©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

THERMODYNAMICS

Solved Examples

1. A process in which pressure remians constant is called
A. Isochroic process
B. Isothermal process
C. Adiabatic process
D. Isobaric process
2. Which one of the following is a state property/function?
A. Heat
B. Work
C. Internal energy
D. Potential enegry

- Watch Video Solution

3. Which of the following is an extensive property?
A. Ethanlpy
B. Concentration
C. Density
D. Visocity

- Watch Video Solution

4. If temperature of the system remains constant during the course of change, the change is
A. Isothermal
B. Adiabatic
C. Isobaric
D. Isochroic

- Watch Video Solution

5. A process in which volume remians constant is called
A. Isochoric process
B. Isothermal process
C. Adiabatic process
D. Isobaric process

Watch Video Solution
6. Identify intensive property from the following
A. Volume
B. Mass
C. Enthalpy
D. Temperature
7. Which of the following is an extensive property of the system?
A. Refractive index
B. Viscosity
C. Tempertature
D. Volume

- Watch Video Solution

8. An isolated system is that system in which
A. There is not exchange of enegry with the surroundings.
B. There is exchange of mass nad enegry with the surroundings.
C. There is no exchange of enegry and mass with the surroundings.
D. There is exchange of mass with the surroundings.
9. Thermodynamic is concerned with
A. Total enegry of a system
B. Enegry chnages in a system
C. Rate of a chemicle change
D. Mass changes in nuclear reactions

- Watch Video Solution

10. Internal enegry of a system of molecules is determined by taking into consideration its
A. Kinetic enegry
B. Vibrational enegry
C. Rotantional energy
D. All kinds of energies present in the molecules

- Watch Video Solution

11. A thermodynamic quantity is that
A. Which is used in thermochemistry.
B. Which obeys all laws of thermodynamic.
C. Quantity whose value depends only upon the state of the system.
D. Quantity which is used in measuring thermal changes.

Watch Video Solution

12. Thermodynamic equilibrium involves
A. Chemical equilibrium
B. Thermal equilibrium
C. Mechanical equilibrium
D. All the the three
13. For an adiabatic process, which of the following relations is correct?
A. $\Delta U=0$
B. $P \Delta V=0$
C. $q=0$
D. $q=+w$
14. Two liters of N_{2} at $0^{\circ} \mathrm{C}$ and 5 atm pressure is expanded isothermally against a constant external pressure of 1 atm untill the pressure of gas reaches 1 atm . Assuming gas to be ideal, claculate the work of expansion.

- Watch Video Solution

15. Calculate the work done when done when 1.0 mol of water at 373 K vaporises against an atmosheric pressure of 1.0atm. Assume ideal gas behaviour.

- Watch Video Solution

16. Identify different steps in the following cyclic process:

17. One made of an ideal gas is put through a series of changes as shown in the graph in which A, B, and C, mark the three stages of the system. At each stage the variables are shown in the graph.
a. Calculate the pressure at three stages of system.
b. Name the process during the following chnages:
i. A to B ii. B to C
iii. CtoA iv. Overall change

- Watch Video Solution

19. A thermodynamic system consists of a cylinder-piston attangement with ideal gas in it. It goes from the state i to the state f as shwon in the
figure. The work done by gas during the process is

A. Zero
B. Negative
C. Positibe
D. Nothing can be predicted
20. A cyclie process $A B C D$ is shwon in a V - T diagram. The corresponding $P-V$ diagram is

A.
a. P

B.
b. ${ }^{P}$

C.
c. P

- Watch Video Solution

21. Which one of the following statements about state funcitons is correct?
A. Internal enegy enthalpy, heat and work are all thermodynamic state functions.
B. A state function depends both on the past history of a system and on it present condition.
C. The state function describing a system of equilibrium chnage with time.
D. The difference in a state function for any process depends only on the intial and final states.

- Watch Video Solution

22. Consider the modes of transformations of a gas form state A to state B as shown in the given $P-V$ diagram. Which one of the following is true?

A. $\Delta H=q$ along $A \rightarrow C$.
B. ΔS is same along both $A \rightarrow B$ and $A \rightarrow C \rightarrow B$
C. w is same along both $A \rightarrow B$ and $A \rightarrow C \rightarrow B$
D. $w>0$ along both $A \rightarrow B$ and $A \rightarrow C$

- Watch Video Solution

23. Which of the following statements is/are correct?

Volume

\longrightarrow
A. A represents isochroic process
B. B represents adiabatic process
C. C represents isothermal process
D. D represents isobaric process
24. In $P-V$ diagram shown below,

A. $A B$ represents adiabatic process.
B. $A B$ represents isothermal process.
C. $A B$ represents isobaric process.
D. $A B$ represents isochoric process.

D Watch Video Solution

25. The following are the P - V diagram for cyclic process for a gas. In which of these processes, heat is not obsorbed by the gas?
A.

B.

C.
c. P
D.
d. P

- Watch Video Solution

26. The graph betwene P and V at constant temperature should look like
A.

B.
b. P (r
C.

D Watch Video Solution

27. In the cyclic process shown on P_{V} diagram, the magnitude of the work done is

A. $\pi\left(\frac{P_{2}-P_{1}}{2}\right)^{2}$
B. $\pi\left(\frac{V_{2}-V_{1}}{2}\right)^{2}$
C. $\frac{\pi}{4}\left(P_{2}-P_{1}\right)\left(V_{2}-V_{1}\right)$
D. $\pi\left(P_{2} V_{2}-P_{1} V_{1}\right)$
28. A cyclic process is shown in the $P-T$ diagram.

Which of the curve shows the same process on a $V-T$ diagram?
A.
a.

C.

- Watch Video Solution

29. Calculate the work done in open vessel at 300 K , when 92 gNa reacts with water. Assume ideal gas neture.

- Watch Video Solution

30. Calculate the work done when a system raises a colume of water of radius 5.0 mm through 10 cm .

- Watch Video Solution

31. Calculate the work done when 56 g of iron reacts with hydrochloric acid in (a) a closed vessel of fixed volume and (b)an open beaker at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

32. A system is provided 50 J of heat and work done on the system is 20 J .

What is the change in the internal enegry?

- Watch Video Solution

33. The work done by a system is $10 J$, when $40 J$ heat is supplied to it.

Calculate the increase in the internal enegry of system.

- Watch Video Solution

34. A gas occupies $2 L$ at $S T P$. It is provided $300 J$ heat so that it volume becomes 2.5 L at 1 atm . Caluclate the change in its internal enegry.
35. A certain electric motor produced 16 kJ of energy each second as mechanical work and lost $3 k J$ as heat to the surroundings. What is the change in the internal energy of the motor and its power supply each second?

- Watch Video Solution

36. An insulated container is divided into two equal portions. One portion contains as ideal gas at pressure P and tenperature T. The othe portion is a perfect vaccume. If a hole is opened between the two portions, claculate a. the change in internal energy.
b. the change in temperature.

- Watch Video Solution

37.2.8g of N_{2} gas at 300 K and 20atm was allowed to expand isothermally against a constant external pressure of 1 atm . Calculate $\Delta U, q$, and W for the gas.

- Watch Video Solution

38. At $27^{\circ} \mathrm{C}$, one mole of an ideal gas is compressed isothermally and reversibly from a pressure of $20 a t m$ to 100atm. Calculate ΔU and q. $\left(R=2\right.$ calK $\left.^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

39. One mole of an ideal gas is heated at constant pressure from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
a. Calculate the work done.
b. If the gas were expanded isothermally and reversibly at $0^{\circ} \mathrm{C}$ from 1 atm to some othe pressure P, what must be the final pressure if the maixmum work is equal to the work in (a)?

- Watch Video Solution

40. Calculate the maximum work done in expanding 16 g of oxygen at 300 K occupying volume of $5 \mathrm{dm}^{3}$ and isothermally untill the volume become $25 \mathrm{dm}^{3}$?

- Watch Video Solution

41. Calculate q, w, and ΔU for the isothermal reversible expansion of one mole of an ideal gas from an initial pressure of 2.0 bar to a final pressure of 0.2 bar at a constant temperature of $273 K$.

- Watch Video Solution

42. Calculate the maximum work down when pressure on $10 g$ of hydrogen is reduced from 20 to 1 atm at a constant temperature of 273 K . The gas
behaves ideally. Will there be any change in internal energy. Also calculate q. $\left(R=2 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

43. One mole of an ideal mono-atomic gas is taken round cyclic process
$A B C D$ as shown in figure below. Calculate

A. The work done by the gas.
B. The heat rejected by the gas in the path CAand the heat absorbed by the gas in the path $A B$.
C. The net heat absorbed by the gas in the path $B C$.
D. The maixmum temperature attained by the gas during the cycle.

- Watch Video Solution

44. An ideal gas absorbs 600cal of heat during expansion from $10 L$ to $20 L$ against the constant pressure of 2 atm . Calculate the change in internal enegry.

- Watch Video Solution

45. Calculate the workdone, and change in internal enegry taking place when an ideal gas undergos isothermal expansion.

- Watch Video Solution

46. An ideal mono-atomic gas follows the path $A B C D$. The work donw during the complete cycle is

A. $-P V$
B. $-2 P V$
C. $-\frac{1}{2} P V$
D. Zero
47. The net work done through a series of changes reported in figure for an ideal gas is

A. $-6 \times 10^{5} \mathrm{~J}$
B. $-7 \times 10^{5} \mathrm{~J}$
C. $-12 \times 10^{5} \mathrm{~J}$
D. $+12 \times 10^{5} \mathrm{~J}$
48. Heat energy absorbed by a system in going through a cyclic process shown in figure is

A. $10^{7} \pi J$
B. $10^{4} \pi J$
C. $10^{2} \pi J$
D. $10^{-3} \pi J$
49. A given mass of gas expands from state A to state b by three paths 1,2 , and 3 as shown in the figure below. If w_{1}, w_{2} and w_{3}, respectively, be the work done by the gas along three paths, then

A. $w_{1}>w_{2}>w_{3}$
B. $w_{1}<w_{2}<w_{3}$
C. $w_{1}=w_{2}=w_{3}$
D. $w_{1}<w_{2}, w_{1}<w_{3}$
50. An ideal gas is taken around the cycle $A B C D$ shown in the P_{V} diagram below. The net work done by the gas during the cycle is equal to

A. $12 P_{1} V_{1}$
B. $6 P_{1} V_{1}$
C. $3 P_{1} V_{1}$
D. $P_{1} V_{1}$
51. An ideal mono-atomic gas follows the path $A B D C$. The work done during the complete cycle is

A. $P V$
B. $2 P V$
C. $\frac{1}{2} P V$
D. Zero
52. Can we measure the absolute value of internal enegry?

- Watch Video Solution

53. One mole of SO_{2} at 298 K and 1 atm pressure is heated in a closed vessel so that its temperature is 475 K and pressure is 4 atm . It is then cooled so that temperature becomes 298 K and pressure is 1atm. What is that change in the internal energy of the gas?

- Watch Video Solution

54. Neither q nor w is a state function but $q+w$ is a state function. Explain why?

- Watch Video Solution

55. Which one of the following is a state property/function?
A. q
B. Heat capacity
C. Specific heat capcity
D. ΔH^{Θ}

- Watch Video Solution

56. Under what conditions is the heat of reaction equal to enthalpy change?

- Watch Video Solution

57. A gas expands from $3 \mathrm{dm}^{3}$ to $5 \mathrm{dm}^{3}$ anainst a constant pressure of 3 atm .

The work done during the expansion if used ti heat 10 mol of water at temperature $290 K$. Find the final temperature of water, if the specific heat of water $=4.18 g^{-1} K^{-1}$.
58. Classify the following as open, closed, or isolated system.
a. A beaker containing as opne, boiling water.
b. A chemical recation taking place in an enclosed flask.
c. A cup of tea placed on a table.
d. Hot water placed in perfectly insulated closed container.
e. A thermos flask containing hot coffee.

- Watch Video Solution

59. If ΔH is the enthalpy change and ΔU the change in internal energy accompanying a gaseous reaction, then
A. ΔH is always less than ΔU.
B. ΔH is always than ΔU.
C. ΔH is less than ΔU if the number of moles of gaseous products is greater than the number of moles of gaseous reactants.
D. ΔH is less than ΔU if the number of moles of gaseous products is
less than the number of moles of gaseous reatants.

- Watch Video Solution

60. Water is boiled under a pressure of 1.0atm. When an electric current of 0.50 A from a 12 V supply is passed for 300 s through a resistance in thermal contact with it, it is found that $0.789 g$ of water is vaporied.

Calculate the molar internal enegry and enthalpy chnages at boiling point (373.15K).

- Watch Video Solution

61. 10 g of argon gas is compressed isothermally and reversibly at a temperature of $27^{\circ} \mathrm{C}$ from $10 L$ to $5 L$. Calculate $q, w, D \leq t a U$, and ΔH for this process. $R=2.0$ cal $^{-1} \mathrm{~mol}^{-1}, \log _{10} 2=0.30$. Atomic weight of $\mathrm{Ar}=40$.
62. The internal enegry change in the conversion of 1.0 mol of the calcite form of CaCO_{3} to the aragonite from is +0.2 kJ . Calculate the enthalpy change when the pressure is 10 , given that the densities of the solids are 2.71 and $2.93 \mathrm{gcm}^{-3}$, respectively.

- Watch Video Solution

63. 100 mL of a liquid is contained in an insulated container at a pressure of 1 bar. The pressure is steeply increased to 100bar. The volume of the liquid is decreased by $1 m L$ at this constant pressure. Find ΔH and ΔU.

- Watch Video Solution

64. $(\Delta H-\Delta U)$ for the formation of carbon monoxide (CO) from its elements at 298 K is
$\left(R=8.314 \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
A. $-1238.78 \mathrm{Jmol}^{-1}$
B. $1238.78 \mathrm{Jmol}^{-1}$
C. $-2477.57 \mathrm{Jmol}^{-1}$
D. $2477.57 \mathrm{Jmol}^{-1}$

Watch Video Solution

65. The difference between the heats of reaction at constant pressure and a constant volume for the reaction
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ in kJ is
A. -7.43
B. +3.72
C. -3.72
D. +7.43
66. The latent heat of vapourisation of a liquid at 500 K and atm pressure is $30 \mathrm{kcalmol}^{-1}$. What will be change in internal energy of 3 mol of liquid at same temperature?
A. 13.0 kcal
B. -13.0 kcal
C. 27.0kcal
D. -27.0 kcal

- Watch Video Solution

67. What is value of ΔU for reversible isothernal evaporation of 90 g water at $100^{\circ} \mathrm{C}$? Assuming water vapour behaves as an ideal gas, $\Delta_{\text {vap. Water }} H=540 \mathrm{calg}^{-1}$
A. $9 \times 10^{3} \mathrm{cal}$
B. $6 \times 10^{3} \mathrm{cal}$
C. 4.49 cal
D. None of the above

- Watch Video Solution

68. One moles of strem is compressed reversibly of water at boiling point $100^{\circ} \mathrm{C}$. The heat of vapourisation of water at $100^{\circ} \mathrm{C}$ and 1 atm is $540 \mathrm{calg}^{-1}$. Calculate ΔU and ΔH.

- Watch Video Solution

69. The enthalpy combustion of a substance
A. Is always positive
B. Is always negative
C. Can be either zero or greater than zero
D. Is unpredictable till the calculations are done

- Watch Video Solution

70. One litre-atmosphere is approximately equal to
A. 19.2 J
B. 101.3J
C. 8.31 J
D. 831 J
A. Greater than that of carbohydrate or protein
B. less than either of carbohydrate of protein
C. Less than that of carbohydrate
D. Greater than that of carbohydrate

- Watch Video Solution

72. Xg of entanal was subjected to combustion in a boub calorimeter and the heat produced is $Y J$. Then
A. ΔU (combustion) $=-X J$
B. ΔU (combustion) $=Y J$
C. ΔU (combustion) $=-\frac{44 Y}{X} \mathrm{Jmol}^{-1}$
D. ΔH (combustion) $=\frac{44 Y}{X} \mathrm{Jmol}^{-1}$
73. The reaction
$\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})$ should be
A. Endothermic
B. Exothermic
C. $\Delta H=0$
D. Unperdictable

- Watch Video Solution

74. A hypothetical reaction, $A \rightarrow 2 B$, proceeds via following sequence of steps

$$
\begin{array}{ll}
A \rightarrow C & \Delta H=q_{1} \\
C \rightarrow D & \Delta H=q_{2} \\
\frac{1}{2} D \rightarrow B & \Delta H=q_{3}
\end{array}
$$

The heat of reaction is
A. $q_{1}-q_{2}+2 q_{3}$
B. $q_{1}+q_{2}-2 q_{2}$
C. $q_{1}+q_{2}+2 q_{3}$
D. $q_{1}+2 q_{2}-2 q_{3}$

Watch Video Solution

75. A gas expands from $3 \mathrm{dm}^{3}$ to $5 \mathrm{dm}^{3}$ against a constant pressure of 3 atm .

The work done during the expansion if used to heat 10 mol of water at temperature $290 K$. Find the final temperature of water, if the specific heat of water $=4.18 g^{-1} K^{-1}$.
A. 290.2 K
B. 290.8 K
C. 298.0 K
D. 293.7 K

- Watch Video Solution

76. The magnitude of ethalphy changes for reversible adiabatic expansion of a gas from volume V_{1} to V_{2} (in L)is ΔH_{1} and for irreversible adiabatic expansion for the same expansion is ΔH_{2}. Then
when ΔU_{1} and ΔU_{2} are the changes in mahnitudes for the internal energy of gas in the two expansions.
A. $\Delta H_{1}>\Delta H_{2}$
B. $\Delta H_{1}<\Delta H_{2}$
C. $\Delta H_{1}=\Delta H_{2}$
D. $\Delta H_{1}=\Delta U_{1}$ and $\Delta H_{2}=\Delta U_{2}$
77. 1 mol of a mono-atomic gas is subjected to following cyclic process:

a. Calculate T_{1} and T_{2}.
b. Calculate $\Delta U, q$, and W in calories in each step of cyclic process.

- Watch Video Solution

78. A mono-atomic ideal gas of two moles is taken through a cyclic process starting from A as shwon in the figure below.

The volume ratios are $V_{B} / V_{A}=2$ and $V_{D} / V_{A}=4$. If the temperature T_{A} at A is $27^{\circ} \mathrm{C}$. Calculate

a. The temperature of gas at B.
b. Heat absorbed or evolved in each process.
c. Total wrok done in cyclic process.

- Watch Video Solution

79. 4.0 mol of an idela gas initially at 1.5 atm and 300 K is heated to 600 K where the pressure is 4.5atm. Also, $C_{v m}=a+b T, a=25 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, b=0.03 \mathrm{JK}^{-2} \mathrm{~mol}^{-1}$. Determine $\Delta U, \Delta H$.
80. The molar heat capacity for a gas at constant T and P is
3
A. $\frac{-}{2} R$
B. $\frac{5}{2} R$
C. Dependent on the atomicity of the gas
D. Infinity

- Watch Video Solution

81. A system has internal energy equal to $U_{1}, 450 \mathrm{~J}$ of heat is taken out of it and 600 J of work is done on it. The final enegry of the system will be
A. $\left(U_{1}+150\right)$
B. $(U+1050)$
C. $\left(U_{1}-150\right)$
D. None of these

- Watch Video Solution

82. A lead bullet weighing 18.0 g and travelling at $500 \mathrm{~m} / \mathrm{s}$ is embedded in a wooden block of 1.00 kg . If both the nullet and the block were initially at $25.0^{\circ} \mathrm{C}$, what is the final temperature of the block containing bullet?

Assume no temperature loss to the surrounding. (Heat capacity of wood $=0.5 \mathrm{kcalkg}^{-1} \mathrm{~K}^{-1}$, heat capacity of lead $\left.=0.030 \mathrm{kcalkg}^{-1} \mathrm{~K}^{-1}\right)$

- Watch Video Solution

83. A mixture contains $8 g H e$ and $14 g N_{2}$ in a vessel at 300 K . How much heat is required to increase the rms speed of these molecules to double their value. Also calculate the final temperatures.

- Watch Video Solution

84. At very low temperatures, heat capacity of a solid is proporional to T^{3} and can be written as: $C_{P}=\alpha T^{3}$ where $\alpha=3 \times 10^{8} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. What is the change in enthalpy when a solid is heated from 0 K to 300 K ?

- Watch Video Solution

85. Consider a class room of dimesions $5 \times 10 \times 3 m^{3}$ at temperature $20^{\circ} \mathrm{C}$ and pressure 1 atm . There are 20 peoples in the room, each losing energy at the average of 150 W . Assuming that the walls, ceiling, floor, and furniture perfectly insulated and none of them absorbing heat, how much time will be needed for rising the temperature of air in the room to body temperature, i.e., $37^{\circ} \mathrm{C}$? For air $C_{P}=\frac{7}{2} R$. Loss of air to outside as the temperature rises may be neglected.

- Watch Video Solution

86. 50 students sitting in the room of $5 \times 10 \times 3 m^{3}$ dimensions. The air inside the room is at $27^{\circ} \mathrm{C}$ and 1 atm pressure. If each student loses 100
watt heat per second assuming the walls, ceiling floor, and all the material present inside the room is perfectly insulated as well as neglecting loss of air to the outside as the temperature is raised, how much rise in temperature will be noticed in 10 min ? Given $C_{P}=\frac{7}{2} R$ for air.

- Watch Video Solution

87. A sample of ideal gas ($\gamma=1.4$) is heated at constant pressure. If $140 J$ of heat is supplied to gas, find ΔU and W'.

- Watch Video Solution

88. Graph for specific heat at constant volume for a monoatomic gas

C.
c. \qquad
$3 R / 2$
D.

Watch Video Solution

89. Heat is supplied to a certain homogeneous sample of amtter, at a uniform rate. Its temperature is plotted against time, as shown in the figure
below. Which of the following conclusions can be drawn?

A. Its specific heat capacity is greater in the solid state than in the liquid state.
B. Its specific heat capacity is smaller in the solid state than in the liquid state.
C. Its latent heat of vaporisation is greater than its latent heat of fusion.
D. Its latent heat of vaporisation is smaller than its latent heat of fusion.

- Watch Video Solution

90. Specific heat of constatn pressure of a diatomic gas having molar mass
M is approximately equal to
A. $\frac{\gamma R}{M(\gamma-1)}$
B. $\frac{Y}{R M}$
C. $\frac{M}{R(\gamma-1)}$
D. $\frac{\gamma R M}{\gamma+1}$

- Watch Video Solution

91. The following is not an endothermic reactions:
A. Combustion of methane
B. Decompositions of water
C. Dehydrogenation of ethane to ethylene
D. Conversion of graphite to diamond

- Watch Video Solution

92. For the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{2}(\mathrm{~g})$
Which of the following is correct?
A. $\Delta H=\Delta U$
B. $\Delta H>\Delta U$
C. $\Delta H<\Delta U$
D. $\Delta H=2 \Delta U$

Answer: c

- Watch Video Solution

93. 100 mL of a liquid is contained in an insulated container at a pressure of 1 bar. The pressure is steeply increased to 100bar. The volume of the liquid is
decreased by $1 m L$ at this constant pressure. Find ΔH and ΔU.

- Watch Video Solution

94. 14 g oxygen at $0^{\circ} \mathrm{C}$ and 10 atm is subjected to reversible adiabatic expasnion to a pressure of 1 atm . Calculate the work done in
a. Litre atomsphere.
b. Caloride (given, $C_{P} / C_{V}=1.4$).

- Watch Video Solution

95. When a polyatomic gas undergoes an adiabatic process, its tempertaure and volume are related by the equation $T V^{n}=$ constant, the value of n will be
A. 1.33
B. 0.33
C. 2.33
D. 1

- Watch Video Solution

96. A mono-atomic gas X and an diatomic gas γ both initially at the same temperature and pressure are compressed adiabatically from a volume V to V/2. Which gas will be at higher temperature?
A. X
B. Y
C. both are same
D. Cannot be determined
97. A flask of 1 L having $\mathrm{NH}_{3}(\mathrm{~g})$ at 2.0 atm and 200 K is connected with the another flask of volume 800 mL having $\mathrm{HCI}(\mathrm{g})$ at 8 atm and 200 K through a narrow tube of negligible volume. The two gases react to form $\mathrm{NH}_{4}(\mathrm{CI}(\mathrm{s})$ with evolution of $43 \mathrm{kJmol}^{-1}$ heat. if heat capacity of $\mathrm{HCI}(\mathrm{g})$ at constant volume is $20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and neglecting heat capacity of flask, $\mathrm{NH}_{4} \mathrm{CI}$, and volume of solid $\mathrm{NH}_{4} \mathrm{CI}$ formed, calculated in the falscks, produced, final temperature, and final presure in the flasks. (Assume $\left.R=0.08 \mathrm{LatmK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

98. A gas originally at 1.10 atm and 298 K underwent a reversible adiabatic expansion to 1.00 atm and 287 K . What is the molar heat capacity of the gas?

- Watch Video Solution

99. One mol of an ideal diatomic gas underwent an adiabatic expansion form $298 K, 15.00 \mathrm{~atm}$, and 5.25 L to 2.5 atm against a constant external
pressure of 1.00 atm . What is the final temperature of the system?

- Watch Video Solution

100. A sample of organ gas at 1 atm pressure and $27^{\circ} \mathrm{C}$ expands reversibly and adiabatically from $1.25 \mathrm{dm}^{3}$ to $2.50 \mathrm{dm}^{3}$. Calculate the enthalpy change in this process. $C_{v m}$ for orgon is $12.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

101. The given figure shows a chnge of state A to state C by rtwo paths $A B C$ and $A C$ for an ideal gas. Calculate.

a. The path along which work done is least.
b. The internal enegry at C if the internal enegry of gas at A is 10 J and amount of heat supplied to change its state to C through the path $A C$ is 200 J.
c. The amount of heat supplied to the gas to go from A to B, if inetrnal enegry of gas at state B is 10 J .

- View Text Solution

102. In a thermodynamic process hellium gas obeys the law $T / p^{2 / 5}=$ constant. The heat given n moles of He in order to rise the temperature form T to $2 T$ is
A. $8 R T$
B. $4 R T$
C. $16 R T$
D. Zero

- Watch Video Solution

103. Which of the following graphs given below show (s) adiabatic process?

A. II, III
B. I, III
C. II, IV
D. I, IV

- Watch Video Solution

104. The following curve represent adiabatic expansions of gases $\mathrm{He}, \mathrm{O}_{2}$, and
O_{3} not necessarily in order. Which curve represnets for O_{3} ?

A. I
B. II
C. III
D. Any one of these

- Watch Video Solution

105. During an adiabatic expansion, a gas obeys $V T^{3}=$ constant. The gas must be
A. Monoatomic
B. Diatomic
C. Polyatomic
D. Any of above
106. Show that in an isothermal expansion of an ideal gas, a $\Delta U=0$ and b .
$\Delta H=0$.

- Watch Video Solution

107. A certain gas in expanded from (1L, 10atm) to (4L, 5atm) against a constnt external pressure of 1atm. If the initial temperature of gas is 300 K and heat capacity for the process is $50 \mathrm{~J}^{\circ} \mathrm{C}^{-1}$, the enthalpy change during the process is: (use: $1 L$ - atm $=100 J$)
A. 15 kJ
B. 15.7kJ
C. 14.3kJ
D. 14.7 kJ
108. 1 mol of an ideal gas at 400 K and 10 atm is allowed to expand, adiabatically, against 2.0atm external pressure. Find the final temperature of the gas. [Use: $C_{v}=\frac{5}{2} R$]

- Watch Video Solution

109. 5 mol of an ideal gas at 293 K is expanded isothermally from an initial pressure 0.4 kPa to a final pressure of 0.1 kPa against a constant external pressure of 0.1 kPa .
a. Calcualte q, w, Δ, U, and ΔH.
b. Calculate the corresponding value of $q, w, \Delta U$, and ΔH if the above pressure is carried out reversibly.

- Watch Video Solution

110. For adiabatic expansiion of a perfect gas, $\frac{d P}{P}$ is
A. $\frac{d V}{V}$
B. $\gamma \cdot \frac{d V}{V}$
C. $-\gamma \frac{d V}{V}$
D. $-\gamma^{2} \frac{d V}{V}$

Answer: C

- Watch Video Solution

111. $\mathrm{He}, \mathrm{N}_{2}$, and O_{3} are expanded adiabatically and their expansion curves between P and V are plotted under silimar conditions. About the ratio of the slope, which one is not correct?
A. The ratio of slopes of $P-V$ curves for He and $\mathrm{O}_{3} i s 1.25$.
B. The ratio of slopes of P - V curves for He and $N_{2} i s 1.20$.
C. The ratio of slopes of P - V curves for N_{2} and $O_{3} i s 1.05$.
D. The slope of He is least steeper and for O_{3} is most steeper.
112. In the pressure-volume diagram given below, the isochoric, isothermal, isobaric, and isoentropic parts, respectively, are:

A. $B A, A D, D C, D B$
B. $D C, C B, B A, A D$
C. $A B, B C, C D, D A$
D. $C D, D A, A B, B C$
113. What will be the final volume of a mole of an idela gas at $20^{\circ} \mathrm{C}$ when it expands adiabatically from a volume of $5 L$ at $30^{\circ} C$? C_{V} of the gas = 5cal/degree.

- Watch Video Solution

114. 2 mol of an idela gas expand reversibly and isothermally at $25^{\circ} \mathrm{C}$ from $2 L$ to $10 L$. Calculate the work done by the gas in calories.

- Watch Video Solution

115. A gas is expanded from volume V_{1} to V_{2} through three different process:
a. Reversible adiabatic
b. Reversible isothermal
c. Irreversible adiabatic (against a constant external pressure $P_{e x}$)

The correct option is
A.

$$
\left[\left(T_{f}\right)_{G a s}\right]_{\text {Reversible isothermal }}>\left[\left(T_{f}\right)_{G a S}\right]_{\text {Reversible adiabatic }}>\left[\left(T_{f}\right)_{G a s}\right]_{\text {Irreve }}
$$

B.

$$
\left[\left(T_{f}\right)_{G a s}\right]_{\text {Reversible isothermal }}>\left[\left(T_{f}\right)_{G a S}\right]_{\text {Irreversible adiabatic }}>\left[\left(T_{f}\right)_{G a s}\right]_{\text {Reve }}
$$

C. $w_{\text {Reversible isothermal }}>w_{\text {Irreversible adiabatic }}>w_{\text {Reversible adiabatic }}$
D. $\left(P_{f}\right)_{\text {Reversible isothermal }}>\left(P_{f}\right)_{\text {Reversible adiabatic }}>\left(P_{f}\right)_{\text {Irreversible adiabatic }}$

- Watch Video Solution

116. Work done in expansion of an idela gas from $4 L$ to $6 L$ against a constant external pressure of 2.5 atm was used to heat up 1 mol of water at 293K. If specific heat of water is $4.184 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$, what is the final temperature of water.
117. Calculate the standard heat of formation of carbon disulphide (l). Given that the standard heats of combusion of carbon (s), sulphur (s) and acrbon disulphide (I) are $-390,290.0$, and $-1100.0 \mathrm{kJmol}^{-1}$. Respectively.

- Watch Video Solution

118. Calculate the heat of formation of acetic acid form the following date:
a. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}^{\Theta}=-200.0 \mathrm{kcal}$
b. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-94.0 \mathrm{kcal}$
c. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H^{\Theta}=-68.0 \mathrm{kcal}$

- Watch Video Solution

119. Given the following standard heats of reactions:
(a) heta of formation of water $=-68.3 \mathrm{kcal}$, (b) heat of combustion of $\mathrm{C}_{2} \mathrm{H}_{2}=-310.6 \mathrm{kcal}$, (c) heat of combustion of ethylene $=-337.2 \mathrm{kcal}$.

Calculate the heat of reaction for the hydrogenation of acetylene at constant volume and at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

Abstract

120. Calculate ΔH of the reaction, $\mathrm{H}-\mathrm{C} \mid \mathrm{CI}-\mathrm{CI}(\mathrm{g}) \rightarrow \mathrm{C}(\mathrm{s})+2 \mathrm{H}(\mathrm{g})+2 \mathrm{CI}(\mathrm{g})$

Bond enegry for $C-H$ bond and $C-C I$ bond are 400 kJ and 320 kJ , respectively.

- Watch Video Solution

121. Calculate the enthalpy of the following reaction:
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}(\mathrm{~g})$
The bond enegries of $C-H, C-C, C=C$, and $H-H$ are $99,83,147$,and 104kcal respectively.

- Watch Video Solution

122. The bond dissociation energies of gaseous $\mathrm{H}_{2}, \mathrm{C1}_{2}$, and $\mathrm{HC1}$ are 100,50 , and $100 \mathrm{kcalmol}^{-1}$, respectively. Calculate the enthalpy of formation of $\mathrm{HC1}(\mathrm{~g})$.

- Watch Video Solution

123. Calculate the enthalpy of formation of ammonia from the following bond enegry data:

$$
\begin{aligned}
& (N-H) \text { bond }=389 \mathrm{kJmol}^{-1},(\mathrm{H}-\mathrm{H}) \text { bond }=435 \mathrm{kJmol}^{-1}, \quad \text { and } \\
& (N \equiv N) \text { bond }=945.36 \mathrm{kJmol}^{-1} .
\end{aligned}
$$

- Watch Video Solution

124. Methanol can be prepared synthetically by heating carbon monoxide and hydrogen gases under pressure in the presenc eof a catalyst. The reaction is

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})
$$

Determine the enthalpy of this reaction by an appropriate combinantion of
the following date:
a. $C_{(\text {graphite) }}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}), \Delta H^{\Theta}=-110.5 \mathrm{kJmol}^{-1}$
b. $C_{(\text {graphite })}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-393.5 \mathrm{kJmol}^{-1}$
c. $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H^{\Theta}=-285.9 \mathrm{kJmol}^{-1}$
d. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}^{\Theta}=-726.6 \mathrm{kJmol}^{-1}$

- Watch Video Solution

125. How much heat will be required to make 2 kg of calcium carbide $\left(\mathrm{CaC}_{2}\right)$ according to the following reaction?
$\mathrm{CaO}(\mathrm{s})+3 \mathrm{C}(\mathrm{s}) \rightarrow \mathrm{CaC}_{2}(\mathrm{~s})+\mathrm{CO}(\mathrm{g})$
The heats of formations of $c a O(s), \mathrm{CaC}_{2}(\mathrm{~s})$, and $\mathrm{CO}(\mathrm{g})$ are -151.0, - 14.0, and
-26.0kcal, respectively.

- Watch Video Solution

126. When 2 mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ are completely burnt 3129 kJ of heat is liberated.

Calculate the heat of formation of $\mathrm{C}_{2} H_{6} . \Delta_{f} H^{\Theta}$ for CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are -395
and -286kJ, respectively.

D Watch Video Solution

127. The standared enthalpies of formation at 298 K for $\mathrm{CC1}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HC1}(\mathrm{~g})$ are $-106.7,-241.8,-393.7$, and $-92.5 \mathrm{kJmol}^{-1}$, respectively. Calculate $\Delta H^{\Theta} 298 \mathrm{~K}$ for the reaction $\mathrm{CC1}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{HCI}_{g}$

- Watch Video Solution

128. Calculate the standard internal energy change for the following reactions at $25^{\circ} \mathrm{C}$:
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
$\Delta_{f} H^{\Theta} a t 25^{\circ} \mathrm{C}$ for $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})=-188 \mathrm{kJmol}^{-1} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-286 \mathrm{kJmol}^{-1}$

- Watch Video Solution

129. Calculate heat of combusion of ethene:
H

H H

- Watch Video Solution

130. The molar heat of formation of $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$ is -360.0 kJ and those of $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are +80.00 kJ and -285.00 kJ , respectively, at $25^{\circ} \mathrm{C}$ and 1 atm . Calculate ΔH and ΔU for the reaction.
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

- Watch Video Solution

131. Standard heat of formation at 298 K is arbitraily taken to be zero for
A. Liquid bromine
B. Gaseous bromine atoms
C. Gaseous bromine molecules
D. Solid bromine

- Watch Video Solution

132. The standared heat of formation listed for gaseous NH_{3} is -11.0 kcalmol $^{-1}$ at 298 K . Given that at $298 k$, the constant pressure heat capacities of gaseous N_{2}, H_{2}, and NH_{3} are, respectively, 7.0, 6.0 and 8.0 calmol $^{-1}$. Determine $\Delta H^{\Theta} 298 K$ and $\Delta H_{773 K}$ for the reactions:
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$

- Watch Video Solution

133. At $25^{\circ} \mathrm{C}$, the following heat of formations are given:

Compound $\quad \mathrm{SO}_{2}(\mathrm{~g}) \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{f} H^{\Theta} \mathrm{kJmol}^{-1}-296.0-285.0$
For the reactions at $25^{\circ} \mathrm{C}$,
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{FeS}_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-137 \mathrm{kJm}_{\mathrm{J}} \mathrm{l}^{-1}$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{So}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-562 \mathrm{kJmol}^{-1}$
Calculate the heat of formation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{FeS}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

134. From the data at $25^{\circ} \mathrm{C}$:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}_{\text {(graphite) }} \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}(\mathrm{g}), \Delta H^{\Theta}=492.0 \mathrm{kJmol}^{-1}$
$\mathrm{FeO}(\mathrm{s})+C_{(\text {graphite })} \rightarrow \mathrm{Fe}(\mathrm{s}) \mathrm{CO}(\mathrm{g}), \Delta H^{\Theta}=155.0 \mathrm{kJmol}^{-1}$
$C_{(\text {graphite })}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-393.0 \mathrm{kJmol}^{-1}$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-282.0 \mathrm{kJmol}^{-1}$
Calculate the standard heat of formation of $\mathrm{FeSO}(s)$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$.

- Watch Video Solution

135. Calculate the enthalpy of formation of $\Delta_{f} H$ for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ from tabulated data and its heat of combustion as represented by the following equaitons:
i. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta H^{\Theta}=-241.8 \mathrm{kJmol}^{-1}$
ii. $C(s)+O_{2}(g) \rightarrow C O_{2}(g), \Delta H^{\Theta}=-393.5 \mathrm{kJmol}^{-1}$
iii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-1234.7 \mathrm{kJmol}^{-1}$
a. $-2747.1 \mathrm{kJmol}^{-1}$ b. $-277.7 \mathrm{kJmol}^{-1}$
c. $277.7 \mathrm{kJmol}^{-1} \mathrm{~d} .2747 .1 \mathrm{kJmol}^{-1}$

- Watch Video Solution

136. When enthyne is passed through a red hot tube, then formation of benzene takes place:
$\Delta_{f} H_{\left(C_{2} \mathrm{H}_{2}\right)(\mathrm{g})}^{\Theta}=230 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\Theta}\left(C_{6} H_{6}\right)(g)=85 \mathrm{kJmol}^{-1}$
Calculate the standard heat of trimerisation of ethyne to benzene:
$3 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$
A. $205 \mathrm{kJmol}^{-1}$
B. $605 \mathrm{kJmol}^{-1}$
C. $-605 \mathrm{kJmol}^{-1}$
D. $-205 \mathrm{kJmol}^{-1}$

- Watch Video Solution

137. ΔH^{Θ} ' 298 K of methanol is given by the chemical equation
A. $\mathrm{CH}_{4}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
B. C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
C. $\mathrm{C}($ dimanond $)+\frac{1}{2} \mathrm{O}_{2}(g)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
D. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$

- Watch Video Solution

138. Which of the following methods for the calculation of heat of a reaction is not correct?
A. $\Delta H_{\text {recation }}^{\Theta}=\sum \Delta_{f} H_{\text {products }}^{\Theta}-\sum \Delta_{f} H_{\text {reactants }}^{\Theta}$
B. $\Delta H_{\text {reaction }}^{\Theta}=\operatorname{Sum}(B E)_{\text {reactants }}-\sum(B E)_{\text {products }}$
C. $\Delta H_{\text {reaction }}^{\Theta}-\sum \Delta_{\text {comb }} H_{(\text {reactants })}^{\Theta}-\sum \Delta_{\text {comb }} H_{(\text {products })}^{\Theta}$
D. $\left.\Delta H_{\text {recation }}^{\Theta}=\sum \Delta_{\text {solution }} H_{(\text {reactants })}^{\Theta}-\sum \Delta_{\text {solution }) H_{-}((П u c t s}\right)^{\Theta}$

- Watch Video Solution

139. Given:
i. $2 \mathrm{Fe}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta H^{\Theta}=-193.4 k J$
ii. $\mathrm{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{MgO}(\mathrm{s}), \Delta H^{\Theta}=-140.2 k J$

What is ΔH^{Θ} of the reaction?
$3 \mathrm{Mg}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 3 \mathrm{MgO}+2 \mathrm{Fe}$
A. $-227.2 k J$
B. -272.3 kJ
C. 227.2 kJ
D. 272.3 kJ

- Watch Video Solution

140. $\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{HCI}(\mathrm{g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})+\mathrm{CI}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-352.18 \mathrm{~kJ}$

Given heat of formation of $H F, \Delta_{f} H^{\Theta}(H F)=-268.3 k J$ The heat of formation of HCI will be
A. $-22 \mathrm{kJmol}^{-1}$
B. $88 \mathrm{kJmol}^{-1}$
C. $-92.21 \mathrm{kJmol}^{-1}$
D. $-183.8 \mathrm{kJmol}^{-1}$

- Watch Video Solution

141. Calculate ΔH at $85^{\circ} \mathrm{C}$ for the reaction:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Substance $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \mathrm{Fe}(\mathrm{s}) \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{H}_{2}(\mathrm{~g})$
$C_{P}^{\circ}\left(\mathrm{JK}^{-1} \mathrm{~mol}\right) \quad 103.0 \quad 25.0 \quad 75.0 \quad 28.0$

- Watch Video Solution

142. Ethanol was oxidised to acetic acid in a catalyst chamber at $18{ }^{\circ} \mathrm{C}$.

Calculate the rate of removel of heat to maintain the reaction chamber at $18^{\circ} \mathrm{C}$ with the feed rate of $30 \mathrm{kgh}^{-1}$ ethanol along with excess oxygen to the system at $18^{\circ} \mathrm{C}$, given that a $42 \mathrm{~mol} \%$ yield based on ethanol is obtained.

Given that
$\Delta_{f} H^{\Theta \prime} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-68.0 \mathrm{kcalmol}^{-1}$
$\Delta_{f} H^{\Theta}{ }^{\boldsymbol{\prime}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})=-66 \mathrm{kcalmol}^{-1}$
$\Delta_{f} H^{\Theta}{ }^{\prime} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})=-118 \mathrm{kcalmol}^{-1}$

- Watch Video Solution

143. Given two processes:
$\frac{1}{2} P_{4}(s)+3 C I_{2}(g) \rightarrow 2 P C I_{3}(I), \Delta H=-635 k J$
$P C I_{3}(l)+C I_{2}(g) \rightarrow P C I_{5}(s), \Delta H=-137 k J \quad$ ltbrlt \quad The value of Delta_(f) H^{\wedge} (Theta)ofPCI_(5) is
A. $454.5 \mathrm{kJmol}^{-1}$
B. $-454.5 \mathrm{kJmol}^{-1}$
C. $-772 \mathrm{kJmol}^{-1}$
D. $-498 \mathrm{kJmol}^{-1}$

- Watch Video Solution

144. The thermochemical equation for the combustion of ethylene gas,
$\mathrm{C}_{2} \mathrm{H}_{4}$, is
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}^{\Theta}=-337 \mathrm{kcal}$
Assuming 70% efficiency, calculate the weight of water at $20^{\circ} \mathrm{C}$ that can be converted into system at $100^{\circ} \mathrm{C}$ by buring $1 \mathrm{~m}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$ gas measured at STP. The heat of vaporisation of water at $20^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ are $1.00 \mathrm{kcalkg}^{-1}$ and $540 \mathrm{kcalkg}^{-1}$ respectively.
145. The heat of combusion of glycogen is about $476 \mathrm{kJmol}^{-1}$ of carbon. Assume that average heat loss by an adult male is 150 W . If we were to assume that all the heat comes from oxidation of glycogen, how many units of glycogen (1mol carbon per unit) must be oxidised per day to provide for this heat loss?

- Watch Video Solution

146. The temperature of a bomb calorimeter was found to rise by 1.617 K when a current of 3.20 A was passed for 27 s from a 12 V source. Calculate the calorimeter constant.

- Watch Video Solution

147. Assume that for a domestic hot water supply 150 kg water per day must be heated from $10^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ and gaseous fuel propane $\mathrm{C}_{3} \mathrm{H}_{8}$ is used for
this purpose. What moles and volume of propane (in L at $S T P$) would have to be used for heating domestic water, ΔH for combustion of propane is $-2050 \mathrm{kJmol}^{-1}$ and specific heat of water is $4.184 \times 10^{-3} \mathrm{kJg}^{-1}$.

- Watch Video Solution

148. The standard enthalpy of combustion at $25^{\circ} \mathrm{C}$ of hydrogen, cyclohexene $\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)$, and cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ are -241, - 3800, and $-3920 \mathrm{kJmol}^{-1}$ repectively. Calculate the heat of hydrogenation of cyclohexene.

- Watch Video Solution

149. A sample of $0.16 \mathrm{gCH}_{4}$ was subjected to combustion at $27^{\circ} \mathrm{C}$ in a bomb calorimeter. The temperature of the calorimeter system (including water) was found to rise by $0.5^{\circ} \mathrm{C}$. Calculate the heat of combustion of methane at
(a) constant volume and (b) constant pressure. The thermal capacity of calorimeter system is $17.0 \mathrm{kJK}^{-1}$ and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
150. The heat of combustion of ethane gas is $-368 \mathrm{kcalmol}^{-1}$. Assuming that 60% of heat is useful, how many m^{3} of ethane measured at NTP must be burned to supply heat to convert 50 kg of water at $10^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$?

- Watch Video Solution

151. The heat of combustion of ethylene at $18^{\circ} \mathrm{C}$ and at constant volume is
-330.0kcal when water is obtained in liquid state. Calculate the heat of combustion at constant pressure and at $18^{\circ} \mathrm{C}$?

- Watch Video Solution

152. A gas mixture of 3.67 L of ethylene and methane on complete combustion at $25^{\circ} \mathrm{C}$ produces 6.11 L of CO_{2}. Find out the heat evolved on
buring $1 L$ of the gas mixture. The heats of combustion of ethylene and methane are -1423 and $-891 \mathrm{kJmol}^{-1}$, respectively, at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

153. The heats of combustion of Ch_{4} and $\mathrm{C}_{4} \mathrm{H}_{10}$ are -890.3 and $-2878.7 \mathrm{kJmol}^{-1}$, respectively. Which of the two has greater efficiency as fuel per gram?

- Watch Video Solution

154. The heat of combustion of $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ are 890.3, 1559, 7 and $285.9 \mathrm{kJmol}^{-1}$, respectively. Which of these fuels is most efficient?

- Watch Video Solution

155. The standard molar heats of formation of ethane, carbon dioxide, and liquid water ate -21.1, -94.1, and -68.3kcal, respectively. Calculate the
standard molar heat of combustion of ethane.

- Watch Video Solution

156. The standard heats of formation of $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are $-76.0,-390.0$, and $-240.0 \mathrm{kJmol}^{-1}$, respectively. Calculate the amount of heat evolved by burning $1 \mathrm{~m}^{3}$ of methane measured under normal conditions.

- Watch Video Solution

157. In a gobar gas plant, gobar gas is formed by bacterial fermentation of animal refuse. It mainly contains methane and its heat of combustion is $-899 \mathrm{kJmol}^{-1}$ according to followinf equation:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-809 \mathrm{~kJ}
$$

How much gobar gas would have to be produced per day for a small village of 50 families, it it is assumed that each family requires 20000 kJ of enegry per day? The methane content in gobar gas is 80% by mass.
158. An intimate mixture of ferric oxide and aluminium is used as solid fuel in rockets. Calculate the fuel value per cm^{3} of the mixture.

Heats of formation and densities are as follows:
$H_{f\left(\mathrm{AI}_{2} \mathrm{O}_{3}\right)}^{\Theta}=-399 \mathrm{kcalmol}^{-1}, H_{f\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}^{\Theta}=-199 \mathrm{kcalmol}^{-1}$
Density of $\mathrm{Fe}_{2} \mathrm{O}_{3}=4.0 \mathrm{gcm}^{-3}$, Density of $A I=2.0 \mathrm{gcm}^{-3}$

- Watch Video Solution

159. Diborane isa potential rocket fuel that undergoes combustion according to the reaction,
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
From the following data, calculate the enthalpy change for the combustion of diborane:
A. $2 B(s)+\left(\frac{3}{2}\right) O_{2}(g) \rightarrow B_{2} O_{3}(s), \Delta H^{\Theta}=-1273 \mathrm{kJmol}^{-1}$
B. $H_{2}(g)+\left(\frac{1}{2}\right) O_{2}(g) \rightarrow H_{2} O(l), \Delta H^{\Theta}=-286 \mathrm{kJmol}^{-1}$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}=44 \mathrm{kJmol}^{-1}$
D. $2 B(s)+3 H_{2}(g) \rightarrow B_{2} H_{6}(g), \Delta H^{\Theta}=36 \mathrm{kJmol}^{-1}$

- Watch Video Solution

160. The ethalpy of formation of methane at constant pressure and 300 K is
-75.83 kJ . What will be the heat of formation at constant volume?
$\left[R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$

- Watch Video Solution

161. Select the correct statement from the following:
A. In exothermic reaction, the value of equilibrium constant increases with rise of temperature.
B. In endothermic reaction, the value of equilibrium constant decreases with rise in temperature.
C. In exothermic reaction, the value of equilibrium constant decreases with rise of temperature.
D. In endothermic reaction, the value of equilibrium constant remains constant with rise of temperature.

- Watch Video Solution

162. The buring of magnesium may be represented by:
$2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{MgO}(\mathrm{s}), \Delta H^{\Theta}=-1204 \mathrm{~kJ}\left(\mathrm{molO}_{2}\right)^{-1}$
Which one of the following correctly descride what would happen if the reaction were allowed to proceed at constant external pressure in such a way that no enegry transfer could taken place between the reaction mixture and its surroundings?
A. No reaction could occur.
B. The tempertaure of the reaction mixture would increase.
C. The temperature of the reaction mixture would decrease.
D. The pressure of the system would increase.

D Watch Video Solution

163. A natural gas may be assumed to be a mixture fo methane and ethane only. On complete combustion of 10 L of gas at STP the heat evolved was 474.6kJ. Assuming $\Delta_{\text {comb }} H^{\Theta} \mathrm{CH}_{4}(g)=-894 \mathrm{kJmol}^{-1}$ and composition of the mixture by volume.

- Watch Video Solution

164. The enthalpy changes for two reactions are given by the equations:
$2 \mathrm{Cr}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}(s), \Delta H^{\Theta}=-1130 \mathrm{~kJ}$
$C(s)+\frac{1}{2} O_{2}(g) \rightarrow C O_{2}(g), \Delta H^{\Theta}=-110 k J$
What is the enthalpy change in $k J$ for the following reactions?
$3 C(s)+\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{CO}(\mathrm{g})$
A. $-1460 k J$
B. -800 kJ
C. +800 kJ
D. +1020 kJ

Answer: c

- Watch Video Solution

165. Given that:
i. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-94.05 \mathrm{kcal}$
ii. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-68.32 \mathrm{kcal}$
iii. $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-310.62 \mathrm{kcal}$

The heat of formation fo acetylene is
A. -1802 kJ
B. +1802 kJ
C. -800 kJ
D. $+228 k J$

- Watch Video Solution

166. The standard molar heats of formation of ethane, carbon dioxide, and liquid water are -21.1, -94.1, and -68.3 kcal , respectively. Calculate the standard molar heat of combustion of ethane.
A. -372 kcal
B. -240 kcal
C. 162 kcal
D. 183.5 kcal
167. The reaction:
$\mathrm{NH}_{2} \mathrm{CN}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
Was carried out in a bomb caloriemeter. The heat released was $743 \mathrm{kJmol}^{-1}$.

The value of $\Delta H_{300 K}$ for this reaction would be
A. $-740.5 \mathrm{kJmol}^{-1}$
B. $-741.75 \mathrm{kJmol}^{-1}$
C. $-743.0 \mathrm{kJmol}^{-1}$
D. $-744.25 \mathrm{kJmol}^{-1}$

- Watch Video Solution

168. The value of ΔH_{O-H} is $109 \mathrm{kcalmol}^{-1}$. Then formation of one mole of water in gaseous state from $H(g)$ and $O(g)$ is accompanied by
A. Release of 218 kcal of enegry
B. Release of 109 kcal of enegry
C. Absorption of 218 kcal of enegry
D. Unpredicatable

Answer: A

- Watch Video Solution

169. In the reversible reaction of the type $A+B \Leftrightarrow A B$, in general.
A. Neither of the reactions will be endothermic.
B. Both forward and backward reactions are exothermic.
C. Forward reaction will be exothermic.
D. Backward reaction will be exothermic.
170. Which of the following expression is ture?
A. $\Delta_{f} H^{\Theta}(\mathrm{CO}, g)=\frac{1}{2} \Delta_{f} H^{\Theta}\left(\mathrm{CO}_{2}, g\right)$
B. $\Delta_{f} H^{\Theta}(C O, g)=\Delta_{f} H^{\Theta}(C$, graphite $)=\frac{1}{2} \Delta_{f} H^{\Theta}\left(O_{2}, g\right)$
C. $\Delta_{f} H^{\Theta}(C O, g)=\Delta_{f} H^{\Theta}(C O, g)-\frac{1}{2} \Delta_{f} H^{\Theta}\left(O_{2}, g\right)$
D. $\Delta_{f} H^{\Theta}(C O, g)=\Delta_{\text {comb }} H^{\Theta}(C$, graphite $)-\Delta_{\text {comb }} H^{\Theta}(C O, g)$

- Watch Video Solution

171. The heat of combustion of solid benzoic acid at constant volume is -321.30 kJ at $27^{\circ} \mathrm{C}$. The heat of combustion at constant pressure is
A. $-321.30-300 R$
B. $-321.30+300 R$
C. $-321.30-150 R$
D. $-321.30-900 R$
172. Calculate the enthalpy change when 50 mL of $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$ reacts with $25 m L$ of $0.01 M H C I$. Given that ΔH^{Θ} neutralisaiton of strong acid and string base is $140 \mathrm{kcalmol}^{-1}$
A. 14 kcal
B. 35 cal
C. 10 cal
D. 7.5 cal

- Watch Video Solution

173. Equal volumes of 1 MHCI and $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are neutralised by MNaOH solution and x and $y k J /$ equivalent of heat are liberated, respectively. Which of the following relations is correct?
A. $x=2 y$
B. $x=3 y$
C. $x=4 y$
D. $x=\frac{1}{2} y$

Answer: D

- Watch Video Solution

174. Which of the following acid will release maximum amount of heat when completely neutralised by strong base NaOH ?
A. 1 MHCI
B. $1 \mathrm{MHNO}_{3}$
C. $1 \mathrm{MHCIO}_{4}$
D. $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$
175. The enthalpy of neutralisation of a strong acid by a string base is $-57.32 \mathrm{kJmol}^{-1}$. The enthalpy of formation of water is $-285.84 \mathrm{kJmol}^{-1}$. The enthalpy of formation of hydroxy 1 ion is
A. $+228.52 \mathrm{kJmol}^{-1}$
B. $-114.26 \mathrm{kJmol}^{-1}$
C. $-228.52 \mathrm{kJmol}^{-1}$
D. $+114.2 \mathrm{kJmol}^{-1}$

- Watch Video Solution

176. A constant pressure calorimeter consists of an insulated neaker of mass
$92 g$ made up of glass with heat capacity $0.75 J K^{-1} g^{-1}$. The beaker contains 100 mL of 1 MHCI at $22.6^{\circ} \mathrm{C}$ to which 100 mL of 1 MNaOH at $23.4^{\circ} \mathrm{C}$ is added. The final temperature after the reactions is complete is $29.3^{\circ} \mathrm{C}$, What is ΔH per mole for this neutralization reaction? Assume that the heat capacities of all solutions are equal that of same volumes of water.

- Watch Video Solution

177. 150 mL of 0.5 NHCl solution at $25^{\circ} \mathrm{C}$ was mixed with 150 mL of 0.5 NNaOH solution at same temperature. Calculate the heat of neutralization of HCl with NaOH , if find temperature was recorded to be $29^{\circ} \mathrm{C}$.
$\left(\rho_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{~g} / \mathrm{mL}\right)$

- Watch Video Solution

178. The enthalpy change ΔH for the neutralisation fo $1 M H C I$ by caustic potash in dilute solution at 298 K is
A. 68 kJ
B. 65 kJ
C. 57.3 kJ
D. 50 kJ

- Watch Video Solution

179. Enthalpy of neutralisation of the reaction between $\mathrm{CH}_{3} \mathrm{COOH}(a q)$ and $\mathrm{NaOH}(\mathrm{aq})$ si $-13.2 \mathrm{kcalEq}^{-1}$ and that of the reaction between $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$ and $\mathrm{KOH}(a q)$ is $-13.7 \mathrm{kcalEq}^{-1}$. The enthalpy of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}(a q)$ is
A. $-0.5 \mathrm{kcalEq}^{-1}$
B. $+0.5 \mathrm{kcalEq}^{-1}$
C. $-26.9 \mathrm{kcalEq}^{-1}$
D. $+13.45 \mathrm{kcalEq}^{-1}$

- Watch Video Solution

180. Whenever an acid is neutralised by a base, the net reaction is
Θ
$H^{\oplus}(a q)+O H(a q) \rightarrow H_{2} O(l), \Delta H=-57.1 \mathrm{~kJ}$

Calculated the heat evolved for the following experiments?
a. 0.50 mol of HCI solution is neutralised by 0.50 mol of NaoH solution.
b. 0.50 mol of HNO_{3} solution is mixed with 0.30 mol of KOH solution.
c. 100 mL of 0.2 MHCI is mixed with 100 mL fo 0.3 MNaOH solution.
d. 400 mL of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is mixed with 600 mL of 0.1 MKOH solution.

- Watch Video Solution

181. $100 \mathrm{~cm}^{3}$ of $0.05 N 0.5 H C I$ solution at $299.95 K$ was mixed with $100 \mathrm{~cm}^{3} 0.5 \mathrm{NNaOH}$ solution at 299.75 K in a thermos flask. The final temperature was found to be 302.65 K . Calculate the enthalpy of neutralisation of HCI. Water equivalent of thermos flask is 44 g .

- Watch Video Solution

182. When a student mixed 50 mL of 1 MHCI and 150 mL of 1 MNaOH in a coffee cup calorimeter, the temperature of the resultant solution increases from $21^{\circ} \mathrm{C}$ to $27.5^{\circ} \mathrm{C}$. Assuming that the calorimeter absorbs only a negligible quantity of heat, that the total volume of solution is 100 mL , its
density $1 \mathrm{gmL}^{-1}$ and that its specific heat is $4.18 \mathrm{Jg}^{-1}$. calculate:
a. The heat change during mixing.
b. The enthalpy change for the reaction
$\mathrm{HCI}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCI}(a q)+\mathrm{H}_{2} \mathrm{O}(a q)$

- Watch Video Solution

183. The enthalpies of neutralisation of a string acid $H A$ and a weaker acid HB by NaOH are -13.7 and $-12.7 \mathrm{kcalEq}^{-1}$, respectively. When one equivalent of NaOH is added to a mixture containing one equivalent of $H A$ and $H B$, the enthalpy change was -13.5 kcal . In what ratio is the base distributed between $H A$ and $H B$?

- Watch Video Solution

184. Calculate the heat of neutralisation from the following data:

200 mL of 1 MHCI is mixed with 400 mL of 0.5 MNaOH . The temperature rise in calorimeter was found to be $4.4^{\circ} \mathrm{C}$. Water equivalent of calorimeter is $12 g$ and specific heat is 1 calmL $^{-1}$ degree $^{-1}$ for solution.

Watch Video Solution

185. At a particlular temperature
$H^{\oplus}(a q)+\mathrm{OH}^{\Theta}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-57.1 \mathrm{~kJ}$
The approximate heat evolved when 400 mL of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is mixed with 600 mL of 0.1 MKOH solution will be
A. 3.426 kJ
B. 13.7kJ
C. 5.2 kJ
D. 55 kJ

Answer: A

- Watch Video Solution

186. The reaction given below
$\mathrm{BaCI}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{BaCI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{P}, \Delta H^{\Theta}=-x k J \quad$ The value of ΔH^{Θ}
represents
A. Ethanlpy of hydration
B. Ethalpy of solution
C. Ethalpy of dilution
D. None of the above

D Watch Video Solution

187. The heats evolved in combustion of rhombic and monoclinic sulphur are, respectively, 70960 and 71030 calmol $^{-1}$. What will be the heat of conversion of rhomic sulphur to monoclinic?
A. 70960 cal
B. 71030 cal
C. -70 cal
D. +70 cal

- Watch Video Solution

188. If the enthalpy of combustion of C (graphite) is $-393.3 \mathrm{kJmol}^{-1}$, then for producing 39.3 kJ of heat the amount of carbon required is
A. 1.5 mol
B. 0.5 mol
C. $1.2 g$
D. 12 mg

- Watch Video Solution

189. Given $\Delta_{i} H^{\Theta}(H C N)=45.2 \mathrm{kJmol}^{-1}$ and $\Delta_{i} H^{\Theta}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=2.1 \mathrm{kJmol}^{-1}$. Which one of the following facts is true?
A. $p K_{a}(\mathrm{HCN})=p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
B. $p K_{a}(\mathrm{HCN})>p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
C. $p K_{a}(\mathrm{HCN})<p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
D. $p K_{a}(\mathrm{HCN})=(45.17 / 2.07) p K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$

- Watch Video Solution

190. The heat of neutralisation of aqueous hydrochloric acid by NaOH si xkcalmol ${ }^{-1}$ of OCI . Calculate the heat of neutralisation per mol of aqueous acetic acid.
A. $0.5 x k c a l$
B. $x k c a l$
C. $2 x \mathrm{kcal}$
D. Cannot be calculated from the given data
191. Under the same conditions, how many mL of MKOH and $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solutions, respectively, when mixed to form a total volume of 100 mL , produces the highest rise in temperature?
A. 67,33
B. 33,67
C. 40,60
D. 50,50

- Watch Video Solution

192. Given: The heat of sublimation of $K(s)$ is $89 \mathrm{kJmol}^{-1}$.
$K(g) \rightarrow K^{\oplus}(g)+e^{-}, \Delta H^{\Theta}=419 k J$
$F_{2}(g) \rightarrow 2 F(g), \Delta H^{\Theta}=155 k J$
The lattice enegry of $K F(s)$ is $-813 \mathrm{kJmol}^{-1}$, the heat of formation of $K F(s)$ is
$-563 \mathrm{kJmol}^{-1}$. the E_{A} of $F(g)$ is
A. -413
B. -336
C. -1149
D. +413

- View Text Solution

193. Ethalpies of solution of $\mathrm{BaCI}_{2}(\mathrm{~s})$ and $\mathrm{BaCI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ are $-20.0 \mathrm{kJmol}^{-1}$ and $8.0 \mathrm{kJmol}^{-1}$, respectively. Calculate $\Delta_{\text {hyd }} \mathrm{H}^{\Theta}$ of BaCI_{2} to $\mathrm{BaCI}_{2} .2 \mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

194. If the heat fo dissolution of anhydrous CuSO_{4} and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is -15.89kcal and 2.80 kcal , respectively, then the heat of hydration fo CuSO_{4} to form $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
A. -13.09 kcal
B. -18.69 kcal
C. +13.09 kcal
D. +18.69 kcal

Answer: B

- Watch Video Solution

195. Given that
$\mathrm{Cu}_{4}(\mathrm{~g})+360 \mathrm{~kJ} \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+620 \mathrm{~kJ} \rightarrow 2 \mathrm{C}(\mathrm{g})+6 \mathrm{H}(\mathrm{g})$

The value of $C-C$ bond enegry is
A. $260 \mathrm{kJmol}^{-1}$
B. $180 \mathrm{kJmol}^{-1}$
C. $130 \mathrm{kJmol}^{-1}$
D. $80 \mathrm{kJmol}^{-1}$
196. One moles of anhydrous $A B$ dissolves in water and liberates $21.0 \mathrm{Jmol}^{-1}$ of heat. The valueof ΔH^{Θ} (hydration) of $A B$ is $-29.4 \mathrm{Jmol}^{-1}$. The heat of dissolution of hydrated salt $\mathrm{AB.}^{2 \mathrm{H}_{2} \mathrm{O}(s) \text { is }}$
A. $50.4 \mathrm{Jmol}^{-1}$
B. $8.4 \mathrm{Jmol}^{-1}$
C. $-50.4 \mathrm{Jmol}^{-1}$
D. $-8.4 \mathrm{Jmol}^{-1}$

- Watch Video Solution

197. At $25^{\circ} \mathrm{C}$, the following heat of formations are given:

Compound $\quad \mathrm{SO}_{2}(\mathrm{~g}) \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{f} H^{\Theta} \mathrm{kJmol}^{-1}-296.0-285.0$
For the reactions at $25^{\circ} \mathrm{C}$,
$2 \mathrm{H}_{2} \mathrm{~S}(g)+\mathrm{Fe}(s) \rightarrow \mathrm{FeS}_{2}(s)+2 \mathrm{H}_{2}(g), \Delta H^{\Theta}=-137{\mathrm{kJm} \infty \mathrm{l}^{-1}}^{-1}$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{So}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-562 \mathrm{kJmol}^{-1}$
Calculate the heat of formation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{FeS}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

198. The 'heat of total cracking' of hydrocarbons $\Delta H_{T C}$ is defined as ΔH at 298.15 K and 101.325 kPa for the process below
$C_{n} H_{m}+\left(2 n-\frac{m}{2}\right) H_{2}(g) \rightarrow n C H_{4}(g)$
Given that $\Delta H_{T C}$ is $-65.2 k J$ for $C_{2} H_{6}$ and $-87.4 k J$ for $C_{3} H_{8}$, calculate ΔH for
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$

- Watch Video Solution

199. Bond dissociation enthalpies of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2}(\mathrm{~g})$ are $436.0 \mathrm{kJmol}^{-1}$ and $941.8 \mathrm{kJmol}^{-1}$, respectively, and ethalpy of formation of $\mathrm{NH}_{3}(\mathrm{~g})$ is $-46 \mathrm{kJmol}^{-1}$. What is the enthalpy fi atomisation of $\mathrm{NH}_{3}(g)$?. What is the avergae bond ethalpy of $N-H$ bond?
200. If values of $\Delta_{f} H^{\Theta}$ of $\operatorname{ICI}(g), C I(g)$, and $I(g)$ are, respectively, $17.57,121,34$, and $106.96 \mathrm{Jmol}^{-1}$. The value of $I-C I$ (bond energy) in Jmol^{-1} is
A. 17.57
B. 210.73
C. 35.15
D. 106.96

- Watch Video Solution

201. For the reaction $K(g)+F(g)+K^{\oplus}+F^{\Theta}$ (separated ions $\Delta H=19 \mathrm{kcalmol}^{-1}$), if the ionisation potential of K and the electron affinity
of F^{Θ} have a geometric means of 3.88 eV and $I P>E A$, calculate the values fo ionisation potential and electron affinity.

- Watch Video Solution

202. For the percipitation reaction of $A g^{\oplus}$ ions with $N a C I$, which of the following statements is true?
A. ΔH is zero for the reaction.
B. ΔG is zero for the reaction.
C. ΔG is negative for the reaction.
D. ΔG should be equal to ΔH.

- Watch Video Solution

203. How much heat is required to change 10 g ice at $10^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$? Latent heat of fusion and vaporisation for $\mathrm{H}_{2} \mathrm{O}$ are $80 \mathrm{clg}^{-1}$ and
$540 \mathrm{calg}^{-1}$, respectively. Specific heat of water is $1 \mathrm{calg}^{-1}$.

- Watch Video Solution

204. A pistion exerting a pressure of 1.0 atm rests on the surface of water at $100^{\circ} \mathrm{C}$. The pressure is reduced to smaller extent and as a result 10 g of $\mathrm{H}_{2} \mathrm{O}$ eveportes and abosrb 20kJ fo heat. Determine
A. a) ΔH
B. b) Latent heat of vapourisation
C. c) W
D. d) ΔU

- Watch Video Solution

205. Find the heat of reaction
$2 \mathrm{Na}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na} 2 \mathrm{O}(\mathrm{s})$

Given:

$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}, \Delta \mathrm{H}=-56 \mathrm{kcal}$
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOh}+\mathrm{H}_{2}, \Delta H=-88 \mathrm{kcal}$
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta H=-68 \mathrm{kcal}$

D Watch Video Solution

206. The ethalpies for the following reactions at $25^{\circ} \mathrm{C}$ are given as:
$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{OH}(\mathrm{g}), \Delta \mathrm{H}=10.06 \mathrm{kcal}$
$H_{2}(g) \rightarrow 2 H(g), \Delta H=104.18 \mathrm{kcal}$
$\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g}), \Delta H=118.32 \mathrm{kcal}$

Calculate the $\mathrm{O}-\mathrm{H}$ bond enegry in the OH group.

D Watch Video Solution

207. Determine the heat of transformaiton of $C_{\text {(dimamond) }} \rightarrow C_{\text {(graphite) }}$ form the following data:
i. $C_{(\text {diamond })}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-94.5 \mathrm{kcal}$
ii. $C_{(\text {graphite })}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-94.0 \mathrm{kcal}$

- Watch Video Solution

208. Which of the following has highest heat of hydrogenation:
A. But-I-ene
B. cis-Bur-2-ene
C. trans-Bur-2-ene
D. Isobutane

- Watch Video Solution

209. Given
a. $\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CI}(\mathrm{g}) \rightarrow \mathrm{NCI}_{3}(\mathrm{~g}), 3 \mathrm{HCI}(\mathrm{g}), \Delta \mathrm{H}_{1}$
b. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}_{2}$
c. $\mathrm{H}_{2}(g)+\mathrm{CI}_{2}(g) \rightarrow 2 \mathrm{HCI}(g), \Delta \mathrm{H}_{3}$

Express the enthalpy of formation of $\mathrm{NCI}_{3}(g)\left(\Delta_{f} H^{\Theta}\right)$ in terms of $\Delta H_{1}, \Delta H_{2}$, and ΔH_{3}.
A. $\Delta_{f} H^{\Theta}=\Delta H_{1}-\frac{\Delta H_{2}}{2}+\frac{3}{2} \Delta H_{3}$
B. $\Delta_{f} H^{\Theta}=\Delta H_{1}+\frac{1}{2} \Delta H_{2}-\frac{3}{2} \Delta H_{3}$
C. $\Delta_{f} H^{\Theta}=\Delta H_{2}-\frac{1}{2} \Delta H_{2}-\frac{3}{2} \Delta H_{3}$
D. $\Delta_{f} H^{\Theta}=\Delta H_{1}+\frac{1}{2} \Delta H_{2}+\frac{3}{2} \Delta H_{3}$

- Watch Video Solution

210. The heat enegry required to ionise the following molecules is given as follows:
$\stackrel{\Delta H_{1}}{N_{2}(g)} \xrightarrow{\rightarrow} N^{\oplus(g)}, O_{2}(g) \stackrel{\Delta H_{2}}{\rightarrow} O_{2}^{\oplus(g)}$
$L i_{2}(g) \xrightarrow[\rightarrow]{\Delta H_{3}} i^{\oplus(g), C_{2}(g) \xrightarrow{\Delta H_{4}} C_{2}^{\oplus(g)}}$
Arrange the heat terms in decreasing order of enegry:
A. $\Delta H_{1}>\Delta H_{3}>\Delta H_{2}>\Delta H_{4}$
B. $\Delta H_{2}>\Delta H_{3}>\Delta H_{1}>\Delta H_{4}$
C. $\Delta H_{3}>\Delta H_{4}>\Delta H_{1}>\Delta H_{2}$
D. $\Delta H_{3}>\Delta H_{1}>\Delta H_{4}>\Delta H_{2}$

D Watch Video Solution

211. The enthalpy of reaction does not depend upon:
A. the intermediate reaction steps
B. the temperature of initial and final state of the reaction
C. the physical states of reactants and products
D. use of different recatnts for the formation of the same product
212. Calculate the lattice energy of the reaction
$L i{ }^{\oplus}(g)+C I{ }^{\Theta}(g) \rightarrow \operatorname{LiCI}(s)$
from the following data:
$\Delta_{\text {sub }} H^{\Theta}\left(L^{2}\right)=160.67 \mathrm{kJmol}^{-1}, \frac{1}{2} D\left(C I_{2}\right)=122.17 \mathrm{kJmol}^{-1} I P(L i)=520.07 \mathrm{kJmol}^{-1}$ and $\Delta_{f} H^{\Theta}(L i C I)=-401.66 \mathrm{kJmol}^{-1}$

- Watch Video Solution

213. When a mole of crystalline sodium chloride is prepared, 410 kJ of heat is produced. The heat of sublimation of sodium metal is 180.8 kJ . The heat of dissociation fo chloride gas into atoms is 242.7 kJ . The ionisation energy of $N a$ and electron affinity of $C I$ are $493 . k J$ and $-368.2 k J$, respectively. calculate the lattice enegry of NaCI.

- Watch Video Solution

214. The table given below lists the bound dissociation enegrgy ($E_{\text {diss }}$) for single covelent bonds formed between C and atom A, B, D, E.

What of the atoms has smallest size?
A. D
B. E
C. A
D. B
215. The heat change at constant volume for the decomposition of silver (I) oxide is found to be 30.66 kJ . The heat change at constant pressure will be
A. 30.66 kJ
B. $>30.66 \mathrm{~kJ}$
C. $<30.66 \mathrm{~kJ}$
D. Unpredicatable

- Watch Video Solution

216. i. $H_{2}(g)+\mathrm{CI}_{2}(g) \rightarrow 2 \mathrm{HCI}(g), \Delta H=-x k J$
ii. $\mathrm{NaCI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO}_{4}+\mathrm{HCI}, \Delta H=-y k J$
iii. $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CI}_{2} \rightarrow 4 \mathrm{HCI}+\mathrm{O}_{2}, \Delta \mathrm{H}=-\mathrm{zkJ}$

From the above equations, the value of ΔH of $H C I$ is
A. $-x k J$
B. $-y k J$
C. -zkJ
D. $\frac{-x}{2} k J$
217. $\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{XkJ}$
$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{YkJ}$
The enthalpy of formation of NO is
A. $(2 X-2 Y)$
B. $X-Y$
C. $1 / 2\left(Y_{X}\right)$
D. $1 / 2(X-Y)$

- Watch Video Solution

218. For which one of the follwing reactions does not molar enthalpy change of a reaction corresponds to the lattice enegry of KBr .
A. $K(s)+1 / 2 B r_{2}(l) \rightarrow K B r(s)$
B. $K(g)+1 / 2 B r_{2} \rightarrow K B r(s)$
C. $K(g)+\operatorname{Br}(g) \rightarrow K B r(g)$
D. $K^{\Theta}(g)+B r^{\Theta}(g) \rightarrow K B r(s)$

(D) Watch Video Solution

219. The lattice energy of solid NaCI is $180 \mathrm{kcalmol}^{-1}$. The dissolution of the solid in $\mathrm{H}_{2} \mathrm{O}$ is endothermic to the extent of $1.0 \mathrm{kcalmol}^{-1}$. If the hydration energies of $N a^{\oplus}$ and $C I^{\Theta}$ ions are in the ratio of 6:5 what is the enthalpy of hydration of sodium ion?
A. $-85 \mathrm{kcalmol}^{-1}$
B. $-98 \mathrm{kcalmol}^{-1}$
C. $+82 \mathrm{kcalmol}^{-1}$
D. $+100 \mathrm{kcalmol}^{-1}$
220. The standard molar enthalpies of formation of cyclohexane (I) and benzene (I) at $25^{\circ} \mathrm{C}$ are -156 and $+49 \mathrm{KJ} \mathrm{mol}^{-1}$ respectively. The standard enthalpy of hydrogenation of cyclo hexene (I) at $25^{\circ} \mathrm{C}$ is $-116 \mathrm{KJ} \mathrm{mol}^{-1}$. Use these data to estimate the magnitude of the resonance energy of benzene.

- Watch Video Solution

221. Consider the following two reactions:
i. Propene $+H_{2} \rightarrow$ Propane, ΔH_{1}
ii. Cyclopropane $+\mathrm{H}_{2} \rightarrow$ Propane, ΔH_{2} Then, $\Delta H_{2}-\Delta H_{1}$ will be:
A. 0
B. $2 B E_{C-C}-B E_{C=C}$
C. $B E_{C=C}$
D. $2 B E_{C=C}-B E_{C-C}$
222. Calculate the resonance energy of gaseous benzene form the following data.
$B E(C-H)=416.3 \mathrm{kJmol}^{-1}$
$B E(C-C)=331.4 \mathrm{kJmol}^{-1}$
$B E(C=C)=591.1 \mathrm{kJmol}^{-1}$
$\Delta_{\text {sub }} H^{\Theta}(C$, graphite $)=718.4 \mathrm{kJmol}^{-1}$
$\Delta_{\text {diss } H^{\Theta}\left(H_{2}, g\right)=435.9 \mathrm{kJol}^{-1}, ~}^{\text {I }}$
$\Delta_{f} H^{\Theta}($ benzene,$g)=82.9 \mathrm{kJmol}^{-1}$

- Watch Video Solution

223. Calculate the resonance enegry of isoprene $\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)$ from the data given. Standard Heats of combustion of isoprene, carbon and hydrogen are $-3186,-393.5$, and $-285.83 \mathrm{kJmol}^{-1}$, respectively. Bond energies of $C=C, C-C, C-H$ and $H-H$ bonds are $615,348,413$ and $435.8 \mathrm{kJmol}^{-1}$ respectively. Standard heat of sulbilmation of graphite is $718.3 \mathrm{kJmol}^{-1}$.
224. Calculate the resonance enegry of toulene (use Kekule structure form the following data
$\mathrm{C}_{7} \mathrm{H}_{8}(\mathrm{l})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\Delta H, \Delta H^{\Theta}=-3910 \mathrm{kJmol}^{-1}$
$\mathrm{C}_{7} \mathrm{H}_{8}(\mathrm{I}) \rightarrow \mathrm{C}_{7} \mathrm{H}_{8}(\mathrm{~g}), \Delta H^{\Theta}=38.1 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\Theta}($ water $)=-285.8 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\Theta}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{kJmol}^{-1}$
Heat of atomisaiton of $\mathrm{H}_{2}(\mathrm{~g})=436.0 \mathrm{kJmol}^{-1}$
Heat of sulimation of $C(g)=715.0 \mathrm{kJmol}^{-1}$
Bond energies of $C-H, C-C$, and $C=C$ are 413.0, 345.6, and $610.0 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

225. The standard heat of formation values of $S F_{6}(g), S(g)$, and $F(g)$ are $-1100,275$, and $80 \mathrm{kJmol}^{-1}$, respectively. Then the average $S-F$ bond enegry in $S F_{6}$
A. $310 \mathrm{kJmol}^{-1}$
B. $220 \mathrm{kJmol}^{-1}$
C. $309 \mathrm{kJmol}^{-1}$
D. $280 \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

226. Using the sata (all values are in kilocalorie per mole at $25^{\circ} \mathrm{C}$) given below, calculate the bond enegry of $C-C$ and $C-H$ bonds.
ΔH^{Θ} combustion of ethane $=-372.0$
ΔH^{Θ} combustion of propane $=-530.0$
ΔH^{Θ} for $C($ garphite $) \rightarrow C(g)=+172.0$

Bond enegry of $H-H$ bond $=+104.0$
$\Delta_{f} H^{\Theta} o f H_{2} O(l)=-68.0$
$\Delta_{f} H^{\Theta} o f C O_{2}(g)=-94.0$
227. Calculate the resonance enegry of $\mathrm{N}_{2} \mathrm{O}$ form the following data
$\Delta_{f} H^{\Theta} \mathrm{OfN}_{2} \mathrm{O}=82 \mathrm{kJmol}^{-1}$
Bond enegry of $N \equiv N, N=N, O=O$, and $N=O$ bond is $946,418,498$, and $607 \mathrm{kJmol}^{-1}$, respectively.

- Watch Video Solution

228. Using the bond enthalpy data given below, calculate the enthalpy of formation of acetone (g).

Bond enegry $C-H=413.4 \mathrm{kJmol}^{-1}$,
Bond enegry $C-C=347.0 \mathrm{kJmol}^{-1}$,
Bond enegry $C=O=728.0 \mathrm{kJmol}^{-1}$,
Bond enegry $O=O=495.0 \mathrm{kJmol}^{-1}$,
Bond enegry $H-H=435.8 \mathrm{kJmol}^{-1}$,
$\Delta_{\text {sub }} H^{\Theta} C(s)=718.4 \mathrm{kJmol}^{-1}$
229. Enthalpy of hydrogenation of benzene is ΔH_{1} and for cyclohexene is ΔH_{2}. The resonance energy of benzene is
A. $3 \Delta H_{1}-\Delta H_{2}$
B. $3 \Delta H_{2}-\Delta H_{1}$
C. $3 \Delta H_{1}+\Delta H_{2}$
D. $\Delta H_{1}-3 \Delta H_{2}$

- Watch Video Solution

230. For the reaction:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}=-571 \mathrm{~kJ}$
bond enegry of $(H-H)=435 \mathrm{~kJ}$ and of $(O=O)=498 \mathrm{~kJ}$. Then, calculate the average bond enegry of $(O-H)$ bond using the above data.
A. 484 kJ
B. $-484 k J$
C. 271 kJ
D. $-371 k J$

- Watch Video Solution

231. Use the bond energies in the table to estimate ΔH for this reaction:

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CICH}_{2}-\mathrm{CH}_{2} \mathrm{CI}
$$

A. $\Delta H=684 k J$
B. $\Delta h=-154 k J$
C. $\Delta H=189 k J$
D. $\Delta H=177 k J$
232. Heat of formation of 2 mol of $\mathrm{NH}_{3}(\mathrm{~g})$ is $=90 \mathrm{~kJ}$, bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds are $435 \mathrm{~kJ}^{2}$ and $390 \mathrm{kJmol}^{-1}$, respectively. The value of the bond enegry of $N \equiv N$ will be
A. -872.5 kJ
B. -945 kJ
C. 872.5 kJ
D. $945 \mathrm{kJmol}^{-1}$

- Watch Video Solution

233. The polymerisation of ethylene to linear polyethylene is represented by the reaction
$n \mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}$
When n has a large integral value. Given theat the average enthalpies of bond dissociation for $C=C$ and $C-C$ at 298Kare +590 and $+331 \mathrm{kJmol}^{-1}$
respectively, calculate the enthalpy of polymerisation per mole of ethylene at 298 K .
A. $-70 k J$
B. $-72 k J$
C. $72 k J$
D. -68 kJ

- Watch Video Solution

234. A carnot engine operates between temperature 600 K and 300 K . It absorbs 100 J from the source. Calculate the heat transferred to the sink.

- Watch Video Solution

235. A Carnot engine works between $120^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. Calculate the efficiency. If the power produced by the engine is 400 W , calculate the heat
abosorbed from the source.

- Watch Video Solution

236. Calculate the maximum effeciency of an engine operating between $100^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.

- Watch Video Solution

237. Heat supplied to a Carnot egine is 453.6 kcal. How much useful work can be done by the engine that works between $10^{\circ} \mathrm{Cand} 100^{\circ} \mathrm{C}$?

- Watch Video Solution

238. Calculate the maximum efficiency of an engine operating between $110^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.
A. 11.1%
B. 22.2 \%
C. 33.3 \%
D. 44.4 \%

- Watch Video Solution

239. Heat supplied to a Carnot engine is 37.3 kJ . How much useful work in kJ can be done by the engine that operates between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$?

- Watch Video Solution

240. Efficiency of a Carnot heat engine may be given as
A. $\frac{w}{Q_{2}}$
B. $1-\frac{Q_{2}}{Q_{1}}$
C. $1-\frac{T_{1}}{T_{2}}$
D. None of these

- Watch Video Solution

241. The efficiency of the reversible cycle shown in the given figure is

A. 33.33%
B. 56%
C. 66 \%
D. 16.7 \%

- Watch Video Solution

242. A certain engine which operates in a Carnot cycle absorbe 3.0 kJ at $400^{\circ} \mathrm{C}$ in a cycle. If it rejects heat at $100^{\circ} \mathrm{C}$, how much work is done on the engine per cycle and how much heat is evolved at $100^{\circ} \mathrm{C}$ in each cycle?

- Watch Video Solution

243. What percentage T_{1} is of T_{2} for a 10% efficiency of a heat engine?

- Watch Video Solution

244. The enthalpy change for a given reaction at $298 \mathrm{~K}^{\text {is }}$-xcalmol ${ }^{-1}$. If the reaction occurs spontaneously at $298 K$, the entropy change at that temperature
A. Can be -ve but numerically latger than $-x / 298$ calK $^{-1}$
B. Can be $-v e$, but numerically smaller than $x / 298$ calK ${ }^{-1}$
C. Cannot be negative
D. Cannot be positive

- Watch Video Solution

245. For the process
$\mathrm{NH}_{3}(g)+\mathrm{HCI}(g) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(\mathrm{s})$
A. Both ΔH and ΔS are positive
B. ΔH is $-v e$ and ΔS is $+v e$
C. ΔH is + veand ΔS is $-v e$
D. Both ΔH and ΔS are -ve
246. Consider the following reaction:
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
The enthalpy change for this reaction at 1 atm is equal to:
A. $-2 \Delta_{f} H^{\Theta}\left[\mathrm{NaN}_{3}(\mathrm{~s})\right]$
B. $+2 \Delta_{f} H^{\Theta}\left[\mathrm{NaN}_{3}(\mathrm{~s})\right]$
C. $3 \Delta_{f} H^{\Theta}\left[N_{2}(s)+2 \Delta_{f} H^{\Theta}(N a(s)]\right.$
D. $-\Delta_{f} H^{\Theta}\left[\mathrm{NaN}_{3}(\mathrm{~s})\right]$

(D) Watch Video Solution

247. The enthalpy change for the combustion of $\mathrm{N}_{2} \mathrm{H}_{4}(l)$ (Hydrazine) is $-622.2 \mathrm{kJmol}^{-1}$. The products are $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. If $\Delta_{f} H^{\Theta}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is - 285.8 kJmol^{-1}. The $\Delta_{f} H^{\Theta}$ for hydrazine is
A. $-336.4 \mathrm{kJmol}^{-1}$
B. $+50.6 \mathrm{kJmol}^{-1}$
C. $-622.2 \mathrm{kJmol}^{-1}$
D. $+336.4 \mathrm{kJmol}^{-1}$

- Watch Video Solution

248. The enthalpies of formation fo organic substances are conveniently determined from
A. Ethalpy for combustion
B. Boiling point
C. Melting point
D. Ethalpy of neutralisation
249. Ammonium chloride when dissolved in water leads to a cooling sensation. The dissolution of ammonium chloride at constant temperature is accompanied by
A. Increase in entropy
B. Decrease in entropy
C. No change in entropy
D. No change in enthalpy

Answer: A

- Watch Video Solution

250. Which of the following statements relationship is not correct?
A. In an exothermic reaction, the enthalpy of products is less than that of the reactants
B. $\Delta_{\text {fusion }} H=\Delta_{\text {sub }} H-\Delta_{\text {vap }} H$
C. A reaction for which $\Delta H^{\Theta}<0$ and $\Delta S^{\Theta}>0$
D. ΔH is less that ΔU for the reaction $C(s)+1 / 2 O_{2}(g) \rightarrow C O(g)$

- Watch Video Solution

251. Helium weighing 16 g is expanded from 1atm to one-tenth of its original pressure at $30^{\circ} \mathrm{C}$. Calculate the change in entropy assuming it to be an ideal gas.

- Watch Video Solution

252. Calculate the entropy change when 2 mol of an idela gas expand isothermally and reversibly from an initial volume of $2 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ at 300 K .

- Watch Video Solution

253. Three moles of an ideal gas $\left(C_{v, m}=12.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ are at $300 \mathrm{~K}^{2}$ and $5 \mathrm{dm}^{3}$. If the gas is heated to 320 K and the volume changed to $10 \mathrm{dm}^{3}$, calculate the entropy change.

- Watch Video Solution

254. Determine the entropy change for the reaction given below:
$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
at 300 K . If standard entropies of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$, and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are 126.6, 201.20, and $68.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively.

D Watch Video Solution

255. One mole of an ideal gas at $25^{\circ} \mathrm{C}$ is subjected to expand reversible ten times of its intial volume. The change in entropy of expansion is

- Watch Video Solution

256. A sample of $10 \mathrm{gH}_{2} \mathrm{O}$ is slowely heated from $27^{\circ} \mathrm{C} \rightarrow 87^{\circ} \mathrm{C}$. Calculate the change in entropy during heating. (specific heat of water $\left.=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)$.

- Watch Video Solution

257. Calculate the entropy change when 1 kg of water is heated from $27^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ forming supper heated steam under constant pressure. Given specific heat of water $=4180 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$ and specific heat of steam $=1670+0.49 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and latent heat of vaporisation $=23 \times 10^{5} \mathrm{Jkg}^{-1}$.

- Watch Video Solution

258. Calculate the total entropy change for the following reversible processes:
a. Isothermal b. Adiabatic
259. Calculate entropy change when 10 mol of an ideal gas expands reversible and isothermally from an initial volume of 10 L to 100 L at 300 K .

- Watch Video Solution

260. Oxygen gas weighing 128 g is expanded form 1atm to 0.25 atm at $30^{\circ} \mathrm{C}$.

Calculate entropy change, assuming the gas to be ideal.

- Watch Video Solution

261. Calculate the entropy change when 2 mol of an idela gas expand isothermally and reversibly from an initial volume of $2 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ at 300 K .

- Watch Video Solution

262. The molar internal enegry of a gas over a temperature range is expressed as: $\quad U_{m}(T)=a+b T+c T^{2}, \quad$ where $\quad b=16 \mathrm{Jmol}^{-1} K^{-1}$ and
$c=6 \times 10^{-3} \mathrm{Jmol}^{-1} \mathrm{~K}^{-2}$. Find:
a. $C_{V, m} a t 300 K$
b. The entropy change when 1 mol of a gas is heated from 300 K to 600 K at constant volume.

- Watch Video Solution

263. A sample of an ideal gas is expanded to twice its original volume of $1 \mathrm{~m}^{3}$ in a reversible process for which $P=\alpha V^{2}$, where $\alpha=5$ atmm $^{-6}$. If $C_{V, m}=20 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$, determine moalr change in entropy $\left(\Delta S_{m}\right)$ for the process.

- Watch Video Solution

264. Which expansion will produce more change in entropy during reversible and isothermal process?
A. $1 \mathrm{molH}_{2}$ at 300 K from 2 L to 20 L
B. $1 \mathrm{molN}_{2}$ at 400 K from 1 L to 10 L
C. $1 \mathrm{molO}_{3}$ at 500 K form 3 L to 30 L
D. All have same ΔS

- Watch Video Solution

265. 1 mol of an ideal gas is allowed to expand isothermally at $27^{\circ} \mathrm{C}$ untill its volume is tripled. Calculated $D e l y a_{s y s} S$ and $\Delta_{u n i v} S$ under the following conditions:
a. The expansion is carried out reversibly.
b. The expansion is a free expansion.

D Watch Video Solution

266. One kilogram water at $0^{\circ} \mathrm{C}$ is brought into contact with a heat reservoir at $100^{\circ} \mathrm{C}$. Find
A. The change in entropy wen temperature recahes to $100^{\circ} \mathrm{C}$.
B. What is the change in entropy of reservoir?
C. Change in the entropy of universe.
D. The nature of process.

- Watch Video Solution

267. The direct conversion of A to B is difficult, hence it is carried out as
$A \rightarrow C \rightarrow D \rightarrow B$

Given, $\Delta S_{(A \rightarrow C)}=50 e U, \Delta S_{(C \rightarrow D)}=30 e U, \Delta S_{(B \rightarrow D)}=20 e U$, where $e U$ is entropy unit. Thus the change in entropy in $(A \rightarrow B)$ is:
A. $100 e U$
B. $60 e U$
C. $-100 e U$
D. $-60 e U$
268. One moles of an ideal gas which $C_{V}=3 / 2 R$ is heated at a constant pressure of 1 atm from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Calculate $\Delta U, \Delta H$ and the entropy change during the process.

- Watch Video Solution

269. Two vessels divided by a partition cotain one mole of N_{2} and two moles of O_{2} gas. If the partition is removed and gases mixed isothermally, find the change in entrope due to mixing assuming initial and final pressure are same.

- Watch Video Solution

270. 5 mol of an ideal gas expands reversibly from a volume of $8 \mathrm{dm}^{3}$ at a temperature of $27^{\circ} \mathrm{C}$. Calculate the chngae in entropy.
A. $70.26 \mathrm{JK}^{-1}$
B. $80.55 \mathrm{JK}^{-1}$
C. $95.73 \mathrm{JK}^{-1}$
D. $107.11 \mathrm{JK}^{-1}$

- Watch Video Solution

271. Which of the following processes is an isoentropic process?
A. Isothermal process
B. Adiabatic process
C. Isobaric process
D. Isochoric process
272. Calculate the entropy change when 1 mole of an ideal gas expands reversibly form an initial volume of 2 L to a final voluume of 20 L at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

273. Calculate the change in entropy for the following reaction
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
Given:
$S_{C O}^{\Theta}(g)=197.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$S_{O_{2}}^{\Theta}(g)=205.03 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$S_{\mathrm{CO}_{2}}^{\Theta}(g)=213.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

274. Calculate the entropy change (ΔS) when 1 mol of ice at $0^{\circ} \mathrm{C}$ is converted into water at $0^{\circ} \mathrm{C}$. Heat of fusion of ice at $0^{\circ} \mathrm{C}$ is 1436 cal per mol.
275. Calculate ΔS for the formation of quantity of air containing 1 mole of a gas by mixing nitrogen and oxygen. (In air $N_{2}=80 \%$ and $O_{2}=20 \%$)

D Watch Video Solution

276. $2 \mathrm{dm}^{3}$ of methane under 600 kPa and 300 K and $4 \mathrm{dm}^{3}$ of oxygen under 900 kPa and 300 K are forced into $3 \mathrm{dm}^{3}$ evacuated vessel, the temperature being maintained at 300 K . Calculate the change in entropy of gases assuming that they are ideal.

- Watch Video Solution

277. Predict the sign of ΔS for each of the following process:
a. $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g})$
b. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
c. $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
d. $B r_{2}(l) \rightarrow B r_{2}(g)$
e. $N_{2}(g, 10 a t m) \rightarrow N_{2}(g, 1 a t m)$
f. Desalination of water.
g. Devitrification of glass
h. Hard boiling og an egg
i. $C(s$, graphite $) \rightarrow C$ (s, diamond $)$

- Watch Video Solution

278. At absolute zero, the entropy of a pure crystal is zero. This is
A. First law
B. Second law
C. Third law
D. None
279. The units of entropy are
A. $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $\mathrm{KJ}^{-1} \mathrm{~mol}^{-1}$
C. kJmol^{-1}
D. $\mathrm{JK}^{-1} \mathrm{~mol}^{-2}$

- Watch Video Solution

280. For which reaction from the following, ΔS will be maximum?
A. $\mathrm{Ca}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaO}(\mathrm{s})$
B. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
C. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
281. For which of these processes is the value of ΔS negative?
i. Sugar is dissolved in water.
ii. Steam condenses on a surface.
iii. CaCO_{3} is decomposed into CaO and CO_{2}.
A. i only
B. ii only
C. ii and iii only
D. ii and iii only

- Watch Video Solution

282. In which of the following change entropy decreases?
A. Crystallisation of sucross form solution
B. Dissolving sucrose in water
C. Melting of ice
D. Vaporisation of camphor

- Watch Video Solution

283. Which halogen in its standard stata has the gratest absolute entropy per mole?
A. $F_{2}(g)$
B. $C I_{2}(g)$
C. $B r_{2}(l)$
D. $I_{2}(s)$
284. Consider the reaction for the dissolution of ammonium nitrate:
$\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \rightarrow \mathrm{NH}_{4}^{\oplus}(a q)+\mathrm{NO}_{3}^{\Theta}(a q)$
$\Delta H=+29.8 \mathrm{KJmol}^{-1}, \Delta S=108.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

Calculate the change in entropy of the surroundings and predict whether the reaction is spontaneous or not at $25^{\circ} \mathrm{C}$?

- Watch Video Solution

285. The resting of iron occurs as:
$4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
The entalpy of formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$ is $-824.0 \mathrm{kJmol}^{-1}$ and entropy change for the reaction is $+550 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Calculate $D \eta_{\text {surr }} S$ and predict whether resuting of iron is spontaneous or not at 298 K .

Given $\Delta_{\text {sys }} H=-553.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

286. Calculate the change in entropy for the fusion of 1 mol of ice. The melting point of ice is 300 K and molar enthalpy of fustion for ice $=6.0 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

287. Molar heat capacity of $\mathrm{CD}_{2} \mathrm{O}$ (deuterated form of formaldehyde) at constant pressure in $9 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$ at 1000 K . Calculate the entropy change associated with cooling of 3.2 g of $\mathrm{CD}_{2} \mathrm{O}$ vapour from $1000 \rightarrow 900 \mathrm{~K}$.

- Watch Video Solution

288. Calculate the entropy change for vaporization of 1 mol of liquid water to stem at $100^{\circ} \mathrm{C}$, if $\Delta_{V} H=40.8 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

289. Calculate the enthalpy of vaporisation per mole for ethanol. Given $\Delta S=109.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and boiling point of ethanol is 78.5°.

- Watch Video Solution

290. Calculate the entrpoy change for the following reversible process:
$\alpha-T \in \Leftrightarrow \beta-T \in$ at
1molat1atm1molat1atm300K
$\left(\Delta_{\text {trans }} \mathrm{H}=2090 \mathrm{Jmol}^{-1}\right)$

- Watch Video Solution

291. For liquid enthalpy of fusion is $1.435 \mathrm{kcalmol}^{-1}$ and molar entropy change is $5.26 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$. The melting point of the liquid is
A. $0^{\circ} \mathrm{C}$
B. $-273^{\circ} \mathrm{C}$
C. 173 K
D. $100^{\circ} \mathrm{C}$

- Watch Video Solution

292. Which of the following statement is false?
A. The entropy of a substance in the liqid phase is lower than the entropy of the same substance in the gas phase
B. Spontaneous reactions always occur very rapidly.
C. ΔS for vaporisation of a solid is always positive.
D. A spontaneous reaction in one direction is always non-spontaneous in the revered direction.
293. Considering entropy (S) as a theromodynamic parameter, the criterion for the spontaneity of any process is
A. $\Delta_{\text {sys }} S+\Delta_{\text {surr }} S>0$
B. $\Delta_{\text {sys }} S-\Delta_{\text {surr }} S>0$
C. $\Delta_{\text {sys }} S>0$ only
D. $\Delta_{\text {surr }} S>0$ only

- Watch Video Solution

294. A sponteneous process may be defined as:
A. A process which is exothermic and evolves a lot of heat.
B. A process which is slow and reversible.
C. A procee which takes plave only in presence of a catalyst.
D. A process that occurs without any input from the surroundings.

- Watch Video Solution

295. For the reversible process, the value of ΔS is given by the expression:
A. $\frac{q_{r e v}}{T}$
B. $T-q_{r e v}$
C. $q_{r e v} \times T$
D. $q_{r e v}-T$

- Watch Video Solution

296. In thermodynamics, a process is called reversible when
A. The surroundings and system change into each other.
B. There is no boundary between system and surrounding.
C. The surroundings are in equilibrium with the system.
D. The system changes into surroundings spontanously.

- Watch Video Solution

297. For spontenous process
A. $\Delta_{\text {total }} S=0$
B. $\Delta_{\text {total }} S>0$
C. $\Delta_{\text {total }} S<0$
D. None of these
298. Melting point of a solid is $x K$ and its latent heat of fusion is $600 \mathrm{calmol}^{-1}$. The entropy changes for fusion of 1 mol solid is $2 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$. The value of x will be
A. 100 K
B. 200 K
C. 300 K
D. 400 K

- Watch Video Solution

299. The entropy of a crystalline substance a absolute zero on the basis of the third law of thermodynamics should be taken as
A. 100
B. 50
C. Zero
D. Different for different substance

- Watch Video Solution

300. The least random state of water system is
A. Ice
B. Liquid water
C. Steam
D. Randomnes is same in all

- Watch Video Solution

301. The value of entropy in the universe is
A. Constant
B. Decreaing
C. Increasing
D. Zero

- Watch Video Solution

302. A spontanous change is always accompanied by an increase in entropy'.

The entropy change referred to in this statement is
A. $\Delta_{s y s} S$
B. $\Delta_{\text {universe }} S$
C. $\Delta_{\text {surr }} S$
D. None of these
303. Equilibrium mixture of ice and water is held at constant pressure. On heating some ice melts. For the system
A. Entropy increases
B. Free enegry increases
C. Free enegry decreases
D. Entropy decreases

- Watch Video Solution

304. Calculate the entropy change accompanying the following change of state

5 mol of $\mathrm{O}_{2}\left(27^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \rightarrow 5 \mathrm{molofO}_{2}\left(117^{\circ} \mathrm{C}, 5 \mathrm{~atm}\right)$
C_{P} for $O_{2}=5.95 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$
305. Calculate the entropy change accompanying the following change of state
$\mathrm{H}_{2} \mathrm{O}\left(\mathrm{s}, 10^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \rightarrow \mathrm{H}_{2} \mathrm{O}\left(\mathrm{l}, 10^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$
C_{P} for ice $=9$ cladeg $^{-1} \mathrm{~mol}^{-1}$
C_{P} for $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$
Latent heat of fustion of ice $=1440 \mathrm{calmol}^{-1} \mathrm{att}^{\circ} \mathrm{C}$.

- Watch Video Solution

306. How does entropy changes with
a. Increase in temperature
b. Decrease in pressure?

- Watch Video Solution

307. Is the entropy of the universe constant?
308. What is the value of change in entropy at equilibrium?

- Watch Video Solution

309. Arrange water vapour, liquid water, and ice in the order of increaing entropy.

- Watch Video Solution

310. Do you expect ΔS to be $+v e$, $-v e$, or zero for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$

- Watch Video Solution

311. Predict the entropy change (positive/negative) in the following:
A. A liquid substance crystallises into a solid
B. Temperature of a crystal is increased
C. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{S})+\mathrm{O}_{2}(\mathrm{~g})$
D. $N_{2}(g)(1 \mathrm{~atm}) \rightarrow N_{2}(\mathrm{~g})(0.5 \mathrm{~atm})$

- Watch Video Solution

312. Arrange the following in the order of increasing entropy:
A. 1 molof $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \mathrm{at} 0{ }^{\circ} \mathrm{C}$ and 1 atm pressure
B. $1 \mathrm{molofH}_{2} \mathrm{O}(\mathrm{s}) \mathrm{at} 0^{\circ} \mathrm{C}$ and 0.8 atmpressure
C. $1 \mathrm{molof} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{at} 25^{\circ} \mathrm{C}$ and 1 atm pressure
D. 1 molof $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{at} 25^{\circ} \mathrm{C}$ and 0.8 atm pressure
313. Predict the sign of entropy change for each of the following changes of state.
A. $\mathrm{Hg}(\mathrm{l}) \rightarrow \mathrm{Hg}(g)$
B. $\mathrm{AgNO}_{3}(s) \rightarrow \mathrm{AgNO}_{3}(a q)$
C. $I_{2}(g) \rightarrow I_{2}(s)$
D. C (graphite) $\rightarrow C$ (diamond)

- Watch Video Solution

314. Which of the following preocesses are accompained by increase of entropy.
a. Dissolution of iodine in a solvent
b. HCI is added to AgNO_{3} and a precipitate of AgCI is obtained.
c. A partition is removed to allow two gases to mix.
315. Place the following systems in order of increasing randomnes:
a. 1 mol of a gas $X \mathrm{~b} .1 \mathrm{~mol}$ of a solid X
c. 1 mol of a liquid X

- Watch Video Solution

316. Calculate ΔG^{Θ} for the following reaction:
$\mathrm{CO}(\mathrm{g})+\left(\frac{1}{2}\right) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H^{\Theta}=-282.84 \mathrm{~kJ}$
Given,
$S_{\mathrm{CO}_{2}}^{\Theta}=213.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S_{\mathrm{CO}(\mathrm{g})}^{\Theta}=197.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S_{\mathrm{O}_{2}}^{\Theta}=205.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,

- Watch Video Solution

317. For the reaction
$A(s) \rightarrow B(s)+C(s)$
Calculate the entropy change at 298 K and 1 atm if absolute etropies (in
$\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) are
$A=130, B=203, C=152$

- Watch Video Solution

318. Show that the reaction
$\mathrm{CO}(g)+(1 / 2) \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
at 300 K is spontaneous and exothermic, when the standard entropy change is $-0.094 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}$. The standard Gibbs free energies of formation for CO_{2} and CO are -394.4and $-137.2 \mathrm{kJmol}^{-1}$, respectively.

- Watch Video Solution

319. ΔH and ΔS for the reaction:
$\mathrm{Ag}_{2} \mathrm{O}(s) \rightarrow 2 \mathrm{Ag}(s)+(1 / 2) \mathrm{O}_{2}(g)$
are $30.56 \mathrm{kJmol}^{-1}$ and $66.0 \mathrm{JJK}^{-1} \mathrm{~mol}^{-1}$ respectively. Calculate the temperature at which free energy change for the reaction will be zero.

Predict whether the forward reaction will be favoured above or below this temperature.

- Watch Video Solution

320. For the reaction,
$2 \mathrm{NO}_{g}+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
Calculate ΔG at $700 K$ when enthalpy and entropy changes are
$-113.0 \mathrm{kJmol}^{-1}$ and $-145 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively.

D Watch Video Solution

321. In the reaction $A^{\oplus}+B \rightarrow A+B^{\oplus}$, there is no entropy changes. If enthalpy change is 20 kJ of A^{\oplus}, calculate ΔG for the reaction.

- Watch Video Solution

322. ΔH and ΔS for
$B r_{2}(l)+C I_{2}(g) \rightarrow 2 B r C I(g)$
are $29.00 \mathrm{kJmol}^{-1}$ and $100.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. Above what temperature will this reaction become spontaneous?

- Watch Video Solution

323. Calculate the temperature at which liquid water will be in equilibrium with water vapour.
$\Delta_{\text {vap }} H=40.00 \mathrm{kJmol}^{-1}$ and $\Delta_{\text {vap }} S=0.100 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}$

D Watch Video Solution

324. Zinc reacts with dilute hydrochloric acid to give hydrogen at $17^{\circ} \mathrm{C}$. The enthalpy of the reaction is $-12.00 \mathrm{kJmol}^{-1}$ of zinc and entropy change equals $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ for the reaction. Calculate the free enegry change and predict whether the reaction is spontaneous or not.

325. ΔH and ΔS for the system $H_{2} O(l) \Leftrightarrow H_{2} O(g)$ at 1 atm are $40.63 \mathrm{kJmol}^{-1}$ and $108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. Calculate the temperature at which the rates of forward and backward reactions will be the same. Predict the sign of free enegy for this transformation above this temperature.

- Watch Video Solution

326. For the reaction,
$\mathrm{SOCI}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{2}+2 \mathrm{HCI}$
the enthalpy of reaction is 40.0 kJ and the entropy of reaction is $336 \mathrm{JK}^{-1}$.
Calculate ΔG at 300 K and predict the neture of the reaction.

- Watch Video Solution

327. Compute the standard free enegry of the reaction at $27^{\circ} \mathrm{C}$ for the combustion fo methane using the give data:
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Species $\quad \begin{array}{llllll}\mathrm{CH}_{4} & \mathrm{O}_{2} & \mathrm{CO}_{2} & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\end{array}$
$\Delta_{f} H^{\Theta}\left(\mathrm{kJmol}^{-1}\right)-74.8-393.5-285.8$
$S^{\Theta}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \quad 186 \quad 205 \quad 214 \quad 70$

- Watch Video Solution

328. Which of the following statements is correct?
A. ΔG is equal to ΔG^{Θ} when the system is at the standard state.
B. ΔG^{Θ} is zero when the system is at equilibrium.
C. ΔG measure how far the reaction is from equilibrium and how fast it
is.
D. When ΔG is positive, the reaction should proceed forward to from more product.
329. A reaction will never the spontaneous at any temperature and pressure if
A. $\Delta S=+v e, \Delta H=+v e$
B. $\Delta S=+v e, \Delta H=-v e$
C. $\Delta S=-v e, \Delta H=+v e$
D. $\Delta S=-v e, \Delta H=-v e$

D Watch Video Solution

330. Quick lime: (CaO) is produced bu heating limestone $\left(\mathrm{CaCO}_{3}\right)$ to derive off CO_{2} gas.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \Delta_{r} H^{\Theta}=180 \mathrm{kJmol}^{-1}, \Delta_{r} S^{\Theta}=150 \mathrm{JK}^{-1}$
Assuming that variation fo enthalpy change and entropy change with temperature to be negligible, which of the following is correct?
A. Decomposition of $\mathrm{CaCO}_{3}(s)$ is always nonspontaneous.
B. Decomposition of $\mathrm{CaCO}_{3}(\mathrm{~s})$ become spontaneous when temperature is less than $27^{\circ} \mathrm{C}$.
C. Decomposition of $\mathrm{CaCO}_{3}(\mathrm{~s})$ become spontaneous when temperature is greater than $1200^{\circ} \mathrm{C}$.
D. Decomposition of $\mathrm{CaCO}_{3}(s)$ become spontaneous when temperature is greater than $927^{\circ} \mathrm{C}$.

- Watch Video Solution

331. ΔG^{Θ} tells us:
a. Whether a change is feasible or not.
b. How far a reaction will proceed.
c. About emegry of activation.

- Watch Video Solution

332. Identify the correct statement for change of Gibbs energy for a system
$\left(\Delta_{\text {sys }} G\right)$ at constant temperature and pressure:
A. if $\Delta_{\text {sys }} G=0$, the system is still moving in a particular direction.
B. if $\Delta_{\text {sys }} G<0$, the process is not spontaneous
C. if $\Delta G>0$, the process is spontaneous
D. if $\Delta G=0$, the system has attained equilibrium

- Watch Video Solution

333. $F_{2} C=C F-C F=C F_{2} \rightarrow F_{2} C\left|F C=-C F_{2}\right| C F$

For this reaction (ring closure),
$\Delta H=-49 \mathrm{kJmol}^{-1}, \Delta S=-40.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} . U p$ to what temperature is the forward reaction spontaneous?
A. $1492{ }^{\circ} \mathrm{C}$
B. $1219^{\circ} \mathrm{C}$
C. $946{ }^{\circ} \mathrm{C}$
D. $1089^{\circ} \mathrm{C}$

D Watch Video Solution

334. Fixed mass of an ideal gas contained in 10.0 L sealed rigid vessel at 1atm is heated from $-73^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$. Calculate change in Gibbs enegry if entropy of gas is a function of temperature as $S=2+10^{-2} T\left(J K^{-1}\right) .(1 a t m L=0.1 \mathrm{~kJ})$

- Watch Video Solution

335. 1.0 mol of an ideal gas initially present in a 2.0 L insulated cylinder at $300 K$ is allowed to expand against vacuum to $8.0 L$. Determine $w, \Delta U, \Delta_{\text {total }} S$, and ΔG.
336. Sulphur exists is more than one solid form. The stable form at room temperature is rhombic sulphur. But above room temperature the following reaction occurs.
S (rhomic) $\rightarrow S$ (monoclinic)
If $\Delta H^{\Theta}=-276.144 \mathrm{Jat} 298 \mathrm{~K}$ and 1 atm and $\Delta G^{\Theta}=75.312 \mathrm{~J}$
a. Calculate ΔS^{Θ} at $298 K$.
b. Assume that ΔH^{Θ} and ΔS^{Θ} do not vary significantly with temperature, calculate $T_{e q}$, the temperature at which rhombic and monoclinic sulphur exist in equilibrium with each other.

- Watch Video Solution

337. Calculate the free enegry change when 1 mol of NaCI is dissolved in water at $298 K$. Given:
a. Lattice enegry of $\mathrm{NaCI}=-778 \mathrm{kJmol}^{-1}$
b. Hydration energy of $\mathrm{NaCI}-774.3 \mathrm{kJmol}^{-1}$
c. Entropy change at $298 \mathrm{~K}=43 \mathrm{Jmol}^{-1}$
338. Will the reaction,
$\mathrm{I}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})+\mathrm{S}(\mathrm{s})$
proceed spontaneously in the forward direction of 298 K
$\Delta_{f} G^{\Theta} \mathrm{HI}(\mathrm{g})=1.8 \mathrm{kJmol}^{-1}, \Delta_{f} G^{\Theta} \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})=33.8 \mathrm{kJmol}^{-1} ?$

- Watch Video Solution

339. The standard Gibbs free energies for the reaction at 1773 K are given below:
$C(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta G^{\Theta}=-380 \mathrm{kJmol}^{-1}$
$2 C(s)+O_{2}(g) \Leftrightarrow 2 C O(g), \Delta G^{\Theta}=-500 \mathrm{kJmol}^{-1}$
Discuss the possibility of reducing $\mathrm{AI}_{2} \mathrm{O}_{3}$ and PbO with carbon at this temperature,
$4 \mathrm{AI}+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AI}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta G^{\Theta}=-22500 \mathrm{kJmol}^{-1}$
$2 \mathrm{~Pb}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PbO}(\mathrm{s}), \Delta G^{\Theta}=-120 \mathrm{kJmol}^{-1}$
340. In a fuel cell, methanol if used as fuel and oxygen gas is used as an oxidiser. The reaction is
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculated standard Gibbs free enegry change for the reaction that can be converted into electircal work. If standard enthalpy of combustion for methanol is $-702 \mathrm{kJmol}^{-1}$, calculate the efficiency of converstion of Gibbs energy into useful work.
$\Delta_{f} G^{\Theta}$ for $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{O}_{2}$ is -394.00 , -237.00, - 166.00 and $0 \mathrm{kJmol}^{-1}$ respectively.

(D) Watch Video Solution

341. Using $\cdot{ }_{f} G^{\Theta}(\mathrm{Hi})=1.3 \mathrm{kJmol}^{-1}$, calculate the standard free enegry change for the following reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

- Watch Video Solution

342. The emf of the cell reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(a q) \rightarrow \mathrm{Zn}^{2+}(a Q)+\mathrm{Cu}(s)$
is 1.1 V . Calculate the free enegry change for the reaction. If the enthalpy of the reaction is $-216.7 \mathrm{kJmol}^{-1}$, calculate the entropy change for the reaction.

- Watch Video Solution

343. Calculate the equilibrium constant of the reaction :
$C u(s)+2 \mathrm{Ag}(a q) \Leftrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s)$
$E^{C-} ._{\text {cell }}=0.46 \mathrm{~V}$

- Watch Video Solution

344. In the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
When 5 mol of each is taken and the temperature is kept at 298 K , the total pressure was found to be 20 bar.

Given : $\Delta_{f} G_{n_{2} \mathrm{O}_{4}}^{\ominus}=100 \mathrm{~kJ}, \Delta_{f} G_{\mathrm{NO}_{2}}^{\ominus}=50 \mathrm{KJ}$
a. Find ΔG of the reaction at $298 K$.
b. Find the direction of the reaction.

- Watch Video Solution

345. When 1pentyne (A) is trated with $4 N$ alcoholic $K O H$ at $175^{\circ} \mathrm{C}$, it is slowely converted into an equilibrium mixture of 1.3% of 1pentyne (A), 95.2 \% 2-pentyne (B) and 3.5% of 1, 2-pentandiene (C). The equilibrium was maintained at $175^{\circ} \mathrm{C}$. calculate ΔG^{Θ} for the following equilibria:
$B \Leftrightarrow A, \Delta G^{\Theta}=1$?
$B \Leftrightarrow C, \Delta G^{\Theta}=2$?
From the calculated value of ΔG^{Θ} 1and ΔG^{Θ} 2, indicate the order of stability of A, B and C. write a reasonable reaction meachanisum showing all intermediates leading to A, B and C.

- Watch Video Solution

346. What is the equilibrium constant K_{C} for the following reaction at 400 K ?

$$
2 N O C I(g) \Leftrightarrow 2 N O(g)+\mathrm{CI}_{2}(g)
$$

$\Delta H^{\Theta}=77.2 \mathrm{kJmol}^{-1}$ and $\Delta S^{\Theta}=122 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} a t 400 \mathrm{~K}$.

- Watch Video Solution

347. For the equilibrium,
$P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g) a t 25^{\circ} C K_{c}=1.8 \times 10^{-7}$
Calculate ΔG^{Θ} for the reaction $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

348. The equilibrium constant at $25^{\circ} \mathrm{C}$ for the process:
$\mathrm{CO}^{3+}(a q)+6 \mathrm{NH}_{3}(a q) \Leftrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(a q)$ is 2×10^{7}.
Calculate the value of ΔG^{Θ} at $25^{\circ} \mathrm{Cat} 25^{\circ} \mathrm{C}\left[R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$.
In which direction the reaction is spontaneous when the recatants and proudcts are in standard state?
349. The equilibrium constant for the reaction
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 298 K is 73 . Calculate the value of the standard free enegry change $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

350. For the water gas reaction,
$C(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
the standard Gobbs free energy of reaction (at 1000 K) is $-8.1 \mathrm{kJmol}^{-1}$.
Calculate its equilibrium constant.

- Watch Video Solution

351. Calculate ΔG^{Θ} for the conversion of oxygen to ozone, $\left(\frac{3}{2}\right) O_{2}(g) \Leftrightarrow O_{3}(g) a t 298 K$, of K_{p} for this conversion is 2.47×10^{-29}.
352. Acetoc acid $\mathrm{CH}_{3} \mathrm{COOH}$ can form a dimer $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$ in the gas phase. The dimer is held togther by two H - bonds with a total strength of 60.0kJper mole of dimer

If at $25^{\circ} \mathrm{C}$, the equilibrium constant for the dimerisation is 1.3×10^{3}, calculate ΔS^{Θ} for the reaction
$2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{g}) \Leftrightarrow\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}(\mathrm{~g})$

- Watch Video Solution

353. The standard enthalpy and entropy changes for the reaction in equilibrium for the forward direction are given below:
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
$\Delta H^{\Theta} .300 K=-41.16 \mathrm{kJmol}^{-1}$
$\Delta S^{\Theta} .300 \mathrm{~K}=-4.14 \times 10^{-2} \mathrm{kJmol}^{-1}$
$\Delta H^{\Theta} \cdot 1200 \mathrm{~K}=-31.93 \mathrm{kJmol}^{-1}$
$\Delta H^{\Theta} \cdot 1200 \mathrm{~K}=-2.96 \times 10^{-2} \mathrm{kJmol}^{-1}$

Calculate K_{p} at each temperature and predict the direction of reaction at 300 K and 1200 k , when $\mathrm{P}_{\mathrm{CO}}=P_{\mathrm{CO}_{2}}=P_{\mathrm{H}_{2}}=P_{\mathrm{H}_{2} \mathrm{O}}=1$ atm at initial state.

- Watch Video Solution

354. Standard Gibbs free enegry change ΔG^{Θ} for a reaction is zero. The value of the equilibrium constant will be:
A. 10
B. 1
C. 100
D. ∞
355. What is ΔG^{\ominus} for the following reaction?
$\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \Leftrightarrow N H_{3}(g), K_{p}=4.42 \times 10^{4}$ at $25^{\circ} \mathrm{C}$
A. $-26.5 \mathrm{kJmol}^{-1}$
B. $-11.5 \mathrm{kJmol}^{-1}$
C. $-2.2 \mathrm{kJmol}^{-1}$
D. $-0.97 \mathrm{kJmol}^{-1}$

- Watch Video Solution

356. Equilibrium constant for the reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ is $\mathrm{K}_{\mathrm{c}}=50 \mathrm{at} 25^{\circ} \mathrm{C}$
The standard Gibbs free enegry change for the reaction will be:
A. $-6.964 k J$
B. $-9.694 k J$
C. $-4.964 k J$
D. $-6.496 k J$

- Watch Video Solution

357. Determine whether or not is possible for sodium to reduce aluminium oxide to aluminium at 298 K . Also, calculate equilibrium constant for this reaction at 298 K .
$\Delta_{f} G^{\Theta} \mathrm{AI}_{2} \mathrm{O}_{3}(\mathrm{~s})=-1582 \mathrm{kJmol}^{-1}$
$\Delta_{f} g^{\Theta} \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})=-377.7 \mathrm{kJmol}^{-1}$

- Watch Video Solution

358. In the reaction equilibrium
$N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
When 5 mol of each is taken and the temperature is kept at 298 K , the total pressure was found to be 20 bar.

Given : $\Delta_{f} G_{n_{2} O_{4}}^{\Theta}=100 \mathrm{~kJ}, \Delta_{f} G_{N O_{2}}^{\Theta}=50 \mathrm{KJ}$
a. Find ΔG of the reaction at $298 K$.
b. Find the direction of the reaction.

- Watch Video Solution

359. For the reaction:
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
$\left(\Delta_{r} H\right)_{300 K}=41.2 \mathrm{kJmol}^{-1}$
$\left(\Delta_{r} H\right)_{1200 K}=-33.0 \mathrm{kJmol}^{-1}$
$\left(\Delta_{r} S\right)_{300 K}=-4.2 \times 10^{-2} \mathrm{kJmol}^{-1}$
$\left(\Delta_{r} S\right)_{1200 K}=-3.0 \times 10^{-2} \mathrm{kJmol}^{-1}$
Predict the direction of spontaneity of the reaction at 300 K and 1200 K . also
calculated $\log _{10} K_{p}$ at $300 K$ and $1200 K$.
360. Calculate $\Delta_{r} G^{\Theta}$ at 298 K for the following reaction if the reaction mixtur econsists of 1 atm of $\mathrm{N}_{2}, 3 \mathrm{~atm}$ of H_{2}, and 1atm of NH_{3}.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \mathrm{W} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta_{r} G^{\Theta}=-33.32 \mathrm{~kJ}$

- Watch Video Solution

361. Thermodynamic efficiency of a cell is given by:
A. $-\Delta H / \Delta G$
B. $-n F E / \Delta G$
C. $-n F E / \Delta H$
D. $-n F E^{\Theta}$

- Watch Video Solution

362. The temperature dependence of equilibrium constant of a reaction is given by $\ln K_{e q}=4.8-\frac{2059}{T}$. Find $\Delta_{r} G^{\Theta}, \Delta_{r} H^{\Theta}, \Delta_{r} S^{\Theta}$.

- Watch Video Solution

363. K_{a} for acetic acid at $27^{\circ} \mathrm{C}$ is 2.0×10^{-5} and at $77^{\circ} \mathrm{C}, K_{a} i s 2.5 \times 10^{-5}$. What are ΔH^{Θ} and ΔS^{Θ} for the ionisation of acetic acid?

- Watch Video Solution

364. What is the sign of ΔG^{Θ} and the values of K for an electrochemical cell for which E^{Θ} cell $=0.80$ volt ${ }^{\prime}$?

$$
\Delta G^{\Theta} \quad K
$$

A.

$$
-\quad>1
$$

$\Delta G^{\Theta} \quad K$
B.

$$
+\quad>1
$$

c $\Delta G^{\Theta} K$
C. $+\quad<1$
$\Delta G^{\Theta} K$
D.

$$
<1
$$

- Watch Video Solution

365. Silane $\left(\mathrm{SiH}_{4}\right)$ burns in air as:
$\mathrm{SiH}_{4}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
the standard Gibbs energies of formation of $\mathrm{SiH}_{4}(\mathrm{~g}), \mathrm{SiO}_{2}(\mathrm{~s})$, and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are
$+52.3,-805.0$, and $-228.6 \mathrm{kJmol}^{-1}$, respectively. Calculate Gibbs enegry change for the reaction and predict whether the reaction in spontaneous or not.

- Watch Video Solution

366. Calculate the standard Gibbs enegry change for the combustion of $\alpha-D$ glucose at $300 K$.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Given the standard enthalpies of formation $\left(\mathrm{kJmol}^{-1}\right)$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=-1274.5, \mathrm{CO}_{2}=-393.5, \mathrm{H}_{2} \mathrm{O}=-285.8$.

Entropies $\left(\mathrm{JKmol}^{-1}\right)$
$C_{6} H_{12} \mathrm{O}_{6}=212.1, \mathrm{O}_{1}=205.0, \mathrm{CO}_{2}=213, \mathrm{H}_{2} \mathrm{O}=69.9$

- Watch Video Solution

367. Calculate the standard free energy change for the formation of methane at $300 K$:

C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
The following data are given:
$\Delta_{f} H^{\Theta}\left(\mathrm{kJmol}^{-1}\right): \mathrm{CH}_{4}(\mathrm{~g})=-74.81$
$\Delta_{f} S^{\Theta}\left(\mathrm{kJmol}^{-1}\right): C($ graphite $)=5.70, \mathrm{H}_{2}(\mathrm{~g})=130.7 \mathrm{CH}_{4}(\mathrm{~g})=186.3$

- Watch Video Solution

368. ΔH^{Θ} and ΔS^{Θ} for the reaction:

$$
B r_{2}(I)+C I_{2}(g) \Leftrightarrow 2 B r C I(g)
$$

at $298 \mathrm{~K}^{\text {are }} 29.3 \mathrm{kJmol}^{-1}$ and $104.1 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. Calculate the equilibrium constant for the reaction.
369. Calculate the standard free enegry change for the reaction:
$\mathrm{Zn}+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}(a q), E^{\Theta}=1.20 \mathrm{~V}$

- Watch Video Solution

370. Calculate $\Delta_{r} G^{\Theta}$ for the following reactions using $\Delta_{f} G^{\Theta}$ values and and predict which reactions are spontaneous.
a. $\mathrm{Ca}(\mathrm{s})+\mathrm{CI}_{2}(g) \rightarrow \mathrm{CaCI}_{2}(\mathrm{~s})$
b. $\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{Hg}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(g)$
c. $\mathrm{NH}_{3}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{HNO}_{3}(l)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{f} G^{\Theta}$ value $\left(\mathrm{kJmol}^{-1}\right)$ are:
$\mathrm{CaCI}_{2}(s)=-748.1, \mathrm{HgO}(s)=-58.84$
$\mathrm{NH}_{3}(g)=-16.45, \mathrm{HNO}_{3}(l)=-80.71$,
$H_{2} O(l)=-237.13$

- Watch Video Solution

371. 2 mol of an ideal gas at $25^{\circ} \mathrm{C}$ is allowed to expand reversibly at constant temperature (isothermally) form a volume of $2 L$ to $10 L$ by reducing the pressure slowely. Calculate the work done by the gas (w), $\Delta U, q$, and ΔH.

- Watch Video Solution

372. 71 g of chlorine gas is allowed to expand freely into vacuum Calculate w.q ΔU and ΔH.

(D) Watch Video Solution

373. Calculate the internal energy change in each of the following cases .
(a) A system absorbs 5 kJ of heat and does 1 kJ of work
(b) 5 kJ of work is done on the system amd 1 kJ of heat is given out by the system.
374. The heat of combusion of benzene in a bomb calorimeter (i.e constant volume) was found to be $3263.9 \mathrm{kJmo}^{-1}$ at $25^{\circ} \mathrm{C}$ Calculate the heat of combustion of benzene at constan pressure .

D Watch Video Solution

375. Calculate the enthalpy of combustion for the following reaction :
$2 \mathrm{HC} \equiv \mathrm{CH}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
The bond energies of $C-H, C \equiv C, O=O, C=O$, and $O-H$ bonds are 414, 812, 494, 707, and $436 \mathrm{kJmol}^{-1}$, respectively.

- Watch Video Solution

376. What is the equilibrium constant K_{c} for the following reaction at 400 K ?
$2 \mathrm{NOCI}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{CI}_{2}(\mathrm{~g})$
$\Delta H^{\Theta}=77.2 \mathrm{kJmol}^{-1}$ and $\Delta S^{\Theta}=122 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} a t 400 \mathrm{~K}$.
377. Calculate ΔG^{Θ} for the following reaction:
$\mathrm{CO}(g)+\left(\frac{1}{2}\right) \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H^{\Theta}=-282.84 \mathrm{~kJ}$
Given,
$S_{\mathrm{CO}_{2}}^{\Theta}=213.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S_{\mathrm{CO}(\mathrm{g})}^{\Theta}=197.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S_{\mathrm{O}_{2}}^{\Theta}=205.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,

D Watch Video Solution

378. The energy change due to the reaction
$2 \mathrm{Na}(\mathrm{s})+\mathrm{CI}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCI}(\mathrm{s})$ is -826 kJ

The consumption of 1 mo 1 of $C I_{2}$ gas contracts the system by 22.4 L at 1 atm What is the enthalphy change of the reaction .

- Watch Video Solution

379. From N atoms of an element A when half the atoms transfer on electron to the another atom $405 \mathrm{kJm} 01^{-1}$ of energy was found to be consumed. An additional energy of $745 \mathrm{kJmo}^{-1}$ was further required to
convert all the A^{Θ} ions to A^{\oplus}. Calculate the ionisation energy and the electron affinity of atom A in eV .

- Watch Video Solution

380. Using the data (all values are in kilocalorie per mole at $25^{\circ} \mathrm{C}$) given below, calculate the bond enegry of $C-C$ and $C-H$ bonds.
ΔH^{Θ} combustion of ethane $=-372.0$
ΔH^{Θ} combustion of propane $=-530.0$
ΔH^{Θ} for $C($ garphite $) \rightarrow C(g)=+172.0$

Bond enegry of $H-H$ bond $=+104.0$
$\Delta_{f} H^{\Theta} o f H_{2} O(l)=-68.0$
$\Delta_{f} H^{\Theta} o f C O_{2}(g)=-94.0$

- Watch Video Solution

381. In order to get maximum calorific output a burner should have an optimum fuel to oxygen ratio which corresponds to three times as much oxygen as is required theorectically for complete combusion of the fuel A
burner which has been adjused for methane as fuel (with $x L^{-1}$ of CH_{4} and $\left.6 x \mathrm{Lh}^{-1} \mathrm{ofCO}_{2}\right)$ is to be readjusted for butane $\mathrm{C}_{4} \mathrm{H}_{10}$ in order to get the same calorific output what should be the rate of supply to butane and oxygen? Assume that losses due to incomplete combustion etc are the same for both fuels and that the gases behave ideally Heats of combusion $\mathrm{CH}_{4}=809 \mathrm{kJmol}^{-1}, \mathrm{C}_{4} \mathrm{H}_{10}=2878 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

382. Standard enthalpy of formation of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}(\mathrm{~s}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are 133.57, - 94.05 and $-68.32 \mathrm{kcalmo1}^{-1}$ respectively Standard enthalpy combustion of CH_{4} at $25^{\circ} \mathrm{C}$ is $-212.8 \mathrm{kcalmo1}^{-1}$ Calculate ΔH^{Θ} for the reaction:
$2 \mathrm{CH}_{4}+\mathrm{CO}_{2}+1 / 2 \mathrm{~N}_{2} \rightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}(\mathrm{~s})+1 / 2 \mathrm{H}_{2}$
Calculate ΔU for combustion of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}(s)$.

- Watch Video Solution

383. Calculate the energy (in KJ) required to excite one litre of hydrogen gas at 1 atm and 298 K to the first excited state of atomic hydrogen. The energy for the dissociation of $H-H$ id $436 \mathrm{KJ} \mathrm{mol}^{-1}$. Give your answer excluding decimal places.

- Watch Video Solution

384. From the following data, calculate the enthalpy change for the combustion of cyclopropane at 298 K . The enthalpy of formation of $\mathrm{CO}_{2(\mathrm{~g})}, \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ and Propene $_{(\mathrm{g})}$ are -393, - 285.8 and $20.42 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of isomerisation of cyclopropane to propene is $-33.0 \mathrm{kJmol}^{-1}$

- Watch Video Solution

385. Preduct that anhyrous AICI_{3} is covalent form the data given below, ionisation enegry for $A I=51.37 \mathrm{kJmol}^{-1}, \Delta_{\text {hyd }} H \quad$ for $\left.A I^{3+}=-4665 \mathrm{kJmole}^{-1}, \Delta_{\text {hyd }} H^{\text {for }} \mathrm{CI}^{\Theta}=-381 \mathrm{kJmol}^{-1}\right)$
386. The enthalpy change involved in the oxidation of glucose is $-2880 \mathrm{kJmol}^{-1}$. Twenty five per cent of this energy is available for muscular work. If 100 kJ of muscular work is needed to walk one kilometre, what is the maximum distance that a person will be able to walk after eating 120 g of glucose ?

- Watch Video Solution

387. A system is provided 50 J of heat and work done on the system is 20 J .

What is the change in the internal enegry?

- Watch Video Solution

388. How much work can be done by 100 calories of heat?
389. The work done by a system is 8 J , when 40 J heat is supplied to it.

Calculate the increases in inernal enegry of system.

- Watch Video Solution

390. Calculate the standard enegry change for the reaction:
$\mathrm{OF}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g}) \mathrm{at} 298 \mathrm{~K}$
The standard enthalpies of formation of $\mathrm{OF}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, and $\mathrm{HF}(\mathrm{g})$ are $+20,-250$, and $-270 \mathrm{kJmol}^{-1}$, respectively.

- Watch Video Solution

391. Heat of reaction for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}+6 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{v}$ at constant pressure is -651 kcal at $17^{\circ} \mathrm{C}$. Calculate the heat of reaction at constant volume at $17^{\circ} \mathrm{C}$.
392. The heat of reaction for, $\mathrm{C}_{10} \mathrm{H}_{8}+12 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 10 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ at constant volume is -1228.2 kcal at $25^{\circ} \mathrm{C}$. Calculate the heat of reaction at constant pressure at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

393. Calculate the heat of transition for carbon from the following:
$C_{\text {Diamond }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-94.3 \mathrm{kcal}$
$\mathrm{C}_{\text {Amorphous }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-97.6 \mathrm{kcal}$
Also calculate the heat required to change $1 g$ of $C_{\text {Diamond }}$ to $C_{\text {Amorphous }}$.

- Watch Video Solution

394. Calculate the enthalpy of vaporisation for water form the following:

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \Delta \mathrm{H}=-57.0 \mathrm{kcal} \\
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-68.3 \mathrm{kcal}
\end{aligned}
$$

Also calculate the heat required to change $1 \mathrm{gH}_{2} \mathrm{O}(\mathrm{l})$ to $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
395. The heats of combustion of $\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}, \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}$ and $\mathrm{H}_{2(\mathrm{~g})}$ are -1405, - 1558.3 and -285.6 kJ respectively. Calculate heat of hydrogenation of ethylene.

- Watch Video Solution

396. At 300 K , the standard enthalpies of formation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}_{(s), \mathrm{CO}_{2(g)}}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are -408, - 393 and $-286 \mathrm{kJmol}^{-1}$ respectively. Calculate the heat of combustion of benzoic acid at
(i) constant pressure,
(ii) constant volume. $\left(R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$

- Watch Video Solution

397. Given the following standard heats of reactions:
(a) heat of formation of water $=-68.3 \mathrm{kcal}$, (b) heat of combustion of
$\mathrm{C}_{2} \mathrm{H}_{2}=-310.6 \mathrm{kcal}$, (c) heat of combustion of ethylene $=-337.2 \mathrm{kcal}$.
Calculate the heat of reaction for the hydrogenation of acetylene at constant volume and at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

398. Standard heat of formation of $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ are -76.2, - 394.8 and $-241.6 \mathrm{kJmol}^{-1}$ respectively. Calculate the amount of heat evolved by burning $1 \mathrm{~m}^{3}$ of CH_{4} measured under normal conditions.

- Watch Video Solution

399. Calculate heat of formation of $\mathrm{KOH}(s)$ using the following equations

$$
\begin{aligned}
& \mathrm{K}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+a q \rightarrow \mathrm{KOH}(a q)+1 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \Delta \mathrm{H}=-48.0 \mathrm{kcal} \ldots .(\mathrm{i}) \\
& \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-68.4 \mathrm{kcal} \ldots(\mathrm{ii}) \\
& \mathrm{KOH}(\mathrm{~s})+(\mathrm{aq}) \rightarrow \mathrm{KOH}(\mathrm{aq}), \Delta \mathrm{H}=-14.0 \mathrm{kcal} \ldots . . \text { (iii) }
\end{aligned}
$$

- Watch Video Solution

400. For a reaction at $25^{\circ} \mathrm{C}$ enthalpy change (ΔH) and entropy change $(D e<s S)$ are $-11.7 \mathrm{KJmol}^{-1}$ and $-105 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$, respectively. Find out whther this reaction is spontaneous or not?

- Watch Video Solution

401. Determine the entropy change for the reaction
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
at 300 K . If standard entropies of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are 12.6, 201.20 and $68.0 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$ respectively.

- Watch Video Solution

402. Calculate the equilibrium constnat for the reaction given below at $400 K$, if $\Delta H^{\Theta}=77.2 \mathrm{kJmole}^{-1}$ and $\Delta S^{\Theta}=122 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$.
$\mathrm{PCI}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCI}_{3}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g})$
403. Caclulate ΔU, internal enegry change of a system, if it absorbs 25 kJ of heat and does $5 k J$ of work.

- Watch Video Solution

2. In a certain process, 400 J of work is done on a system which gives off 200 J of heat. What is ΔU for the process?

- Watch Video Solution

3. During a process, a system abdorbs $710 J$ of heat and does work. The change in ΔU for the process is 460 J . What is the work done by the system?

- Watch Video Solution

4. During a process, the internal enegry of the system increases by 240 kJ while the system performed $90 k J$ of work on its surroundings. How much heta was transferred between the system and the surroundings during this process. In which direction did the heat flow?

- Watch Video Solution

5. Calculate the work donw when 1.0 mol of water at $100^{\circ} \mathrm{C}$ vaporises against an atmospheric pressure of 1atm. Assume ideal behaviour and volume of liquid water to be negligible.

- Watch Video Solution

6. What will be the volume change if 607.8 J of work is done by a system containing an ideal gas? The surroundings exert constant pressure of 20atm. ($1 \mathrm{~L}-\mathrm{atm}=101.3 \mathrm{~J}$)
$7.500 \mathrm{~cm}^{3}$ of a sample of an ideal gas is compressed by an average pressure of 0.1 atm of $250 \mathrm{~cm}^{3}$. During this process, 10 J of heat flows out to the surroundings. Calculate the change in internal enegry of the system.

- Watch Video Solution

8. Three moles of an ideal gas are expanded isothermally and reversibly at
$27^{\circ} \mathrm{C}$ to twice its original volume. Calculate q, w, and ΔU.

- Watch Video Solution

9. $2.8 g$ of N_{2} gas at 300 K and 20atm was allowed to expand isothermally against a constant external pressure of 1 atm . Calculate $\Delta U, q$, and W for the gas.

- Watch Video Solution

10. State whther each of the following will increase or decreases the total enegry content of the system:
a. Heat transferred to the surroundings
b. Work done on the system.
c. Work done by the system.

- Watch Video Solution

11. Two moles of an idela gas at 2 atm and $27^{\circ} \mathrm{C}$ is compressed isothermally to one-half of its volume by an external pressure of 4atm. Calculate q, w, and ΔU.

- Watch Video Solution

12. A simple of gas present in a cylinder fitted with a frictionless piston expands against constant pressure of 1 atm from a volume fo $2 L$ to $12 L$. During the process, it absorbs 600 J of heat from the surroundings. Calculate the change in internal energy of the system.

- Watch Video Solution

13. One mole of an ideal mono-atomic gas at $27^{\circ} \mathrm{C}$ expands adiabatically against a constant external pressure of 1 atm from a value of $5 \mathrm{dm}^{3}$ to $15 \mathrm{dm}^{3}$.calculate (a) q and (b) w.

- Watch Video Solution

14. A 5 L cylinder contained 10 moles of oxygen gas at $27^{\circ} \mathrm{C}$. Due to sudden leakage through the hole, all the gas escaped into the atmosphere and the cylinder got empty. If the atmospheric pressure is 1.0 atm , calculate the work done by the gas.

- Watch Video Solution

15. Adiabatic expenasion of an ideal gas is accompanied by
A. Increase in temperature
B. Decrease in ΔS
C. Decrease in ΔU
D. No change in any one of the above properties

- Watch Video Solution

16. For a cyclic process, which of the following is true?
A. $\Delta S=0$
B. $\Delta U=0$
C. $\Delta H=0$
D. $\Delta G=0$
17. One mole of a gas is heated at constant pressure to raise its temperature by $1{ }^{\circ} \mathrm{C}$. The work done in joules is
A. -4.3
B. -8.314
C. -16.62
D. Unpredicatable

- Watch Video Solution

18. What work is to be done on 2 mol of a perfect gas at $27^{\circ} \mathrm{C}$ it is compressed reversibly and isothermally from a pressure of $1.01 \times 10^{5} \mathrm{Nm}^{-2} \rightarrow 5.05 \times 10^{6} \mathrm{Nm}^{-2} ?$

- Watch Video Solution

19. 1 mol of an ideal gas undergoes reversible isothermal expansion form an initial volume V_{1} to a final volume $10 V_{1}$ and does 10 kJ of work. The initial pressure was $1 \times 10^{7} \mathrm{~Pa}$.
c. Calculate V_{2}.
b. If there were 2 mol of gas, what must its temperature have been?

- Watch Video Solution

20. A sample of 2 kg of helium (assumed ideal) is taken through the process $A B C$ and another sample of 2 kg of the same gas is taken through the process $A D C$. Then the temperature of the states A and B are (given
$\left.R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$

A. $T_{A}=220.5 K, T_{B}=220.5 K$
B. $T_{A}=241 K, T_{B}=241 K$
C. $T_{A}=120.5 K, T_{B}=241 \mathrm{~K}$
D. $T_{A}=240 K, T_{B}=480 K$
21. An ideal diatomic gas is caused to pass throguh a cycle shown on the $P-V$ diagram in figure, where $V_{2}=3.00 V_{1}$. If P_{1}, V_{1}, and T_{1} specify the state 1 , then the temperature of the state 3 is

A. $\left(T_{1} / 3\right)^{1}$
B. $\left(T_{1} / 3\right)^{4}$
C. $\left(T_{1}\right)(1 / 3)^{0.4}$
D. $\left(T_{1} / 3\right)^{2}$
22. A heat engine carries one mole of an ideal mono-atomic gas around the cycle as shown in the figure below. Process $1 \rightarrow 2$ takes place at constant volume, process $2 \rightarrow 3$ is adiabatic and process $3 \rightarrow 1$ takes place at constant pressure. Then the amount of heat added in the process $1 \rightarrow 2$ is

A. 3740 J
B. -3740 J
C. 2810 J
D. 3228 J
23. One mole of an ideal mono-atomic gas is caused to go through the cycle shown in the figure below. Then the change in the internal enegry in expanding the gas from a to c along the path $a b c$ is:

A. $13 P_{0} V_{0}$
B. $16 R T_{0}$
C. $14.5 R T_{0}$
D. $10.5 R T_{0}$

- Watch Video Solution

24. Calculate the work done by 1.0 mol of an idela gas when it expands from 10atm to 2 atm at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

25. 3.0 moles of an ideal gas at $27^{\circ} \mathrm{C}$ is compressed at constant temp. reversibly form a volume of 20 L to 10 L slowely increasing the external pressure calculate work done on the gas $w, q, \Delta U$ and ΔH.

- Watch Video Solution

26. When 3mole of an idela gas expand reversibly and isothermally five times its initial volume 6 kJ heat flow into it. What must be the temperature of the gas?
27. The enthalpy changes for the following reactions at 298 k and 1atm are given below:
a. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-874 \mathrm{~kJ}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-1363 \mathrm{~kJ}$

Calculate the internal enegry changes for these recaitons.

- Watch Video Solution

2. The enthalpy of combustion of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ at 298 K and 1 atm pressure is $-2500.0 \mathrm{kJmol}^{-1}$. What is ΔU for the reaction?

- Watch Video Solution

3. The heat produced by the combustion of 2.0 g of benzene in a bomb calorimeter was found to be 123.6 kJ at $25^{\circ} \mathrm{C}$. Calculate the enthalpy of

combustion of benzene at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

4. The heat liberated on complete combustion of 7.8 g benzene is 327 kJ . This heat has been measured at constant volume and at $27^{\circ} \mathrm{C}$. Calculate heat of combustion of benzene at constant pressure at $27^{\circ} \mathrm{C} .\left(R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$

- Watch Video Solution

5. A gas expands from $3 \mathrm{dm}^{3}$ to $5 \mathrm{dm}^{3}$ anainst a constant pressure of 3 atm . The work done during the expansion if used to heat 10 mol of water at temperature 290 K . Find the final temperature of water, if the specific heat of water $=4.18 g^{-1} K^{-1}$.
6. Determine the value of ΔH and ΔU for the reversible isothermal evaporation of 90.0 g of water at $100^{\circ} \mathrm{C}$. Assume that water behaves as an ideal gas and heat of evaporation of water is $540 \mathrm{calg}^{-1}\left(R=2.0 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}\right)$.

- Watch Video Solution

7. 100 mL of a liquid is contained in an insulated container at a pressure of 1bar. The pressure is steeply increased to 100bar. The volume of the liquid is decreased by $1 m L$ at this constant pressure. Find ΔH and ΔU.

- Watch Video Solution

8. The bond enthalpies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{CI}-\mathrm{CI}$ are 430 and $242 \mathrm{kJmol}^{-1}$, respectively. If $\Delta H_{f}(H C I)$ is $-91 \mathrm{kJmol}^{-1}$ the bond enthalpy of HCI would be
A. $-214 \mathrm{kJmol}^{-1}$
B. $-427 \mathrm{kJmol}^{-1}$
C. $214 \mathrm{kJmol}^{-1}$
D. $427 \mathrm{kJmol}^{-1}$

- Watch Video Solution

9. Two moles of a perfect gas undergo the following processes:
a. A reversible isobaric expansion from (1.0atm, 20.0L) to (1.0atm, 40.0 L$)$.
b. A reversible isochroic change of state from (1.0atm, 40.0L) to (0.5atm, 40.0L)
c. A reversible isothermal expansion from (0.5atm, 40.0L) \rightarrow (1.0atm, 20.0L). i. Sketch with lables each of the processes on the same P - V diagram.
ii. Calculate the total work (w) and the total heat change (q) involved in the above process.
iii. What will be the values of ΔH for the overall process?

- Watch Video Solution

10. The enthalpy change (ΔH) for the reaction, $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3 g}$ is -92.38 kJ at 298 K What is ΔU at 298 K ?

- Watch Video Solution

11. The difference between the heats of reaction at constant pressure and a constant volume for the reaction $2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ in kJ is

- Watch Video Solution

12. A gas present in a cylinder fitted with a frictionless pistion expands against a constant pressure of 1 atm form a volume of $2 L$ to a volume of $6 L$. In doing so, it absorbs 800 J heat form the surroundings. Determine the increases in internal enegry of process.

- Watch Video Solution

13. Calcualte $q, w, \Delta U$, and ΔH for the reversible isothermal expansion of one mole of an ideal gas at $127^{\circ} \mathrm{C}$ from a volume of $20 \mathrm{dm}^{3}$ to $40 \mathrm{dm}^{3}$.

- Watch Video Solution

14. A swimmer coming out from a pool is covered with a film of water weighing about 80 g . How much heat must be supplied to evaporate this water ? If latent heat of evaporation for $\mathrm{H}_{2} \mathrm{O}$ is $40.79 \mathrm{kJmol}^{-1}$ at $100^{\circ} \mathrm{C}$.

- Watch Video Solution

15. Calculate $q, w, \Delta U$, and ΔH for this isothermal reversible expansion of 1mole of an ideal gas from an initial pressure of 10.0 bar to final pressure of 100bar at a constant pressure of 273 K .

- Watch Video Solution

16. A sample of argon gas at 1 atm pressure and $27^{\circ} \mathrm{C}$ expands reversibly and adiabatically from $1.25 \mathrm{dm}^{3}$ to $2.50 \mathrm{dm}^{3}$. Calculate the enthalpy change in this process. $C_{v m}$ for orgon is $12.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

17. An insulated contains 1 mole of a liquid, molar volume 100 mL at 1 bar.

When liquid is steeply passed to 100 bar , volume decreases to 99 mL . Find ΔH and ΔU for the process.

- Watch Video Solution

18. 5 mol of an ideal gas at $27^{\circ} \mathrm{C}$ expands isothermally and reversibly from a volume of $6 L$ to $60 L$. The work done in $k J$ is
A. -14.7
B. -28.72
C. +28.72
D. -56.72

Answer: B

- Watch Video Solution

19. 10 mol of an ideal gas confined to a volume of 10 L is released into atmosphere at 300 K where the pressure is 1 bar. The work done by the gas is $\left(R=0.083 \mathrm{LbarK}^{-1} \mathrm{~mol}^{-1}\right)$
A. 249 Lbar
B. 259 L bar
C. 239Lbar
D. 220 L bar
20. A system absorbs 20 kJ heat and also does 10 kJ of work. The net internal enegry of the system
A. Increases by 10 kJ
B. Decreases by 10 kJ
C. Increases by 30 kJ
D. Decreases by 30kJ

- Watch Video Solution

21. One moles of an ideal gas which $C_{V}=3 / 2 R$ is heated at a constant pressure of 1 atm from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Calculate $\Delta U, \Delta H$ and the entropy change during the process.

- Watch Video Solution

22. A cyclic process $A B C D$ is shown in the $P-V$ diagram. Which of the following curves represents the same process?

a.
A.

B.

- Watch Video Solution

23. A thermodynamic process is shown in the following figure. The process and volumes corresponding to some points in the figure are:
$P_{A}=3 \times 10^{4} \mathrm{~Pa}$,
$V_{A}=2 \times 10^{-3} \mathrm{~m}^{-3}$,
$P_{B}=8 \times 10^{4} \mathrm{~Pa}, V_{D}=5 \times 10^{-3} \mathrm{~m}^{3}$
In process $A B, 600 J$ of heat is added to the system and in the process $B C, 200 \mathrm{~J}$ of heat is added to the system. the change in internla energy of
the system in the process $A C$ would be

A. 560 J
B. 800 J
C. 600 J
D. 640 J
24. In which of the following indicator diagrams gives below do $A B, B C$, and CA represent isothermal, isochroic, and adiabatic changes, respectively?
A.

B.

d. P

D.

- Watch Video Solution

25. The pressure -temperature $(P-T)$ phase diagram shown below corresponds to the
a. Curve of fusion of solids that expand on solidification.
b. Curve of sublimation of solides that directly go over to the vapour phase.

26. An ideal gas undergoes isothermal expansion followed by heat removel at constant volume and they by heat removal at constant pressure to the initial volume. The correct descripion of these steps is indicated by

A.
B.

C.

D.

27. Four curves A, B, C and D are drawn in figure for a given amount of gas. The curve which represents adiabatic and isothermal changes, respectively, is

A. Cand D
B. D and C
C. A and B
D. Band A
28. A mixture of hydrocarbons containing acetylene and ethane, when burned under controlled consitions produced 16.20 g of water and 139.7 kcal of heat.

Given the molar composition of the mixture. Standard heats of combustion for acetylene and ethane are, respectively, -310.6 and -373.8 kcal .

- Watch Video Solution

2. Find the heat that of sublimation of sodium metal from the following data. Ionisation enegry of sodium $=502.1$, bond enegry of chlorine $=242.8$, heat of formation of $\mathrm{NaCI}=-411.1$, lattice energy of $\mathrm{NaCI}=-778.0$, and electorn affinity of chlorine is -365.3 . All units are in kJmol^{-1}.

- Watch Video Solution

3. An athelet takes 20 breaths per minute at room temperature. The air inhaled in each breath is 200 mL which contains 20% oxygen by volume,
while exhaled air contains 10% oxygen by volume. Assuming that all the oxygen consumed if used for converting glucose into CO_{2} and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$, how much glucose will be burnt in the body in one hour and what is the heat produced ? (Room temperature $-27^{\circ} \mathrm{C}$ and enthalpy of combustion of glucose is -2822.5 $\mathrm{kJol}^{-1} \mathrm{at0}^{\circ} \mathrm{C}$)

- Watch Video Solution

4. A gas mixture of 3.67 L of ethylene and methane on complete combustion at $25^{\circ} \mathrm{C}$ produces 6.11 L of CO_{2}. Find out the heat evolved on buring 1 L of the gas mixture. The heats of combustion of ethylene and methane are -1423 and $-891 \mathrm{kJmol}^{-1}$, respectively, at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

5. Calculate the resonance energy of $\mathrm{C}_{6} \mathrm{H}_{6}$ using kekule formula of $\mathrm{C}_{6} \mathrm{H}_{6}$ from the following data.
a. $\Delta_{f} H^{\Theta}$ for $C_{6} H_{6}=-358.5 \mathrm{kJmol}^{-1}$
b. Heat of atomisation of $C=716.8 \mathrm{kJol}^{-1}$
c. Bond enegry of $C-H, C-C, C=C$ and $H-H$ are $490,620,436.9 \mathrm{kJmole}^{-1}$ respectively.

- Watch Video Solution

6. From the following data of Δh, of the following reactions,
a. $C(s)+1 / 2 O_{2}(g) \rightarrow C O(g), \Delta H^{\Theta}=-110 k J$
b. $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}), \Delta H^{\Theta}=132 \mathrm{~kJ}$

Calculate the mole composition of the mixture of steam and oxygen on being passed over coke at $1273 K$, keeping the tempertaure constant.

D View Text Solution

7. A person inhales 640 g of O_{20} per day. If all the O_{2} is used for converting sugar into CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, how much sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is consumed in the body in one day and what is the heat evolved ?
$\left(\Delta H_{\text {combination of sucrose }}=-5645 \mathrm{kJmol}^{-1}\right)$
8. ΔH combustion for $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and $\mathrm{C}_{3} \mathrm{H}_{8}$ are -210.8, -368.4 and $-526.3 \mathrm{kcalmol}^{-1}$, respectively. Calculate ΔH combustion for octane.

- Watch Video Solution

9. When 12.0 g of C reacted with a limited quantity of oxygen, 57.5 kcalof heat was produced. Calculate the number of $C O$ and number of moles of CO_{2} produced.

Given $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta_{f} \mathrm{H}=-94.05 \mathrm{kcal}$
$\mathrm{C}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}, \Delta_{f} \mathrm{H}=-26.41 \mathrm{kcal}$

- Watch Video Solution

10. When 12.0 g of C reacted with oxygen to form CO and CO_{2} at $25^{\circ} \mathrm{C}$ at constant pressure, 313.8 kJ of heat was released and no carbon remained.

Calculate the mass of oxygen which reacted.
$\Delta_{f} H^{\Theta}(C O, g)=-110.5 \mathrm{kJmol}^{-1}$ and
$\Delta_{r} H^{\Theta}(C O, g)=-393.5 \mathrm{kJmol}^{-1}$

- Watch Video Solution

11. Given $\mathrm{CaCI}_{2}(s)+a q \rightarrow \mathrm{CaCI}_{2}(a q): \Delta H^{\Theta}=75 \mathrm{kJmol}^{-1}$ at $18^{\circ} \mathrm{C}$ and $\mathrm{CaCI}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}+a q \rightarrow \mathrm{CaCI}_{2}(a q), \Delta \mathrm{H}^{\Theta} 19 \mathrm{kJmol}^{-1}$ at $18^{\circ} \mathrm{C}$. Find the heat of hydration of CaCI_{2} to $\mathrm{CaCI}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ by $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. The Heat of vaporisation of water may be taken as $2452 \mathrm{~J}^{-1}$ gat $18^{\circ} \mathrm{C}$.

- Watch Video Solution

12. The dissociation pressure of
Δ
$\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}$ gets doubled over a tempertaure range of 60 degree around the mean tempertaure of $837^{\circ} \mathrm{C}$. Calculate the enthalpy of dissociation in kcal mol^{-1}.

- Watch Video Solution

13. Calculate the enthalpy change for the following reaction:
$X e F_{4} \rightarrow X e^{\oplus}+F^{\Theta}+F_{2}+F$. The average $X e-F$ bond energy is 34 kcalmol $^{-1}$, first IE of Xe is $279 \mathrm{kcalmol}^{-1}, E A$ of F is $85 \mathrm{kcalmol}^{-1}$ and bond dissociation enegry of F_{2} is $38 \mathrm{kcalmol}^{-1}$

- Watch Video Solution

14. The conversion of gaseous atoms K and F to K^{\oplus} and F^{\ominus} absorbs 0.85 eV of energy. If the $I E$ and $\Delta_{\mathrm{eg}} H^{\ominus}$ of K and F have magnitudes in the ratio of $7: 6$, what is the electron gain enthalpy $\left(\Delta_{\text {eg }} H^{\ominus}\right)$ of fluorine ?

- Watch Video Solution

15. While 1 mol of ice melts at $0^{\circ} \mathrm{C}$ and at constant pressure of $1 \mathrm{~atm}, 1440 \mathrm{cal}$ of heat are absorbed by the system. The molar volume of ice and water are 0.0196 and $0.0180 L$ respectively. Calculate ΔH and ΔU.
16. At $25^{\circ} \mathrm{C}$, buring $0.2 \mathrm{~mole} \mathrm{H}_{2}$ with 0.1 mole O_{2} to produce $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ in a bomb calorimeter (constant volume) raises the temperature of the apperaturs $0.88^{\circ} \mathrm{C}$. When 0.01 mol toulene is burned in this calorimeter, the temperature is raised by $0.615^{\circ} \mathrm{C}$. Calculate ΔH^{Θ} combustion of toluene. $\Delta_{f} H^{\Theta} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-286 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

17. Calculate the enthalpy of formation of aniline. The enthalpy of combustion of aniline is $837.5 \mathrm{kcalmol}^{-1}$. The enthalpies of formation of liquid water and gaseous carbon dioxide are -68.4 and $-97.0 \mathrm{kcalmol}^{-1}$ respectively. All values are at 298 K .

- Watch Video Solution

18. Calcualte the enthalpy change when infinitely dilute solution of CaCI_{2} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed. $\Delta_{f} \mathrm{H}^{\Theta}$ for $\mathrm{Ca}^{2+}(a q), \mathrm{CO}_{3}^{2-}(a q)$, and $\mathrm{CaCO}_{3}(s)$ are $-129.80,-161.65$, and $-288.50 \mathrm{kcalmol}^{-1}$ respectively.

- View Text Solution

19. The sublimation energy of a metal is $100 \mathrm{kJmol}^{-1}$ and its Ist and lind IEs are 4.0 eV and 12.0 eV respectively. The hydration energy of X^{\oplus} is $-380 \mathrm{kJmol}^{-1}$ and X^{2+} is $-1280 \mathrm{kJmol}^{-1}$. Common the tability of two ions in water.

- Watch Video Solution

20. The $C-H$ bond of the side chain in toluene, $C_{6} H_{5}-\mathrm{CH}_{3}$, has a dissociation energy of $77.5 \mathrm{kcalmol}^{-1}$. Calculate $\Delta_{f} H^{\Theta}$ of benzy1 radical and the strength of the central bond in dibenzy $1 \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$ given that $\Delta_{f} H^{\Theta}$ to toluene vapour in $12 \mathrm{kcalmol}^{-1}$ and that of dibenzy1 vapour is $27.8 \mathrm{kcalmol}^{-1}$. BE of $\mathrm{H}_{2}=104 \mathrm{kcalmol}^{-1}$.

- Watch Video Solution

21. Calculate Δh for the eaction
$\mathrm{BaCO}_{3}(\mathrm{~s})+2 \mathrm{HCI}(\mathrm{aq}) \rightarrow \mathrm{BaCI}_{2}(a q)+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{f} H^{\Theta}\left(\mathrm{BaCO}_{3}\right)=-290.8 \mathrm{kcalmol}^{-1}, \Delta_{f} H^{\Theta}\left(H^{\oplus}\right)=0$
$\Delta_{f} H^{\Theta}\left(\mathrm{Ba}^{++}\right)=-128.67 \mathrm{kcalmol}^{-1}$,
$\Delta_{f} H^{\Theta}\left(\mathrm{CO}_{2}\right)=-94.05 \mathrm{kcalmol}^{-1}$,
$\Delta_{f} H^{\Theta}\left(\mathrm{H}_{2} \mathrm{O}\right)=-68.32 \mathrm{kcalmol}^{-1}$

- Watch Video Solution

22. Calculate the heat produced when 3.785 L of octabe reacts with oxygeb to form carbon mono oxide and water vapour at $25^{\circ} \mathrm{C}$. (Density of octane is $\left.0.75025 \mathrm{gmL}^{-1}\right) \cdot \Delta_{\text {comb }} H^{\Theta}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=-1302.7 \mathrm{kcal}, \Delta_{f} H^{\Theta}\left(\mathrm{CO}_{2}\right)=-94.05 \mathrm{kcal}$,

- Watch Video Solution

23. a. Cis-2-butene \rightarrow trans-2-butane, ΔH_{1}
b. Cis-2-butane \rightarrow 1-butene, $\Delta \mathrm{H}_{2}$
c. Trans-2-butene is more stable than C is-2-butene
d. Ethalpy of combustion of 1-butene, $\Delta H=-649.8 \mathrm{kcal} / \mathrm{mol}$
e. $9 \Delta H_{1}+5 \Delta H_{2}=0$
f. Enthalpy of combustion of trans -2-butene, $\Delta H=-647.1 \mathrm{kcalmol}^{-1}$.

Calculate ΔH_{1} and ΔH_{2} ?

- Watch Video Solution

24. Calculate the proton affinity of $\mathrm{NH}_{3}(g)$ from the following data (in kJmol^{-1}):
ΔH^{Θ} dissociation: $H_{2}(g)=218$
ΔH^{Θ} formation: $\mathrm{NH}_{3}(g)=-46$
Lattice energy of $\mathrm{NH}_{4} \mathrm{CI}(\mathrm{s})=683$

Ionisation energy of $H=1310$

Electron affinity of $C I=-348$

Bond dissociation energy $\mathrm{CI}_{2}(g)=124$
$\Delta_{f} H^{\Theta}\left(\mathrm{NH}_{4} \mathrm{CI}\right)=-314$
25. In certan areas where coal is cheap, artificial gas is produced for household use by the "water gas" raction
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 600^{\circ} \mathrm{CH}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
Assuming that coke is 100% carbon, calculate the maximum heat obtainable at 298 K from the combustion of 1 kg of coke, and compare this value to the maximum heat obtainable at 298 K from burning the water was produced from 1.00 kg of coke.

Glven: $\Delta_{f} H^{\Theta}, H_{2} O(l)=-68.32 \mathrm{kcal} / \mathrm{mol}$
$\Delta_{f} H^{\Theta}, \mathrm{CO}_{2}(\mathrm{~g})=-94.05 \mathrm{kcal} / \mathrm{mol}$
$\Delta_{f} H^{\Theta}, C O(g)=-26.42 \mathrm{kcal} / \mathrm{mol}$

- Watch Video Solution

26. Calculate the enthalpy of combustion of benzene (l) on the basis of the following data:
a. Resonance energy of benzene $(l)=-152 \mathrm{~kJ} / \mathrm{mol}$
b. Enthalpy of hydrogenation of cyclohexene $(l)=-119 \mathrm{~kJ} / \mathrm{mol}$
c. $\Delta_{f} H^{\Theta} C_{6} H_{12}(l)=-156 \mathrm{kJmol}^{-1}$
d. $\Delta_{f} H^{\Theta} o f H_{2} O(l)=-285.8 \mathrm{kJol}^{-1}$
e. $\Delta_{f} H^{\Theta}$ ofCO $2(g)=-393.5 \mathrm{kJmol}^{-1}$

- Watch Video Solution

27. Find ΔH of the process
$\mathrm{NaOH}(\mathrm{s}) \rightarrow \mathrm{NaOH}(\mathrm{g})$
Given: $\Delta_{\text {diss }} H^{\Theta}$ ofO ${ }_{2}=151 \mathrm{kJmol}^{-1}$
$\Delta_{\text {diss }} H^{\Theta}$ of $H_{2}=435 \mathrm{kJmol}^{-1}$
$\Delta_{\text {diss }} H^{\Theta}$ ofO - $\mathrm{H}=465 \mathrm{kJmol}^{-1}$
$\Delta_{\text {diss }} H^{\Theta}$ ofNa-O $=255 \mathrm{kJmol}^{-1}$
$\Delta_{\text {soln }} H^{\Theta}$ of $\mathrm{NaOH}=-46 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\Theta}$ ofNaOH $(s)=-427 \mathrm{kJmol}^{-1}$
$\Delta_{\text {sub }} H^{\Theta} o f N a(s)=109 \mathrm{kJmol}^{-1}$

- Watch Video Solution

1. 30.0 kJ of heat is required to melt 1 mol of sodium chloride. The entropy change during melting is $15.05 \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. Calculate the melting point of sodium chloride.

- Watch Video Solution

2. Calculate the entropy changes of fustion and vaporisation for chlorine from the following data:
$\Delta_{\text {fus }} H=6.40 \mathrm{kJmol}^{-1}$, melting point $=-100^{\circ} \mathrm{C}$
$\Delta_{\text {vap }} H=20.4 \mathrm{kJol}^{-1}$, boiling point $=-30^{\circ} \mathrm{C}$

- Watch Video Solution

3. $\Delta_{\text {vap }} S$ of acetone is $90.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If boiling point of acetone is $50^{\circ} \mathrm{C}$, calculate the heat required for the vaporisation of $1 g$ of acetone..

- Watch Video Solution

4. The enthalpy of vaporisation of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is $30.8 \mathrm{kJmol}^{-1}$ at its boiling point $\left(80.1^{\circ} \mathrm{C}\right)$. Calculate the entropy change in going from:
a. liquid to vapour and
b. vapour to liquid at $80.1^{\circ} \mathrm{C}$.

- Watch Video Solution

5. Calculate the entropy change of n-hexae when 1 mol of it evaporates at $341.7 K\left(\Delta_{\text {vap }} H^{\Theta}=290.0 \mathrm{kJmol}^{-1}\right)$

- Watch Video Solution

6. The following data is known for melting of $K C I: \Delta S^{\Theta}=0.007 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}, \Delta H^{\Theta}=7.25 \mathrm{kJmol}^{-1}$ Calculate the melting point of KCI.
7. Calculate $\Delta_{r} S_{m}^{\Theta}$ for the reaction:
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
Given that $S_{m}^{\Theta}(\mathrm{Fe})=27.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,
$S_{m}^{\Theta}\left(O_{2}\right)=205.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $S_{m}^{\Theta}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=87.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

8. Calculate the change of entropy, $\Delta_{r} S^{\Theta}$ at $298 K$ for the reaction in which urea is formed from NH_{3} and CO_{2}.
$2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The standard entropies $\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ are:
$\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})=174.0, \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=69.9$
$\mathrm{NH}_{3}(\mathrm{~g})=192.3, \mathrm{CO}_{2}(\mathrm{~g})=213.7$

- Watch Video Solution

9. Calculate the change in entropy for the following reaction $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$

Given:
$S_{C O}^{\Theta}(g)=197.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$S_{O_{2}}^{\Theta}(g)=205.03 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$S_{\mathrm{CO}_{2}}^{\Theta}(g)=213.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

10. Calculate the entropy change at 298 K for the reaction
$B r_{2}(l)+C I_{2}(g) \rightarrow 2 B r C I(g)$
$\Delta H=29.3 k J a t 298 \mathrm{~K}$. The entropies of $\mathrm{Br}_{2}(l), C I_{2}(g)$, and $\operatorname{BrCI}(g)$ at the above temperature and $152.3,223.0$ and $239.7 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ respectively.

- Watch Video Solution

11. Calculate the standard molar entropy change for the formation of gaseous propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ at 293 K.

3 C (graphite) $+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$

Standard molar entropies $S_{m}^{\Theta}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ are:
$C($ graphite $)=5.7, H_{2}(g)=130.7, C_{3} H_{5}(g)=270.2$

- Watch Video Solution

12. Calculate the enthalpy of vaporisation per mole for ethanol. Given $\Delta S=109.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and boiling point of ethanol is 78.5°.

- Watch Video Solution

13. The change in entropy of an ideal gas during reversible isothermal expansion is
A. Negative
B. Positive
C. Zero
D. Infinite

- Watch Video Solution

14. The total entropy change for a system and its surroundings increases, if the process is
A. Reversible
B. Irreversible
C. Exothermic
D. Endithermic

- Watch Video Solution

15. The free energy change for a reversible reaction at equilibrium is
A. Zero
B. Positive
C. Negative
D. None

- Watch Video Solution

16. Which statement (s) is/are true?
17. S^{Θ} values for all elements in their states are positive.
18. S^{Θ} values for all aqueous ions are positive.
19. ΔS^{Θ} values for all spontaneous reactions are positive.
A. 1 only
B. 1 and 2 only
C. 2 and 3 only
D. All
20. Calculated the Gibbs energy change on dissolving one mole of sodium chloride at $25^{\circ} \mathrm{C}$.

Lattice $=+777.0 \mathrm{kJmol}^{-1}$
Hydration of $\mathrm{NaCI}=-774.0 \mathrm{kJmol}^{-1}$
ΔS at $25^{\circ} \mathrm{C}=40 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

2. The values of ΔH and ΔS for two reactions are given below:

Reaction $A: \Delta H=-10.0 \times 10^{3} \mathrm{Jmol}^{-1}$
$\Delta S=+30 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Reaction $B: \Delta H=-11.0 \times 10^{3} \mathrm{Jmol}^{-1}$
$\Delta S=-100 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Decide whether these reactions are spontaneous or not at 300 K .
3. At what temperature does the reduction of lead oxide to lead by carbon becomes spontaneous?
$\mathrm{PbO}+\mathrm{C} \rightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{CO}(\mathrm{g})$
For the reacion, ΔH and ΔS at $25^{\circ} \mathrm{C}$ are $108.4 \mathrm{kJmol}^{-1}$ and $190 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

4. For the reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta H=-95.0 \mathrm{~kJ}$ and $\Delta S=-19000 \mathrm{JK}^{-1}$
Calculate the temperature in centigrade at which it will attain equilibrium.
5. Enthalpy and entropy changes of reaction are $40.63 \mathrm{kJmol}^{-1}$ and $108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. Predict the feasibility of the reaction at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

6. Predict whether it is possible or not to reduce magnesium oxide using carbon at 298 K according to the reaction.
$\mathrm{MgO}(\mathrm{s})+\mathrm{C}(\mathrm{s}) \rightarrow \mathrm{Mg}(\mathrm{s})+\mathrm{CO}(\mathrm{g})$
$\Delta_{r} H^{\Theta}=+491.18 \mathrm{kJmol}^{-1}$ and $\Delta_{r} S^{\Theta}=197.67 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
If not at what temperature, the reaction becomes spontaneous.

- Watch Video Solution

7. The standard Gibbs energy change value $\left(\Delta t_{r} G^{\Theta}\right)$ at 1773 K are given for the following reactions:

$$
\begin{aligned}
& 4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}, \Delta_{r} G^{\Theta}=-1487 \mathrm{kJmol}^{-1} \\
& 4 \mathrm{AI}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{AI}_{2} \mathrm{O}_{3}, \Delta_{r} G^{\Theta}=-22500 \mathrm{kJol}^{-1} \\
& 2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta_{r} G^{\Theta}=-515 \mathrm{kJmol}^{-1}
\end{aligned}
$$

Find out the possibility of reducing $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{AI}_{2} \mathrm{O}_{3}$ with CO at this temperature.

- Watch Video Solution

8. In a fuel cell, methanol if used as fuel and oxygen gas is used as an oxidiser. The reaction is
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculated standard Gibbs free enegry change for the reaction that can be converted into electircal work. If standard enthalpy of combustion for methanol is $-702 \mathrm{kJmol}^{-1}$, calculate the efficiency of converstion of Gibbs energy into useful work.
$\Delta_{f} G^{\Theta}$ for $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{O}_{2}$ is -394.00 , $-237.00,-166.00$ and $0 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

9. On the basic of the following $\Delta_{r} G^{\Theta}$ values at 1073K:
$\mathrm{S}_{1}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g}) \Delta_{\mathrm{r}} G^{\Theta}=-544 \mathrm{kJmol}^{-1}$
$2 \mathrm{Zn}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{s}) \Delta_{r} G^{\Theta}=-480 \mathrm{kJmol}^{-1}$
$2 Z n(s)+S_{2}(s) \rightarrow 2 Z n S(s) \Delta_{r} G^{\Theta}=-293 \mathrm{KJmol}^{-1}$
Show that roasting of zinc sulphide to zince oxide is a spontaneous process.

- Watch Video Solution

10. Consider the reaction:
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta G^{\Theta}=-1010.5 \mathrm{~kJ}$
Calculate $\quad \Delta_{f} G^{\Theta}[N O(g)]$ if $\Delta_{f} G^{\Theta}\left(N H_{3}\right)=-16.6 \mathrm{kJmol}^{-1} \quad$ and $\Delta_{f} G^{\Theta}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right]=-237.2 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

11. Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction:
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Given that $\Delta_{f} G^{\Theta}=\left[C_{6} H_{6}(l)\right]=172.8 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{\Theta}\left[\mathrm{CO}_{2}(g)\right]=-394.4 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{\Theta}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-228.6 \mathrm{kJmol}^{-1}$

- Watch Video Solution

12. Consider the reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
Calculated the standard Gibbs energy change at 298 K and predict whther the rection is spontaneous or not.
$\Delta_{f} G^{\Theta}(\mathrm{NO})=86.69 \mathrm{kJmol}^{-1}, \Delta_{f} G^{\Theta}\left(\mathrm{NO}_{2}\right)=51.84 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

13. For the water gas reaction:

$$
C(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

the standard Gibbs enegry for the reaction at $1000 \mathrm{~K}^{\text {is }}-8.1 \mathrm{kJmol}^{-1}$. Calculate its equilibriu constant.

- Watch Video Solution

14. Using the following data, calculate the value of equilibrium constant for the following reaction at 298 K
$3 H C \equiv C H A c e t y l e n e ~ \Leftrightarrow C_{6} H_{6}(g)$ Benzene
Assuming ideal behaviour
$\Delta_{f} G^{\Theta}(\mathrm{HC} \equiv \mathrm{CH})=2.09 \times 10^{5} \mathrm{Jmol}^{-1}$
$\Delta_{f} G^{\Theta}\left(C_{6} H_{6}\right)=1.24 \times 10^{5} \mathrm{Jmol}^{-1}$,
$R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Can the reaction be recommended for the synthesis of benzene?

- Watch Video Solution

15. The equilibrium constant at $25^{\circ} \mathrm{C}$ for the process:
$\mathrm{CO}^{3+}(a q)+6 \mathrm{NH}_{3}(a q) \Leftrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(a q)$ is 2×10^{7}.

Calculate the value of ΔG^{Θ} at $25^{\circ} \mathrm{Cat} 25^{\circ} \mathrm{C}\left[R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$. In which direction the reaction is spontaneous when the recatants and proudcts are in standard state?

- Watch Video Solution

16. The standard Gibbd energies $\left(\Delta S^{\Theta}\right)$ for the formation of $\mathrm{SO}_{2}(g)$ and $\mathrm{SO}_{3}(\mathrm{~g})$ are -300.0 and $-371.0 \mathrm{kJmol}^{-1}$ at 300 K , respectively. Calculate ΔG and equilibrium constant for the following reaction at 300 K :

- Watch Video Solution

17. It is planned to carry out the reaction:

$$
\mathrm{CaCO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \text { at } 1273 \mathrm{~K} \text { and 1bar pressure. }
$$

$\Delta_{r} G^{\Theta}=176 \mathrm{kJmol}^{-1}$ and $\Delta_{r} S^{\Theta}=157.2 \mathrm{kJmol}^{-1}$
a. Is the reaction spontaneous at this temperature and pressure ?
b. Calculate the value of
i. K_{p} at $1273 K$ for the reaction
ii. partial pressure of CO_{2} at equilibrium

- Watch Video Solution

18. The equilibrium constant for the reaction
$\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) a t 298 \mathrm{~K}$ is 73 . Calculate the value of the standard free enegry change $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

19. Calculated the equilibrium constant for the following reaction at 298 K :
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$\Delta_{f} G^{\Theta}\left(\mathrm{H}_{2} \mathrm{O}\right)=-237.2 \mathrm{kJmol}^{-1}, R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

D Watch Video Solution

20. The equilibrium constant for the reaction:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
has been found to be equal to 4 at $25^{\circ} \mathrm{C}$. Calculate the free energy change for the reaction.

- Watch Video Solution

21. Calculate the entropy change for a reaction:
$X \rightarrow Y$
Given that $\Delta H^{\Theta}=28.40 \mathrm{kJmol}^{-1}$ and equilibrium constant is 1.8×10^{-7} at $298 K$.

- Watch Video Solution

22. Calculate the equilibrium constant for the following reaction at 298 K and 1 atmospheric pressure:
$\mathrm{C}($ graфte $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
Given $\Delta_{f} H^{\Theta}$ at298K for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-286.0 \mathrm{kJmol}^{-1}$
for $C O(g)=-110.5 \mathrm{kJmol}^{-1}$
ΔS^{Θ} at 298 K for the reaction $=252.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

23. For the equilibrium reaction:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \mathrm{at} 298 \mathrm{~K}$
$\Delta G^{\Theta}=-474.78 \mathrm{kJmol}^{-1}$. Calculate log K for it.
$\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

D Watch Video Solution

24. Calculate the equilibrium constant for the reaction given below at 400 K , if $\Delta H^{\Theta}=77.2 \mathrm{kJmol}^{-1}$ and $\Delta S^{\Theta}=122 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{PCI}_{5}(g) \rightarrow \mathrm{PCI}_{3}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g})$

- Watch Video Solution

25. Calculate equilibrium constant for the reaction:
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) a t 25^{\circ} \mathrm{C}$
Given: $\Delta_{f} G^{\Theta} \mathrm{SO}_{3}(g)=-371.1 \mathrm{kJmol}^{-1}$,
$\Delta_{f} G^{\Theta} S O_{2}(g)=-300.2 \mathrm{kJmol}^{-1}$
and $R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

26. $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CI}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{CI}_{2}$
$\Delta H=-270.6 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}, \Delta S=-139 \mathrm{~J}$
a. Is the reaction favoured by entropy, enthalpy both or none?
b. Find ΔG if $T=300 K$.

- Watch Video Solution

27. Calculate free energy change for the reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}-\mathrm{CI}(\mathrm{g})$ by using the bond enegry and entropy data.
Bond energies of $H-H, C I-C I$, and $H-C I$ bonds are 435,240, and
$430 \mathrm{kJmol}^{-1}$, respectively. Standard entropies of $\mathrm{H}_{2}, \mathrm{CI}_{2}$, and HCI are $130.59,222.95$, and $186.68 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively.

- Watch Video Solution

28. For the reaction,
$4 C($ gra $\phi t e)+5 H_{2}(g) \rightarrow n C_{4} H_{10}(g)$,
$\Delta H^{\Theta}=-124.73 \mathrm{kJmol}^{-1}, \Delta S^{\Theta}=-365.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$4 C($ gra $\phi t e)+5 H_{2}(g) \rightarrow$ iso $-C_{4} H_{10}(g)$
$\Delta H^{\Theta}=-131.6 \mathrm{kJmol}^{-1}, \Delta S^{\Theta}=-381.079 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Indicate whther normal butane can be spontaneously converted to isobutane or not.

- Watch Video Solution

29. A chemical reaction cannot occur at all is
A. ΔH values is positive and ΔS value if negative
B. ΔH value is negative and ΔS value is positive
C. ΔH and ΔS values are negative but $\Delta H<T \Delta S$
D. ΔH and ΔS values are positive but $\Delta H<T \Delta S$

- Watch Video Solution

30. Calculate the standard free energy change for the reaction:

$$
H_{2}(g)+I_{2}(g) \rightarrow 2 H I(g), \Delta H^{\Theta}=51.9 \mathrm{kJmol}^{-1}
$$

Given: $S^{\Theta}\left(\mathrm{H}_{2}\right)=130.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,
$S^{\Theta}\left(I_{2}\right)=116.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
and $S^{\Theta}(H I)=-206.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

Exercises (Subjective)

1. Ethylene on combustion gives carbon dioxide and water. Its heat of combustion is $1410.0 \mathrm{kJmol}^{-1}$. If the heat of formation of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are
393.3 kJ and 286.2 kJ , respectively. Calculate the heat of formation of ethylene.

- Watch Video Solution

2. Calculate the heat of formation of acetic acid form the following date:
a. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}^{\Theta}=-200.0 \mathrm{kcal}$
b. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\Theta}=-94.0 \mathrm{kcal}$
c. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H^{\Theta}=-68.0 \mathrm{kcal}$

- Watch Video Solution

3. State the third law of thermodynamics.

- Watch Video Solution

4. Calculate the heta of formation of anhydrous $\mathrm{AI}_{2} \mathrm{CI}_{6}$ from the following data:
A. $2 \mathrm{AI}(\mathrm{s})+6 \mathrm{HCI}(\mathrm{aq}) \rightarrow \mathrm{AI}_{2} \mathrm{CI}_{6}(\mathrm{aq})+3 \mathrm{H}_{2}+1004.2 \mathrm{~kJ}$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCI}(\mathrm{g})+184.1 \mathrm{~kJ}$
C. $\mathrm{HCI}(g)+a q \rightarrow \mathrm{HCI}(a q)+73.2 k J$
D. $\mathrm{AI}_{2} \mathrm{CI}_{6}(\mathrm{~s})+a q \rightarrow \mathrm{AI}_{2} \mathrm{CI}_{6}(a q)+643.1 \mathrm{~kJ}$

- Watch Video Solution

5. Calculate the heat of formation of n butane from the followinf data:
a. $2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-5757.2 \mathrm{~kJ}$
b. $C(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-405.4 \mathrm{~kJ}$
c. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-572.4 \mathrm{~kJ}$

- Watch Video Solution

6. Calculate the heat of combustion of benzene form the following data:
a. $6 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}), \Delta \mathrm{H}=49.0 \mathrm{~kJ}$
b. $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-285.8 \mathrm{~kJ}$
c. $C(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-389.3 k J$

- Watch Video Solution

7. If $2 \mathrm{AI}(\mathrm{s})+1 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{AI}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta H=-1667.8 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-285.9 \mathrm{~kJ}$
Calculate ΔH for the reaction
$\mathrm{AI}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{AI}(\mathrm{s})+1 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$

- Watch Video Solution

8. The thermochemical equation for solid and liquid rocket fuel are given below:
$2 \mathrm{AI}(\mathrm{s})+1 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{AI}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta H=-1667.8 \mathrm{~kJ}$
$H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l), \Delta H=-285.9 k J$
a. If equal masses of aluminium and hydrogen are used, which is a better rocket fuel?
b. Determine ΔH for the reaction
$\mathrm{AI}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{AI}(\mathrm{s})+1 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$

- Watch Video Solution

9. When $1 g$ liquid naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ solidifies, 149 J of heat is evolved.

Calculate the enthalpy of fusion of naphthalene.

- Watch Video Solution

10. a. A cylinder of gas is assumed to contain 11.2 kg of butane. If a normal family needs 20000 kJ of energy per day for cooking, how long will the cylinder last? Given that the heat of combustion of butane is $2658 \mathrm{kJmol}^{-1}$.
b. If the air supply of the burner is insufficient (i.e. you have a yellow instead of a blue flame), a portion of the gas escape without combustion. Assuming that 33% of the gas is wasted due to this inefficiency, how long would the cylinder last?
11. The free enegry changes for the two reactions given below are
a. $\mathrm{SO}_{2}(g)+\mathrm{CI}_{2}(g) \rightarrow \mathrm{SO}_{2} \mathrm{CI}_{2}(g), \Delta G=-2270 \mathrm{cal}$
b. $S(\rho m)+\mathrm{O}_{2}(g)+\mathrm{CI}_{2}(g) \rightarrow \mathrm{SO}_{2} \mathrm{CI}_{2}(g), \Delta G=-74060 \mathrm{cal}$

Find ΔG for the reaction $\mathrm{S}(\rho m)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)$

D Watch Video Solution

12. Given that:
i. C (graphite) $+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-393.7 \mathrm{~kJ}$
ii. C (diamond) $\rightarrow C$ (graphite), $\Delta H=-2.1 \mathrm{~kJ}$
a. Calculate ΔH for buring of diamond of CO_{2}.
b. Calculate the quantity of graphite that must be burnt to evolve 5000 kJ of heta.
13. Given:
i. $H(g)+C I(g) \rightarrow H C I(g) \Delta H=-431 k J$
ii. $\operatorname{HCI}(g)+a q \rightarrow H^{\oplus}(a q)+C I^{\Theta}(a q) \Delta H=-75.1 k J$
iii. $H(g) \rightarrow H^{\oplus}(a q)+e^{-} \Delta H=1317 k J$
iv. $C I(g)+e^{-} \rightarrow c I^{\Theta}(g) \Delta H=-354 k J$
a. Calculate the enthalpy of hydration of HCI
$H^{\oplus}(g)+C I^{\Theta}(g)+a q \rightarrow H^{\oplus}(a q)+C I^{\Theta}(a q)$
b. Calculate teh enthalpy of hydration of $C I^{\Theta}$ ions if enthalpy of hydration of H^{\oplus} is zero.

- View Text Solution

14. Given:
$N a C I(s)+a q \rightarrow N a^{\oplus}(a q)+C I^{\Theta} \Delta H=3.9 k J$
$N a^{\oplus}(g)+C I^{\Theta}(g) \rightarrow \operatorname{NaCI}(s) \Delta H=-788 k J$
$C I^{\Theta}(g)+a q \rightarrow C I^{\Theta}(a q) \Delta H=-394.1 k J$
Calculate the enthalpy of hydration of Na^{\oplus} ions.
15. What would be the heat released when:
A. 0.5 mol of HCI is neutralised with 0.5 mol of NaOH
B. 0.5 mol of HNO_{3} is neutralised with 0.3 mol of NaOH
C. 100 ml of $0.2 \mathrm{MHCI}+200 \mathrm{ml}$ of 0.2 MKOH
D. 200 ml of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+150 \mathrm{ml}$ of 0.2 MKOH

- Watch Video Solution

16. Enthalpy of neutralisation of acetic acid by NaOh is $-50.6 \mathrm{kJmol}^{-1}$. Calculate ΔH for ionisation of $\mathrm{CH}_{3} \mathrm{COOH}$. Given. The heat of neutralisation of a strong acid with a strong base is $-55.9 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

17. The polymerisation of ethylene to linear polyethylene is represented by the reaction
$n \mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}$
When n has a large integral value. Given theat the average enthalpies of bond dissociation for $C=C$ and $C-C$ at 298Kare +590 and $+331 \mathrm{kJmol}^{-1}$ respectively, calculate the enthalpy of polymerisation per mole of ethylene at 298 K .

- Watch Video Solution

18. An athelete is given 100 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ of energy equivalent to 1560 kJ . He utilises 50% of this gained enegry in the event. In order to avoid storage of enegry in the body, calculate the weight of water he would need to perspire. The enthalpy of evaporation of water is $441 \mathrm{~kJ} / \mathrm{mol}$.

- Watch Video Solution

19. How much hea is liberated when one mole of gaseous $N a^{\oplus}$ combines with one mole of $C I^{\Theta}$ ion to form solid $N a C I$. Use the data given below:

$$
\begin{array}{ll}
N a(s)+\frac{1}{2} C I_{2}(g) \rightarrow N a C I(s) & \Delta H=-98.23 k c a l \\
N a(s) \rightarrow N a(g) & \Delta H=+25.98 k c a l \\
N a(g) \rightarrow N a^{\oplus}+e^{-} & \Delta H=+120.0 \mathrm{kcal} \\
C I_{2}(g) \rightarrow 2 C I(g) & \Delta H=+58.02 \mathrm{kcal} \\
C I^{\Theta}(g) \rightarrow C I(g)+e^{-} & \Delta H=+87.3 k c a l
\end{array}
$$

- Watch Video Solution

20. State a chamical reaction in which ΔH and ΔU are equal .

D Watch Video Solution

21. Which of the following is an intensive property. Surface tension, mass, volume, enthalpy, on density?

- Watch Video Solution

22. State the first law of thermodynamics.

- Watch Video Solution

23. For the reactions, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ predict, whether the work is done on the system or by the system.

- Watch Video Solution

24. Which has larger absolute entropy per mole?
a. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) a t 298 \mathrm{~K}$ or $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) a t 350 \mathrm{~K}$.
b. N_{2} or No both at 298 K

- Watch Video Solution

25. The dissolution of ammonium chloride in water is an endothermic process but still it dissolves in water readily. Why ?
26. Does an aqueous solution of Mg^{2+} ions have larger entropy before or after hydration of the ions?

- Watch Video Solution

27. Predict the sign of ΔG for the reaction at a very low temperature for which $\Delta H i s+v e$ and ΔS is positive.

- Watch Video Solution

28. ΔH and Δ Sare $+v e$. Under what conditions, process will be spontaneous?

- Watch Video Solution

29. What is the limitation of the first law of thermodynamics?
30. Which of the following is an extensive property?
A. Volume
B. Surface tension
C. Viscosity
D. Density

- Watch Video Solution

31. Which one of the following is a state property/function?
A. $U+P V$
B. $q+w$
C. $\frac{q_{r e v}}{T}$
D. q

- Watch Video Solution

32. The heat of combustion of $\mathrm{H}_{2}(\mathrm{~g})$ at constant pressure and 300 k is $-280 \mathrm{kJmol}^{-1}$. What will be the heat of combustion at constant volume and at 300 K ?

- Watch Video Solution

33. The standard absolute entropy of a substance, $\left(S^{\Theta}\right)$ is the entropy of the substance in its standard state at 1 atm, temperature being
A. $0 K$
B. 298 K
C. 398 K
D. 273 K

- Watch Video Solution

34. If the enthalpy of combustion of diamond and graphite are $-395.4 \mathrm{kJmol}^{-1}$ and $-393.6 \mathrm{kJmol}^{-1}$, what is enthalpy change for the C (graphite) $\rightarrow C$ (diamond)?
35. For a spontaneous process, which of the following is always true?
A. $\Delta G>0$
B. $\Delta_{\text {total }} S<0$
C. $T \Delta S>0$
D. $\Delta G<0$
36. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}=-242 \mathrm{kJmol}^{-1}$

Bond energy of H_{2} and O_{2} is 436 and $500 \mathrm{kJmol}^{-1}$, respectively. What is bond energy of $O-H$ bond?

- Watch Video Solution

37. Which one of the following has the same value as $\Delta_{f} H^{\Theta}, C O$?
A. $\frac{1}{2} \Delta_{f} H^{\Theta}\left(\mathrm{CO}_{2}\right)$
B. $\frac{1}{2} \Delta_{c} H^{\Theta}$ (graphite)
C. $\Delta_{f} H^{\Theta}\left(\mathrm{CO}_{2}\right)-\Delta_{f} H^{\Theta}$ (graphite)
D. $\Delta_{c} H^{\Theta}$ (graphite) $-\Delta_{c} H^{\Theta}(C O)$

- Watch Video Solution

38. For which of the following processes is ΔS negative?
A. $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$
B. $N_{2}(\mathrm{~g}, 1 \mathrm{~atm}) \rightarrow N_{2}(\mathrm{~g}, 5 \mathrm{~atm})$,
C. $2 \mathrm{SO}_{3}(g) \rightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$
D. C (diamond) $\rightarrow C$ (graphite)

- Watch Video Solution

39. Predict $\Delta H>\Delta U$ or $\Delta H<\Delta U$.
a. C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
b. $P C I_{5}(g) \rightarrow \mathrm{PCI}_{3}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g})$

- Watch Video Solution

40. What is significance of $T \Delta S$ in $\Delta G=\Delta H-T \Delta S$?
41. What is the physical significance of free enegry?

- Watch Video Solution

42. How does $T \Delta S$ determine the spontaneity of process?

- Watch Video Solution

43. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}: \Delta H=-92 \mathrm{~kJ}$ is Haber's process for manufacture of NH_{3}. What is the heat of formation of NH_{3} ?

- Watch Video Solution

44. The energy released in the neutralisation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and KOH is 59.1 kJ .

Calculated the value ΔH for the reaction
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

45. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-890 \mathrm{~kJ}$
what is the calorific or fuel value of 1 kg of CH_{4} ?

- Watch Video Solution

46. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCI}(\mathrm{g})+185 \mathrm{~kJ}$. State whether this reaction is exo or endothermic and why?

- Watch Video Solution

47. The heat of neutralization of a strong acid by a strong base is a constant because :
48. Explain why heat of neutralisation of strong acid and weak base is less than 57.1kJ.

- Watch Video Solution

49. Find the enthalpy of formation of hydrogen flouride on the basis of following data:

Bond energy of $\mathrm{H}-\mathrm{H}$ bond $=434 \mathrm{kJmol}^{-1}$
Bond energy of $F-F$ bond $=158 \mathrm{kJmol}^{-1}$
Bond enegry of $H-F$ bond $=565 \mathrm{kJmol}^{-1}$

- Watch Video Solution

50. Calculate ΔH for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
given the bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{O}=\mathrm{O}$ bonds and $\mathrm{O}-\mathrm{H}$ bond are 433 kJ $\mathrm{mol}^{-1}, 492 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $464 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
51. Calculate the resonance enegry of $\mathrm{NO}_{2}(: \mathrm{O}-\mathrm{N}=\mathrm{O}:)$

The measured enthalpy formation of $\mathrm{NO}_{2}\left(\Delta_{f} H^{\Theta}\right)$ is $34 \mathrm{kJmol}^{-1}$. The bond energies given are:
$N-O \Rightarrow 222 \mathrm{kJmol}^{-1}$
$N \equiv N \Rightarrow 946 \mathrm{kJmol}^{-1}$
$O=O \Rightarrow 498 \mathrm{kJmol}^{-1}$
$N=O \Rightarrow 607 \mathrm{kJmol}^{-1}$

- Watch Video Solution

52. Boiling point of an organic compound is 310 K . Its enthalpy of vaporisation per mole $\Delta_{\text {vap }} H$ is $27.9 \mathrm{kJmol}^{-1}$. Calculate the entropy of vaporisation $\Delta_{v a p} S$ of organic compound.
53. Predict whether the following reaction is possible or not at 300 k .

$$
2 \mathrm{CuO}(\mathrm{~s}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

$\Delta H=-144.6 \mathrm{kJmol}^{-1}, \Delta S=0.116 \mathrm{kJol}^{-1}$

- Watch Video Solution

54. Calculate the standard free energy change for the reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g}), \Delta \mathrm{H}^{\Theta}=51.9 \mathrm{kJmol}^{-1}$
Given: $S^{\Theta}\left(\mathrm{H}_{2}\right)=130.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,
$S^{\Theta}\left(I_{2}\right)=116.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
and $S^{\Theta}(H I)=206.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

55. Calculate the entropy change for the following reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCI}(\mathrm{g}) \mathrm{at} 298 \mathrm{~K}$
Given

$$
S^{\Theta} \mathrm{H}_{2}=131 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S^{\Theta} \mathrm{CI}_{2}=233 \mathrm{JK}^{-1} \mathrm{~mol}^{-1},
$$

and
$S^{\Theta} H C I=187 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

56. Heat of neutralisation between HCI and NaOH is 13.7 kcal and between HCN and NaOH is 3 kcal at $45^{\circ} \mathrm{C}$. Calculate the heat of ionisation of HCN

- Watch Video Solution

57. Find the heat of formation of ethyl alcohol for following data

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-94 \mathrm{kcal} \\
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-68 \mathrm{kcal} \\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}=-327 \mathrm{kcal}
\end{aligned}
$$

- Watch Video Solution

58. Enthalpy of neutralisation of acetic acid by NaOH is $-50.6 \mathrm{kJmol}^{-1}$.

Calculate ΔH for ionisation of $\mathrm{CH}_{3} \mathrm{COOH}$. Given. The heat of neutralisation of a strong acid with a strong base is $-55.9 \mathrm{kJmol}^{-1}$.
59. The enthalpies of combustion of carbon and carbon monoxide in excess of oxygen at 298 K and constant pressure are -393.5 and $-283.0 \mathrm{kJmol}^{-1}$, respectively. Calculate the heat of formation of carbon monoxide at constant volume.

- Watch Video Solution

60. Calculate the ΔH^{Θ} for the reduction of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ by $\mathrm{AI}(\mathrm{s})$ at $25^{\circ} \mathrm{C}$. The enthalpies of formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{AI}_{2} \mathrm{O}_{3}$ are - 825.5 and $-1675.7 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

61. Find ΔH of the following reaction:
$\mathrm{OF}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g})$, average bond energies of
$O-F, O-H, O=O, \quad$ and $\quad H-F$ are $44,111,118$, and $135 \mathrm{kcalmol}^{-1}$, respectively.

- Watch Video Solution

62. The heat of formation of ethane is -19.46 kcal . Bond enegries of H-H,C-H and C-C bonds are 104.18, 99.0 and 80.0 kcal , respectively.

Calculate the heat of atomisation of graphite.

- Watch Video Solution

63. Find the electron affinity of chlorine from the following data. Enthalpy of formation of LiCI is -97.5kcalmol ${ }^{-1}$, lattice energy of LiCI $=-197.7 \mathrm{kcalmol}^{-1}$. Dissociation energy of chlirine is $57.6 \mathrm{kcalmol}^{-1}$, sublimation enthalpy of lithium $=+38.3 \mathrm{kcalmol}^{-1}$, ionisation energy of lithium $=123.8 \mathrm{kcalmol}^{-1}$.

- Watch Video Solution

64. When 10 g of $A I$ is used for reduction in each of the following alumino thermic reactions. Which reaction would generate more heat and by hwo much?
a. $2 \mathrm{AI}+\mathrm{Cr}_{2} \mathrm{O}_{3} \rightarrow \mathrm{AI}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$
b. $2 \mathrm{AI}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{AI}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$

Standard heat of formation of $\mathrm{AI}_{2} \mathrm{O}_{3}, \mathrm{Cr}_{2} \mathrm{O}_{3}$, and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are $-1676 \mathrm{~kJ}, 1141 \mathrm{~kJ}$, and -822.2 kJ , respectively.

- Watch Video Solution

65. The heat of combustion at constant volume at $27^{\circ} \mathrm{C}$ of benzene and acetylene are -800 kcal and 310 kcal . Find the heat of polymerisation of acetylene to benzene at constant pressure.

- Watch Video Solution

66. Calculate $\Delta_{f} H^{\Theta} \operatorname{ICI}(g)$ from the data ΔH dissociation $\mathrm{CI}_{2}(g)=57.9 \mathrm{kcalmol}^{-1}$
ΔH dissociation $I_{2}(g)=36.1 \mathrm{kcalmol}^{-1}$
ΔH dissociation $\operatorname{ICI}(g)=50.5 \mathrm{kcalmol}^{-1}$
ΔH sublimation $I_{2}(g)=15.0$ kalmol $^{-1}$

- Watch Video Solution

67. Calculate heat of dissociation for acetic acid from the following data:
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-13.2 \mathrm{kcal}$
Θ
$\mathrm{H}^{\oplus}+\mathrm{Oh} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-13.7 \mathrm{kcal}$
Also calculate heat of dissociation for $\mathrm{NH}_{4} \mathrm{OH}$ if
$\mathrm{HCI}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4} \mathrm{CI}+\mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-12.27 \mathrm{kcal}$

- Watch Video Solution

68. $\Delta_{f} H^{\Theta}$ per mole of $\mathrm{NH}_{3}(\mathrm{~g})$. $\mathrm{NO}(\mathrm{g})$, and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $-11.04+21.60$ and -68.32kcal, respectively. Calculate the standard heat of reaction at constant pressure and at a constant volume for the reaction:
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
69. From the following data, calculate the standard enthalpy of formation of propane $\Delta_{f} H^{\Theta} \mathrm{CH}_{4}=-17 \mathrm{kcalmol}^{-1}$
$\Delta_{f} H^{\Theta} C_{2} H_{6}=-24 \mathrm{kcalmol}^{-1}, B E(C-H)=99 \mathrm{kcalmol}^{-1}$
$(C-C)=84 \mathrm{kcalmol}^{-1}$.

- Watch Video Solution

70. $\mathrm{CsOH}+\mathrm{HCI} \rightarrow \mathrm{CsCI}+\mathrm{H}_{2} \mathrm{O}, \Delta H=-13.4 \mathrm{kcalmol}^{-1}$.
$\mathrm{CsOH}+\mathrm{HF} \rightarrow \mathrm{CsF}+\mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-16.4 \mathrm{kcalmol}^{-1}$
Calculate ΔH for the ionisation of HF in $\mathrm{H}_{2} \mathrm{O}$.
71. Gibbs-Helmoholtz equation relates the free energy change to the enthalpy and entropy changes of the process as $(\Delta G)_{P T}=\Delta H-T \Delta S$

The magnitude of ΔH does not change much with the change in temperature but the enrgy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

When CaCO_{3} is heated to a high temperature, it undergoes decomposition into CaO and CO_{2} whereas it is quite stable at room temperature. The most likely explanation of its is
A. The enthalpy of reaction (ΔH) overweighs the term $T \Delta S$ at high temperature.
B. The term $T \Delta S$ overweights the enthalpy of reaction at high temperature
C. At high temperature, both enthalpy of reaction and entropy change becomes negative.
D. None of these.

- Watch Video Solution

2. Gibbs-Helmoholtz equation relates the free energy change to the enthalpy and entropy changes of the process as
$(\Delta G)_{P T}=\Delta H-T \Delta S$
The magnitude of ΔH does not change much with the change in temperature but the enrgy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

For the reaction at $25^{2} \mathrm{C}, \mathrm{X}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{XO}_{2}$
$\Delta H=2.0 \mathrm{kcaland} \Delta S=20 \mathrm{calK}^{-1}$. the reaction would be
A. Spontanoeous
B. At equilibrium
C. Unpredictable
D. Non-spontaneous
3. Gibbs-Helmoholtz equation relates the free energy change to the enthalpy and entropy changes of the process as
$(\Delta G)_{P T}=\Delta H-T \Delta S$
The magnitude of ΔH does not change much with the change in temperature but the enrgy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

For the reaction at $298 K, 2 A+B \rightarrow C$
$\Delta h=100 \mathrm{kcal}$ and $\Delta S=0.020 \mathrm{kclaK}^{-1}$. If ΔH and ΔS are assumed to be constant over the temperature range, at what temperature will the reaction become spontaneous?
A. 1000 K
B. 3500 K
C. 5000 K
D. 1500 K
4. Gibbs-Helmoholtz equation relates the free energy change to the enthalpy and entropy changes of the process as
$(\Delta G)_{P T}=\Delta H-T \Delta S$
The magnitude of ΔH does not change much with the change in temperature but the enrgy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

A reaction has value of $\Delta H-20 \mathrm{kcal}$ at 200 K , the reaction is spontaneous, below this temperature, it is not. the values ΔG and ΔS at 400 K are, respectively
A. $10,-0.1 \mathrm{calK}^{-1}$
B. $-10 \mathrm{kcal},-100 \mathrm{calK}^{-1}$
C. $0,10.0 \mathrm{calK}^{-1}$
D. $0,100 \mathrm{calK}^{-1}$
5. Gibbs-Helmoholtz equation relates the free energy change to the enthalpy and entropy changes of the process as
$(\Delta G)_{P T}=\Delta H-T \Delta S$
The magnitude of ΔH does not change much with the change in temperature but the enrgy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

The enthalpy change for a certain reaction at 300 K is $-15.0 \mathrm{kcalmol}^{-1}$. The entropy change under these conditions is $-7.2 \mathrm{calK}^{-} \mathrm{mol}^{-1}$. The free enegry change for the reaction and its spontaneous//nonspontaneous character will be
A. $-12.84 \mathrm{kcalmol}^{-1}$, spontaneous
B. $-12.16 \mathrm{kcalmol}^{-1}$, spontaneous
C. $12.84 \mathrm{kcalmol}^{-1}$, non spontaneous
D. $12.0 \mathrm{kcalmol}^{-1}$, spontaneous
6. Gibbs-Helmoholtz equation relates the free energy change to the enthalpy and entropy changes of the process as
$(\Delta G)_{P T}=\Delta H-T \Delta S$
The magnitude of ΔH does not change much with the change in temperature but the enrgy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

The dissolution of $\mathrm{CaCI}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in a large volume of water is endothermic to the extent of $3.5 \mathrm{kcalmol}^{-1}$. For the reaction. $\mathrm{CaCI}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CaCI}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Delta \mathrm{His}-23.2 \mathrm{kcal}$. The heat of solution of anhydrous CaCI_{2} in large quantity of water will be
A. $-16.7 \mathrm{kcalmol}^{-1}$
B. $-19.7 \mathrm{kcalmol}^{-1}$
C. $19.7 \mathrm{kcalmol}^{-1}$
D. $16.7 \mathrm{kcalmol}^{-1}$
7. Given that ,
$A(s) \rightarrow A(l) \Delta H=x$
$A(l) \rightarrow A(g), \Delta H=y$
The heat of sublimation of A will be :
A. $x-y$
B. $x+y$
C. x or y
D. $-(x+y)$

- Watch Video Solution

8. The enthalpy change for chemical reaction is denoted aas ΔH^{Θ} and $\Delta H^{\Theta}=H_{P}^{\Theta}-H_{R}^{\Theta}$. The relation between enthalpy and internal enegry is expressed by equation:
$\Delta H=\Delta U+\Delta n R T$
where $\Delta U=$ change in internal enegry $\Delta n=$ change in number of moles,
$R=$ gas constant.
$H_{2}(g)+\left(\frac{1}{2}\right) O_{2}(g)=H_{2} O(l), \Delta H_{298 K}=-68.00 \mathrm{kcal}$
Heat of voporisation of water at 1 atm and $25^{\circ} \mathrm{C}$ is 10.00 kcal . The standard heat of formation (in kcal) of 1 amol vapour a $25^{\circ} \mathrm{C}$ is
A. -78.00
B. 78.00
C. +58.00
D. -58.00

- Watch Video Solution

9. The enthalpy change for chemical reaction is denoted as ΔH^{Θ} and $\Delta H^{\Theta}=H_{P}^{\Theta}-H_{R}^{\Theta}$. The relation between enthalpy and internal enegry is expressed by equation:
$\Delta H=\Delta U+\Delta n R T$
where $\Delta U=$ change in internal enegry $\Delta n=$ change in number of moles,
$R=$ gas constant.
For the change, $C_{\text {diamond }} \rightarrow C_{\text {graphite }}, \Delta H=-1.89 \mathrm{~kJ}$, if 6 g of diamond and 6 g of graphite are seperately burnt to yield CO_{2} the heat liberated in first case is
A. Less than in the second case by 1.89 kJ
B. Less than in the second case by $11.34 k J$
C. Less than in the second case by 14.34 kJ
D. More than in the second case by 0.945 kJ

- Watch Video Solution

10. The enthalpy change for chemical reaction is denoted aas ΔH^{Θ} and $\Delta H^{\Theta}=H_{P}^{\Theta}-H_{R}^{\Theta}$. The relation between enthalpy and internal enegry is expressed by equation:
$\Delta H=\Delta U+\Delta n R T$
where $\Delta U=$ change in internal enegry $\Delta n=$ change in number of moles,
$R=$ gas constant.

Which of the following equations corresponds to the definition of enthalpy of formation at 298 K ?
A. C (graphite) $+2 \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
B. $\mathrm{C}($ diamond $)+2 \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
C. 2 C (graphite) $+4 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
D. C (graphite) $+2 \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$

- Watch Video Solution

11. The enthalpy change for chemical reaction is denoted aas ΔH^{Θ} and $\Delta H^{\Theta}=H_{P}^{\Theta}-H_{R}^{\Theta}$. The relation between enthalpy and internal enegry is expressed by equation:
$\Delta H=\Delta U+\Delta n R T$
where $\Delta U=$ change in internal enegry $\Delta n=$ change in number of moles,
$R=$ gas constant.
Enthalpy of the system is given as
A. $H=P V$
B. $U+P V$
C. $U-P V$
D. $H=-P V$

- Watch Video Solution

12. The enthalpy change for chemical reaction is denoted aas ΔH^{Θ} and $\Delta H^{\Theta}=H_{P}^{\Theta}-H_{R}^{\Theta}$. The relation between enthalpy and internal enegry is expressed by equation:
$\Delta H=\Delta U+\Delta n R T$
where $\Delta U=$ change in internal enegry $\Delta n=$ change in number of moles, $R=$ gas constant.

For a reaction, $2 X(s)+2 Y(s) \rightarrow 2 C(l)+D(g), \Delta H \quad$ at $\quad 27^{\circ} \mathrm{C}$ is -28 kcalmol $^{-1} . \Delta U$ iskcalmol ${ }^{-1}$
A. -25.5
B. +25.5
C. -28.6
D. 28.4
13. For an ideal gas, an illustratio of three different paths $A(B+C)$ and $(D+E)$ from an initial state P_{1}, V_{1}, T_{1} to a final state P_{2}, V_{2}, T_{1} is shown in the given figure.

Path Arepresents a reversible isothermal expansion form P_{1}, V_{1} to P_{2}, V_{2}, Path $(B+C)$ represents a reversible adiabatic expansion (B) from $P_{1}, V_{1}, T_{1} \rightarrow P_{3}, V_{2}, T_{2}$ followed by reversible heating the gas at constant volume (C)from P_{3}, V_{2}, T_{2} to P_{2}, V_{2}, T_{1}. Path $(D+E)$ represents a reversible expansion at constant pressure $P_{1}(D)$ from P_{1}, V_{1}, T_{1} to P_{1}, V_{2}, T_{3} followed by a reversible cooling at constant volume $V_{2}(E)$ from $P_{1}, V_{2}, T_{3} \rightarrow P_{2}, V_{2}, T_{1}$.

What is $q_{\text {rev }}$, for path (A)?
A. $P\left(V_{2}-V_{1}\right)$
B. $-n R T_{1} \operatorname{In} \frac{V_{2}}{V_{1}}$
C. $-n R \operatorname{In} \frac{V_{2}}{V_{1}}$
D. $-n R T_{1} \operatorname{In} \frac{V_{2}}{V_{1}}$

- Watch Video Solution

14. For an ideal gas, an illustratio of three different paths $A(B+C)$ and $(D+E)$ from an initial state P_{1}, V_{1}, T_{1} to a final state P_{2}, V_{2}, T_{1} is shown in the given figure.

Path Arepresents a reversible isothermal expansion form P_{1}, V_{1} to P_{2}, V_{2}, Path $(B+C)$ represents a reversible adiabatic expansion
(B) from
$P_{1}, V_{1}, T_{1} \rightarrow P_{3}, V_{2}, T_{2}$ followed by reversible heating the gas at constant volume (C) from P_{3}, V_{2}, T_{2} to P_{2}, V_{2}, T_{1}. Path $(D+E)$ represents a reversible expansion at constant pressure $P_{1}(D)$ from P_{1}, V_{1}, T_{1} to P_{1}, V_{2}, T_{3} followed by a reversible cooling at constant volume $V_{2}(E)$ from $P_{1}, V_{2}, T_{3} \rightarrow P_{2}, V_{2}, T_{1}$.

What is $q_{\text {rev }}$, for path $(B+C)$?
A. $n R \operatorname{In} \frac{V_{2}}{V_{1}}$
B. $-n R \operatorname{In} \frac{V_{2}}{V_{1}}$
C. zero
D. $n R T_{1} \operatorname{In} \frac{V_{2}}{V_{1}}$

- Watch Video Solution

15. For an ideal gas, an illustratio of three different paths $A(B+C)$ and $(D+E)$ from an initial state P_{1}, V_{1}, T_{1} to a final state P_{2}, V_{2}, T_{1} is shown in the given figure.

Path Arepresents a reversible isothermal expansion form P_{1}, V_{1} to P_{2}, V_{2}, Path $(B+C)$ represents a reversible adiabatic expansion (B) from $P_{1}, V_{1}, T_{1} \rightarrow P_{3}, V_{2}, T_{2}$ followed by reversible heating the gas at constant volume (C)from P_{3}, V_{2}, T_{2} to P_{2}, V_{2}, T_{1}. Path $(D+E)$ represents a reversible expansion at constant pressure $P_{1}(D)$ from P_{1}, V_{1}, T_{1} to P_{1}, V_{2}, T_{3} followed by a reversible cooling at constant volume $V_{2}(E)$ from $P_{1}, V_{2}, T_{3} \rightarrow P_{2}, V_{2}, T_{1}$.

What is ΔS for path A ?
A. $n R I n \frac{V_{2}}{V_{1}}$
B. $P\left(V_{2}-V_{1}\right)$
C. $-P\left(V_{2}-V_{1}\right)$
D. $n R\left(V_{2}-V_{1}\right)$

- Watch Video Solution

16. For an ideal gas, an illustratio of three different paths $A(B+C)$ and $(D+E)$ from an initial state P_{1}, V_{1}, T_{1} to a final state P_{2}, V_{2}, T_{1} is shown in the given figure.

Path Arepresents a reversible isothermal expansion form P_{1}, V_{1} to P_{2}, V_{2}, Path $(B+C)$ represents a reversible adiabatic expansion (B) from $P_{1}, V_{1}, T_{1} \rightarrow P_{3}, V_{2}, T_{2}$ followed by reversible heating the gas at constant
volume (C)from P_{3}, V_{2}, T_{2} to P_{2}, V_{2}, T_{1}. Path $(D+E)$ represents a reversible expansion at constant pressure $P_{1}(D)$ from P_{1}, V_{1}, T_{1} to P_{1}, V_{2}, T_{3} followed by a reversible cooling at constant volume $V_{2}(E)$ from $P_{1}, V_{2}, T_{3} \rightarrow P_{2}, V_{2}, T_{1}$.

What is $q_{r e v}$, for path $(D+E)$?
A. $P\left(V_{2}-V_{1}\right)$
B. $\int_{T_{3}}^{T_{1}} \frac{C_{V}(T)}{T} d T$
C. $n R I n \frac{V_{2}}{V_{1}}$
D. $\int_{T_{1}}^{T_{3}} C_{V}(T) d T$

- Watch Video Solution

17. For an ideal gas, an illustratio of three different paths $A(B+C)$ and $(D+E)$ from an initial state P_{1}, V_{1}, T_{1} to a final state P_{2}, V_{2}, T_{1} is shown in the given figure.

Path Arepresents a reversible isothermal expansion form P_{1}, V_{1} to P_{2}, V_{2}, Path $(B+C)$ represents a reversible adiabatic expansion (B) from $P_{1}, V_{1}, T_{1} \rightarrow P_{3}, V_{2}, T_{2}$ followed by reversible heating the gas at constant volume (C)from P_{3}, V_{2}, T_{2} to P_{2}, V_{2}, T_{1}. Path $(D+E)$ represents a reversible expansion at constant pressure $P_{1}(D)$ from P_{1}, V_{1}, T_{1} to P_{1}, V_{2}, T_{3} followed by a reversible cooling at constant volume $V_{2}(E)$ from $P_{1}, V_{2}, T_{3} \rightarrow P_{2}, V_{2}, T_{1}$.

What is ΔS for path $(D+E)$?
A. $-P\left(V_{2}-V_{1}\right)$
B. $-n R I n \frac{V_{2}}{V_{1}}$
C. $+P\left(V_{2}-V_{1}\right)$
D. $n R \operatorname{In} \frac{V_{2}}{V_{1}}$

- Watch Video Solution

18. Concrete is produced form a mixture of cement, water and small stones.

Small amount of gypsum, $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is added in coment production to impove the subsequent hardening of concrete. The elevated temperature during the production of cement may lead to the formation of unwanted hemihydrate $\mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ according to reaction.
$\mathrm{CaSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The $\Delta_{f} H^{\Theta}{ }_{\text {ofCaSO }}^{2}$. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
are $-2021.0 \mathrm{kJmol}^{-1},-1575.0 \mathrm{kJmol}^{-1}$ and $-241.8 \mathrm{kJmol}^{-1}$, respectively. The respective values of their standard entropies are 194.0, 130.0 and $188.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The values of $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.0831 \mathrm{~L} \mathrm{bar} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. Answer the following questions on the basis of above information.

Heat change occuring during conservation of 1 kg of $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ (molar mass $172 \mathrm{gmol}^{-1}$) of $\mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is equal to
A. $484 \mathrm{kJmol}^{-1}$
B. 400 kJ
C. $-484.0 \mathrm{kJmol}^{-1}$
D. -1000 kJ

- Watch Video Solution

19. Concrete is produced form a mixture of cement, water and small stones.

Small amount of gypsum, $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is added in coment production to impove the subsequent hardening of concrete. The elevated temperature during the production of cement may lead to the formation of unwanted hemihydrate $\mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ according to reaction.
$\mathrm{CaSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The $\Delta_{f} H^{\Theta} \mathrm{ofCaSO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
are $-2021.0 \mathrm{kJmol}^{-1},-1575.0 \mathrm{kJmol}^{-1}$ and $-241.8 \mathrm{kJmol}^{-1}$, respectively. The respective values of their standard entropies are 194.0, 130.0 and
$188.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The values of $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.0831 \mathrm{~L} \mathrm{bar} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. Answer the following questions on the basis of above information. The value of ΔG^{Θ} for the reaction at 298 K is
A. $120 \mathrm{kJmol}^{-1}$
B. $17.92 \mathrm{kJmol}^{-1}$
C. $-180 \mathrm{kJmol}^{-1}$
D. $10 \mathrm{kJmol}^{-1}$

(D) Watch Video Solution

20. Concrete is produced form a mixture of cement, water and small stones.

Small amount of gypsum, $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is added in coment production to impove the subsequent hardening of concrete. The elevated temperature during the production of cement may lead to the formation of unwanted hemihydrate $\mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ according to reaction.
$\mathrm{CaSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

The $\Delta_{f} H^{\Theta} \mathrm{ofCaSO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
are $-2021.0 \mathrm{kJmol}^{-1},-1575.0 \mathrm{kJmol}^{-1}$ and $-241.8 \mathrm{kJmol}^{-1}$, respectively. The respective values of their standard entropies are 194.0, 130.0 and $188.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The values of $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.0831 \mathrm{~L}^{\mathrm{barmol}^{-1} \mathrm{~K}^{-1} .}$ Answer the following questions on the basis of above information. The value of equilibrium for reaction is
A. ≈ 0
B. <1
C. >1
D. $=1$

(D) Watch Video Solution

21. Concrete is produced form a mixture of cement, water and small stones.

Small amount of gypsum, $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is added in coment production to impove the subsequent hardening of concrete. The elevated temperature
during the production of cement may lead to the formation of unwanted hemihydrate $\mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ according to reaction.
$\mathrm{CaSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The $\Delta_{f} H^{\Theta} \mathrm{ofCaSO}_{2} .2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
are $-2021.0 \mathrm{kJmol}^{-1},-1575.0 \mathrm{kJmol}^{-1}$ and $-241.8 \mathrm{kJmol}^{-1}$, respectively. The respective values of their standard entropies are 194.0, 130.0 and $188.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The values of $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.0831 \mathrm{~L} \mathrm{bar} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$. Answer the following questions on the basis of above information.

The equilibrium pressure of water vapour in closed vessel containing $\mathrm{CaSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 298 K (Antilog $\left.-3.14=7.24 \times 10^{-4}\right)$ is
A. $\left(17.24 \times 10^{-4}\right)$ bar
B. $\left(-7.24 \times 10^{-4}\right)^{3} \mathrm{bar}$
C. $\left(18 \times 10^{-4}\right)^{2 / 3} \mathrm{bar}$
D. $\left(7.24 \times 10^{-4}\right)^{2 / 3}$ bar
22. Concrete is produced form a mixture of cement, water and small stones. Small amount of gypsum, $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is added in coment production to impove the subsequent hardening of concrete. The elevated temperature during the production of cement may lead to the formation of unwanted hemihydrate $\mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ according to reaction.
$\mathrm{CaSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The $\Delta_{f} H^{\Theta}{ }_{o f C a S O_{2}} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
are $-2021.0 \mathrm{kJmol}^{-1},-1575.0 \mathrm{kJmol}^{-1}$ and $-241.8 \mathrm{kJmol}^{-1}$, respectively. The respective values of their standard entropies are 194.0, 130.0 and $188.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The values of $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.0831 \mathrm{~L}$ bar mol${ }^{-1} \mathrm{~K}^{-1}$. Answer the following questions on the basis of above information.

The formation of $\mathrm{CaSO}_{4} \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ at 298 K is
A. Spontanoeous
B. Endothermic and non-spontaneous
C. Endothermic and non-spontaneous
D. Endothermic and non-spontaneous

- Watch Video Solution

23. A sample of ideal gas undergoes isothermal expansion in a reversible manner from volume V_{1} to volume V_{2}. The initial pressure is P_{1} and the final pressure is P_{2}. The same sample is then allowed to undergoes reversible expansion under adiabatic conditions from volume $V_{1} \rightarrow V_{2}$. The initial pressure being same but final pressure is P_{2}.

The work of expansion in adiabatic process $\left(w_{\text {adi }}\right)$ is related to work of expansion in isothermal process $\left(w_{\text {iso }}\right)$ is
A. $w_{\text {adi }}=w_{\text {iso }}$
B. $w_{\text {adi }}<w_{\text {iso }}$
C. $w_{\text {adi }}=2 w_{\text {iso }}$
D. $w_{a d i}>w_{i s o}$
24. A sample of ideal gas undergoes isothermal expansion in a reversible manner from volume V_{1} to volume V_{2}. The initial pressure is P_{1} and the final pressure is P_{2}. The same sample is then allowed to undergoes reversible expansion under adiabatic conditions from volume $V_{1} \rightarrow V_{2}$. The initial pressure being same but final pressure is P_{2}.

Which of the following is correct?
A. $P_{1} V_{1}=P_{2} V_{2}$
B. $P_{1} / P_{2}=V_{1} / V_{2}$
C. $P_{1} / P_{2}=P_{1} / P_{3}$
D. $P_{1}=P_{2}$

- Watch Video Solution

25. A sample of ideal gas undergoes isothermal expansion in a reversible manner from volume V_{1} to volume V_{2}. The initial pressure is P_{1} and the final pressure is P_{2}. The same sample is then allowed to undergoes reversible
expansion under adiabatic conditions from volume $V_{1} \rightarrow V_{2}$. The initial pressure being same but final pressure is P_{2}.

Which graphic representation is correct

a.

- Watch Video Solution

26. A sample of ideal gas undergoes isothermal expansion in a reversible manner from volume V_{1} to volume V_{2}. The initial pressure is P_{1} and the final pressure is P_{2}. The same sample is then allowed to undergoes reversible expansion under adiabatic conditions from volume $V_{1} \rightarrow V_{2}$. The initial pressure being same but final pressure is P_{2}. If P_{3} and P_{2} are equal, then
A. $V_{2(\text { adi })}=V_{2(\text { iso })}$
B. $V_{2(\text { adia) }}<V_{2(\text { iso })}$
C. Both $V_{2(\text { adi })}=V_{2(\text { iso })}<V_{1}$
D. $V_{2(\text { adi })}>V_{2(\text { iso })}$

- Watch Video Solution

27. A sample of ideal gas undergoes isothermal expansion in a reversible manner from volume V_{1} to volume V_{2}. The initial pressure is P_{1} and the final pressure is P_{2}. The same sample is then allowed to undergoes reversible
expansion under adiabatic conditions from volume $V_{1} \rightarrow V_{2}$. The initial pressure being same but final pressure is P_{2}.

Which relation is correct $\left(Y=\frac{C_{P}}{C_{V}}\right)$?
A. $P_{1} V_{1}=P_{2} V_{3}$
B. $P_{2} V_{1}=P_{3} V_{2}$
C. $P_{1} V_{1}^{V}=P_{3} V_{2}^{\gamma}$
D. $\frac{P_{1}}{P_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{\gamma-1}$

(D) Watch Video Solution

28. Free enegry, $G=H-T S$, is state function that indicates whther a reaction is spontaneous or non-spontaneous. If you think of $T S$ as the part of the system's enegry that is disordered already, then $(H-T S)$ is the part of the system's energy that is still ordered and therefore free to cause spontaneous change by becoming disordered.

Also, $\Delta G=\Delta H-T \Delta S$ From the second law of thermodynamics, a reaction is spontaneous if $\Delta_{\text {total }} S$ is positive, non-spontaneous if $\Delta_{\text {total }} S$ is negative, and at equilibrium if $\Delta^{\prime} \rightarrow t a l$ is zero.

Since, $-T \Delta S=\Delta G$ and since ΔG and ΔS have opposite sings, we can restate the thermodynamic criterion for the spontaneity of a reaction carried out a constant temperature and pressure.

IF $\Delta G<0$, the reaction is spontaneous.

If $\Delta G>0$, the reaction is non-spontaneous.

If $\Delta G=0$, the reaction is at equilibrium.

Read the above paragraph carefully and answer the following questions based on the above comprehension.

For the spontaneity of a reaction, which statement is true?
A. $\Delta G=+v e, \Delta H=+v e$
B. $\Delta H=+v e, \Delta G=-v e$
C. $\Delta G=-v e, \Delta S=-v e$
D. $\Delta H=-v e, \Delta S=+v e$
29. Free enegry, $G=H-T S$, is state function that indicates whther a reaction is spontaneous or non-spontaneous. If you think of $T S$ as the part of the system's enegry that is disordered already, then $(H-T S)$ is the part of the system's energy that is still ordered and therefore free to cause spontaneous change by becoming disordered.

Also, $\Delta G=\Delta H-T \Delta S$ From the second law of thermodynamics, a reaction is spontaneous if $\Delta_{\text {total }} S$ is positive, non-spontaneous if $\Delta_{\text {total }} S$ is negative, and at equilibrium if $\Delta, \rightarrow t a l$ is zero.

Since, $-T \Delta S=\Delta G$ and since ΔG and ΔS have opposite sings, we can restate the thermodynamic criterion for the spontaneity of a reaction carried out a constant temperature and pressure.

IF $\Delta G<0$, the reaction is spontaneous.

If $\Delta G>0$, the reaction is non-spontaneous.

If $\Delta G=0$, the reaction is at equilibrium.

Read the above paragraph carefully and answer the following questions based on the above comprehension.

A particular reaction has a negative value for the free energy change. Then at ordinary temperature
A. It has a large ($-v e$) value for the entropy change
B. It has large ($+v e$) value for enthalpy change
C. It has a small ($+v e$) value for enthalpy change
D. It has a ($+v e$) value for the entropy change and a ($-v e$) value for enthalpy change.

- Watch Video Solution

30. Free enegry, $G=H-T S$, is state function that indicates whther a reaction is spontaneous or non-spontaneous. If you think of $T S$ as the part of the system's enegry that is disordered already, then $(H-T S)$ is the part of the system's energy that is still ordered and therefore free to cause spontaneous change by becoming disordered.

Also, $\Delta G=\Delta H-T \Delta S$ From the second law of thermodynamics, a reaction is
spontaneous if $\Delta_{\text {total }} S$ is positive, non-spontaneous if $\Delta_{\text {total }} S$ is negative, and at equilibrium if $\Delta, \rightarrow t a l$ is zero.

Since, $-T \Delta S=\Delta G$ and since ΔG and ΔS have opposite sings, we can restate the thermodynamic criterion for the spontaneity of a reaction carried out a constant temperature and pressure.

IF $\Delta G<0$, the reaction is spontaneous.

If $\Delta G>0$, the reaction is non-spontaneous.

If $\Delta G=0$, the reaction is at equilibrium.

Read the above paragraph carefully and answer the following questions based on the above comprehension.

Which of the following is true for the reaction?
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \mathrm{at} 100^{\circ} \mathrm{C}$ and 1 atmosphere
A. $\Delta S=0$
B. $\Delta U=\Delta H$
C. $\Delta H=0$
D. $\Delta H=T \Delta S$
31. Free enegry , $G=H-T S$, is state function that indicates whther a reaction is spontaneous or non-spontaneous. If you think of $T S$ as the part of the system's enegry that is disordered already, then $(H-T S)$ is the part of the system's energy that is still ordered and therefore free to cause spontaneous change by becoming disordered.

Also, $\Delta G=\Delta H-T \Delta S$ From the second law of thermodynamics, a reaction is spontaneous if $\Delta_{\text {total }} S$ is positive, non-spontaneous if $\Delta_{\text {total }} S$ is negative, and at equilibrium if $\Delta, \rightarrow t a l$ is zero.

Since, $-T \Delta S=\Delta G$ and since ΔG and ΔS have opposite sings, we can restate the thermodynamic criterion for the spontaneity of a reaction carried out a constant temperature and pressure.

IF $\Delta G<0$, the reaction is spontaneous.

If $\Delta G>0$, the reaction is non-spontaneous.

If $\Delta G=0$, the reaction is at equilibrium.

Read the above paragraph carefully and answer the following questions based on the above comprehension.

If an endothermic reaction is non-spontaneous at freezing point of water and becomes feasible at its boiling point, then
A. $\Delta H i s(-v e)$ and $\Delta S i s(+v e)$.
B. ΔH and ΔS both are ($+v e$).
C. ΔH and ΔS both are ($-v e)$.
D. ΔH is (+ve) and DeltaS is (-ve).'

- Watch Video Solution

32. Free enegry, $G=H-T S$, is state function that indicates whther a reaction is spontaneous or non-spontaneous. If you think of $T S$ as the part of the system's enegry that is disordered already, then $(H-T S)$ is the part of the system's energy that is still ordered and therefore free to cause spontaneous change by becoming disordered.

Also, $\Delta G=\Delta H-T \Delta S$ From the second law of thermodynamics, a reaction is spontaneous if $\Delta_{\text {total }} S$ is positive, non-spontaneous if $\Delta_{\text {total }} S$ is negative, and
at equilibrium if $\Delta, \rightarrow t a l$ is zero.
Since, $-T \Delta S=\Delta G$ and since ΔG and ΔS have opposite sings, we can restate the thermodynamic criterion for the spontaneity of a reaction carried out a constant temperature and pressure.

IF $\Delta G<0$, the reaction is spontaneous.

If $\Delta G>0$, the reaction is non-spontaneous.

If $\Delta G=0$, the reaction is at equilibrium.

Read the above paragraph carefully and answer the following questions based on the above comprehension.

One mole of ice si converted to liquid at $273 \mathrm{~K}, \mathrm{H}_{2} \mathrm{O}(s)$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ have entropies 38.20 and $60.03 \mathrm{Jmol}^{-1} \mathrm{dg}^{-1}$. Enthalpy change in the conversion will be
A. $59.59 \mathrm{Jmol}^{-1}$
B. $593.95 \mathrm{Jmol}^{-1}$
C. $5959.5 \mathrm{Jmol}^{-1}$
D. $59595 \mathrm{Jmol}^{-1}$
33. The state of a mole of an ideal gas changed from state A at pressure $2 P$ and volume V follows four different processes and finally returns to initial state A reversibly as shown below in the graph. By interpreting the graph, answer the following questions.

Which is the kind of process followed from state A to state, B ?
A. Isochoric expansion
B. Isobaric expansion
C. Isothermal reversible expansion
D. Isothermal irreversible compression

- Watch Video Solution

34. The state of a mole of an ideal gas changed from state A at pressure $2 P$ and volume V follows four different processes and finally returns to initial state A reversibly as shown below in the graph. By interpreting the graph, answer the following questions.

In state D to state A, what kind of process is followed?
A. Isobaric expansion
B. Isobaric compression
C. Isochoric process
D. Isothermal compression

- Watch Video Solution

35. The state of a mole of an ideal gas changed from state A at pressure $2 P$ and volume V follows four different processes and finally returns to initial state A reversibly as shown below in the graph. By interpreting the graph, answer the following questions.

what would the be total done by the gas?
A. $-P V$
B. $P V$
C. 0
D. None of these

- Watch Video Solution

36. The state of a mole of an ideal gas changed from state A at pressure $2 P$ and volume V follows four different processes and finally returns to initial state A reversibly as shown below in the graph. By interpreting the graph, answer the following questions.

What would be the work done in state $B \rightarrow C$?
A. $-P V$
B. $P V$
C. $2 P V$
D. Zero

- Watch Video Solution

37. The state of a mole of an ideal gas changed from state A at pressure $2 P$ and volume V follows four different processes and finally returns to initial
state A reversibly as shown below in the graph. By interpreting the graph, answer the following questions.

What would be the heat obsorbed by the system in this cyclic process?
A. $-2 P V$
B. Zero
C. $2 P V$
D. $P V$
38. The second law of thermodynamics is a fundamental law of science. In this problem, we consider the thermodynamics of an ideal gas, phase transition, and chemical equilibrium.

Three moles of CO_{2} gas expands isothermally (in thermal contact with the surroundings, temperature $=15.0^{\circ} \mathrm{C}$) against a fixed external pressure of
1.00 . The initial and final volumes of the gas are 10.0 L and 30.0 L , respectively.

Select the correct order of the entropy change.
A. $\Delta_{\text {sys }} S>0, \Delta_{\text {surr }} S=0$
B. $\Delta_{\text {sys }} S<0, \Delta_{\text {surr }} S>0$
C. $\Delta_{\text {sys }} S>0, \Delta_{\text {surr }} S<0$
D. $\Delta_{\text {sys }} S>0, \Delta_{\text {surr }} S=0$

- Watch Video Solution

39. The second law of thermodynamics is a fundamental law of science. In this problem, we consider the thermodynamics of an ideal gas, phase transition, and chemical equilibrium.

Three moles of CO_{2} gas expands isothermally (in thermal contact with the surroundings, temperature $=15.0^{\circ} \mathrm{C}$) against a fixed external pressure of
1.00. The initial and final volumes of the gas are 10.0 L and 30.0 L , respectively.

Assuming CO_{2} to be an ideal gas, $\Delta_{\text {sys }} S$ is
A. $27.4 \mathrm{JK}^{-1}$
B. 9.1 JK^{-1}
C. $-27.4 J K^{-1}$
D. $-9.1 \mathrm{JK}^{-1}$

- Watch Video Solution

40. The second law of thermodynamics is a fundamental law of science. In this problem, we consider the thermodynamics of an ideal gas, phase transition, and chemical equilibrium.

Three moles of CO_{2} gas expands isothermally (in thermal contact with the surroundings, temperature $=15.0^{\circ} \mathrm{C}$) against a fixed external pressure of 1.00 bar. The initial and final volumes of the gas are 10.0 L and 30.0 L , respectively.
$\Delta_{\text {surr }} S$ is
A. $27.4 \mathrm{JK}^{-1}$
B. $+6.94 \mathrm{JK}^{-1}$
C. $0.00 \mathrm{JK}^{-1}$
D. $-6.94 \mathrm{JK}^{-1}$
41. A sample consisting of 1 mol of a mono-atomic perfect gas $\left(C_{V}=\frac{3}{2} R\right)$ is taken through the cycle as shown.

Temperature at points (1), (2) and (3) respectively is
A. $273 K, 546 K, 273 K$
B. $546 K, 273 K, 273 K$
C. $273 K, 273 K, 273 K$
D. $546 K, 546 K, 273 K$
42. A sample consisting of 1 mol of a mono-atomic perfect gas $\left(C_{V}=\frac{3}{2} R\right)$ is taken through the cycle as shown.

ΔH for the overall cycle is
A. $+5.67 \times 10^{3} \mathrm{~J}$
B. $-5.67 \times 10^{3} J$
C. $-11.34 \times 10^{3} \mathrm{~J}$
D. Zero

- Watch Video Solution

43. A sample consisting of 1 mol of a mono-atomic perfect gas $\left(C_{V}=\frac{3}{2} R\right)$ is taken through the cycle as shown.

ΔU for the process $(1 \rightarrow 2)$ is
A. 0.00 J
B. $+3.40 \times 10^{3} \mathrm{~J}$
C. -3.40J

D. $-3.40 \times 10^{3} \mathrm{~J}$

- Watch Video Solution

44. A sample consisting of 1 mol of a mono-atomic perfect gas $\left(C_{V}=\frac{3}{2} R\right)$ is taken through the cycle as shown.

ΔU for the process $(2 \rightarrow 3)$ is
A. 0.00 J
B. +3.40 kJ
C. -3.40 kJ
D. None of these

- Watch Video Solution

45. Chemical reactions are invariably associated with the transfter of energy
either in the form of heat or light. In the laboratory, heat changes in physical and chemical processes are measured with an instrument called calorimeter. Heat change in the process is calculated as
$q=m s \Delta T \quad s=$ Specific heat
$=c \Delta T \quad c=$ Heat capacity
Heat of reaction at constant volume is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change

Heat of reaction at constant pressure is measured using simple or water calorimeter.
$q_{p}=\Delta H$
$q_{p}=q_{V}+P \Delta V$

$\Delta H=\Delta U+\Delta n R T$

The heat capacity of a bomb calorimeter is $500 \mathrm{JK}^{-1}$. When 0.1 g of methane was burnt in this calorimeter, the temperature rose by $2^{\circ} \mathrm{C}$. The value of ΔU per mole will be
A. $+2 k J$
B. $-2 k J$
C. +260 kJ
D. +160 kJ

- Watch Video Solution

46. Chemical reactions are invariably associated with the transfter of energy either in the form of heat or light. In the laboratory, heat changes in physical and chemical processes are measured with an instrument called calorimeter. Heat change in the process is calculated as
$\{:(q=m s$ DeltaT,,s =Specific heat),(=cDeltaT„c =Heat capacity):\}

Heatofreactionatconstantvolumeismeasuredusingbombcal or imeter. q_(V)

DeltaU

Internale \neq rgychan \geq Heatofreactionatconstantpressureismeasuredusingsimp ≤ 0 $\mathrm{q}_{-}(\mathrm{p})=$ DeltaHq_(p) = $\mathrm{q}_{-}(\mathrm{V})+\mathrm{P}$ DeltaVDeltaH $=$ DeltaU +DeltanRT F or whichreactionwillDeltaH = DeltaU'? Assume each reaction is carried out in an open container.
A. $4 \mathrm{CO}(\mathrm{g})+2 \mathrm{O}(\mathrm{g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})$
B. $\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{HBr}(g)$
C. $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
D. $2 \mathrm{PCI}_{5}(g) \rightarrow 2 \mathrm{PCI}_{3}(g)+2 C I_{2}(g)$

- Watch Video Solution

47. Chemical reactions are invariably associated with the transfter of energy either in the form of heat or light. In the laboratory, heat changes in physical and chemical processes are measured with an instrument called
calorimeter. Heat change in the process is calculated as

$$
\begin{array}{ll}
q=m s \Delta T & s=\text { Specific heat } \\
=c \Delta T & c=\text { Heat capacity }
\end{array}
$$

Heat of reaction at constant volume is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change
Heat of reaction at constant pressure is measured using simple or water calorimeter.
$q_{p}=\Delta H$
$q_{p}=q_{V}+P \Delta V$
$\Delta H=\Delta U+\Delta n R T$

What value of ΔT should be used for the calorimetry experiment that gives the following graphical results?

A. $30^{\circ} \mathrm{C}$
B. $45^{\circ} \mathrm{C}$
C. $20^{\circ} \mathrm{C}$
D. $35{ }^{\circ} \mathrm{C}$

- View Text Solution

48. Chemical reactions are invariably associated with the transfter of energy
either in the form of heat or light. In the laboratory, heat changes in physical and chemical processes are measured with an instrument called calorimeter. Heat change in the process is calculated as

$$
\begin{array}{ll}
q=m s \Delta T & s=\text { Specific heat } \\
=c \Delta T & c=\text { Heat capacity }
\end{array}
$$

Heat of reaction at constant volume is measured using bomb calorimeter.
$q_{V}=\Delta U=$ Internal energy change
Heat of reaction at constant pressure is measured using simple or water calorimeter.
$q_{p}=\Delta H$
$q_{p}=q_{V}+P \Delta V$
$\Delta H=\Delta U+\Delta n R T$
The enthalpy of fusion of ice is $6.02 \mathrm{kJmol}^{-1}$. The heat capacity of water is $4.18 \mathrm{Jg}^{-1} \mathrm{C}^{-1}$. What is the smallest number of ice cubes at $0^{\circ} \mathrm{C}$, each containing one molw of water, the are needed to cool 500 g of liquid water from $20^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}$?
A. 8
B. 7
C. 140
D. 120

- Watch Video Solution

49. Bond energies can be obtained by using the following relation:
$\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products

Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

Arrange $N-H, O-H$, and $F-H$ bonds in teh decreasing order of bond enegry.
A. $F-H>O-H>N-H$
B. $\mathrm{N}-\mathrm{H}>\mathrm{O}-\mathrm{H}>\mathrm{F}-\mathrm{H}$
C. $\mathrm{O}-\mathrm{H}>\mathrm{N}-\mathrm{H}>\mathrm{F}-\mathrm{H}$
D. $F-H>N-H>O-H$

(D) Watch Video Solution

50. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond
energy fo bonds, formed in the products
Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

Bond enegry of differene halogen molecules will lie in the sequences
A. $\mathrm{F}_{2}>\mathrm{CI}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
B. $\mathrm{CI}_{2}>\mathrm{Br}_{2}>\mathrm{Fe}_{2}>I_{2}$
C. $I_{2}>\mathrm{CI}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
D. $\mathrm{Br}_{2}>\mathrm{Fe}_{2}>I_{2}>C I_{2}$

- Watch Video Solution

51. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond
energy fo bonds, formed in the products
Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

Which among the following sequences is correct about the bond enegry of
$C-C, C=C$ and $C \equiv C$ bonds?
A. $C=C>C \equiv C>C-C$
B. $C \equiv C<C=C<C-C$
C. $C \equiv C>C=C>C-C$
D. $C \equiv C>C-C>C=C$
52. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products

Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

In CH_{4} molecule, which of the following statement is correct about the $C-H$ bond enegry?
A. All $C-H$ bonds of methane have same enegry.
B. Average of all $C-H$ bond energies is considered.
C. Fourth $C-H$ bond required highest enegry to break.
D. None of the above
53. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products

Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

Use the bond enegries to estimate ΔH for this reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
Bond Bond energy
H-H $\quad 436 \mathrm{kJmol}^{-1}$
O-O $142 \mathrm{kJmol}^{-1}$
$O=O \quad 499 \mathrm{kJmol}^{-1}$
H-O $460 \mathrm{kJmol}^{-1}$
A. $-127 k J$
B. -109 kJ
C. -400 kJ
D. -800 kJ

- Watch Video Solution

54. Bond energies can be obtained by using the following relation: $\Delta H($ reaction $)=\sum$ Bond energy of bonds, broken in the reactants $-\sum$ Bond energy fo bonds, formed in the products

Bond enegry depends on three factors:
a. Greater is the bond length, lesser is the bond enegry.
b. Bond energy increases with the bond multiplicity.
c. Bond enegry increases with electronegativity difference between the bonding atoms.

The heat of formation of NO from its elements is $+90 \mathrm{kJmol}^{-1}$, What is the approximate bond dissociation enegry of the bond in NO?

$$
B E_{N=N}=941 \mathrm{kJmol}^{-1} B E_{O=O}=499 \mathrm{kJol}^{-1}
$$

A. $630 \mathrm{kJmol}^{-1}$
B. $700 \mathrm{kJmol}^{-1}$
C. $860 \mathrm{kJmol}^{-1}$

D. $810 \mathrm{kJmol}^{-1}$

- Watch Video Solution

55. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta_{\text {sys }} G=\Delta_{\text {sys }} H-T \Delta_{\text {sys }} S$
At constant temperature and pressure
$\Delta_{\text {sys }} G<0$ (spontaneous)
$\Delta_{\text {sys }} G=0$ (equilibrium)
$\Delta_{\text {sys }} G>0$ (non-spontaneous)
The free enegry for a reaction having
$\Delta H=31400 \mathrm{cal}, \Delta S=32 \mathrm{calK}^{-1} \mathrm{~mol}^{-1} \mathrm{at} 1000^{\circ} \mathrm{C}$ is
A. -9336 cal
B. -7006 cal
C. -2936 cal
D. +9006 cal

- Watch Video Solution

56. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta_{\text {sys }} G=\Delta_{\text {sys }} H-T \Delta_{\text {sys }} S$
At constant temperature and pressure
$\Delta_{\text {sys }} G<0$ (spontaneous)
$\Delta_{\text {sys }} G=0$ (equilibrium)
$\Delta_{\text {sys }} G>0$ (non-spontaneous)
For a spontaneous reaction ΔG, equilibrium K and $E_{c e l l}^{\Theta}$ will be, respectively
A. $-v e,>1,+v e$
B. $-v e,<1,-v e$
C. $+v e,>1,-v e$
D. $-v e,>1,-v e$

- Watch Video Solution

57. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta_{\text {sys }} G=\Delta_{\text {sys }} H-T \Delta_{\text {sys }} S$
At constant temperature and pressure
$\Delta_{\text {sys }} G<0$ (spontaneous)
$\Delta_{\text {sys }} G=0$ (equilibrium)
$\Delta_{\text {sys }} G>0$ (non-spontaneous)
For a system in equilibrium, $\Delta G=0$, under conditions of constant
A. Temperature and pressure
B. Pressure and volume
C. Temperature and volume
D. Energy and volume
58. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta_{\text {sys }} G=\Delta_{\text {sys }} H-T \Delta_{\text {sys }} S$
At constant temperature and pressure
$\Delta_{\text {sys }} G<0$ (spontaneous)
$\Delta_{\text {sys }} G=0$ (equilibrium)
$\Delta_{\text {sys }} G>0$ (non-spontaneous)
If both ΔH and Δs are negative, the reaction will be spontaneous
A. At high temperature
B. At all temperatures
C. At low temperature
D. At high pressure
59. Identify the correct statement for change of Gibbs energy for a system
$\left(\Delta_{\text {sys }} G\right)$ at constant temperature and pressure:
A. Must be spontaneous at any temperature
B. Cannot be spontaneous at any temperature
C. Will be spontaneous only at low temperture
D. Will be spontaneous only at high temperature

- Watch Video Solution

Process $A \rightarrow B$ represents
A. Isobaric
B. Isochoric
C. Isothermal
D. Isoentropic

The pressure at C is
A. 3.284 atm
B. 1.642 atm
C. 1.0821atm
D. 1.821atm

Work done in the process $C \rightarrow A$ is
A. $20.0 \mathrm{~L}-\mathrm{atm}$
B. 8.21 L - atm
C. $26.2 \mathrm{~L}-\mathrm{atm}$
D. 25.0 L - atm

The process which occurs in going from $B \rightarrow C$ is
A. Isothermal
B. Adiabatic
C. Isobaric
D. Isochoric

64.

The pressures at A and B in the atmosphere are, respectively,
A. 0.821 and 1.642
B. 1.642 and 2
C. 2 and 3
D. 3 and 4
65. The thermodynamic property that measures the extent of molecular disorder is called entropy. Entropy change of phase transformation can be calculated using Trouton's formula ($\Delta S=\Delta H / T$). In the reversible adiabatic process, however, ΔS will be zero. the rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.
$\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)$
The entropy change in an adiabatic process is
A. Zero
B. Positive
C. Negative
D. Remains same

- Watch Video Solution

66. The thermodynamic property that measures the extent of molecular disorder is called entropy. Entropy change of phase transformation can be calculated using Trouton's formula ($\Delta S=\Delta H / T$). In the reversible adiabatic process, however, ΔS will be zero. the rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.
$\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)$
If water in an insulated vessel at $-10^{\circ} \mathrm{C}$ suddenly freezes, the entropy change of the system will be
A. $+20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $-10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. Zero
D. Same to that of surroundings

- Watch Video Solution

67. The thermodynamic property that measures the extent of molecular disorder is called entropy. Entropy change of phase transformation can be calculated using Trouton's formula $(\Delta S=\Delta H / T)$. In the reversible adiabatic process, however, ΔS will be zero. the rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.

$$
\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)
$$

The melting point of a solid is 200 K and its latent heat of fusion is $400 \mathrm{calmol}^{-1}$. The entropy changes for the fusion of 1 mole of the solid (in cal K^{-1}) at the same temperature would be
A. 800
B. 2
C. 0.2
D. 80
68. The thermodynamic property that measures the extent of molecular disorder is called entropy. Entropy change of phase transformation can be calculated using Trouton's formula ($\Delta S=\Delta H / T$). In the reversible adiabatic process, however, ΔS will be zero. the rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.
$\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)$
For which of the following cases, $\Delta S=\frac{\Delta H}{T}$?
A. A process of which $\Delta C_{p}=0$, but $\Delta C_{v}=0$
B. An isothermal process
C. An isobaric process
D. An isothermal reversible phase transition process
69. The thermodynamic property that measures the extent of molecular disorder is called entropy. Entropy change of phase transformation can be calculated using Trouton's formula ($\Delta S=\Delta H / T$). In the reversible adiabatic process, however, ΔS will be zero. the rise in temperature in isobaric and isochoric conditions is found to increase the randomness or entropy of the system.
$\Delta S=2.303 C \log \left(T_{1} / T_{2}\right)$
When 1 mol of an ideal gas is compressed to half of its volume, its temperature becomes double. Then the change in entropy (ΔS) would be
A. C_{V} In 4
B. C_{P} In 2
C. $C_{V} R I n 4$
D. $\left(C_{V}-R\right) \operatorname{In} 4 \times C_{P}$

- Watch Video Solution

70. The pressure-volume of varies thermodynamic process is shown in graphs:

Work is the mole of transference of energy. It has been observed that reversible work done by the system is the maximum obtainable work.
$w_{\text {rev }}>w_{\text {irr }}$
The works of isothermal and adiabatic processes are different from each other.
$w_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$=2.303 n R T \log _{10}\left(\frac{P_{2}}{P_{1}}\right)$
$w_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
If w_{1}, w_{2}, w_{3} and w_{4} are work done in isothermal, adiabatic, isobaric, and isochoric reversible processes, respectively then the correct sequence (for expansion) would be
A. $w_{1}<w_{2}<w_{3}<w_{4}$
B. $w_{3}=w_{2}=w_{1}=w_{4}$
C. $w_{3}<w_{2}<w_{4}<w_{1}$
D. $w_{3}>w_{1}>w_{2}>w_{4}$

- Watch Video Solution

71. The pressure-volume of varies thermodynamic process is shown in graphs:

Work is the mole of transference of energy. It has been observed that reversible work done by the system is the maximum obtainable work.
$w_{r e v}>w_{i r r}$
The works of isothermal and adiabatic processes are different from each
other.
$w_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$=2.303 n R T \log _{10}\left(\frac{P_{2}}{P_{1}}\right)$
$w_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
A thermodynamic system goes in a cyclic process as represented in the following P - V diagram:

个 A_{2}
 Volume

The network done during the complete cycle is given by the area
A. Cycle $A C B D A$
B. $A A_{2} B_{2} B D A$
C. $A A_{2} B_{2} B$
D. Area not bounded by curve
72. The pressure-volume of varies thermodynamic process is shown in graphs:

Work is the mole of transference of energy. It has been observed that reversible work done by the system is the maximum obtainable work.
$w_{\text {rev }}>w_{\text {irr }}$
The works of isothermal and adiabatic processes are different from each other.
$w_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$=2.303 n R T \log _{10}\left(\frac{P_{2}}{P_{1}}\right)$
$w_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
$P-V$ plots for two gases during adiabatic processes are given in the given figure:

Plot D and Plot C should correspond to
A. He and O_{2}
B. He and Ar
C. O_{2} and He
D. O_{2} and N_{2}
73. The pressure-volume of varies thermodynamic process is shown in graphs:

Work is the mole of transference of energy. It has been observed that reversible work done by the system is the maximum obtainable work.
$w_{r e v}>w_{i r r}$
The works of isothermal and adiabatic processes are different from each other.
$w_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$=2.303 n R T \log _{10}\left(\frac{P_{2}}{P_{1}}\right)$
$w_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
The q value and work done in isothermal reversible expansion of one mole of an ideal gas from initial pressure of 1 bar to final pressure of 0.1 bar at constant temperature 273 K are:
A. $5.22 k J,-5.22 k J$
B. $+6.22 \mathrm{~kJ}, 6.22 \mathrm{~kJ}$
C. 5.22J, 5.22J
D. $-6.22 J,-6.22 J$

- Watch Video Solution

74. The pressure-volume of varies thermodynamic process is shown in graphs:

Work is the mole of transference of energy. It has been observed that reversible work done by the system is the maximum obtainable work.
$w_{r e v}>w_{i r r}$
The works of isothermal and adiabatic processes are different from each other.
$w_{\text {isothermal reversible }}=2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$
$=2.303 n R T \log _{10}\left(\frac{P_{2}}{P_{1}}\right)$
$w_{\text {adiabatic reversible }}=C_{V}\left(T_{1}-T_{2}\right)$
Calculate work done when 1 mole of an ideal gas is expanded reversibly form 30 L to 60 L at a constant temperature of 300 k
A. 8.78 kJ
B. -1.73 kJ
C. 10.73 kJ
D. -9.78 kJ

- Watch Video Solution

Exercises (Multiple Correct)

1. Select the correct statement
A. There is a natural asymmetry between converting work to heat and converting heat to work.
B. No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work.
C. For energy chemical reaction at equilibrium, standard change in Gibbs free energy is zero.
D. At constant temperature and pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy..

- Watch Video Solution

2. Which of the following are intensive properties?
A. Heat capacity
B. Refractive index
C. Specific volume
D. Entropy
3. Which of the following are extensive properties ?
A. Elevation in boiling point
B. Boiling point
C. emf of cell
D. E^{Θ} of cell

- Watch Video Solution

4. Which one is not correct for a cyclic process as shown in the figure ?

A. $d U=0$
B. $q=-w$
C. $w=314 J$
D. $w=31.4 \mathrm{~J}$

D Watch Video Solution

5. If $w_{1} . w_{2}, w_{3}$ and w_{4} are work done in isothermal, adiabatic, isobaric, and isochoric reversible expansion for an ideal gas, respectively, then
A. $w_{3}>w_{1}$
B. $w_{1}>w_{2}$
C. $w_{2}>w_{4}$
D. $w_{4}>w_{2}$
6. Average value of poisson's ratio for a mixture of 2 mole of each gas A and B is 1.66 , then
A. Gases are mono-atomic
B. Gases are diatomic
C. Average molar heat capacity at constant volume is 4 cal
D. Average molar heat capacity at constant V is $3 c a l$

- Watch Video Solution

7. A reaction attains equilibrium state under standard conditions, then:
A. Equilibrium constant $K=0$
B. Equilibrium constant $K=1$
C. $\Delta G^{\Theta}=0$ and $\Delta H^{\Theta}=T \Delta S^{\Theta}$
D. $\Delta G=0$ and $\Delta H=T \Delta S$

- Watch Video Solution

8. The poisson's ratio for O_{2} is 1.4. Which of the following are correct for O_{2}
?
A. $C_{V M}=5 \mathrm{cal}$
B. $C_{V}=0.156 \mathrm{cal}$
C. $C_{P}=\frac{R \gamma}{\gamma-1}$
D. $C_{V}=\frac{R}{(\gamma-1)}$
9. Select the correct statements.
A. The magnitude of work involved in an intermediate irreversible expansion is less than that involved in reversible expansion.
B. Heat absorbed during intermediate irreversible expansion is more than that in intermediate reversible expansion.
C. The magnitude of work involved in an intermediate reversible compression is more than that involved in intermdiate irreversible compression.
D. Heat released during intermediate irreversible compression is more than that in intermediate reversible compression.

- Watch Video Solution

10. Select the correct statements for the equilibrium under standard conditions.
$H_{2} O(s) \Leftrightarrow H_{2} O(l), \Delta S_{1}^{\Theta}$
$H_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(v), \Delta_{2}^{\Theta}$
$H_{2} O(s) \Leftrightarrow H_{2} O(v), \Delta S_{3}^{\Theta}$
A. $\Delta S_{1}^{\Theta}>\Delta S_{2}^{\Theta}$
B. $\Delta S_{2}^{\Theta} \ggg \Delta S_{1}^{\Theta}$
C. $\Delta S_{3}^{\Theta}>\Delta S_{2}^{\Theta}$
D. $\Delta S_{3}^{\Theta}>\Delta S_{1}^{\Theta}$
11. Which is intensive property ?
A. Mass
B. Mass/volume
C. Volume
D. Volume/mass
12. Which of the followinf statements are correct?
A. Absolute value of enthalpy cannot be determined.
B. Absolute value of internal energy cannot be determined.
C. Absolute value of entropy can be determined.
D. Internal energy, enthalpy, and entropy are intensive properties.

- Watch Video Solution

13. Following enthalpy changes are given:
$\alpha-$ Dglucose $(s) \rightarrow \alpha-\operatorname{Dglucoes}(a q), \Delta H=10.72 \mathrm{~kJ}$
β - Dglucose(s) $\rightarrow \beta$ - Dglucose(aq), $\Delta H=4.68 \mathrm{~kJ}$
α - Dglucose(s) $\rightarrow \beta$-Dglucose (aq), $\Delta H=1.16 \mathrm{~kJ}$

Calculate enthalpy change in
α - Dglucose(s) $\rightarrow \beta$ - Dglucose(s)
A. $14.24 k J$
B. 16.56 kJ
C. 7.2 kJ
D. 4.88 kJ

- Watch Video Solution

14. If x and y are arbitrary extensive variables, then
A. $(x+y)$ is an extensive variable.
B. x / y is an intensive variable.
C. $d x / d y$ is an intensive variable
D. Both (b) and (c).
15. If x and y are arbitrary intensive variables, then
A. $x y$ is an intensive variable.
B. x / y is an intensive variable.
C. $(x+y)$ is an extensive property.
D. $d x / d y$ is an intensive property.

- Watch Video Solution

16. For which process does $\Delta U=0$ holds true?
A. Cyclic process
B. Isothermal expansion
C. Isochoric process
D. Adiabatic process

- Watch Video Solution

17. Which is correct about ΔG ?
A. $\Delta G=\Delta H-T \Delta S$
B. At equilibrium, $\Delta G^{\Theta}=0$
C. At equilibrium $\Delta G=-R T \log K$
D. $\Delta G=\Delta G^{\Theta}+R T \log K$

- Watch Video Solution

18. Which is not correct relationship between ΔG^{Θ} and equilibrium constant K_{P}.
A. $K_{P}=-R T \log \Delta G^{\Theta}$
B. $K_{P}=[e / R T]^{\Delta G^{\Theta}}$
C. $K_{P}=-\frac{\Delta G^{\Theta}}{R T}$
D. $K_{P}=e^{-\Delta G^{\Theta} / R T}$

- Watch Video Solution

19. Which is not correct relationship?
A. $\left[\frac{d H}{d T}\right]_{P}-\left[\frac{d U}{d T}\right]_{V}=(+v e)$
B. $\left[\frac{d U}{d V}\right]_{T}=0$ (for ideal gas)
C. $\left[\frac{d V}{d T}\right]_{P}=\frac{n R}{P}=$ (for ideal gas)
D. All of these
20. Which of the following are endothermic processes?
A. Combustion of glucose
B. Decomposition of water
C. Dehydrogenation of ethane to ethene
D. Conversion of graphite to diamond
21. For an idela gas undergoing isothermal irreversible expansion
A. $\Delta U=0$
B. $\Delta H=0$
C. $\Delta S=0$
D. $w=0$
22. In which of the following reactions, $\Delta H>\Delta U$?
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
B. $\mathrm{PCI}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCI}_{3}(\mathrm{~g})+\mathrm{CI}(\mathrm{g})$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
D. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

- Watch Video Solution

23. Which of the following are not correct at $298 K$?
A. $\Delta_{f} G^{\Theta}$ element $=0$
B. $\Delta_{f} H^{\Theta}$ element $=0$
C. ΔS^{Θ} element $=0$
D. $\Delta_{f} G^{\Theta}$ compound $=0$

- Watch Video Solution

24. Under which of the conditions the process will be spontaneous?
A. $\Delta G=-v e$
B. $\Delta_{\text {Total }} S=+v e$
C. $\Delta_{\text {Total }} S=-v e$
D. $\Delta_{\text {Total }} S=0$

- Watch Video Solution

25. The correct expressions for an adiabatic process are

$$
\text { A. } \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}
$$

B. $\frac{P_{2}}{P_{1}}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{\gamma-1}{\gamma}}$
C. $P_{1} V_{1}^{Y}=P_{2} V_{2}^{Y}$
D. $P_{1} V_{1}^{\gamma-1}=P_{2} V_{2}^{\gamma-1}$

- Watch Video Solution

26. During an adiabatic reversibly expansion of an ideal gas
A. Internal energy of the system decreases.
B. Temperature of the system decreases.
C. The value of γ changes
D. Pressure increases.
27. The intensive property/properties is/are
A. Temperature
B. Pressure
C. Internal energy
D. Heat capacity

- Watch Video Solution

28. The second law of thermodynamics states that
A. All spontaneous processes are thermodynamically irreversible.
B. Entroy of the universe is continuously increasing.
C. Energy can neither be created nor destroyed.
D. Enegry of the universe remain constant.
29. The criteria for sponaeity of a process is/are
A. $(d G)_{T P}<0$
B. $(d E)_{S V}<0$
C. $(d H)_{S P}<0$
D. $(d S)_{E V}<0$

- Watch Video Solution

30. The following is (are) endothermic reaction (s)
A. Combustion of methane
B. Decomposition of water
C. Dehydrogenation of ethane to ethylene
D. Conversion of graphite to diamond

- Watch Video Solution

31. For the adiabatic expansion of an ideal as
A. $P V^{\gamma}=$ constant
B. $T V^{\gamma-1}=$ constant
C. $T P^{1-\gamma}=$ constant
D. None of the above

D Watch Video Solution

32. In which of the following entropy increases?
A. Rusting of iron
B. Melting of ice
C. Crystallisation of sugar from solution
D. Vaporisation of camphor

- Watch Video Solution

33. Which of the following are irreversible processes
A. Mixing of two gases.
B. Evaporation of water at 373 K and 1atm in a closed system.
C. Dissolution of NaCI in water
D. $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ at $-4^{\circ} \mathrm{C}$

- Watch Video Solution

34. Which of the options give below are correct?
$\Delta H \quad \Delta S \quad$ Nature of reaction
A. (-) (+) Spontaneous at all temperature
$\Delta H \quad \Delta S \quad$ Nature of reaction
B.
(+) (-) Nonspontaneous regardless of temperature
$\Delta H \quad \Delta S \quad$ Nature of reaction
C. $(+)(+)$ Spontaneous only at high temperature
$\Delta H \quad \Delta S \quad$ Nature of reaction
D. (-) (-) Spontaneous only at low temperature

- Watch Video Solution

35. Which of the following are thermodynamically stable?
A. C (diamond)
B. C(graphite)
C. P_{4} (white)
D. P_{4} (black)
36. Which of the following affect the heat of reaction?
A. Physical states of reactants and products
B. Allotrpoic forms of elements
C. Temperature
D. Reaction carried out at constant pressure or constant volume
37. Which of the following type of energies are involved in Born Haber's cycle?
A. $\Delta_{\text {sub }} H$
B. Ionisation enegry
C. Bond dissociation enegry
D. Lattice enegry

- Watch Video Solution

38. Which of the following are true about resonance enegry?
A. Resonance enegry =Experimental heat of formation -Calculated heat of formation.
B. Resonance enegry =Calculated heat of formation -Experimental heat of formation.
C. Greater the resonance enegry, more the compound will be stable.
D. Lesser the resonance energy, more the compound will be stable.
39. Hess' law is applicable for determination of enthalpy of
A. Reaction
B. Formaiton
C. Transition
D. None of these

- Watch Video Solution

40. Indicate in which case/cases the spontaneity of a change is favoured when
A. ΔH is $+v e$
B. ΔH is -ve
C. ΔS is $+v e$
D. ΔG is $-v e$

- Watch Video Solution

41. Endothermic reactions, having $\Delta S=+v e$ masy be spontaneous if
A. $\Delta H>T \Delta S$
B. $\Delta H<T \Delta S$
C. $\Delta H=T \Delta S$
D. T is very high

- Watch Video Solution

42. If ΔH is the enthalpy change and ΔU the change in internal energy accompanying a gaseous reaction, then
A. ΔH is always greater than ΔU.
B. ΔH is always less than ΔU.
C. $\Delta H<\Delta U$ only if the number of mole of the products is less than that of the reactants.
D. $\Delta U<\Delta H$ only if the number of mole of the reactants is less than that of the products.

(D) Watch Video Solution

43. An isolated system is that system in which
A. Can exchange matter with the surroundings.
B. Can exchange energy with the surroundings.
C. Can exchange both matter and energy with the surroundings.
D. Cannot exchange either matter or energy with the surroundings.
44. In a reaction, ΔH and ΔS both are more than zero. In which of the following cases, the reaction would not be spontaneous?
A. $\Delta H>T \Delta S$
B. $T \Delta S>\Delta H$
C. $\Delta H=T \Delta S$
D. $\Delta G<0$

- Watch Video Solution

45. State the first law of thermodynamics.
A. $\Delta U=\Delta q-W$
B. $q=\Delta U-W$
C. $q d+d W=0$
D. $\Delta U q+W$

- Watch Video Solution

46. In which reaction(s), ΔS in negative?
A. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
B. $3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

- Watch Video Solution

47. The heat evolved in the combustion of benzene is given by
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+7 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+6 \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-781.0 \mathrm{kcalmol}^{-1}$

When 156 g of $\mathrm{C}_{6} \mathrm{H}_{6}$ is burnt in a open container, the amount of heat enegry released will be
A. $15.02 \mathrm{kcalmol}^{-1}$
B. $1562.0 \mathrm{kalmol}^{-1}$
C. $6528.2 \mathrm{kJmol}^{-1}$
D. $2448.5 \mathrm{kJmol}^{-1}$
48. The heat of neutralization fo a stron acid by a strong base is a constant
A. $-57.0 \mathrm{kJmol}^{-1}$
B. $-13.7 \mathrm{kcalmol}^{-1}$
C. $-5.7 \times 10^{4} \mathrm{Jmol}^{-1}$
D. $-13.7 \times 10^{3} \mathrm{Calmol}^{-1}$
49. The enthalpy change for the process
C (graphite) $\rightarrow C(g)$ is called
A. Heat of vaporisation
B. Heat fo sublimation
C. Heat of allotropic change
D. Heat of atomisation

- Watch Video Solution

50. Enthalpy change equal internal energy change when
A. All the reactants and products are in solution
B. Reaction is carried out in a closed vessel
C. Number of moles of gaseous reactants and that of products is equal
D. Reaction is carried out at constant pressure

(D) Watch Video Solution

Exercises (Single Correct)

1. $\mathrm{CsOH}+\mathrm{HCI} \rightarrow \mathrm{CsCI}+\mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-13.4 \mathrm{kcalmol}^{-1}$.
$\mathrm{CsOH}+\mathrm{HF} \rightarrow \mathrm{CsF}+\mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-16.4 \mathrm{kcalmol}^{-1}$
Calculate ΔH for the ionisation of HF in $\mathrm{H}_{2} \mathrm{O}$.
A. 3.0kcal
B. -3.0 kcal
C. 6.0kcal
D. 0.3kcal
2. For the reaction, $\mathrm{X}_{2} \mathrm{O}_{4}(\mathrm{I}) \rightarrow 2 \mathrm{XO}_{2}(\mathrm{~g}), \Delta E=2.1 \mathrm{Kcal}$, $\Delta S=20 \mathrm{cal} / \mathrm{K}$ at 300 K . Hence ΔG is
A. 2.7kcal
B. -2.7 kcal
C. 9.3kcal
D. -9.3 kcal

- Watch Video Solution

3. For the given reactions
$\mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-10.17 \mathrm{kcal}$
$\mathrm{SiO}_{2}+4 \mathrm{HCI} \rightarrow \mathrm{SiCI}_{4}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=36.7 \mathrm{kcal}$
It may be concluded that
A. HF will attack SiO_{2} and HCI will not
B. HCI will attack SiO_{2} and HF will not
C. HF and HCI both attack SiO_{2}
D. None attacks SiO_{2}

- Watch Video Solution

4. $\Delta G=\Delta H-T \Delta S$ and ItBRgt $\Delta G=\Delta H+T\left[\frac{d(\Delta G)}{d T}\right]_{p}$, then $\left(\frac{d E_{\text {cell }}}{d T}\right)$ is
A. $\frac{\Delta H}{n F}$
B. $\frac{\Delta G}{n F}$
C. $\frac{\Delta S}{n F}$
D. $-\frac{\Delta S}{n F}$
5. Which of the following is the intensive property?
A. Boiling point
B. Refractive index
C. Molarity
D. Volume

- Watch Video Solution

6. $1 \mathrm{gH}_{2}$ gas $S T P$ is expanded so that the volume is doubled. Hence, work done is
A. $22.4 \mathrm{~L}-\mathrm{atm}$
B. 5.6 L - atm
C. 11.2L-atm
D. $44.8 \mathrm{~L}-\mathrm{atm}$

- Watch Video Solution

7. 1 mol of NH_{3} gas at $27^{\circ} \mathrm{C}$ is expanded under adiabatic condition to make volume 8 times ($\gamma=1.33$). Final temperature and work done, respectively, are
A. $150 \mathrm{~K}, 900 \mathrm{cal}$
B. $150 \mathrm{~K}, 400 \mathrm{cal}$
C. $250 \mathrm{~K}, 100 \mathrm{cal}$
D. $200 \mathrm{~K}, 800 \mathrm{cal}$

- Watch Video Solution

8. Temperature of 1 mol of a gas is increased by 1° at constant pressure. The work done is
A. R
B. $2 R$
C. $R / 2$
D. $3 R$

- Watch Video Solution

9. The standard heat of combustion of Al is $-837.8 \mathrm{kJmol}^{-1}$ at $25^{\circ} \mathrm{C}$. If Al reacts with O_{2} at $25^{\circ} \mathrm{C}$, which of the following release 250 kJ of heat?
A. The reaction of 0.624 molofAI
B. The formation fo 0.624 molofAI O_{2}
C. The reaction of 0.312 molofAI
D. The formation of $0.150 \mathrm{molofAI} \mathrm{O}_{2} \mathrm{O}_{3}$
10. $C_{P}-C_{V}=R$. This R is
A. Change in $K E$.
B. Change in rotation energy
C. Work done which system can do on expanding the gas per mol per degree increases in temperature.
D. All correct

- Watch Video Solution

11. Carnot's cycle is said to have 25% efficiency when it operates between T (source) and $300 K$ (sink). Temperature T is
A. 300 K
B. 350 K
C. 375 K
D. 400 K

- Watch Video Solution

12. The heat of neutralisation of oxalic acid is $-25.4 \mathrm{kcalmol}^{-1}$ using strong base, NaOH . Hence, the enthaly change of the process is $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{H}^{\oplus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is
A. 2.0 kcal
B. -11.8 kcal
C. 1.0kcal
D. -1.0 kcal
13. If a gas absorbs 200 J of heat and expands by $500 \mathrm{~cm}^{3}$ against a constant pressure of $2 \times 10^{5} \mathrm{Nm}^{-2}$, then the change in internal energy is
A. -300 J
B. -100 J
C. +100 J
D. +300 J

- Watch Video Solution

14. Inversion temperature is
A. $\frac{R b}{2 a}$
B. $\frac{2 a}{R b}$
C. $\frac{R b}{a}$
D. $\frac{a}{R b}$
15. For an ideal gas Joule-Thomon coefficient is:
A. Positive
B. Negative
C. Zero
D. Dependent on molecular weight

- Watch Video Solution

16. $\Delta_{f} H\left(\mathrm{H}_{2} \mathrm{O}\right)=-68 \mathrm{kcalmol}^{-1}$ and ΔH of neutralisation is $-13.7 \mathrm{kcalmol}^{-1}$, Θ then the heat of formation of OH is
A. $-68 \mathrm{kcalmol}^{-1}$
B. $-54.3 \mathrm{kcalmol}^{-1}$
C. $54.3 \mathrm{kcalmol}^{-1}$
D. $-71.7 \mathrm{kcalmol}^{-1}$

(D) Watch Video Solution

17. Heat of hydrogenation of ethene is x_{1} and that of benzene is x_{2}. Hence resonance energy of benezene is
A. $x_{1}-x_{2}$
B. $x_{1}+x_{2}$
C. $3 x_{1}-x_{2}$
D. $x_{1}-3 x_{2}$
18. $A(l) \Leftrightarrow A(g), \Delta_{\text {vap }} H=460.6$ calmol $^{-1}$, boiling point -50 K . What is the boiling point at 10 atm
A. 150 K
B. 75 K
C. 100 K
D. None is correct

(D) Watch Video Solution

19. $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$B E(H-H)=x_{1}, B E(O=O)=x_{2}$
$B E(O=H)=x_{3}$
Latent heat of vaporisation of water liquid into water vapour $=x_{4}$, then $\Delta_{f} H$ (heat of formation of liquid water) is
A. $x_{1}+\frac{x_{2}}{2}-x_{3}+x_{4}$
B. $2 x_{3}-x_{1}-\frac{x_{2}}{2}-x_{4}$
C. $x_{1}+\frac{x_{2}}{2}-2 x_{3}-x_{4}$
D. $x_{1}+\frac{x_{2}}{2}-2 x_{3}+x_{4}$

- View Text Solution

20. If a certain mass of gas is made to undergo separately adiabatic and isothermal expansions to the same pressure, starting form the same initial conditions of temperature and pressure, then, as compared to that of isothermal expansion, in the case of adiabatic expansion, the final
A. Volume and temperature will be higher.
B. Volume and temperature will be lower.
C. Temperature will be lower but the final volume will be higher.
D. Volume will be lower but the final temperature will be higher.
21. The dissolution of $\mathrm{NH}_{4} \mathrm{CI}$ in water is endothermic even though $\mathrm{NH}_{4} \mathrm{CI}$ dissolves in water spontaneously. Which one of the following best explains this behaviour?
A. The bonds in solid $\mathrm{NH}_{4} \mathrm{CI}$ are weak
B. The entropy-driving force causes dissolution.
C. Endothermic processes are energetically favourable
D. The dissolving process is unrelated to enegry.

- Watch Video Solution

22. The enthalpy of formation of hypothetical MgCI is $-125 \mathrm{kJmol}^{-1}$ and for MgCI_{2} is $-642 \mathrm{kJmol}^{-1}$. What is the enthalpy of the disproportionation of MgCI.
A. $392 \mathrm{kJmol}^{-1}$
B. $-392 \mathrm{kJmol}^{-1}$
C. $-767 \mathrm{kJmol}^{-1}$
D. $-517 \mathrm{kJmol}^{-1}$

- Watch Video Solution

23. The product of combustion of an aliphatic thiol (RSH) at 298 K are :
A. $\mathrm{CO}_{2}(g), \mathrm{H}_{2}(g)$, and $\mathrm{SO}_{2}(g)$
B. $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, and $\mathrm{SO}_{2}(g)$
C. $\mathrm{CO}_{2}(\mathrm{l}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, and $\mathrm{SO}_{2}(\mathrm{~g})$
D. $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, and $\mathrm{SO}_{2}(\mathrm{l})$
24. The enthalpy change for chemical reaction is denoted aas ΔH^{Θ} and $\Delta H^{\Theta}=H_{P}^{\Theta}-H_{R}^{\Theta}$. The relation between enthalpy and internal energy is expressed by equation:
$\Delta H=\Delta U+\Delta n R T$
where $\Delta U=$ change in internal energy $\Delta n=$ change in number of moles, $R=$ gas constant.

Which of the following equations corresponds to the definition of enthalpy of formation at 298 K ?
A. C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{I}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
B. C (diamond) $+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
C. 2 C (graphite) $+4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
D. C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})$

- Watch Video Solution

25. Which of the following equations corresponds to the enthalpy of combustion at 298K?
A. $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

(D) Watch Video Solution

26. For the combustion reaction at $298 K$
$2 \mathrm{Ag}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})$
Which of the following alternatives is correct?
A. $\Delta H=\Delta U$
B. $\Delta H>\Delta U$
C. $\Delta H<\Delta U$
D. ΔH and ΔU bear no relation with each other

- Watch Video Solution

27. For the equations
$\mathrm{C}($ diamond $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \Delta \mathrm{H}_{1}$
$\mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \Delta \mathrm{H}_{2}$ Predict whther
A. $\Delta H_{1}=\Delta H_{2}$
B. $\Delta H_{1}>\Delta H_{2}$
C. $\Delta H_{1}<\Delta H_{2}$
D. $\Delta H_{1}=\Delta H_{2}+\Delta_{\text {vap }} H(C)+\Delta_{\text {diss }} H\left(H_{2}\right)$
28. The expression $\Delta_{\text {sub1 }} H^{\Theta}=\Delta_{f u s} H^{\Theta}+\Delta_{v a p} H^{\Theta}$ is true at al
A. Temperatures
B. Pressure
C. Temperature and pressure
D. Temperatures and 1 atm pressure conditions

- Watch Video Solution

29. The word 'standard' in standard molar enthalpy change implies
A. Temperature 298 K
B. Pressure 1atm
C. Temperature 298 K and pressure 1 atm
D. All temperatures and all pressure
30. For which of the following equations, will ΔH be equal to ΔU ?
A. $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
C. $2 \mathrm{NO}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(g)$
D. $4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(g)$

- Watch Video Solution

31. The enthalpy change for chemical reaction is denoted aas ΔH^{Θ} and $\Delta H^{\Theta}=H_{P}^{\Theta}-H_{R}^{\Theta}$. The relation between enthalpy and internal enegry is expressed by equation:
$\Delta H=\Delta U+\Delta n R T$
where $\Delta U=$ change in internal enegry $\Delta n=$ change in number of moles,
$R=$ gas constant.

Enthalpy of the system is given as
A. $H+P V$
B. $U+P V$
C. $U-P V$
D. $H-P V$
32. Enthalpy chane of a reaction with be equal to
A. $\Delta U+P \Delta V$
B. $\Delta U+V \Delta P$
C. $\Delta U+\Delta(P V)$
D. $\Delta U+\left(\Delta n_{g}\right) \Delta(P V)$
33. The molar enthalpies of combustion of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}), \mathrm{C}$ (graphite) and $\mathrm{H}_{2}(\mathrm{~g})$ are $-1300,-394$, and $-286 \mathrm{kJmol}^{-1}$, respectively. The standard enthalpy of formation of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$ is
A. $-226 \mathrm{kJmol}^{-1}$
B. $-626 \mathrm{kJmol}^{-1}$
C. $226 \mathrm{kJmol}^{-1}$
D. $626 \mathrm{kJmol}^{-1}$

- Watch Video Solution

34. The relationship between enthalpy and internal energy change is
A. $\Delta U=\Delta H+P \Delta V$
B. $\Delta H=\Delta U+P \Delta V$
C. $\Delta H=\Delta U-P \Delta V$
D. $P \Delta V=\Delta U+\Delta H$

- Watch Video Solution

35. The equilibrium state is attained when the reversible reaction is carried out in space.
A. $q_{p}<q_{v}$
B. $q_{p}>q_{v}$
C. $q_{p}=q_{v}$
D. $q_{v}=0$
36. The relationship between the free energy change (ΔG) and entropy change (ΔS) at constant temperature (T) si
A. $\Delta G=\Delta H-T \Delta G$
B. $\Delta H=\Delta G+T \Delta S$
C. $T \Delta S=\Delta G+\Delta H$
D. $\Delta G=-\Delta H-T \Delta S$

- Watch Video Solution

37. For the gaseous reaction involving the complete combustion of isobutane
A. $\Delta H=\Delta U$
B. $\Delta H>\Delta U$
C. $\Delta H=\Delta U=0$
D. $\Delta H<\Delta U$

- Watch Video Solution

38. Entropy of system depends upon
A. Volume only
B. Temperature only
C. Pressure only
D. Pressure, volume, and temperature

- Watch Video Solution

39. For the gaseous reaction: $\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2}$
A. $\Delta H>\Delta U$
B. $\Delta H<\Delta U$
C. $\Delta H=\Delta U$
D. $\Delta H=0$

D Watch Video Solution

40. For the reversible process, the value of ΔS is given by the expression:
A. $\Delta H / \Delta T$
B. $T / q(r e v)$
C. $q(r e v) \times T$
D. $q(r e v) / T$
41. For a process $\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at 273 K
A. $G($ ice $)=G($ water $)=0$
B. $G($ ice $)=G($ water $) 1=0$
C. $G($ ice $)>G($ water $)$
D. $G($ ice $)<G$ (water)

- Watch Video Solution

42. i. At absolute zero the entropy of a perfect crystal is zero. This statement corresponds to which law of thermodynamics?
A. First law
B. Zeroth law
C. Third law
D. Second law

- Watch Video Solution

43. In which of the following process ΔH and ΔU are of same magnitude
A. Evaporation of $\mathrm{CCI}_{4}(\mathrm{I})$
B. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
C. $\mathrm{NH}_{4} \mathrm{CI}(\mathrm{s}) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(\mathrm{g})$
D. $2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

- Watch Video Solution

44. Enerrgy can transfter from syetm to surroundings as work if
A. There is thermal equilibrium between system and surrounding.
B. There is mechanical equilibrium between system and surrounding.
C. If pressute of system gt atmospheric pressure.
D. None of these.

- Watch Video Solution

45. The state of equilibrium refers to
A. $\Delta_{\text {total }} S>0$
B. $\Delta_{\text {total }} S<0$
C. $\Delta_{\text {total }} S=0$
D. Unpredicable
46. For hypothetical reversible reaction
$1 / 2 A_{2}(g)+3 / 2 B_{2}(g) \rightarrow A B_{3}(g), \Delta H=-210 \mathrm{kJif}$ standard entropies of A_{2}, B_{2}, and $A B_{3}$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. The above reaction will be equilibrium at
A. 400 K
B. 500 K
C. 250 K
D. 200 K

- Watch Video Solution

47. If values of $\Delta_{f} H^{\Theta}$ of $\operatorname{ICI}(g), C I(g)$, and $I(g)$ are, respectively, 17.57, 121.34, and $106.96 \mathrm{Jmol}^{-1}$. The value of $I-C I$ (bond energy) in Jmol^{-1} is
A. $35.15 \mathrm{Jmol}^{-1}$
B. $106.69 \mathrm{~mol}^{-1}$
C. $210.73 \mathrm{Jmol}^{-1}$
D. $420.0 \mathrm{Jmol}^{-1}$

- Watch Video Solution

48. If $S+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}, \Delta H=-298.2 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3} \Delta H=-98.7 \mathrm{~kJ}$ mole ${ }^{-1}$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta H=-130.2 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta H=-287.3 \mathrm{~kJ} \mathrm{~mole}^{-1}$
the enthlapy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be
A. $-814.4 k J$
B. -650.3 kJ
C. -320.5 kJ
D. $-233.5 k J$
49. Under which of the following condition is the relation $\Delta H=\Delta U+P \Delta V$ valid for a closed system at
A. Constant pressure
B. Constant temperature
C. Constant temperature and pressure
D. Constant temperature, pressure, and composition

- Watch Video Solution

50. Evaporation of water is
A. An exothermic change
B. An endothermic change
C. A process where no heat changes occur
D. A process accompained by chamical reaction.

- Watch Video Solution

51. Which of the following reaction is endothermic?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{FeS}$
C. $\mathrm{NaOH}+\mathrm{HCI} \rightarrow \mathrm{NaCI}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

52. Which of the following is an endothermic reaction?
A. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
C. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

53. Calculate heat of formation of $\mathrm{KOH}(\mathrm{s})$ using the following equations
$K(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+a q \rightarrow \mathrm{KOH}(a q)+1 / 2 \mathrm{H}_{2}(g), \Delta H=-48.0 \mathrm{kcal} . . .(i)$
$H_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-68.4 k c a l \ldots(i i)$
$K O H(s)+(a q) \rightarrow K O H(a q), \Delta H=-14.0 k c a l(i i i)$
A. $-68+48-14$
B. $-68-48+14$
C. $68-48+14$
D. $68+48+14$
54. Since the enthalpy of elements in their natural state is taken to be zero, the heat of formation $\left(\Delta_{f} H\right)$ of compounds
A. Is always negative
B. Is always positive
C. May be negative or positive
D. Is zero

- Watch Video Solution

55. A reaction $A+B \rightarrow C+D+q$ is found to have a positive entropy change, the reaction will be:
A. Possible at high temperature
B. Possible only at low temperature
C. Not possible at any temperature
D. Possible at any temperature

(D) Watch Video Solution

56. Molar heat capacity of water in equilibrium with the ice at constant pressure is :
A. Zero
B. Infinity (∞)
C. $40.45 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
D. $75.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
57. Standard molar enthalpy of formation of CO_{2} is equal to :
A. Zero
B. The standard molar enthalpy of combustion of gaseous carbon.
C. The sun of standard molar enthalpies of formation of CO and O_{2}.
D. The standard molar enthalpy of combustion of carbon (graphite)

- Watch Video Solution

58. In thermodynamics, a process is called reversible when
A. The surroundings and system change into each other.
B. There is no boundary between the system and surroundings.
C. The surroundings are always in equilibrium with the system.
D. The system changes into the surroundings spontaneously.

Watch Video Solution

59. Which one of the following statements is false?
A. Work is a state function.
B. Temperature is a state funciton.
C. Change in the state is completely defined when the initial and final states are specified.
D. Work appears at the boundary of the system.

- Watch Video Solution

60. Identify intensive property from the following
A. Enthalpy
B. Temperature
C. Volume
D. Refractive index

- Watch Video Solution

61. The product of combustion of an aliphatic thiol (RSH) at 298 K are :
A. $\mathrm{CO}_{2}(g), \mathrm{H}_{2}(g)$, and $\mathrm{SO}_{2}(g)$
B. $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, and $\mathrm{SO}_{2}(g)$
C. $\mathrm{CO}_{2}(\mathrm{l}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, and $\mathrm{SO}_{2}(\mathrm{~g})$
D. $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, and $\mathrm{SO}_{2}(\mathrm{l})$
62. For an endothermic reaction, where ΔH represents the enthalpy of reaction in kJmol^{-1}, the minimum value for the energy of activation will be
A. Less than ΔH
B. Zero
C. More than ΔH
D. Equal to ΔH

- Watch Video Solution

Exercises (Assertion-Reasoning)

1. Assertion (A): The endothermic reactions are favoured at lower temperature and the exothermic reactions are favoured at higher temperature.

Reason (R) : when a system in equilibrium is disturbed by changing the
temperature, it will tend to adjust itself so as to overcome the effect of the change.
A. both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. (A) is correct, but (R) is incorrect.
D. (A) is incorrect, but (R) is correct.

- Watch Video Solution

2. Assertion: $C_{P}-C_{V}=R$ for an ideal gas.

Reason: $\left(\frac{\partial E}{\partial V}\right)_{T}=0$ for an ideal gas.
A. If both (A) and (R) are correct, and (R) is the correct explanation for
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

3. Assertion (A): When hydrogen gas at high pressure and room temperature expands adiabatically into a region of low pressure, there is a decrease in temperature.

Reason (R) : Hydrogen gas at room temperature is above its inversion temperature.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

4. Assertion (A): The thermodynamic factor which determines the spontaneity of a process is the free energy. For a process to be spontaneous the free energy must be-ve.

Reason (R): The change in free energy is related to the change in a process must always be positive if its is spontaneous.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

D Watch Video Solution

5. Assertion (A): The Joules -Thomon coefficient for an ideal gas is zero.

Reason (R) : There are no intermlecular attactive forces in an ideal gas.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

6. Assertion (A): Enthalpy of graphite is lower than that of diamond.

Reason (R): Entropy of graphite is lower than that of diamond.
A. If both (A) and (R) are correct, and (R) is the correct explanation for
(A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.
7. Assertion: The enthalpy of formation of gaseous oxygen molecules at 298 K and under1 atm is zero.

Reason: The entropy of formation of gaseous oxygen molecules under the same condition is zero.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

(D) Watch Video Solution

8. Assertion (A): Heat of neutralisation for both HNO_{3} and HCI with NaOH is $53.7 \mathrm{kJpermol}^{-1}$.

Reason (R) : NaOH is a strong electrolyte/base.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

9. Assertion (A): Decrease in free energy causes spontaneous reaction Reason (R) : Spontaneous reactions are invariably exothermic.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

D Watch Video Solution

10. Assertion (A): May endothermic reactions that are not spontaneous at room temperature become spontaneous at high temperature.

Reason (R): Entropy of the system increases with increase in temperature.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

11. Assertion (A): The enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is greater than that of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

Reason (R): Enthalpy change is negative for the condensation reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.
12. Assertion (A): For a particular reaction, heat of combustion at constant pressure $\left(q_{P}\right)$ is always greater than that at constant volume $\left(q_{V}\right)$. Reason (R) : Combustion reactions are invariably accomplished by increase in number of moles.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.
13. Assertion (A): The enthalpy of both graphite and diamond is taken to be zero, being elementary substances

Reason (R) : The enthalpy of formation of an elementary substance in any state is taken as zero.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

- Watch Video Solution

14. Assertion (A): The heat of neutralisation of perchloric acid, HCIO_{4}, with NaOH is same as that of HCI with NaOH .

Reason (R) : Both HCI and HCIO_{4} are strong acids.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

15. Assertion (A): The Heat of ionisation of water is equal to the heat of neutralistion of a strong acid with a strong base.

Reason (R) : Water ionises to a very small extent while H^{\oplus} ions from from Θ an acid combine very rapidly with OH from a base to form $\mathrm{H}_{2} \mathrm{O}$.
A. If both (A) and (R) are correct, and (R) is the correct explanation for

(A).

B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

16. Assertion (A): The enthalpy of formation of $H C I$ is equal to the bond energy of HCI.

Reason (R) : The enthalpy of formation and the bond enegry both involve formation of one mole of HCI from the elements.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

- Watch Video Solution

17. Assertion (A): Pressure, volume, and temperature are all extensive properties.

Reason (R): Extensive properties depend upon the amount and nature of the substance.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

(D) Watch Video Solution

18. Assertion (A): When a gas at high pressure expands against vacuum, the work done is maximum.

Reason (R): Work done in expansion depends upon the pressure inside the gas and increase in volume.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

- Watch Video Solution

19. Assertion: When a real gas is allowed to expand adiabatically through a fine hole from a region of high presssure to a region of low pressure, the temperature of gas falls in a completely insulated container.

Reason: Work is done at the cost of internal energy of the gas.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.
20. Assertion (A): Internal energy change in a cyclic process is zero.

Reason (R) : Internal energy is a state funciton.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

21. Assertion (A): An exothermic process, non-spontaneous at high temperature, may become spontaneous at low temperature.

Reason (R) : With decrease in temperature, randomness (entropy) decreases.
A. If both (A) and (R) are correct, and (R) is the correct explanation for

(A).

B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

22. Assertion (A): There is no reaction known for which ΔG is positive, yet it is spontaneous.

Reason (R) : For photochemical reaction, ΔG is negative.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

- Watch Video Solution

23. Assertion (A): A reaction which is spontaneous and accompained by decreases of randomness must be exothermic.

Reason (R) : All exothermic reactions are accompained by decrease of randomness.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If (A) is incorrect, but (R) is correct.

- Watch Video Solution

Exercises (Interger)

1. $\Delta_{f} H^{\Theta}$ of Cyclohexene (l) and benzene at $25^{\circ} \mathrm{C}$ is -156 and $+46 \mathrm{kJmol}^{-1}$, respectively. $\Delta_{\text {hydrogenation }} \mathrm{H}^{\Theta}$ of cyclohexene (I)at $25^{\circ}{ }^{\circ} \mathrm{Cis}-119 \mathrm{kJmol}^{-1}$.

Reasonance energy of benzene is found to be $-38 x \mathrm{KJmol}^{-1}$. Find the value of
X.

- Watch Video Solution

2. Bond disociation enegry of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio of 1:1:0.5 and $\Delta H_{f} O f X Y$ is $-100 \mathrm{kJmol}^{-1}$. The bond dissociation enegry of X_{2} is $100 x$. Find the value of x.

- Watch Video Solution

3. The polymerisation of propene to linear polypropene is represented by the reaction

Where n has intergral value, the average enthalpies of bond dissociation for $(C=C)$ and $(C-C)$ at $298 \mathrm{~K}^{2}$ are +509 and $+331 \mathrm{kJmol}^{-1}$, respectively. the enthalpy of polymerisation is -360 kJ . Find the value of n.

- Watch Video Solution

4. $\Delta_{f} H^{\Theta}$ of hypothetical MgCI is $-125 \mathrm{kJmol}^{-1}$ and for MgCI_{2} is $-642 \mathrm{kJmol}^{-1}$. The enthalpy of disporportionation of MgCIis - 49x. Find the value of x.

- Watch Video Solution

5. The lattice energy of solid $K C I$ is $181 \mathrm{kcalmol}^{-1}$ and the enthalpy of solution of KCI in $\mathrm{H}_{2} \mathrm{O}$ is 1.0 kcalmol $^{-1}$. If the hydration enthalpies of K^{\oplus}
and $C I^{\Theta}$ ions are in the ratio of $2: 1$ then the enthalpy of hydration of K^{\oplus} is $-20 x$ Kcalmol $^{-1}$. Find the value of x.

(D) Watch Video Solution

6. A heated irron block at $127^{\circ} \mathrm{C}$ loses 300 J of heat to the surroundings which are at a temperature of $27^{\circ} \mathrm{C}$. This process is $0.05 \mathrm{JK}^{-1}$. Find the value of x.

- Watch Video Solution

7. Amongst the following, the total number of reactions/processes in which the entropy increases are:
a. $2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
b. A liquid cyrstallises into a solid.
c. Temperature of cystalline solid is raised from zero K to $100 K$.
d. Hard boiling of an egg.
e. Devitrfication of glass.
f. Straching of a rubber band.
g. Desalination of water.
h. $\mathrm{NH}_{3}(\mathrm{~g}, 10 \mathrm{~atm}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g}, 1 a \rightarrow \mathrm{~m})$

- Watch Video Solution

8. Amongst the following, the total number of physical properties which are extensive are:
a. Density b. Viscosity c. Surface tension
d. Dipole moment e. Volume
f. Refrative index g. ΔG
h. ΔH i. ΔU j. ΔS.

- Watch Video Solution

9. Amongst the following in above mention the total number of intensive physical properties.
10. Calculate the entropy change accompanying the following change of state
$\mathrm{H}_{2} \mathrm{O}\left(\mathrm{s},-10^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \rightarrow \mathrm{H}_{2} \mathrm{O}\left(\mathrm{l}, 10^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$
C_{P} for ice $=9$ cladeg $^{-1} \mathrm{~mol}^{-1}$
C_{P} for $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$
Latent heat of fustion of ice $=1440 \mathrm{calmol}^{-1} \mathrm{atO}^{\circ} \mathrm{C}$.

- Watch Video Solution

Exercises (Fill In The Blanks)

1. While dealing with thermochemical reactions, the temperature and pressure of a reactant must be. \qquad as those of products.

- Watch Video Solution

2. In an exothermic reaction, the total enthalpy of reactant is \qquad then that of products.
3. The heat content of the products is more than that of the reactants in an. \qquad reaction.

- Watch Video Solution

4. The standard molar enthalpy of a substance is the enthalpy of the substance at \qquad pressure and at specified temperature.

- Watch Video Solution

5. The conventional standard molar enthalpy of an element in its stable state of aggregation at 298 K is taken to be \qquad
6. The heat released when the requisite amounts of iron in the gaseous state combine to gie 1 mol of crystal lattice is known is

- Watch Video Solution

7. The products of combustion of hydrocarbon at 298 K are and

- Watch Video Solution

8. The products of combustion of a hydrocarbon at 398 K are and

- Watch Video Solution

9. The enthalpy of neutralisation is about. \qquad
10. The enthalpy of neutralisation of a weak acid is \qquad than that of a strong acid. The difference of the latter form the former is known as enthalpy of. of the weak acid.

- Watch Video Solution

11. The enthalpy of fusion of $K C I$ is \qquad than that of naphthalene.

- Watch Video Solution

12. The enthalpy change of the reaction:
$\mathrm{CuSO}_{4}(s)+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is known as the enthalpy of.

- Watch Video Solution

13. The enthalpy change when 1 mol of graphite is converted into diamond is known as the enthalpy of. \qquad

- Watch Video Solution

14. The stable state of aggregation of carbon at 298 K and 1atm pressure is. \qquad

- Watch Video Solution

15. The stable stae of aggregation of sulpur at 298 K and 1 atm pressure is. sulphur.

- Watch Video Solution

16. The part of the universe chosen for study of enegry changes is called whereas the rest of the universe is called
17. The energy stored within a substance is called its

- Watch Video Solution

18. A reaction in which heat is absorbed is called an.

- Watch Video Solution

19. The enthalpy of any element in the standard state is taken as

- Watch Video Solution

20. Heat of neutralisation of an acid is the amount of heat evolved when
\qquad
\qquad is neutralised by. \qquad .of the.
21. $\Delta_{\text {sub }} H=$ \qquad
\qquad
22. The heat of combustion of benzene is $-3264 \mathrm{kJmol}^{-1}$. The heat evolved in the combustion of $39 g$ of benzene will be. \qquad

- Watch Video Solution

23. A process which can take place by itself or by initiation is called a.

D Watch Video Solution

24. For a process to be spontaneous, ΔG must be.

- Watch Video Solution

25. An endothermic process is non-spontaneous at some temperature. It can be spontaneous at. temperature.

- Watch Video Solution

26. Coal and petrolem are called. \qquad fuels.

- Watch Video Solution

27. The heat content of the products is more than that of the reactants in an...............reaction.

- Watch Video Solution

28. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-286 \mathrm{~kJ}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \ldots \ldots \ldots \ldots \ldots . . \mathrm{kJ}(\pm$? $)$
29. $\mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-2878 \mathrm{~kJ}$
ΔH is the heat of..........of butane gas.

- Watch Video Solution

30. $\mathrm{HCI}+\mathrm{NaOH} \rightarrow \mathrm{naCI}+\mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-57.1 \mathrm{kJmol}^{-1}$
ΔH is the heat of of HCI and NaOH solution.

- Watch Video Solution

31. $C(s)$ (graphite) $\rightarrow C(g), \Delta H=716.7 \mathrm{~kJ}$
ΔH is the heat ofof graphite.

- Watch Video Solution

32. $C(s)$ (diamond) $\rightarrow C(g), \Delta H=-714.8 \mathrm{~kJ}$
ΔH is the heat of .of diamond.
33. $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=6.01 \mathrm{~kJ}$
ΔH is the heat of of ice.

- Watch Video Solution

34. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \Delta \mathrm{H}=-6.01 \mathrm{~kJ}$
ΔH is the heat of .of water.

- Watch Video Solution

35. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}=+40.7 \mathrm{~kJ}$
ΔH is the heat of of water.

- Watch Video Solution

36. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-40.7 \mathrm{~kJ}$
ΔH is the heat of .of water.

- Watch Video Solution

37. When heat is absorbed by the ststem, the sign of the value of q is taken to be \qquad

- Watch Video Solution

38. A system is................if it cannot exchange matter and energy with the surroundings.

- Watch Video Solution

39. The entropy of gases is always..................than that of liquids.
40. Heat of reaction at constant pressure is \qquad

- Watch Video Solution

41. A bomb calorimeter is used to measure the value of \qquad constant. \qquad

- Watch Video Solution

42. $\Delta^{\Theta} G$ (standard free energy change) is free energy change for the process at a temperature of................when reactants react completely to form products.

- Watch Video Solution

43. $H_{2}(g)+B r_{2}(g) \rightarrow 2 H B r(g), \Delta H^{\Theta}=-72.40 k J$
$\Delta G^{\Theta}=-106.49 k J, T-298 K$

The value ΔS is \qquad

- Watch Video Solution

44. If ΔS is \qquad the reaction does not proceed in the forward direction.

- Watch Video Solution

45. For the process, mormal egg \rightarrow hard boiled egg, the sign of ΔS is

- Watch Video Solution

46. In process, no heat is exchanged between the system and the
47. In the combustion of $C O, \Delta H$ is than ΔU.

- Watch Video Solution

48. Gibbs-Helmholtz equation is

- Watch Video Solution

49. At equilibrium, the entropy change is \qquad

- Watch Video Solution

50. In an isothermal process,....................remains constant.
51. A stable compound has heat of formation.

- Watch Video Solution

52. All combustion reactions are. \qquad .

- Watch Video Solution

Exercises (True/False)

1. The first law of thermodynamics is not adequate in predicting the direction of a process.(True/False)

- Watch Video Solution

2. In an exothermic reaction, the total enthalpy of products is greater than that of reactants.
3. In an endothermic reaction, the total enthalpy of products is greater than that of reactants.

- Watch Video Solution

4. The standard enthalpy of diamond is zero at 298 K and 1 atm pressure.

- Watch Video Solution

5. The standard enthalpy of $\mathrm{Br}_{2}(g)$ is taken to be zero at standard conditions of 298 K and 1atm.

- Watch Video Solution

6. The magnitude of enthalpy of neutralisation of a weak acid is smaller than that of a strong acid.

- Watch Video Solution

7. In the relation $\Delta H=\Delta U+\left(\Delta n_{g}\right) R T$ the units of Δn_{g} is mol.

- Watch Video Solution

8. The terms bond enthalpy and bond dissociation enthalpy stand for one and the same thing.

- Watch Video Solution

9. At 298 K , the enthalpy of combustion of CH_{4} corresponds to the reaction

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Watch Video Solution

10. For an exothermic reaction, ΔH is positive.
11. For an edothemic reaction, ΔH is positive.

- Watch Video Solution

12. Calorific value of fat

- Watch Video Solution

13. It is possible to calculate the value of ΔH for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$ from the bond enthalpy data alone.

- Watch Video Solution

14. The enthalpy of combustion of dimond and enthalpy of formation of carbon dioxide has the same value.
15. The SI unit of heat is 'calorie'.

- Watch Video Solution

16. Can we measure the absolute value of internal enegry?

- Watch Video Solution

17. w is positive when the work is done on the system.

- Watch Video Solution

18. Heat of combustion is the amount of heat evolved when the number of moles as represented by the balanced equation have been completely oxidised.
19. The heat of neutralisation of HCI with NaOH is same as that of HNO_{3} with KOH .

- Watch Video Solution

20. The heat of neutralisation becomes large if either the acid or the base is weak.

- Watch Video Solution

21. The total amount of heat evolved or absorbed in a reaction depends upon the number of steps in which the reaction takes place.

- Watch Video Solution

22. A spontaneous process is a process which is instaneous.
23. A process which is accompained by decrease of energy is not always spontaneous.

- Watch Video Solution

24. The dissolution of ammonium chloride in water is an endothermic process. What is the effect of temperature on its solubility?

- Watch Video Solution

25. For the equilibrium, $\Delta G=-R T I n K$.
26. For the combustion of benzene to gaseous carbon dioxide and liquid water, ΔH is more than ΔU.

- Watch Video Solution

27. Melting of ice involves increases in randomness and increase in enthalpy.

- Watch Video Solution

28. Show that in an isothermal expansion of an ideal gas, a $\Delta U=0$ and b .
$\Delta H=0$.

- Watch Video Solution

29. A pack of cards randomly shuffled has more entropy than a pack of arranged cards.
30. For adiabatic process, $\Delta H=0$

- Watch Video Solution

31. Neither q nor w is a state function but $q+w$ is a state function. Explain why?

- Watch Video Solution

32. In the reaction:
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$, entropy decreases.

- Watch Video Solution

Archives (Multiple Correct)

1. Identify intensive property from the following
A. Enthalpy
B. Temperature
C. Volume
D. Refractive index
2. The following is not an endothermic reactions:
A. Combustion of methane
B. Decomposition of water
C. Dehydrogenation of enthane of diamond
D. Conversion of graphite to diamond
3. Which one of the following statements is false?
A. Work is a state function.
B. Temperature is a state funciton.
C. Change in the state is completely defined when the initial and final states are specified.
D. Work appears at the boundary of the system.

- Watch Video Solution

Archives (Single Correct)

1. The difference between the heats of reaction at constant pressure and a constant volume for the reaction $2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
at $25^{\circ} \mathrm{C}$ in $k J$ is
A. -7.43
B. +3.72
C. -3.72
D. +7.43

- Watch Video Solution

2. For an endothermic reaction, where ΔH represents the enthalpy of reaction in kJmol^{-1}, the minimum value for the energy of activation will be
A. Less than ΔH
B. Zero
C. More than ΔH
D. Equal to ΔH
3. ΔH_{1}° for $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are -393.5, -110.5 and $-241.8 \mathrm{kJmol}^{-1}$ respectively. Standard enthalpy change for the reaction
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is
A. 524.1
B. +41.2
C. -262.5
D. -41.2

- Watch Video Solution

4. In thermodynamics, a process is called reversible when
A. The surroundings and system change into each other.
B. There is no boundary between the system and the surroundings.
C. The surroundings are always in equilibrium with the system.
D. The system changes into the surroundings spontaneously.

- Watch Video Solution

5. One mole of a non-ideal gas undergoes a change of state (2.0atm, 3.0L, 95K) \rightarrow (4.0atm, $5.0 \mathrm{~L}, 245 \mathrm{~K})$

With a change in internal energy $\Delta E=30 L$ atm. The change in enthalpy (ΔH) in the process in L-atm is
A. 40.0
B. 42.3
C. 44.0
D. Not defined because the pressure is not constant.
6. Which of the following reactions is defines $\Delta_{f} H^{\Theta}$?
A. C (diamond) $+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
B. $\frac{1}{2} H_{2}(g)+\frac{1}{2} F_{2}(g) \rightarrow H F(g)$
C. $\mathrm{N}_{2}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$

- Watch Video Solution

7. $\Delta_{\text {vap }} H=30 \mathrm{kJmol}^{-1}$ and $\Delta_{\text {vap }} S=75 \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. Find the temperature of vapour, at 1 atm.
A. 400 K
B. 350 K
C. 298 K
D. 250 K

- Watch Video Solution

8. Sponetaneous adsorption of a gas on solid surface is an exothermic process because
A. ΔH increases for system.
B. ΔS increases for gas.
C. ΔS decreases for gas.
D. ΔG increases for gas.

- Watch Video Solution

9. Two moles of an ideal gas expanded isothermally and reversibly from $1 L$ to 10 L at 300 K . What is the enthalpy change?
B. 11.47 kJ
C. -11.47 kJ
D. 0 kJ

- Watch Video Solution

10. When 1 mol of a monoatomic ideal gas at $T K$ undergoes adiabatic change under a constant external pressure of 1atm, changes volume from $1 L \rightarrow 2 L$. The final temperature (in K) would be
A. $\frac{T}{2^{2 / 3}}$
B. $T+\frac{2}{3 \times 0.0821}$
C. T
D. $T-\frac{2}{3 \times 0.0821}$

Answer: D

11. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$

Which of the following statements is correct if N_{2} added at equilibrium condition?
A. The equilibrium will shift in the forward firection because according to the second law of thermodynamics, the entropy must increase in the direction of the spontaneous reaction.
B. The condition of equilibrium is $G_{N_{2}}+3 G_{H_{2}}=2 G_{N H_{3}}$, where G is the Gibbs frre energy per mole of the gaseous species measured at partial pressure. The condition of equilibrium is unafected by the use of catlyst which increases the rate of both the forward and backward reactions to the same extent.
C. The catalyst will increase the rate of forward reaction by α and that of backward reaction by β.
D. The catalyst will not alter the rate of either of the reactions.

- Watch Video Solution

12. The direct conversion of A to B is difficult, hence it is carried out as
$A \rightarrow C \rightarrow D \rightarrow B$
Given, $\Delta S(A \rightarrow C)=50 e U, \Delta S(C \rightarrow D)=30 e U, \Delta S_{(B \rightarrow D)}=20 e U$, where $e U$ is entropy unit. Thus the change in entropy in $(A \rightarrow B)$ is:
A. +100 eu
B. $+60 e u$
C. -100 eu
D. -60 eu
13. A monoatomic ideal gas undergoes a process in which the ratio of P to V at any istant is constant and equal to unity. The molar heat capacity of the gas is
A. $\frac{4 R}{2}$
B. $\frac{3 R}{2}$
C. $\frac{5 R}{2}$
D. 0

- Watch Video Solution

14. For the process $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})(1 \mathrm{bar}, 373 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})(1 \mathrm{bar}, 373 \mathrm{~K})$ the correct set of thermodynamic parameters is
A. $\Delta G=0, \Delta S=+v e$
B. $\Delta G=0, \Delta S=-v e$
C. $\Delta G=+v e, \Delta S=0$
D. $\Delta G=-v e, \Delta S=+v e$

- Watch Video Solution

15. The value of $\log _{10} K$ for a reaction $A \Leftrightarrow B$ is (Given:
$\Delta_{f} H_{298 K}^{\Theta}=-54.07 \mathrm{kJmol}^{-1}$,
$\Delta_{r} S_{298 K}^{\Theta}=10 \mathrm{JK}^{=1} \mathrm{~mol}^{-1}$, and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. 5
B. 10
C. 95
D. 100
16. The bond energy (in $\mathrm{kcal} \mathrm{mol}^{-1}$) of a $C-c$ single bond is approximately
A. 1
B. 10
C. 100
D. 1000

- Watch Video Solution

17. The species which by definition has zero standard molar enthalpy of formation at 298 K is
A. $B r_{2}(g)$
B. $C I_{2}(g)$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{CH}_{4}(\mathrm{~g})$

Archives (Assertion-Reasoning)

1. Assertion (A): For every chemical reaction at equilibrium, standard Gibbs enegry of the reaction is zero.

Reason (R) : At constant temperature and pressure chemical reactions are spontaneous in the direction of the decreasing Gibbs energy.
A. Both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. Both (A) and (R) are correct, but(R) is not a correct explanation for
(A).
C. (A) is correct, but (R) is incorrect.
D. (A) is incorrect, but (R) is correct.
2. Assertion (A) : There is a natural asymmetry between converting work to heat and converting heat of work.

Reason (R) : No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

- Watch Video Solution

3. Assertion (A) : The heat absorbed during the isothermal expansion of na ideal gas against vaccum is zero.

Reason (R): The volume occupied by the molecules of an ideal gas is zero.
A. If both (A) and (R) are correct, and (R) is the correct explanation for (A).
B. If the both (A) and (R) are correct, but(R) is not a correct explanation for (A).
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

- Watch Video Solution

Archives (Interger)

1. In a constant volume calorimeter, 3.5 g of a gas with molecular weight 28 was burnt in excess oxygen at 298.0 K . The temperature of the calorimeter was found to increase from $298.0 K \rightarrow 298.45 K$ due to the combustion
process. Given that the heat capacity of the calorimeter is $2.5 \mathrm{kJK}^{-1}$, find the numerical value for the enthalpy of combustion of the gas in kJmol^{-1}

- Watch Video Solution

Archives (Fill In The Blanks)

1. $C_{P}-C_{V}$ for an ideal gas is \qquad

- Watch Video Solution

2. The total energy of 1 mol of an ideal monatomic gas at $27^{\circ} \mathrm{C}$ is.

- Watch Video Solution

3. A system is said to be...........if it can neither exchange matter nor energy with the surroundigs.
4. The heat content of the products is more than that of the reactants in an. reaction.

- Watch Video Solution

5. Enthalpy is an property.

- Watch Video Solution

Archives (True/False)

1. The first law of thermodynamics is not adequate in predicting the direction of a process.
2. The heat capacity of a diatomic gas is higher than that of a monatomic gas.

- Watch Video Solution

Archives (Subjective)

1. The enthalpies for the following reactions $\left(\Delta H^{\Theta}\right)$ at $25^{\circ} \mathrm{C}$ are given below.
a. $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{OH}(\mathrm{g})$
$\Delta H=10.06 \mathrm{kcal}$
b. $H_{2}(g) \rightarrow 2 H(g), \Delta H=104.18 \mathrm{kcal}$
c. $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g}), \Delta H=118.32 \mathrm{kcal}$

Calculate the $O-H$ bond energy in the hydroxyl radical.
2. The standared enthalpies of formation at 298 K for $\mathrm{CC1}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HC1}(\mathrm{~g})$ are -106.7,-241.8,-393.7, and $-92.5 \mathrm{kJmol}^{-1}$, respectively. Calculate $\Delta H^{\Theta} 298 \mathrm{~K}$ for the reaction $\mathrm{CC1}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{HCI}_{g}$

- Watch Video Solution

3. Given that:

i. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-94.05 \mathrm{kcal}$
ii. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-68.32 \mathrm{kcal}$
iii. $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-310.62 \mathrm{kcal}$

The heat of formation fo acetylene is

- Watch Video Solution

4. The following statements is true only under some specific conditions. Write the conditions for the following statement in not more than two
sentences. The heat energy q absorbed by a gas is ΔH.

- Watch Video Solution

5. The bond dissociation energies of gaseous $\mathrm{H}_{2}, \mathrm{C1}_{2}$, and $\mathrm{HC1}$ are 100,50 , and $100 \mathrm{kcalmol}^{-1}$, respectively. Calculate the enthalpy of formation of HC1(g).

- Watch Video Solution

6. The standard molar heats of formation of ethane, carbon dioxide, and liquid water are -21.1, -94.1, and -68.3kcal, respectively. Calculate the standard molar heat of combustion of ethane.

- Watch Video Solution

7. An intimate mixture of ferric oxide and aluminium is used as solid fuel in rockets. Calculate the fuel value per cm^{3} of the mixture.

Heats of formation and densities are as follows:
$H_{f\left(\mathrm{AI}_{2} \mathrm{O}_{3}\right)}^{\Theta}=-399 \mathrm{kcalmol}^{-1}, H_{f\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}^{\Theta}=-199 \mathrm{kcalmol}^{-1}$
Density of $\mathrm{Fe}_{2} \mathrm{O}_{3}=4.0 \mathrm{gcm}^{-3}$, Density of $\mathrm{Al}=2.0 \mathrm{gcm}^{-3}$

- Watch Video Solution

8. The standard ethelpy of combustion at $25^{\circ} \mathrm{C}$ of hydrogen, cyclohexene $\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)$, and cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ are -241 , -3800 , and $-3920 \mathrm{kJmol}^{-1}$ repectively. Calculate the heat of hydrogenation of cyclohexane.

- Watch Video Solution

 bond energy of $C-C$ and $C-H$ bonds.

$$
\begin{aligned}
& C_{(s)} \rightarrow C_{(g)}, \Delta H=172 \\
& H_{2} \rightarrow 2 H, \Delta H=104 \\
& H_{2}+\frac{1}{2} O_{2} \rightarrow H_{2} O_{(l)}, \Delta H=-68.0 \\
& C_{(s)}+O_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=-94.0
\end{aligned}
$$

Heat of combustion of $\mathrm{C}_{2} \mathrm{H}_{6}=-372.0$
Heat of combustion of $C_{3} H_{8}=-530.0$

D Watch Video Solution

10. Determine enthalpy change for,
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{CH}_{4(\mathrm{~g})}$
at $25^{\circ} \mathrm{C}$ using heat of combustion values under standard condition.
Compounds $\quad H_{2(g)} \quad \mathrm{CH}_{4(\mathrm{~g})} \quad \mathrm{C}_{2} H_{6(\mathrm{~g})} \quad C_{(\text {Graphite })}$
$\Delta H^{\circ} \mathrm{inkJ} / \mathrm{mol}-285.8-890.0 \quad-1560.0 \quad-393.5$
The standard heat of formation of $\mathrm{C}_{3} H_{8(\mathrm{~g})}$ is $-103.8 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

11. Compute the heat of formation of liquie methyl alcohol is kilojoule per mol using the following data. Heat of vaporisation of liquid methyl alcohol
$=38 \mathrm{~kJ} / \mathrm{mol}$. Heat of formation of gaseous atoms from the elements in their standard states : $H=218 \mathrm{~kJ} / \mathrm{mol}, C=715 \mathrm{~kJ} / \mathrm{mol}, O=249 \mathrm{~kJ} / \mathrm{mol}$.

Average bond energies:

C-H415kJ/mol, C-O356kJ/mol, O-H463kJ/mol.

- Watch Video Solution

12. From the following data, calculate the enthalpy change for the combustion of cyclopropane at 298 K . The enthalpy of formation of $\mathrm{CO}_{2(\mathrm{~g})}, \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ and Propene $_{(\mathrm{g})}$ are -393, - 285.8 and $20.42 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of isomerisation of cyclopropane to propene is $-33.0 \mathrm{kJmol}^{-1}$

- Watch Video Solution

13. The standard heat of formation values of $S F_{6}(g), S(g)$, and $F(g)$ are $-1100,275$, and $80 \mathrm{kJmol}^{-1}$, respectively. Then the average $S-F$ bond enegry in $S F_{6}$

- Watch Video Solution

14. Show that the reaction
$\mathrm{CO}(\mathrm{g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
at 300 K is spontaneous and exothermic, when the standard entropy change is $-0.094 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}$. The standard Gibbs free energies of formation for CO_{2} and $C O$ are -394.4 and $-137.2 \mathrm{kJmol}^{-1}$, respectively.

- Watch Video Solution

15. A sample of argon gas at 1 atm pressure and $27^{\circ} \mathrm{C}$ expands reversibly and adiabatically from $1.25 \mathrm{dm}^{3}$ to $2.50 \mathrm{dm}^{3}$. Calculate the enthalpy change in this process. $C_{v m}$ for orgon is $12.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

16. Diborane is a potential rocket fuel that undergoes combustion according to the reaction,

$$
\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

From the following data, calculate the enthalpy change for the combustion of diborane:

- Watch Video Solution

17. The standard potential of the following cell is 0.23 V at $15^{\circ} \mathrm{C}$ and 0.21 V at $35^{\circ} \mathrm{C}$:

Pt $\mid H_{2(g)|\mathrm{HCl}(a q)| \mathrm{AgCl}(s) \mid \mathrm{Ag}(s)}$
a. Write the cell reaction.
b. Calculate ΔH^{c-} and ΔS^{c-} for the cell reaction by assuming that these quantities remain unchanged in the range $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
c. Calculate the solubility of AgCl in water at $25^{\circ} \mathrm{C}$.

Given : The standard reduction potential of $A g{ }^{\oplus}(a q) \mid A g(s)$ is 0.80 V at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

18. When 1pentyne (A) is treated with 4 N alcoholic KOH at $175^{\circ} \mathrm{C}$, it is slowly converted into an equilibrium mixture of 1.3% of 1pentyne
(A), 95.2 \% 2-pentyne (B) and 3.5% of 1, 2-pentandiene (C). The equilibrium was maintained at $175^{\circ} \mathrm{C}$. calculate ΔG^{Θ} for the following equilibria: $B \Leftrightarrow A, \Delta G^{\Theta}=1$?
$B \Leftrightarrow C, \Delta G^{\Theta}=2$?
From the calculated value of ΔG^{Θ} and ΔG^{Θ}, indicate the order of stability of A, B and C.

- Watch Video Solution

19. Two moles of a perfect gas undergo the following processes:
a. A reversible isobaric expansion from (1.0atm, 20.0L) to (1.0atm, 40.0L).
b. A reversible isochroic change of state from (1.0atm, 40.0L) to
(0.5atm, 40.0L)
c. A reversible isothermal expansion from ($0.5 \mathrm{~atm}, 40.0 \mathrm{~L}) \rightarrow(1.0 \mathrm{~atm}, 20.0 \mathrm{~L})$.
i. Sketch with lables each of the processes on the same $P-V$ diagram.
ii. Calculate the total work (w) and teh total heat change (q) involved in the above process.
iii. What will be the values of ΔG and ΔH for the overall process?
20. C_{v} values of He is always $\frac{3 R}{2}$ but C_{v} values of H_{2} is $\frac{3 R}{2}$
at low temperature and $\frac{5 R}{2}$ at higher temperature explain.

- Watch Video Solution

21. In the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
When 5 mol of each is taken and the temperature is kept at 298 K , the total pressure was found to be 20 bar.

Given : $\Delta_{f} G_{n_{2} \mathrm{O}_{4}}^{\ominus}=100 \mathrm{~kJ}, \Delta_{f} G_{\mathrm{NO}_{2}}^{\ominus}=50 \mathrm{KJ}$
a. Find ΔG of the reaction at $298 K$.
b. Find the direction of the reaction.

- Watch Video Solution

22. 100 mL of a liquid is contained in an insulated container at a pressure of 1bar. The pressure is steeply increased to 100bar. The volume of the liquid is decreased by $1 m L$ at this constant pressure. Find ΔH and ΔU.

- Watch Video Solution

23. For the reaction
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta \mathrm{H}=-560 \mathrm{~kJ}$,
2 mol of CO and 1 mol of O_{2} are taken in a container of volume 1 L . They completely form 2 mol of CO_{2}. The gaseous deviate appreciably from ideal behaviour. If the pressure in the vessel changes from 70 to 40 atm , find the magnetic (absolute) value of $\Delta U a t 500 K .(1 L-a t m=0.1 \mathrm{~kJ})$

- Watch Video Solution

