determine the molar mass of the gas.

- Watch Video Solution

26. For the reaction
$\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \mathrm{RO} 2(\mathrm{~N})+1 / 2 \mathrm{O}_{2}(g)$
Calculate the mole fraction of $\mathrm{N}_{2} \mathrm{O}_{5}(g)$ decomposed at a constant volume and temperature, if the initial pressure is

600 mmHg and the pressure at any time is 960 mmHg . Assume ideal gas behaviour.

- Watch Video Solution

27. Using van der Waals equation, calculate the constant a when $2 m o l$ of a gas confined in a
$4 L$ flasks exerts a pressure of 11.0 atm at a temperature of $300 K$. The value of b is $0.05 \mathrm{Lmol}^{-1}$.
28. One mole of nitrogen gas at 0.8 atm takes $38 s$ to diffuse through a pinhole, while 1 mol of an unknown fluoride of xenon at 1.6 atm takes
$57 s$ to diffuse through the same hole.
Calculate the molecular formula of the compound.

D Watch Video Solution

29. The pressure exerted by $12 g$ of an ideal gas
at temperature $t^{\circ} C$ in a vessel of volume
Vlitre is 1atm. When the temperature is
increased by $10^{\circ} C$ at the same volume, the pressure increases by 10%. Calculate the temperature t and volume V. (Molecular weight of the gas is 120).

D Watch Video Solution

30. The compression factor (compressibility factor) for 1 mol of a van der Waals gas at $0^{\circ} \mathrm{C}$ and 100 atm pressure is found to be 0.5 . Assuming that the volume of a gas molecule is
neligible, calculate the van der Waals constant a.

- Watch Video Solution

31. The density of the vapour of a substance at

1 atm pressure and 500 K is $0.36 \mathrm{kgm}^{-3}$. The vapour effuses through a small hole at a rate of 1.33 times faster than oxygen under the same condition.
(a) Determine (i) the molecular weight, ($i i$) the molar volume (iii) the compression factor (Z)
of the vapour, and $(i v)$ which forces among the gas molecules are dominating, the attractive or the repulsive?
(b) If the vapour behaves ideally at $100 K$, determine the average translational kinetic energy of a molecule.

D Watch Video Solution

32. The average velocity of gas molecules is
$400 \mathrm{~ms}^{-1}$. Calculate their $r m s$ velocity at the same temperature.
33. Which of the following statement is/are true? According to kinetic theory of gase
A. Collisions are always elastic.
B. Heavier molecules transfer more momentum to the wall of the container.
C. Only a small number of molecules have
very high velocity.
D. Between collisions, the molecules move in straight lines with constant velocities.

D Watch Video Solution

34. To an evacuated vessel with movable piston
under external pressure of 1 atm 0.1 mole of He
and 1.0 mole of an unknown compound vapour pressure 0.68 atm at $0^{\circ} \mathrm{C}$ are introduced

Considering the ideal gas behaviour the total
volume (in litre) of the gases at $0^{\circ} C$ is close to
(Watch Video Solution

Ex 5.1

1. At constant temperature a gas occupies a
volume of 200 mL at a pressure of 0.720 bar. It
is subjected to an external pressure of 0.900
bar. What is the resulting volume ?
2. a vessel of 120 mL capacity contains a certain amount of gas at 1.2 bar pressure and $35^{\circ} \mathrm{C}$.

The gas is transferred to another vessel of volume 180 mL at $35^{\circ} \mathrm{C}$. What would be its pressure?

- Watch Video Solution

3. $200 \mathrm{~cm}^{2}$ of a ga at 800 mm pressure is allowed to expand till the pressure is 0.9 atm
keeping ath temperature constant. Calculate the volume of the gas.

D Watch Video Solution

4. A thin glass bulb of 100 mL capacity is evacuated and kept in 2.0 L container at $27^{\circ} \mathrm{C}$ and 800 mm pressure. If the bulb implodes isothermally, calculate the new pressure in the container in kilopascals (kPa)

D Watch Video Solution

5. A bulb A containing gas at 1.5 bar pressure was connected to an evacuated vessel of 1.0 $d m^{3}$ capacity through a stopcock. The final pressure of the system dropped to 920 mbar at the same temperature. What is the volume of the container A ?

- Watch Video Solution

6. Draw a graph of $\log P$ vs $\log (1 / V)$ for a fixed amount of a gas at constant temperature.
7. when a ship is sailing in Pacific Ocean where temperature is $23.4^{\circ} \mathrm{C}$, a ballon is filled with 2.0 L of ship reaches Indian Ocean where temperature is $26.1^{\circ} C$?

D Watch Video Solution

8. A sample of gas occupies of 10 L at $127^{\circ} \mathrm{C}$ and I bar Pressure. The gas is cooled to
$-73^{\circ} \mathrm{C}$ at the same pressure. What will be the volume of the gas?

D Watch Video Solution

9. A gas occupies 100.0 mL at $50^{\circ} \mathrm{C}$ and I atm pressure. The gas is cooled at constant pressure so that its volume is reduced to 50.0 mL. what is the final temperautre?

D Watch Video Solution
10. A vessel of capacity $400 \mathrm{~cm}^{3}$ contains
hydrogen gas at 1 atm pressure at $7^{\circ} \mathrm{C}$. In order to expel $28.57 \mathrm{~cm}^{3}$ of the gas at the same pressure, to what temperature the vessel should be heated?

D Watch Video Solution

11. $2.25 d \mathrm{~m}^{3}$ of chlorine at 283 K is heated until
the volume becomes $30 d \mathrm{~m}^{3}$. To what temperature the gas must be raised to accomplish the change?
12. 1 L of air weighs 1.293 g at $0^{\circ} \mathrm{C}$ and 1 atm pressure. At becomes $30 \mathrm{dm}^{3}$. To what temperature the gas must be raised to accomplish the change ?

- Watch Video Solution

13. A sample of CO with volume 500 mL at a pressure of 760 mm is to be compressed to a
volume of 450 mL . What additional pressure is
required to accomplish the change if the temperature is kept constant?

D View Text Solution

14. A flask having a volume of 250.0 mL and containing air is heated to $100^{\circ} \mathrm{C}$ and sealed.

Then the flask is cooled to $25^{\circ} \mathrm{C}$, immersed in water, and opened. What volume of water will be drawn back into the flask, assuming the pressure remaining constant ?
15. A flask containing 250 mg of air at $27^{\circ} \mathrm{C}$ is heated till 25.5% of air by mass is expelled from it. What is the final temperatuer of the flask ?

D View Text Solution

1. Assuming ideal behaviour, calculate Boyle's
law constant for each of the following gase at
$25^{\circ} C$
a. 10 g of O_{2} in 2 L container
b. 8 g of CH_{4} in 5 L container

D View Text Solution

2. A sample of gas is taken in a closed vessel at
$20^{\circ} \mathrm{C}$. The gas is heated until the pressure is doubled. What is the final temperature?
3. What volume of O_{2} at 2.00 atm pressure and
$27^{\circ} \mathrm{C}$ is requried to burn 10.0 g of heptane
$\left(C_{7} H_{16}\right) ?$
$\mathrm{C}_{7} \mathrm{H}_{16}+11 \mathrm{O}_{2} \rightarrow 7 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

D Watch Video Solution
4. The mass of $525 \mathrm{~cm}^{3}$ of a gaseous compound at $28^{\circ} \mathrm{C}$ and 730 torr was found to
be 0.900 g . Calculate the molar mass of the compound.

- Watch Video Solution

5. The temperature and pressure in

Chnadigarh are $35^{\circ} \mathrm{C}$ and 740 mm , respectively, whereas at shimla these are $10^{\circ} \mathrm{C}$ and 710 mm , respectively. Calculate the ratio of the densities, d_{1} and d_{2} of air at chandigarh and at shimla.
6. Two flasks A and B have equal volume. Flask

A contains hydrogen at 300 K while flask B has
an equal mass of CH_{4} at 600 K .
which flask contains larger number of moleculars?
b. In which flask is the pressure greater and by
how many times?

D View Text Solution
7. 2.9 g of a gas at $90^{\circ} \mathrm{C}$ occupie the same volume as 0.184 g of H_{2} at $17^{\circ} \mathrm{C}$ at the same pressure. What is the molar mass of the gas ?

- Watch Video Solution

8. Calculate the pressure of 4.0 mol of a gas
occupying $5 d m^{3}$ at 3.32 bar pressure. $(\mathrm{R}=0083$
bar $d m^{3} K^{-1} \mathrm{~mol}^{-1}$)

- View Text Solution

9. Calculate the pressure exerted by 56 g of an ideal gas (with molar mass $28 \mathrm{~g} \mathrm{~mol}^{-1}$) enclosed in a vessel of volume $0.1 \mathrm{~m}^{3}$ at 300 K $\left(\mathrm{R}=8.314 \mathrm{~N} \mathrm{~m} \mathrm{~mol}^{--1} \mathrm{~K}^{-1}\right)$

D Watch Video Solution

10. An air bubble has a radius of 0.50 cm at the
bottom of a water tank where the temperature
is 280 K and the pressure is 280 kPa . When the
bubble rises to the surface, the temperature
changes to 300 K and pressure to 300 K and
pressure to 100 kPa . Calculate the radius of the bubble at the surface

D View Text Solution

11. A gas cylinder having a volume of 25.0 L contains a mixtue of butane $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$ and isobutane $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$ in the ratio of $3: 1$ by moles. If the pressure inside the cylinder is 6.78×10^{6} pa and the temperature is 298 K , calculate the number of molecular of each gas
assuming ideal gas behaviour. (1 atm = 101325
$\mathrm{Pa})$

- Watch Video Solution

12. 600 mL of nitrogen at 30 K is cooled to 5 K at the same pressure. Calculate the new volume.
13. 300 L of ammonia gas at $20^{\circ} \mathrm{C}$ and 20 atm
pressure is allowed to expand in a space of 600 L capacity and to a pressure of 1 atm.

Calculate the drop in temperature.

- Watch Video Solution

14. A 1 L flask cantaing vapours of methyl alcohol (molar mass 32) at a pressure was
$10^{-3} \mathrm{~mm}$. How many molecules of mehtyl alcohol are left in the flask?
15. Temperature at the foot of a mountian is $30^{\circ} \mathrm{C}$ and pressure is 760 mm , whereas at the top of the mountain these are $0^{\circ} \mathrm{C}$ and 710 mm . Compare the densities of the air at the
foot and top of the mountain.

- Watch Video Solution

16. A large flask fitted with a stopcock is evacuated and weighted. Its mass is found to
be 134.567 g . It is then filled at a pressure of
735 mm and $131^{\circ} \mathrm{C}$ with a gas of unknown
molecular mass and then reweighed. Its mass
is 137.456 g . The flask is then rewighed. Its
mass weighted again, its mass is now 1067.9 g .
Assuming that the gas is ideal, calculate the molar mass of the gas.

D View Text Solution

Ex 5.3

1. 200 mL of hydrogen and 250 mL of nitrogen, each measured at $15^{\circ} \mathrm{C}$ and 760 mm pressure of the mixtue at $15^{\circ} \mathrm{C}$?

Watch Video Solution

2. 400 mL of N_{2} gas at 700 mm and 300 mL of
H_{2} gas at 800 mm are introduced into a vessel of $2 L$ at the same temperature. Calculate the final pressure of the gas mixture.
3. Two vessels of capactie 1.5 L and 2.0 L containing hydrogen at 750 mm pressure and oxygen at 100 mm pressure, respectivity are connected to each other through a valve. What will be the final pressure of the gaseous mixture assuming that the temperature remains constant?
4. A diver uses noen- oxygen mixture containing 7.4 g oxygen and 167.5 g neon for respiretion under water. If the pressure partial pressures of oxygen and neon in the mixture?

Atomic mass of oxygen is u and that of neon is 20.2 u.

D Watch Video Solution

5. A sample of O_{2} is collected over water at $22^{\circ} \mathrm{C}$ and 748 torr pessure. The volume of the gas collected is $82.0 \mathrm{~cm}^{3}$. How many grams of
oxygen are present in the gas?. The valour pressure of water at $22^{\circ} \mathrm{C}$ is 19.8 torr.

D Watch Video Solution

6. A cylinder containing nitrogen gas and same
liquid water at a temperature of $25^{\circ} \mathrm{C}$. The total pressure n the cylinder is 600 mm . The piston is moved into the cylinder til the volume is halved keeping the temperature constant. If the aqueous tension at $25^{\circ} \mathrm{C}$ is
23.8 mm, calculate the final total pressure in the cylinder.

D Watch Video Solution

7. A gaseous mixture containing 8 g of O_{2} and

227 mL of N_{2} at STPis enclosed in flask of 5 L
capacity at $0^{\circ} C$. Find the partial pressure of each gas and calculate the total pressure in the vessel.
8. A flask of 1.5 L capacity contains 400 mg of
O_{2} and 60 mg of H_{2} at $100^{\circ} \mathrm{C}$. Calculate the total pressure of the gaseous mixture. If the mixture is permitted to react to form water vapour at $100^{\circ} \mathrm{C}$, what materials will be left and what will be their partial pressures?

- View Text Solution

9.50 g of dinotrogen $\left(N_{2}\right)$ and 2.0 g of helium
are enclosed in a vessel already containing 2.0
g of oxygen. Calculated the total pressure and
the fraction of the total pressure exerted by He. The volume of the vessel is $10 \mathrm{~cm}^{3}$ and the temperature is 300 K

Watch Video Solution

10. A gaseous mixture contains 5.6 g of carbon
(II) oxide and rest carbon (IV) oxide. When it is enclosed in a vessel of $10 d m^{3}$ at 293 K , it recorded a pressure of 2.0 bar. What is the partical pressure of each oxide of carbon?
11. At room temperature, ammonia gas at

1 atm pressure and hydrogen chloride gas at
Patm pressure are allowed to effuse through identical pin holes from opposite ends of a glass tube of $1 m$ length and of uniform crosssection. Ammonium chloride is first formed at a distance of 60 cm from the end through which $H C l$ gas is sent in. What is the value of $P ?$

D Watch Video Solution

12. The volumes of ozone and chlorine diffusing in the same time are $35 m L$ and $29 m L$, respectively. If the molecular weight of chlorine is 71 , calculate the molecular weight of ozone.

- Watch Video Solution

13. Which will diffuse faster, ammonia of CO_{2} ?

What are their relative rates of diffusion?
14. A $4: 1$ molar mixture of He and CH_{4} is contained in a vessel at 20 bar pressure. Due to a hole in the vessel, the gas mixture leaks out. What is the composition of the mixture effusing out initially?

D Watch Video Solution

15. $20 \mathrm{dm}^{3}$ of SO_{2} diffuse through a porous
partition in 60 s . what volume of O_{2} will diffuse under similar conditions in 30 s ?
16. One mole of nitrogen gas at 0.8 atm takes
$38 s$ to diffuse through a pinhole, while 1 mol of
an unknown fluoride of xenon at 1.6atm takes
$57 s$ to diffuse through the same hole.

Calculate the molecular formula of the compound.

D Watch Video Solution

Ex 5.4

1. Write the kinetic gas equation and express it
as $P=\frac{2}{3} E$, where E is the kinetic energy per unit volume.

- Watch Video Solution

2. Calculate the root mean square velocity of ozone kept in a closed vessel at $20^{\circ} \mathrm{C}$ and 82 cmHg pressure.
3. The density of steam at $100^{\circ} \mathrm{C}$ and $10^{5} \mathrm{~Pa}$ pressure is $0.6 \mathrm{Kgm}^{-3}$. Calculate the compresibility factor of steam.

- Watch Video Solution

4. The average velocity of CO_{2} at the temperature $T_{1} K$ and maximum (most) proable velocity of CO_{2} at the temperature $T_{2} K$ is $9 \times 10^{4} \mathrm{cms}^{-1}$. Calculate the values of T_{1} and T_{2}.
5.20 mol of chlorine gas occupies a volume of 800 ml at 300 K and $5 \times 10^{6} \mathrm{~Pa}$ pressure.

Calculate the compressibility factor of the gas
$\left(\mathrm{R}=0.083 \mathrm{~L}\right.$ bar $\left.\mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$. Comment whether the gas is more compressible or less compressible under the conditions

D Watch Video Solution

6. Calculate the pressure of 154 g carbon dioxide in a vessel of 2.0 L capacity at $30^{\circ} \mathrm{C}$, a

$$
\begin{aligned}
& =\quad 648 \quad \text { L } \quad \text { bar }
\end{aligned}
$$

- Watch Video Solution

7. At what temperature will 128 g of SO_{2} confined in a vessel of $5 d \mathrm{~m}^{3}$ capacity exhibit a pressure of 10.0 bar? The van der waals constants for $S O_{2}$ are a $=6.7$ bar $L^{2} m o \leq^{-2}$ and $\mathrm{b}=0.0564 \mathrm{Lmol}^{-1}$.
8. Given that the co-volume of O_{2} gas is
$0.318 \mathrm{Lmol}^{-1}$. Calculate the radius of O_{2} molecule.

- View Text Solution

9. when a tyre is pumped up rapidly, its temperature rises, would you expect the same effect if air were an ideal gas?

D View Text Solution
10. Can we use Boyle's law to calculate the volume of a real gas from its initial state to final state during adiabatic expansion?

D Watch Video Solution

11. Which postulate of kinetic theory can be used to justfy Dalton's law of partial pressures
?

- View Text Solution

12. A porpous cup is filled with H_{2} gas at the atmospheric pressure and is connected to a thin glass tube a vertical position. The second end of the tube is immersed in water below it.

After some time, water rises in the glass tube.

Explain giving reasons.

D View Text Solution

13. What is the meaning of pressure of the gas?
14. What is the difference between barometer and manometer?

- Watch Video Solution

15. Based upon Boyle's law, draw the plot of P
vs V and also PV vs P .
16. If a plot a V vs.${ }^{\circ} C$ at constant pressure is drawn, at what temperatures will it cut the volume and temperature axes?

D View Text Solution

17. Why do we add 273 to the temperature while dealing with problems on gas equation?
18. Given the relationship between the molar volume of a gas and its molar mass.

- View Text Solution

19. What would have happened to the pressure of a gas if the collisions of its molecules had not been elastic?
20. Which postulate of kinetic theory are invalid at low temperature of high pressure?

- View Text Solution

21. What is the relation between three types of molecular speeds at a given temperature?

- Watch Video Solution

22. In the plot of Z (compressibility factor) vs P,Z attains a value of unity at a particular pressure. What does it signify?

D View Text Solution

23. Draw the plot $\log P$ vs $\log \vee$ for Boyle's law.

- View Text Solution

24. Draw the plot $\log \mathrm{V}$ vs $\log \mathrm{T}$.

- View Text Solution

25. Is it possible to cool the gas to 0 K ?

- View Text Solution

26. Why excluded volume v is four times the actual volume of molecules?

- View Text Solution

27. What is the ratio of average molecular KE of CO_{2} to that of SO_{2} at $27^{\circ} \mathrm{C}$?

- View Text Solution

28. Point out the difference between London
dispersion forces and dipole-dipole forces.

- View Text Solution

29. Why are falling liquid drops spherical?

- Watch Video Solution

30. Give the relationship between pressure and density of gas.

- View Text Solution

31. What happens if a liquid is heated to the critical temperature of its vapour?

- View Text Solution

32. Can a gas with $\mathrm{a}=0$ be liquefied?

D View Text Solution

Exercises (Fill In The Blanks)

1. Aqueous tension is the vapour pressure of And depends only upon
2. Boiling point is the temperature at which the vapour pressure becomes equal to.

- Watch Video Solution

3. Unit of visocity of liquids is
(Watch Video Solution
4. For real gases, $\frac{P V}{n R T} \ldots . . .$.
5. The law describing realtionship between P and V of ideal gas at constant temperature is called.

- Watch Video Solution

6. Vapor pressure of a liquid decreases with increases in

7. The larger the molecular size..........should be

 the value of b.D Watch Video Solution
8. Density of the gas is......... Proportioanl to pressure.

D Watch Video Solution

9. Temperature above which gas cannot be
liquefied is called
10. Volume occupied by gas at T_{c} and P_{c} is called.

- Watch Video Solution

11. The gas molecule can be liquefied and solidified due to the pressure of Force of attraction.
12. The numerical value of b istimes the actual volume occupied by one mole of gas molecule.

- Watch Video Solution

13. The ratio of molar volume to ideal molar volume is called
14. For hydrogen gas, Z isunity at all pressure.

- Watch Video Solution

15. Unit of a would be.........

D Watch Video Solution
16. Real gases behave ideally atand
17. Z for ideal gas is.

- Watch Video Solution

18. Surface tension decreases with increase in
(D) Watch Video Solution
19. Viscosity of liquid decreases with increase in

- Watch Video Solution

20. Total pressure of gases isto the sum of partial pressure of all gases.

D Watch Video Solution

21. The equation of state is $P V=$

D Watch Video Solution

22. Rate of diffusion is proportional to

- Watch Video Solution

23. Total kinetic energy of gas depends only upon.

- Watch Video Solution

24. According to Charles's law, volume of gas is
related to pressure as

D Watch Video Solution

25. The equation of $\frac{P_{c} V_{c}}{R T_{c}}=$

- Watch Video Solution

Exercises (Ture False)

1. In the van der Waals equation
$\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T$
the constant a reflects the actual volume of the gas molecules.
(Watch Video Solution
2. Kinetic energy of a molecule is zero at $0^{\circ} C$

D Watch Video Solution

3. A gas in a closed container will exert much
higher pressure due to gravity at the bottom than at the top.

- Watch Video Solution

4. The graph between PV vs P at constant temperature is linear parallel to the pressure axis.

D Watch Video Solution

5. Real gases show deviation from ideal behaviour at low temperature and high pressure.
6. In the microscopic model of the gas, all the moleculer are supposed to movek with the same velocities.

D Watch Video Solution

7. For real gases, at high temperature $Z=0$
small value of a means gas can be easily liquefied.
8. Small value of a means, gas can be easily liqueifed.

D Watch Video Solution

9. Rate of diffusion is directly proportional to
the square root of molecular mass of substance.

D Watch Video Solution
10. For ideal gases, $Z=1$ at all temperature and pressure.

- Watch Video Solution

$$
T \rightarrow
$$

12. The pressure of moist gas is higher than pressure of dry gas.
(Watch Video Solution
13. Gases do not occupy volume and do not
have force of attraction.
14. The van der Waal equation of gas is
$\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T$

D Watch Video Solution
15. Surface tension and surface energy have different dimensions.

D Watch Video Solution
16. The plot of $P V$ vs P at particular temperature is called isovbar.
(Watch Video Solution
17. Equal volume of all gases always contains equal number of moles.

Watch Video Solution
18. A gas with $\mathrm{a}=0$ cannot be liquified.

- Watch Video Solution

19. The van der waals constants have same values for all the gases.

D Watch Video Solution

20. All the molecules in a given sample of gas move with same speed.
21. The observed pressure of real gas is more than the ideal pressure.

D Watch Video Solution

22. Heat capacity of a diatomic gas is higher
than that of a monoatomic gas.

- Watch Video Solution

23. Dry O_{2} is heavier than moist O_{2}.
24. The excluded volume (b) is $=4$ (volume of one gas molecule)

D Watch Video Solution
25. The gas above T_{c} cannot be liquefied.

D Watch Video Solution

