©゙ doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

COORDINATION COMPOUNDS

Illustration

1. Why NH_{3} form coordinate complex, while the isoelectronic species
CH_{4} does not.

D Watch Video Solution

2. Calculate the oxidation number of Ni ion $\left.\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)_{6}\right]^{2+}\right]$.
3. Calculate the oxidation number of Ni in $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$.

- Watch Video Solution

4. What is the coordination number and oxidation state of Al in the complex $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right] \oplus$?

D Watch Video Solution

5. In the complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CI}\right] B r$, identify
(a) Ligands and their charges
(b) Charge of the central ion in the complex
(c) What-would happen if $\mathrm{Ag} \mathrm{NO}_{3}$ is added to the compound at $0^{\circ} \mathrm{C}$
6. Write the formula for the following coordination compounds
(a) Tetraamineaquachlorido cobat (III) chloride
(b) Postassium tetrahydroxozincate (II)
(c) Potassium trioxalatoaluminate (III)
(d) Dichloridobis (ethane 1, 2 -diamine)cabalt (III) ion
(e) Tetracarbonylnicked (0)
(II) Write IUPA names of the following coordination compounds
(a) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3-}(2) \mathrm{CI}\left(\mathrm{NO}_{2}\right)\right]\right.$ (b) $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(c) $\left[\mathrm{CoCi}_{2}(e n)_{2}\right] \mathrm{CI}(\mathrm{d})\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\left(\mathrm{CO}_{3}\right) \mathrm{Cl}\right.$
(e) $\left.\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right)\right]$.

D Watch Video Solution

7. Write the formula for the following coordination compounds
(a) Tetrahydroxozincate (II) chloride
(b) Pentaaquachloridochromium (II) chloride
(c) Tetrabromidocuprate (II) ion
(d) Pentacarbony1 iron (0)
(e) Potassium tetracyanocuprate(II)
(f) Tetraamminediaquanickel (II) sulphate
(g) Tetraaquadichloridoiron (III) ion
(h) Potassium trioxalatochromate
(i) Pentachloridoazidoosmiate (VI) ion
(j)Triaquachloridoplatinum (II) bromide .

D Watch Video Solution

8. Name of the following complex ions
(a) $\left[\mathrm{PdBr}_{4}\right]^{2-}(\mathrm{b})\left[\mathrm{CuCI}_{2}\right]^{\oplus}$
(c) $\left[A u(C N)_{4}\right]^{\oplus}(d)\left[A I F_{6}\right]^{3-}$
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3-(f)}\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(g) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$.
9. From the experimental facts given below determine the correct structure of solid $\mathrm{CrCI}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ Solution containing 0.2665 g of $\mathrm{CrCI}_{3} 6 \mathrm{H}_{2} \mathrm{O}$ was passed throuhg cation exchange resin in acid form The acid liberated was found to react completely with 30 mL of 0.10 M NaOH (Molecular mass of $\mathrm{CrCI}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}=266.5$).

D Watch Video Solution

10. Which of the following complexes (in solution) will have greater value of molar conductivity Explain giving reason
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(b) Pt $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{2}\right]$ and $\left.\left[\mathrm{Pt}(\mathrm{NH})_{3}\right)_{6}\right] \mathrm{CI}_{4}$.

- Watch Video Solution

11. Arrange the following compounds in the order of decreasing molar conductivity in aqueous solution.
i. a. $K\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
b. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
c. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{2}$
d. $\left[\mathrm{Mg}\left(\mathrm{Cr}\left(\mathrm{NH}_{3}\left(\mathrm{NO}_{2}\right)_{5}\right]\right.\right.$
ii. a. $\mathrm{Li}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right] \quad$ b. $\mathrm{Na}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
c. $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right] \quad$ d. $\quad \mathrm{Cs}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
iii. a. $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{4}$ b. $\quad \mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}$
c. $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{3}$ d. $\mathrm{K}_{2} \mathrm{PtCl}_{6}$

- Watch Video Solution

12. Arrange the following compounds in the order of decreasing molar conductivity in aqueous solution.
i. a. $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
b. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
c. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{2}$
d. $\left[\mathrm{Mg}\left(\mathrm{Cr}\left(\mathrm{NH}_{3}\left(\mathrm{NO}_{2}\right)_{5}\right]\right.\right.$
ii. a. $\mathrm{Li}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right] \quad$ b. $\mathrm{Na}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
c. $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$ d. $\mathrm{Cs}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
iii. a. $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{4}$ b. $\quad \mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}$
c. $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{3} \quad$ d. $\mathrm{K}_{2} \mathrm{PtCl}_{6}$

D Watch Video Solution

13. Calculate the EAN of CO in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ (Atomic number of $C o=27$).
14. On the basis of $E A N$ rule predict the number of unpaired electrons and magnetic (μ) moment for the following compounds
(i) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(ii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$

D Watch Video Solution

15. Calculate the EAN of the underlined atoms in the folloiwng complexes.
$[\text { Ca(edta) }]^{2-}$
(b) $\left[\mathrm{Ni}(p y)(e n)\left(\mathrm{NH}_{3}\right)_{3}\right]^{2+}$.
16. Dedue the value of x in the following compounds.
(a) $\left[\mathrm{Mo}(\mathrm{CO})_{x}\right]$
(b) $\left[\mathrm{Co}_{2}(\mathrm{Co})_{X}\right]^{2-}$
(c) $\mathrm{Hx}\left(\mathrm{Cr}(\mathrm{CO})_{5}\right.$ (d) $\mathrm{HxCo}(\mathrm{CO})_{4}$
(e) $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (f) $\left[\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]$.

- Watch Video Solution

17. Describe a simple test to distinguish between the following pairs of compounds
(i) (A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ and (B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$
(ii) (A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{CI}_{3}$ and (B) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CI}\right] \mathrm{CI}_{2} \mathrm{H}_{2} \mathrm{O}$
(iii) (A) cis $\left[\mathrm{PtCI}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ and (B) trans $\left[\mathrm{PtCI}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(iv) (A) and (B) Two enantiomers of $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(V) (A) (A) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
(vi) (A) $\left[P t\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{2}\right]$ and (B) $\left[P t\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{CI}_{2}$
(vii) (A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}\right] \mathrm{SO}_{4}$ and (B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{CI}$.

(D) Watch Video Solution

18. Write hydrate isomers of the following and also give increasing order of the conductance of the isomers
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Br}_{3}$
(b) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] C I_{2}$.

(D) Watch Video Solution

19. Why is geometrical isomerism not possible in tetrahedral complexes having two different types of unidentate ligands coordinated with central metal ion?.
20. Draw structures of geometrical isomers of $\left[\mathrm{Fe}(\mathrm{CN})_{4}\left(\mathrm{Nh}_{3}\right)_{2}\right]^{\Theta}$.

Watch Video Solution

21. Draw structures of geometrical isomers possible for $\left[\mathrm{Co}(e n) \mathrm{CI}_{2} \mathrm{Br}\right]^{\Theta}$.

D Watch Video Solution

22. In the reaction
$\left[\mathrm{CoCI}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{\oplus} \rightarrow\left[\mathrm{CoCI}_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]+\mathrm{NH}_{3}$, only one
isomer of the complex product is obtained Is the initial complex cis or trans?.
23. When $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is treated with conc HCI two compounds having the formula $\mathrm{Ni}\left(\mathrm{NH}_{3}\right) \mathrm{CI}_{2}$ (designated as I and II are formed) I can be converted into II ny boiling in dil HCI A solution of I reacts with oxalic acid to form $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ II does not react with oxalic acid Deduce the configuration Of I and II and the geometry of Ni (II) complexes .

- Watch Video Solution

24. How can be the following pair of isomers be distinguished from one another

I $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{6}\right]$ and
(II) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{No}_{2}\right)_{6}\right]$

। $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\left[\mathrm{Cr}\left(\mathrm{No}_{2}\right)_{6}\right] \quad\right.$ and
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$.
25. Write all geometric isomers for an octahedral complex $\left[\mathrm{MCI}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]$.

- Watch Video Solution

26. Out of the following two coordination entities Which is chiral (optically active)
(a) cis - $\left[\mathrm{CrCI}_{2}(\mathrm{OX})_{2}\right]^{3-}$
trans - $\left.\left[\mathrm{CrCI}_{2}(\mathrm{OX})_{2}\right)\right]^{3-}$.

D Watch Video Solution

27. Write the structure and name of the following and their ionisation isomers
$\left[P t\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)\right] C I$
(ii) $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$.

- Watch Video Solution

28. A coordination compound $\mathrm{CrCI}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ precipitates AgCI when treated with AgNO_{3} The molar conductance of its solution corresponds to a total of two ions Write the structural formula of the compound and name it .

- Watch Video Solution

29. Writh the structure and name og the following and their coordination isomers .
30. Draw the structures and write the names of all possible isomers of
(A) $\left[\operatorname{Pt}(\mathrm{SCN})\left(\mathrm{NH}_{3}\right) \mathrm{SCN}\right.$
(ii)(B) $\left[\mathrm{Co}(\mathrm{SCN})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{CI}_{2}$
(iii) (C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2}+$.

D Watch Video Solution

31. The complex ion $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}\right]^{2+}(\mathrm{X})$ undergoes a substitution reaction when reacted with $\left(\mathrm{NaNO}_{2}+\mathrm{HCI}\right)$ An unstable scarlet red complex A is formed when dilute acid is used and a stable yellow complex B is formed when concentrated acid is used Both A and B are isomeric pentammine complex ions Give the structures of the ions und name the type of the isomerism involved.
32. What type of isomers are the following
(a) $\left[\mathrm{Mn}(\mathrm{CO})_{5}(\mathrm{SCN})\right]$ and $\left[\mathrm{Mn}(\mathrm{CO})_{5}(\mathrm{NCS})\right]$
(b) $[\mathrm{Co}(e n)-(3)]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}(e n)_{3}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{3}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{NO}_{3}$
(d) $\left[\mathrm{Co}(p y)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{CI}_{2}\right] \mathrm{CI}$ and $\left[\mathrm{Co}(p y)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{CI}_{3}\right] \mathrm{H}_{2} \mathrm{O}$
(II)
(a) $\quad\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\operatorname{Cr}(\mathrm{CN})_{6}\right]$
and
$\left.\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{CN})_{2}\right)\right]\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]$
(b) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{CI}_{2}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{Br}_{2}$.

- Watch Video Solution

33. Draw all possible isomers of
(i) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right]^{2+}$
(ii) $\left[P t(g l y)_{2}\right]^{0}$
(ii) $\left.\left[P t\left\{P\left(C_{2} H_{5}\right)_{3}\right\} C I_{2}\right)\right]_{2}$
(iv) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)(\mathrm{OH})_{2} \mathrm{CI}_{3}\right]^{2--}$.

(Watch Video Solution

34. Neither optical nor geometrical isomers can be distinguished by mass spectroscopy. Why
(ii) Select the pairs of
(a) Geometrical isomers,(b) Optical isomers
(c) Identical structures

B.

C.

D. $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}$

E.

(III) Which one of followig will show optical activity

Identify the type of insomerisum in (if no isomerism then indicate none

D Watch Video Solution

35. The spin only magnetic moment value of $\left[\mathrm{MnBr}_{4}\right]^{2-}$ ion is $5.9 B M$ On the basis of VBT Predict the hybridisation and geometry of $\left[\mathrm{MnBr}_{4}\right]^{2-}$ ion .

D Watch Video Solution

36. Predict the number of unpaired electrons in square planar $\left[\mathrm{PtCI}_{4}\right]^{2-}$ ion .

D Watch Video Solution

37. Magnetic moment value of $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$ ion in $2.8 B M$ Predict the type of hybridisation and geometry of the ion.
38. Megnetic moment value of $\left.\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}$ ion in 3.89B. M Find the out the oxidation state of iron and type of hybridisation.

D Watch Video Solution

39. In what repects do inner orbital octahedral complexes differ from outer orbital octahedral complexes

D Watch Video Solution

40. In $\left[\mathrm{ZnBr}_{4}\right]^{2-}$ electron pairs in $s p^{3}$ hybrid orbitals of the zinc atom form bonds to the bromineatoms Determine the number of unpaired electrons in the complex.

D Watch Video Solution

41. Prove that the lowering of the stabilised orbitals is $0.4 \Delta_{0}$ while raising of the destabilised orbitalsw is $0.6 \Delta_{0}$.

D Watch Video Solution

42. For the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ calculate the total pairing energey in high spin and low spin state Given the mean pairing energey $=23500 \mathrm{~cm}^{-1}$.

D Watch Video Solution

43. Which complex of the following pairs has the larger value of Δ_{0}
(i) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{CoF}_{6}\right]^{3-}$
(iii) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$.
44. For Mn^{3+} ion the electron pairing energey P is $28000 \mathrm{~cm}^{-1} \Delta_{0}$ values for the complexes $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$ are $21000 \mathrm{~cm}^{-1}$ and $38500 \mathrm{~cm}^{\mathrm{cm}-1}$ and $38500 \mathrm{~cm}^{-1}$ respectively Do these complexes have high spin or low spin complexes Also write the configuration corresponding to these states .

D Watch Video Solution

45. For $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion the mean pairing energey P is found to be $23500 \mathrm{~cm}^{-1}$ The magnitude of Δ_{0} is for the complex in configurations corresponding to high spin and low spin states Which is more stable?
46. Give reason for the fact that crystal field theory is not applied to complexes of many group metals .

D Watch Video Solution

47. Using CFT depict the electronic configuration of the rhodium ion $\left(R h^{2+}\right)$ in an octahedral field for which the crystal field splitting Δ_{0} is greater than the pairing eneryg P
(b) Calculate the crystal field stabilisation energey for this configuration (in terms of Delta andP)' .

- Watch Video Solution

48. What factor determines whether the crystal field in an octahedral complex is to be regarded as strong or weak? How many d-electrons must be present in orbitals of the central atom atom for there to be
an abrupt change in crystal field stabilisation energy strong and weak fields gt

D Watch Video Solution

49. Explain the following giving reasons
(a) $\left[\mathrm{NiCI}_{4}\right]^{2-}$ is tetrahedral and paramagnetic whereas $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is square plannar and dimagnetic
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is more paramagnetic than $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ion
(c) $\mathrm{Ni}(\mathrm{CO})_{4}$ is tetrahedral while $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ ion is square planar
(d) $\left[\mathrm{Co}\left(F_{6}\right)\right]^{3-}$ is a high spin complex whereas $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ ion is a low spin complex .

- Watch Video Solution

Solved Examples

1. Addition of AgNO_{3} solution to aqueous solution of each of the $\operatorname{Pt}(\mathrm{IV})$ amines viz (i) $\mathrm{PtCI}_{4} \cdot 6 \mathrm{NH}_{3}$ (ii) $\mathrm{PtCI}_{4} \cdot 5 \mathrm{NH}_{3}$ (iii) PtCI_{4}

PtCI $_{4} \cdot 3 \mathrm{NH}_{3}$ and (v) $\mathrm{PtCI}_{4} \cdot 2 \mathrm{NH}_{3}$ was found by Werner to give 4, 3, 2, 1 and zero moles of AgCI per mole of the amines repectively How did Werner explain these observations? .

- Watch Video Solution

2. Three compounds A, B and C have empirical formula $\mathrm{CrCI}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

When 1 go of A was kept in a container with dehydrating agent it lost water content and attained constant weight of 0.865 g When 1 g
B was kept in that vessel it attained a constant weight of $0.932 g$
Compund C showed no loss in water content.
(a) Find the composition of A, B and C

If an excess of aqueous AgNO_{3} solution is added to 1 g solution of A, B and C what amount of $A g C I$ will be precipitated in each case.
3. Calculate the EAN of the central metal in the following complex
(a) $\left[A u C I_{2}\right]^{\Theta}$,(b) $\left[A I\left(C_{2} O_{4}\right)_{3}\right]^{3-}$,(c) $\left.\left[(C d I)_{4}\right)\right]^{\Theta}$.

D Watch Video Solution

4. Use the $E A N$ rule to predict the molecular formula for the simple carbonyls of (a) $\operatorname{Cr}(Z=24)$
(b) $\mathrm{Fe}(\mathrm{Z}=26)$ and (c) $\mathrm{Ni}(\mathrm{Z}=28)$ (Assume that the oxidation state of the metals in the these carbonyls is zero).

D Watch Video Solution

5. A compound with the empirical formula $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4} \mathrm{Br}$ exists in two forms viz red and violet forms Solution of red form gives a precipitate of AgBr with AgNO_{3} solution The violet form gives no
precipitate with AgNO_{3} but gives white precipitate with the aquous solution of BaCI_{2} From the these observations give the structure of each form .

(D) Watch Video Solution

6. Two complexes with empirical formula $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Br}_{2} \mathrm{CI}$ exists in two isomeric forms (A) and (B) Form A gives two moles of

AgBr On treatment with AgNO_{3} solution whereas form B gives only one mole of AgBr Give the structural formula of both these isomers What are these isomer called .

D Watch Video Solution

7. Two complexes with empirical formula $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Br}_{2} \mathrm{CI}$ exists in two isomeric forms (A) and (B). Form A gives two moles of AgBr on treatment with AgNO_{3} solution whereas form B gives only
one mole of AgBr . Give the structural formula of both these isomers. What are these isomer called?

D Watch Video Solution

8. How many isomers are possibel for the complex ion $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)(\mathrm{OH})_{2} \mathrm{CI}_{3}\right]^{2-}$?

D Watch Video Solution

9. For the square planar complex $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NH}_{2} \mathrm{OH}\right) \mathrm{py}\left(\mathrm{No}_{2}\right)\right]^{\oplus}$ how many geometrical isomers are possible .

Watch Video Solution

10. Give the total number of geometrical and optical isomers give by
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right]^{\oplus}$
(ii) $\left[\mathrm{Pt}(e n) \mathrm{Br}_{2} \mathrm{CI}_{2}\right]$
(iii) $\left[\mathrm{CrCI}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$.

D Watch Video Solution

11. How many geometrical isomers are there fore
(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{4}\right]^{\Theta}$
(b) $\left[\mathrm{AuCI}_{2} \mathrm{Br}_{2}\right]^{\Theta}$ (square planar) (c) $\left[\mathrm{CuCI}_{2} \mathrm{Br}_{2}\right]^{2-}$ (tetrahedral) .

(D) Watch Video Solution

12. Acomplex of the type $\left[M(A A)_{2} X_{2}\right]$ is known to the optically active What does this indicate about the structure of the complex Give one example of such complex .
13. The formula $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CO}_{3} \mathrm{Br}$ represents three isomers
(i) Draw their structures
(ii) How would you distinguish these isomers ?

D Watch Video Solution

14. On the basic VBT answer the following questions for the 4coordinated complex compounds
(a) $\left[\mathrm{CoBr}_{4}\right]^{2-}$, (b)
(b) $\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$, (c)
(c) $\left[\mathrm{MnCI}_{4}\right]^{2-}$
(i) What is the oxidation state of the central metal atom//ion?
(ii) What type of hybridisation is involved?
(iii) What is the geometry and magnetic behaviour of the complex ion/compound
(iv) Calculate the value of $\mu_{\text {sлn }}$ only.
15. Explain why a knowledge of magnetic suceptilbility of a complex is often necessary for a correct assignment of the electronic conifiguration according to valence bond theory
(b) Draw valence bond representations of the electronic structures
of (i) $\left[\mathrm{CoF}_{6}\right]^{3-}$ (paramagnetic) and (ii) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ (diamagnetic) .

(D) Watch Video Solution

16. Magetic moment of $\left[\mathrm{CoI}_{4}\right]^{2-}$ is 3.8 BM Using valence bond approach predict the structure of $\left[\mathrm{CoI}_{4}\right]^{2-}$.

D Watch Video Solution

17. A complex of a certain metal ion has a magnetic moment of 4.90BM Another complex of the same metal ion in the same
oxidation state has zero magnetic moment The central metal ion could be which of the following (a) Cr^{3+},(b) Mn^{3+} (c) Fe^{2+} (d) Co^{2+}
(ii) Refer to the question above if a metal ion has complex ion and with magnetic moments 4.90 and $2.8 B M$ which one of these is the central metal ion
(a) Cr^{3+}
(b) $M n^{3}$
,
(c) Fe^{2+}
(d) Co^{2+}.

- Watch Video Solution

18. Find out the number of unpaired electrons in strong and weak octahedral for Cr^{3+} and Fe^{2+} ions.

D Watch Video Solution

19. Distinguish between the possibillities in complex ions of $\Delta=0$ and CFSE $=0$ Give an example of each .
20. Determine the crystal field stabilisation energy of a d^{6} complex having $\Delta_{0}=25000 \mathrm{~cm}^{-1}$ and $P=1500 \mathrm{~cm}^{-1}$.

D Watch Video Solution

21. Give reason for the fact that amongst $\mathrm{Ni}(\mathrm{CO})_{4}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\mathrm{NiCI}_{4}^{2-}, \mathrm{Ni}(\mathrm{CO})_{4}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic whereas $\left[\mathrm{NiCI}_{4}\right]^{2}$ is paramagnetic are diamagnetic whereas $\left[\mathrm{NiCI}_{4}\right]^{2}$ is paramagnetic .

(D) Watch Video Solution

22. One the basic of CFT predict the geometry of the compund $K_{3}\left[M n(C N)_{6}\right]$ Also calculate the value of $\mu_{\text {sTn }}$ only of the compund .

- Watch Video Solution

23. The enthalpy of hydration of the Fe^{2+} ion is $11.4 \mathrm{kcal} / \mathrm{mol}$ higher than would be expected if there were no crystal field stabillisation energey Assuming the equo complex to be high spin estimate the magnitude of Δ_{0} for $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion.

D Watch Video Solution

24. If a complexing metal of the first transition series has a di configuration for what values of could magntic properties alone distinguish between strong field and weak field ligand in octanderal coordination .

- Watch Video Solution

25. In terms of CFT explain why a d^{9} octahedral complex with six identical ligands is not expected tom have all size $m-L$ distane identical.
26. Derive the geometry of the complex compound corresponding to the brown ring in nitrate test Predict the magnetic moment of the complex .

- Watch Video Solution

27. Which of the electronic configuration according to crystal field theory of the compound is correct $\left[M n F_{6}\right]^{4-}$?
A. $a .\left(t_{2 g}^{5} e_{g}^{0}\right)$
B. b. $\left(t_{2 g}^{3} e_{g}^{2}\right)$
C. c. $\left(e_{g}^{1} t_{2 g}^{4}\right)$
D. d. $\left(t_{2 g}^{1} e_{g}^{4}\right)$
28. Which of the electronic configuration according to crystal field theory of the compound $R h^{+2}$ with $C N=6$ is correct when $\Delta>P$? .
A. $a .\left(t_{2 g}^{6} e_{g}^{1}\right)$
B. b. $\left(t_{2 g}^{5} e_{g}^{2}\right)$
C. c. $\left(t_{2 g}^{5} e_{g}^{1}\right)$
D. d. $\left(t_{2 g}^{3} e_{g}^{3}\right)$

Answer: b

D Watch Video Solution

29. According to crystal field therory the electronic configuration of
the $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion when $(\Delta<P)$
($\Delta=$ CFSE, $P=$ Pairing energy) .
A. $3\left(t_{2 g}^{3} e_{g}^{1}\right)$
B. $4\left(t_{2 g}^{3} e_{g}^{1}\right)$
C. $3\left(e_{g}^{1} t_{2 g}^{1}\right)$
D. $3\left(e_{g}^{3} t_{2 g}^{1}\right)$

Answer: a

Watch Video Solution

30. According to crystal field theory the electronic configuration of the $\left[\mathrm{FeCl}_{4}\right]^{-}$ion is .
A. $\left(t_{2 g}^{2} e_{g}^{2}\right)$
B. $\left(e_{g}^{2} t_{2 g}^{3}\right)$
C. $\left(e_{g}^{1} t_{2 g}^{3}\right)$
D. $\left(e_{g}^{3} t_{2 g}^{1}\right)$

Answer: B

(D) Watch Video Solution

31. According to crystal field theory the electronic configuration of the compound $\left[\mathrm{Mn}(\mathrm{CN})_{4}\right]^{2-}$ is $(\Delta>P)$:
A. $4\left(e^{4} t_{2}^{1}\right)$
B. $\left(e^{2} t_{2}^{3}\right)$
C. $4\left(e^{2} t_{2}^{3}\right)$
D. $3\left(e^{4} \cdot t_{2}^{1}\right)$.

Answer: d

32. Corystal field splitting energy (CFSE) for the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is when $(\Delta<P)$.
A. 1.2Delat ${ }_{0}$
B. $-0.6 \Delta_{0}$
C. $0.6 \Delta_{0}$
D. $1.2 \Delta_{0}$

Answer: b

- Watch Video Solution

33. Crystal field splitting energy (CFSE) for the complex $\left[\operatorname{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is (when $\Delta>P$).
A. $-1.6 \Delta_{0}+P$
B. $1.6 \Delta_{0}+P$
C. $-c-24 \Delta_{0}+P$
D. $2.4 \Delta_{0}+P$

Answer: a

- Watch Video Solution

34. Crystal field splitting energy (CFSE) for the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad$ is when $\quad P=20925 \mathrm{~cm}^{-1} \quad$ and $\Delta_{0}=10462.5 \mathrm{~cm}^{-1}\left(1 \mathrm{kJmo}^{-1}=83.7 \mathrm{~cm}^{-1}\right)$.
A. $a .-75 \mathrm{kJmo}^{-1}$
B. $b .75 \mathrm{kJmo}^{-1}$
C. c. $750 \mathrm{kJmo}^{-1}$
D. d. $-750 \mathrm{kJmo}^{-1}$
35. Crystal field splitting energy (CFSE) for the complex $\left[C r\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is when $P=125$ and $\Delta_{0}=250 \mathrm{kjmol}^{-1}$.
A. $525 \mathrm{kJmo}^{-1}$
B. $275 \mathrm{kJmo}^{-1}$
C. $-275 \mathrm{kJmo}^{-1}$
D. $-525 \mathrm{kJm} 01^{1-}$

Answer: c

- Watch Video Solution

36. Crystal field splitting energey (CFSE) for the complex
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3-}(6)\right]^{2+}\right.$ is when $P=125$ and $\Delta_{0}=250 \mathrm{kJmo}^{-1}$.
A. d^{5}
B. d^{6}
C. d^{8}
D. d^{10}

Answer: a

D Watch Video Solution

37. In which structure crystal field splitting energey (CFSE) for octahedral complex will be zero when $\Delta<P$.
A. d^{5}
B. d^{6}
C. d^{8}
D. d^{10}

D Watch Video Solution

38. In which structure crystal field splitting energey (CFSE) for octahedral complex will be zero when $\Delta<P$.
A. $-1.0 \Delta_{t}$
B. $1.0 \Delta_{t}$
C. 0
D. $-1.8 \Delta_{t}$

Answer: c

39. Crystal field splitting energey (CFSE) for the complex $\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]^{\Theta}$ is when $\Delta>P$.
A. a) -2.0
B. b) $\Delta+P$
C. c) $2+P$
D. d) 0

Answer: d

- Watch Video Solution

40. Crystal field splitting energey (CFSE) for the complex $\left[\mathrm{Fe}(\mathrm{O})_{4}\right]^{2-}$ is when $\Delta=125$ and $P=250 \mathrm{kJmo}^{-1}$.
A. $-1.2 \Delta_{t}$
B. $1.2 \Delta_{t}$
C. -8
D. 8

Answer: a

D Watch Video Solution

41. CFSE for d^{6} octahedral complex having $\Delta=250$ and $P=125 \mathrm{kJmo}^{-1}$ is.
A. $350 \mathrm{KJMO}^{-1}$
B. $-350 \mathrm{kJmo}^{-1}$
C. $475 \mathrm{kJmo}^{-1}$
D. $-475 \mathrm{kJmo}^{-1}$

Answer: b
42. The enthalpy of hydration of Cr^{+2} is $-460 \mathrm{kcal} \mathrm{mo1}^{-1} \mathrm{In}$ the absence of CFSE the value for $\Delta H=-424 \mathrm{kcal} \mathrm{mo1}^{-1}$ What is the value of Δ_{0} for $\left.\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right)\right]^{2+}$.
A. $60 \mathrm{kcalmole}^{-1}$
B. -60 kcalmole $^{-1}$
C. 25.7 kcalmole $^{-1}$
D. $-25.7 \mathrm{kcalmole}^{-1}$

Answer: a

- Watch Video Solution

1. Write the formula of the following compounds according to the IUPA rule
(a) Potassium tetraxoferrate (IV)
(b) Potassium tetrazidocobalt(II)
(c) Dichloridobis (triphenylphosphine) nickel(II)
(d) Chloridocarbonylbis (tripheny1 phosphine)iridium(I)
(e) Haxammine coblt (III) Pentachloridocuperate(II)
(f) Tetrammine - mu dihydroxobis (ethylenediamine) dicobalt(III) chloride
(g) Dibromidotetra ammine cobalt (III) tetrachloridozincate(II)
(h) Hexammine nicke (II) hexanitrocobaltate(II)
(i) Haxammine cobalt(III) tetrachloridodiammine chromate(III) .

- Watch Video Solution

2. Name of the following compounds
(a) $\left[\mathrm{Fe}\left(\mathrm{CI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{\Theta}\right.$,
(b) $\left[\mathrm{Cr}(e n)_{2} \mathrm{CI}_{2}\right] \mathrm{CI}$
(c) $\left[P t(P y)_{4}\right]\left[P^{2} C I_{4}\right]$
(d) $\left[\mathrm{Co}(e n)_{2}(\mathrm{CN})_{2}\right] \mathrm{CIO}_{3}$
(e) CsTeF_{5}
(f) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CO}_{3}\right]_{2}\left[\mathrm{CuCI}_{4}\right]$
$\mathrm{NaMn}(\mathrm{CO})_{5}(\mathrm{~h})\left(\mathrm{NH}_{4}\right)_{2} \mathrm{TiCI}_{6}$

(j) $\left[\operatorname{Cr}(a c a c)_{3}\right]$
(k) $\left[\mathrm{Ni}(d m g)_{2}\right]$

I SnCI $I_{4}\left(E t_{2} \mathrm{NH}_{2}\right)$

- Watch Video Solution

3. Give the characteristic coordination number of each of the following central metal ions .
(a) ${ }^{`} \mathrm{Cu}(\mathrm{I})$
$\mathrm{Cu}(\mathrm{II})$
(c) CO (III) It brgt (d) $\mathrm{Al}($ III) It brgt (e) Zn (II)
(f) Fe (II)
(g) Fe (III)
(h) $\mathrm{Ag}(\mathrm{l})$.

D Watch Video Solution

4. Indicate the oxidation state of the central metal ion in each of the following complex
(a) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(b) $\left[\mathrm{Cu}\left(\mathrm{Br}_{4}\right)\right]^{2-}$
(c) $\left[\mathrm{Cu}(\mathrm{CN})_{2}\right]^{\Theta}$
(d) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CO}_{3}\right]^{\oplus}$
(e) $\left[\mathrm{PtCI}_{4}\right]^{2-}$
(f) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]^{\Theta}$
(g) $\mathrm{Fe}(\mathrm{CO})_{5}$)
(h) $\left[\mathrm{ZnCl}_{4}\right]^{2-}$
(i) $\left[\mathrm{Fe}(\mathrm{en})_{3}\right]^{2+}$.

D Watch Video Solution

5. Calucultae the freezing point of the solution containing $24.8 g$ solute per kg water for each of the following solutes $K_{f}=1.86 \mathrm{C} / \mathrm{m}$
(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2-}\right.\right.$ (3) $]$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)\right]\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)_{4}\right]$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)_{4}\right]^{2}\right.$
[Mw of (a) ${ }^{2} 248 \mathrm{~g}$ (b) 496 g (c) 744 g]

- Watch Video Solution

1. Calculate $E A N$ in
$\left[\mathrm{CrCM}_{6}\right]^{3-}$
(b) $\left[\mathrm{PdXCI}_{4}\right]^{2-}$
(c) $\left[P t\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(d) $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$.

D Watch Video Solution
2. Calculate "EAN" of metal atoms in the following
$\mathrm{Fe}(\mathrm{CO})_{5}$
(b) $\mathrm{Co}_{2}(\mathrm{CO})_{8}$
(c) $\mathrm{Fe}(\mathrm{NO})_{2}(\mathrm{CO})_{3}$
(d) $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$.
3. Dedue the value of x in the following compounds.
(a) $\left[\mathrm{Mo}(\mathrm{CO})_{x}\right]$
(b) $\left[\mathrm{Co}_{2}(\mathrm{Co})_{x}\right]^{2-}$
(c) $\mathrm{Hx}\left(\mathrm{Cr}(\mathrm{CO})_{5}\right.$ (d) $\mathrm{HxCo}(\mathrm{CO})_{4}$
(c) $\left[F e\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{X}\right]$ (d) $\left[\operatorname{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{X}\right]$.

(D) Watch Video Solution

Ex 7.1 Subjective (Conductance In Coordination Compounds)

1. Arrange the following compounds in the order of decreasing molar conductivity in aqueous solution.
i. a. $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
b. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
c. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{2}$
d. $\left[\mathrm{Mg}\left(\mathrm{Cr}\left(\mathrm{NH}_{3}\left(\mathrm{NO}_{2}\right)_{5}\right]\right.\right.$
ii. a. $\mathrm{Li}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right] \quad$ b. $\mathrm{Na}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
c. $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$ d. $\mathrm{Cs}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
iii. a. $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{4}$ b. $\quad \mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}$
c. $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{3}$ d. $\mathrm{K}_{2} \mathrm{PtCl}_{6}$

- Watch Video Solution

2. Two compounds have the empirical formula $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}$ In aqueous solution one of these conducts electricity while the other does not Deduce their probable structures .

- Watch Video Solution

1. how will you distinguish between the following pairs of isomers
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{6}\right]$

D Watch Video Solution

2. How many geometrical isomers are possible for the complex ion $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)(\mathrm{OH})_{2} \mathrm{CI}_{3}\right]^{2-}$.

D Watch Video Solution

3. The complex $M\left(\mathrm{C}_{4} \mathrm{O}_{4}\right) \mathrm{CI}_{2}\left(\mathrm{NH}_{3}\right)_{2}$ forms two types of ionic coloured crystals viz red (A) and blue (B) A or B reacts with 1 mole of AgNO_{3} to give $1 / 2$ mole of a red precipitate Further 1 mole of A reacts slowly with 1 mole of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ to form 2 moles of a white precipitate bit B does not react with $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ From the above data Find
(a) the coordination number of M
(b) the hybrid orbitals of M and
(c) stereochemistry of red and blue forms.

D Watch Video Solution

4. The compound $\mathrm{Co}(\text { en })_{2}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{CI}$ has been prepared in these isomeric forms A, B and C A does not react with AgNO_{3} or (en) and is optically inactive B reacts with AgNO_{3} but not with (en) and is optically inactive C is optically active and reacts with both AgNO_{3} and (en) identify each of these isomeric forms and draw their structures .

(D) Watch Video Solution

5. A solution containing 1 go of the complex
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CI}\right] \mathrm{CI}_{2} \mathrm{H}_{2} \mathrm{O}$ was passed through a cation exchanger The
acid liberated was made up to 1 litre Calculate the strength of acid solution (AwofCr $=52$ and Mw of complex $=266.5 \mathrm{gmo}^{-1}$.

(D) Watch Video Solution

6. A solution containing 2.675 g of $\mathrm{CoCI}_{3} \cdot 6 \mathrm{NH}_{3}$ was passed through a cation exchanger The solution obtained gave 4.305 g of AgCI precipitate with AgNO_{3} solution Determine the formula of the complex $\left(\mathrm{MwofCoCI} 3.6 \mathrm{NH}_{3}=267.5\right)$.

(D) Watch Video Solution

Ex 7.1 Objective (Terminology)

1. The oxidation number of Co in $\left[\mathrm{Co}(\mathrm{en})_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is
+2
$+1$
+3
+6 .

(D) Watch Video Solution

2. The IUPAC name of the coordination compound $\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$ is
(a) Sodium silverthiosulphate (I)
(b) Sodium silverhyposulphate (I)
(c) Sodium bis [argentothiosulphate(I)]
(d) Sodium bis (thiosulphato)argentite .

- Watch Video Solution

3. The IUPAC name of the coordination compound $\left[\mathrm{CuCI}_{2}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)_{2}\right]$ is
(a) Dimethylamine copper(II)chloride
(b) Bis(dimehtylamine copper(II) chloride
(c) Dichloridobis(methylamine)copper(II)
(d) Dichlorobis(dimethylamine) copper(II).

D Watch Video Solution

4. The IUPAC name for $\left[\mathrm{AI}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ is
(a) Pentahyroaluminium hydroxide
(b) Aquometaaluminate ion
(c) Pentaaquaaluminate(III)hydroxide
(d) Pentaaquahydroxoaluminium(III).

- Watch Video Solution

5. The IUPA name of $\left[\operatorname{Pt}(\mathrm{Br})(\mathrm{CI})\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)\right] \mathrm{CI}$ is
(a) Triamminechloridobromidonitroplatinum(IV) chloride

Triamminechloridobromidonitroplatinum(IV) chloride
Triamminechloridobromidonitroplatinum(IV) chloride
Triamminechloridobromidonitroplatinum(IV) chloride .

D Watch Video Solution

6. The oxidation number of Cr in $\left[\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{2}\right)_{2}\right.$ is

0 (b) +2
(c) +3
(d) +6 .

D Watch Video Solution

7. Which of the following has five donor (coordinating) sites?
(a) Ethylenediaminetriacetate ion
(b) Diethylene triamine
(c) Ethylenediaminetetracetate ion
(d) Triethylene tetramine .

D Watch Video Solution

8. Which of the following is not chelating agent
(a) Thiosulphate
(b) Oxalato
(c) Glycinato
(d) Ethylene diamine .

D Watch Video Solution

9. The solution of AgBr in presence of large excess of NH_{3} contains mainly the cation.
(a) NH_{4}^{\oplus}
$A g^{\oplus}$
(c) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{\oplus}$
(d) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}$.

D Watch Video Solution

10. Which of the following species is not expected to be a ligand \oplus
NO
NH_{4}^{\oplus}
(c) $\mathrm{NH}_{2}-\mathrm{NH}_{3}^{\oplus}$
(CO) .

(D) Watch Video Solution

11. The number of donor sites in dimethy1 glyoxime glycinato diethylene triamine and EDTA are respectively

2, 2, 3 and 4
(b) 2, 2, 3 and 6
(c) 2, 2, 2 and 6

2, 3, 3 and 6 .

D Watch Video Solution

12. Which of the following is a double salt ?
A. Alum
B. Chrome alum
C. Microcosmic Salt
D. All of these

Answer: D
13. When potash alum is dissolved in water the total number of ions produced is.
A. Four
B. Eight
C. Ten
D. Thirty Two

Answer: B

D Watch Video Solution

14. Which of the following statements is correct with regard to complex ion?.
(a) complex ion consists of a central ion bonded to two or more donor ions or molecules usually does not dissociate into simple ions or molecules even in a solution and exhibits properties different
from its constituent ions or molecules
(b) The donor ions and molecues which coordinate with the central atom or ion a complex are called ligands

The sum of the number of electrons pressent in the central metal ion or atom and those donated by the ligands is called the effective atomic number of the central metal aton and this number is usually the same as the atomic number of the next higher noble gas (d) All of these .

- Watch Video Solution

15. How many mloes of of AgCI would be obtained when 100 mL of
$0.1 \mathrm{MCo}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}_{3}$ is treated with excess of AgNO_{3} ?
(a) 0.01
(b) 0.02
(c) 0.03
(d) None of these.
16. 0.001 mol of $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{3}\right)\left(\mathrm{SO}_{4}\right)$ was passed through a cation exchanger the acid coming out of it reguired 20 mL of 0.1 M NaOH for netralisation Hence the complex is
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{NO}_{3}$
(b) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{3}\right] \mathrm{SO}_{4}$
(c) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\right]\left(\mathrm{SO}_{4}\right)\left(\mathrm{NO}_{3}\right.$
(d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$.

(D) Watch Video Solution

Ex 7.1 Objective (Isomerism)

1. Which of the following coordination compounds exhibits ionisation isomerism
(a) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{CI}_{3}$
(b) $\left[\mathrm{Cr}(e n)_{3} \mathrm{CI}_{3}\right]$
(c) $\left[\mathrm{Cr}(\mathrm{en})_{3}\right] \mathrm{CI}_{3}$
(d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$.

- Watch Video Solution

2. Which of the following complex compounds exhibits cis-trans isomerism
(a) $\left[\operatorname{PtCI}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(b) $\left[\mathrm{PdCI}_{2} \mathrm{BrI}\right]$
(c) $\left[P t\left(\mathrm{NH}_{3}\right)(p y)(C I)(B r)\right]$
All ofh these .
3. How many geometrical isomers are possible for the square planar complex $\left[\mathrm{Pt}\left(\mathrm{NO}_{2}\right)(\right.$ py $\left.)\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)\right] \mathrm{NO}_{2}$
(a) 'Four
(b) Five
(c) Eight
(d) Three .

Watch Video Solution

4. Consider the following spatial arrangements of the octahedral
complex ion $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right]^{\oplus}$

Which of the following statements is incorrect regarding these structures?
A. I and II are enantiomers
B. II and III are cis and trans isomers respectively
C. III and IV are trans and cis isomers respectively
D. II and IV have identical structures

Answer: C

- Watch Video Solution

5. Which of the following pairs of structures represent facial and meridional isomers (geometrical isomers) respectively ?

D Watch Video Solution
6. Which would exhibit coordination isomerism
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
(b) $\left[\mathrm{Cr}(e n)_{2} \mathrm{CI}_{2}\right]^{\oplus}$
(c) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] C I_{3}$
$[C r(e d t a)]^{-1}$.

Watch Video Solution

7. Which would exhibit ionisation isomerism
(a) $p\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right]^{2+} \mathrm{SO}_{4}^{2-}$
(c) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
$K_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$.

D Watch Video Solution

8. The water -soluble complex among the following is
(a) $\left[\mathrm{Ni}(H D M G)_{2}\right]$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{3}\right]$
(c) $\mathrm{Ni}(\mathrm{CO})_{4}$
$\left[\mathrm{Ni}(\mathrm{HDMG})_{2}\right] \mathrm{CI}_{2}$.
9. Arrage the following optical activity possible in
(a) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}\right]^{\oplus}$
(b) $\left.\left.\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{4}{C I_{2}}\right]^{\oplus}\right]$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right) \mathrm{CI}\right]^{\oplus}$
(d) $\left[\operatorname{Co}(C N)_{5} N^{-}\right]^{\Theta}$.

- Watch Video Solution

10. When an excess of ammonia solution is added to CuSO_{4} which solution is formed
(a) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
(b) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{\oplus}$
(c) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}$
(d) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$.

D Watch Video Solution

11. Copper sulphate solution reacts with $K C N$ to give
(a) $\mathrm{Cu}(\mathrm{CN})_{2}$
(b) CuCN
(c) $K_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(d) $K_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$.

D Watch Video Solution

12. The ionisation isomer of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}_{2} \mathrm{NO}\right.$
(a) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NO}_{2}\right)\right] \mathrm{CI}_{2}$
(b) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{NO}_{2}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}(\mathrm{ONO})\right] C I$
(d) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}_{2}\left(\mathrm{NO}_{2}\right)\right] \mathrm{H}_{2} \mathrm{O}$.

(D) Watch Video Solution

Ex 7.2 Subjective

1. One the basis of VBT answer the following complex ions
(i) $\left[T i(b p y)_{3}\right]^{\Theta}$
(b) $\left[V\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(ii) $\left[V\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(III) $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$
$\left.\left[\mathrm{Mn}(\mathrm{CN})_{6}\right)\right]^{3-}$
(V) $\left[\operatorname{Ir}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$.

Type of hybridisation involed
(b) Type of inner or outer orbital octahedral complex
(c) Magnetic behaviour and $\mu_{\text {stn }}$ value .

D Watch Video Solution

2. Identify the complex which are coloured and which are colourless

Explain
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCS})\right]\left[\mathrm{ZnCI}_{4}\right]$
(b) $\left[\mathrm{Ti}\left(\mathrm{NO}_{3}\right)_{4}\right]$
(c) $\left[\mathrm{Cu}\left(\mathrm{NC}-\mathrm{CH}_{3}\right)_{4}\right]{ }^{\oplus} \mathrm{BF}_{4}^{\oplus}$
(d) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 3 \mathrm{CI}{ }^{\Theta}$
(e) $K_{3}\left[V F_{6}\right]$.
3. Write the IUPAC nomenclature of the given complex along with its hybridisation and structure
$\mathrm{Ca}\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)(\mathrm{CN})_{4}\right], \mu_{\text {stn }}=1.73 \mathrm{BM}$.

- Watch Video Solution

4. On the basic of $C E T$ explaine the following complex of Co^{3+} like $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\text { en })_{3}\right]^{3+}$ and $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$ are diamagntic while $\left[\mathrm{CoF}_{6}\right]^{3-}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ are paramagnetic.

(D) Watch Video Solution

1. The 0.0001 molal solution of a complex $A B_{10}$ has the freezing point of $-0.0015{ }^{\circ} \mathrm{C}$ in water. Assuming 100% dissociation of the complex, find the proper representation of the complex
$\left[K_{f}\left(H_{2} \mathrm{O}=1.86 \mathrm{Km}^{-1}\right)\right]$
(a) $\left[A B_{8}\right]$
(b) $\left[A B_{3}\right] B_{7}$
(c) $\left[A B_{7}\right] B_{3}$
(d) $\left[A B_{5}\right] B_{5}$.

D Watch Video Solution

2. Given the following data about the absorption maxium of several complex ions what is the order of Δ_{0} for these ions? .
I. $\left[\mathrm{CrCI}_{6}\right]^{3-} \quad 758$
II. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 465$
III. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \quad 694$
(a) $\Delta_{0}<\delta_{0}(I I)<\Delta_{0}(I I I)$
(b) $\delta_{0}($ II $)<\Delta_{0}(I I I)<\Delta_{0}($ III $)$
(c) $\Delta(0)<\delta_{0}(I I I)<\Delta_{0}(I I)$
(d) $\Delta_{0}(I I I)<\Delta_{0}(I I)<\Delta_{0}(I)$.

- Watch Video Solution

3. Predict the order of Δ_{0} for the following compounds
(a) $\left.\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{6}\right]^{2+}$
(II) $\left.\left[\mathrm{Fe}(\mathrm{CN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{4}\right]$
(III) $\left.\left[\mathrm{fe}(\mathrm{CN})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{2}\right]^{2-}$
(a) $\delta_{0}<\Delta_{0}(I I)<\delta_{0}(I I I)$
(b) $\delta_{0}<\Delta_{0}(I)<\delta_{0}(I I I)$
(c) $\delta_{0}<\Delta_{0}(I I I)<\delta_{0}(I I)<\Delta_{0}($ I
$\delta_{0}<\Delta_{0}(I I)<\delta_{0}(I I I)<\Delta_{0}(I)$.

D Watch Video Solution

4. from the information given in the passage what is the most likely configuration of the cobalt d-electrons for the species (A) CoCl_{6}^{3-} and $(B) \mathrm{Co}\left(\mathrm{No}_{2}\right)_{6}^{3-}$?
(a) both (A) and (B) haslowsin $(b) \perp h(\mathrm{~A})$ and (B) has low spin (c) both (A) and (B) haslowsin $(d) \perp h(\mathrm{~A})$ and (B) has low spin .

D Watch Video Solution

5. The hybrisation states of the central atom ion in the complex ions
$\left.\left[\mathrm{FeF}_{6}\right]^{3-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{6}\right]^{3+}$ and $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ are
(a) $s p^{3} d^{2}, d s p^{2}$ and $d^{4} s^{2}$ respectively
(b) all $3 d^{2} 4 s 4 p^{3}$
(c) all $4 s 4 p^{3} 4 d^{2}$
(d) $s p^{3} d^{2}, d s p^{3}$ and $p^{4} d^{2}$ respectively .

- Watch Video Solution

6. Among (A) TiF_{6}^{2-}, (B) CoF_{6}^{3-}, (C) $\mathrm{Cu}_{2} \mathrm{CI}_{2}$ and $(D) \mathrm{NiCI}_{4}^{2}$
(atomic number of $T i=22, C o=27, C u=29, N i=28$) the colourless species are
(a) (B) and (D)
(b) (A) and (B)
C and (D)(A) and (C).

- Watch Video Solution

7. The magnetic moment of a complex ion is $2.83 B M$ The complex ion
is
$\left.\left[\mathrm{Cr}\left(\mathrm{H}_{2}\right) \mathrm{O}\right)_{6}\right]^{3+}$
(b) $\left[\mathrm{Cu}(\mathrm{CN})_{6}\right]^{2-}$
(c) $\left.\left[V\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{6}\right]^{3+}$
(d) $\left[\mathrm{MnCI}_{4}\right]^{2-}$.

- Watch Video Solution

8. Which of the following statements is not true of the reaction given below
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
(a) it is a ligand -substition reaction
(b) NH_{3} is a relatively strong-field ligand while $\mathrm{H}_{2} \mathrm{O}$ is a weak field ligand
(c) During the reaction there is a change in colour from light blue to dark blue
(d) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ has a tetrahedral structure and is paramagnetic.
9. Consider to following isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{4}\right]^{\Theta}$ and answer the questions

Select the correct statement .
A. (a)Pairs of A and D are same and pairs of B and C are also same .
B. (b)All have chiral centres .
C. (c) B and D are enantiomers
D. (d) B and C are enantiomers

Answer: a

Watch Video Solution

2. Consider to following isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{4}\right]^{\Theta}$ and answer the questions

Select the correct statement .
A. And D are trans and B and C are cis.
B. A and D are cis and B and C are trans
C. A and B are cis and C and D are trans
D. A and B are trans and C and D are is

Watch Video Solution

3. Consider to following isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{4}\right]^{\ominus}$ and answer the questions

Select the correct statement .
A. Threre is chirality
B. There is geometrical isomerism
C. Both(a) and(b)
D. None of these

Answer: B

- Watch Video Solution

4. Consider to following isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{4}\right]^{\Theta}$ and answer the questions

If $P Q R S$ are
four different ligands then how many geometric isomers will be found for square planar $[P t P Q R S]^{2+}$.
A. 1
B. 2
C. 3
D. 4

D Watch Video Solution

5. Consider the following experiments and answer the questions at the end of it
(A) When $\mathrm{Fe}(C N)_{2}$ solution is treated with $K C N$ solution species formed no longer gives tests of Fe^{2+} and CN^{Θ}
(B) When $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution is treated with $\mathrm{A1}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution species formed gives tests of $\mathrm{K}^{\oplus}, \mathrm{A1}^{3+}$ and SO_{4}^{2-}

Species formed in experiment A does not give test of Fe^{2+} and CN^{Θ} it is due to formation of.
A. $K_{2}\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]$
B. $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{5}\right]$
C. $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
D. $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Answer: D

- Watch Video Solution

6. Consider the following experiments and answer the questions at the end of it
(A) When $\mathrm{Fe}(C N)_{2}$ solution is treated with $K C N$ solution species formed no longer gives tests of Fe^{2+} and CN^{Θ}
(B) When $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution is treated with $\mathrm{A1}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution species formed gives tests of $K^{\oplus}, \mathrm{A1}^{3+}$ and SO_{4}^{2-}

Species formed in experiment (B) is .
A. Complex
B. Double salt
C. Liquid crystal
D. None of these

- Watch Video Solution

7. Consider the following experiments and answer the questions at the end of it
(A) When $\mathrm{Fe}(C N)_{2}$ solution is treated with $K C N$ solution species formed no longer gives tests of Fe^{2+} and CN^{Θ}
(B) When $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution is treated with $\mathrm{A1}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution species formed gives tests of $K^{\oplus}, \mathrm{A1}^{3+}$ and SO_{4}^{2-}
$E A N$ of iron formed in (A) is .
A. 26
B. 24
C. 36
D. 38

Answer: C

D Watch Video Solution

8. Consider the following experiments and answer the questions at the end of it
(A) When $\mathrm{Fe}(C N)_{2}$ solution is treated with $K C N$ solution species formed no longer gives tests of Fe^{2+} and CN^{Θ}
(B) When $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution is treated with $\mathrm{A1}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution species formed gives tests of $K^{\oplus}, \mathrm{A} 1^{\wedge}(3+)$ and $\mathrm{SO}_{-}(4)^{\wedge}(2-)$

Whenthespeciesf or med \in AistreatedwithFeCI_(3)'a bule colour is obtained It is due to formation of .
A. $\left.F e^{I I}\left[F e^{I I I}(C N)_{6}\right)\right]^{\Theta}$
B. $\left.F e^{I I I}\left[F e^{I I I}(C N)_{6}\right)\right]^{\Theta}$
C. Both(a) and(b)
D. None of these

Answer: C

D Watch Video Solution

9. Two research students were instruced intructed to synthesise the complex
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Br}_{2}$
They synthesised the complexes with identical molecular formula molar mass geometry conductane and spin but they differed in colour Based on the above facts answer the following questions

The difference in colour is due to
A. optical isomerism
B. geometrical isomerism
C. linkage isomerism
D. nuclear isomerism

D Watch Video Solution

10. Two research students were instruced intructed to synthesise the complex
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Br}_{2}$
They synthesised the complexes with identical molecular formula molar mass geometry conductane and spin but they differed in colour Based on the above facts answer the following questions Which of the ligands can show ambidentate property?
A. $\mathrm{NO}_{2}{ }^{\Theta}$
B. NH_{3}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CO}_{3}{ }^{2-}$

D Watch Video Solution

11. Two research students were instruced intructed to synthesise the complex
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Br}_{2}$
They synthesised the complexes with identical molecular formula molar mass geometry conductane and spin but they differed in colour Based on the above facts answer the following questions

Complexes synthesised can be
(i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right) \mathrm{Br}_{2}\right.$,(ii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right] \mathrm{Br}_{2}$
(iii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}_{2}\right] \mathrm{NO}_{2}$ (iv) All of these.
A. Both(i) and (ii)
B. Both(i) and(iii)
C. Both(ii)and(iii)
D. All of these

Answer: A

- Watch Video Solution

12. One cationic complex has to isomers A and B Each has one Co^{3+} five NH_{3} one CI^{Θ} and one SO_{4}^{2-} stoichiometically A give white precipitate with BaCI_{2} white B gives white precipitate with AgNO_{3} A can be .
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{CISO}_{4}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{CI}$
c. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}\right] \mathrm{SO}_{4}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}\right] \mathrm{CI} . \mathrm{NH}_{3}$

D Watch Video Solution

13. One cationic complex has to isomers A and B Each has one Co^{3+} five NH_{3} one CI^{Θ} and one SO_{4}^{2-} stoichiometically A give white precipitate with BaCI_{2} white B gives white precipitate with AgNO_{3}
(B) can be .
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{CI}$
B. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}\right] \mathrm{SO}_{4}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}\left(\mathrm{SO}_{4}\right)\right] 2 \mathrm{NH}_{3}$
D. None of these

Answer: A

14. Complexes A and B have similarity in the following but not in .
A. (a)Molar conductane
B. (b)Van't Hoff factor
C. (c)EAN
D. (d)Colour

Answer: D

D Watch Video Solution

15. Velence bond theroy describes the bonding in complexs in terms of coordinate -covalent bond resulting from overlap filled ligand orbitals with vacant metal hybrid orbitals This theory explains magnetic behaviour and geometrical shape of coordination compounds Magnetic moment of a complex compound can be determined experimentally and theoretically by using spin only

formula

Magnetic moment $\sqrt{n}(n+2) B M$ (where $\mathrm{n}=$ No. unpaired electrons).
The value of of spin only magnetic moment for octahedral complex of the following configuration is $2.84 B M$ The correct statement is
(a) d^{4} (in weak field ligand)
(b) d^{2} (in weak field and in strong field ligand)
(c) d^{3} (in weak field and in strong field ligand)
(d) d^{5} (in strong field ligand).

- Watch Video Solution

16. Velence bond theroy describes the bonding in complexs in terms of coordinate -covalent bond resulting from overlap filled ligand orbitals with vacant metal hybrid orbitals This theory explains magnetic behaviour and geometrical shape of coordination compounds Magnetic moment of a complex compound can be determined experimentally and theoretically by using spin only formula

Magnetic moment $\sqrt{n}(n+2) B M$ (where $\mathrm{n}=$ No. unpaired electrons).
Ni^{2+} cation combines with a uninegative monodentate ligand X^{Θ} to form paramagnetic complex $\left[\mathrm{NiCI}_{4}\right]^{2-}$ The number of unpaired electrons(s) in central metal cation and geometry of this complex respectively are
(a) One,tetrahedral
(b) Two,tetrahedral
(c) One,square planar
(d) Two, square planar .

(D) Watch Video Solution

17. Square planar complexes are formed by d^{8} ions with strong field ligands The crystal field splitting Δ_{0} is larger for the second and theird row transition elements and for more highly charged species

All the complexes having $4 d^{8}$ and $5 d^{8}$ configurations are mostly square planar including those with weak field ligands such as halide ions square planar complexes can show geometrical isomerism but
they do not show optical isomerism due to the presence of plane of symmetry

Which of the following molecule has synergic bonding?
(a) $\left[F e\left(\pi-C_{5} H_{5}\right)_{2}\right]$
(b) $\left[R h C I\left(P P_{3}\right)_{3}\right]^{3+}$
(c) $\left[\mathrm{Fe}(\mathrm{Phen})_{3}\right]^{3+}$
(d) All are having synergic bonding .

- Watch Video Solution

18. Square planar complexes are formed by d^{8} ions with strong field
ligands The crystal field splitting Δ_{0} is larger for the second and theird row transition elements and for more highly charged species

All the complexes having $4 d^{8}$ and $5 d^{8}$ configurations are mostly square planar including those with weak field ligands such as halide ions square planar complexes can show geometrical isomerism but they do not show optical isomerism due to the presence of plane of

symmetry

Among the following complexes which has a square planar geometry?
(a) $\left[\operatorname{RhCI}(C O)\left(P P h_{3}\right)_{2}\right]$
(b) $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(c) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(d) $K_{2}\left[\mathrm{Zn}(C N)_{4}\right]$.

D Watch Video Solution

19. Square planar complexes are formed by d^{8} ions with strong field ligands The crystal field splitting Δ_{0} is larger for the second and theird row transition elements and for more highly charged species

All the complexes having $4 d^{8}$ and $5 d^{8}$ configurations are mostly square planar including those with weak field ligands such as halide ions square planar complexes can show geometrical isomerism but they do not show optical isomerism due to the presence of plane of
symmetry
(a) All are low spin complexes
(b) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(c) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(d) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$.

(D) Watch Video Solution

20. If in the mixed carbonyl the other ligand is also π acceptor it would compete with the ligand $C O$ for gaining the metal d_{π} electron charge The higher is the extent of back donation in $C O$, the lesser will be the stretching vibration frequency for $C-O$ bond If $P P_{3}$ is better pi-acceptor than $C O$ then answer the following

Select the correct order of $M-C$ bond order in the following molecule and ions .
(I) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(II) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\Theta}$
(III) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(a) I $>$ II $>$ III
(b) $I=I I=I I I$
(c) II $>$ III $>$ I
(d) I $<$ II $<$ III.

D Watch Video Solution

21. If in the mixed carbonyl the other ligand is also π acceptor it would compete with the ligand $C O$ for gaining the metal d_{π} electron charge The higher is the extent of back donation in $C O$, the lesser will be the stretching vibration frequency for $C-O$ bond If $P P_{3}$ is better pi-acceptor than CO then answer the following

Select the correct order of stretaching vibration frequency C - O bond in following molecules
(I) $\left.[\mathrm{Ni}(\mathrm{CO}))_{4}\right]$
(II) $\left[\mathrm{Ni}\left(\mathrm{PF}_{3}\right)(\mathrm{CO})_{3}\right]$
(a) $I=I I$
$I<I I$
(c) $I=I I$
(d) cannot be predicated.

D Watch Video Solution

22. If in the mixed carbonyl the other ligand is also π acceptor it would compete with the ligand $C O$ for gaining the metal d_{π} electron charge The higher is the extent of back donation in $C O$, the lesser will be the stretching vibration frequency for $\mathrm{C}-\mathrm{O}$ bond If PP_{3} is better pi-acceptor than $C O$ then answer the following Select the correct order of $C-O$ bond length in the following molecules .
(I) $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PF}_{3}\right)_{3}\right](\mathrm{II})\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PCI}_{3}\right)_{3}\right]$
(III) $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(P(\mathrm{Me})_{3-}(3)\right]\right.$
(a) I $>$ II $>$ III
(b) III $>$ I $>$ II
(c) II $>$ III $>$ I
(d) I $<$ II $<$ III

- Watch Video Solution

23. Most of the metal carbonyls obey inert gas rule which states the the compounds in which the central metal atom appears to have attained the configuration of a noble gas either by the sharing or by the transfer of electrons tend to be more stable .

Which of the following has lowest $C-O$ bond order?
(a) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{\oplus}$
(b) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\oplus}$
$\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(d) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$.
24. If in the mixed carbonyl the other ligand is also π acceptor it would compete with the ligand $C O$ for gaining the metal d_{π} electron charge The higher is the extent of back donation in $C O$, the lesser will be the stretching vibration frequency for $C-O$ bond If $P P_{3}$ is better pi-acceptor than $C O$ then answer the following

Select the correct order of $C-O$ bond length in the following molecules .
(I) $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PF}_{3}\right)_{3}\right](\mathrm{III})\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PCI}_{3}\right)_{3}\right]$
(III) $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(P(\mathrm{Me})_{3}\right)\right]$
(a) I $>$ II $>$ III
(b) III $>$ I $>$ II
(c) II $>$ III $>$ I
(d) I $<$ II $<$ III
25. Most of the metal carbonyls obey inert gas rule which states the the compounds in which the central metal atom appears to have attained the configuration of a noble gas either by the sharing or by the transfer of electrons tend to be more stable

Which of the following has highest $C-O$ bond length ?
(a) $\left[m n(C O)_{6}\right]^{\oplus}$
(b) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\Theta}$
(c) $\left.\left[\mathrm{Fe}(\mathrm{CO})_{4}\right)\right]^{2-}$
(d) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$.

D Watch Video Solution

26. In the manufacture of ions a gas (A) is formed in the zone of combustion of the blast furnace The gad (A) formed in the zone of combustion of the blast furnace. The gas (A) reacted with coke in the zone of fusion to from another gas (B). X moles of (B) reacts with iron at $200^{\circ} \mathrm{C}$ and 100 atm pressure to form a compounds (C)

The d orbital (s) involved in the formation of the complex (C) will be
(a) $d_{z}{ }^{2}$
(d) $d_{-}(x y)$ and $d_{-}(x) 2-y 2(c) d_{x} 2-y 2$ and $d_{z} 2$
(d) $d_{x}{ }^{2}-y^{2}$.

D Watch Video Solution

27. In the manufacture of ions a gas (A) is formed in the zone of combustion of the blast furnace The gad (A) formed in the zone of combustion of the blast furnace. The gas (A) reacted with coke in the zone of fusion to from another gas (B). X moles of (B) reacts with iron at $200^{\circ} \mathrm{C}$ and 100 atm pressure to form a compounds (C) will be

The magnetic moment and effective atomic number of the C repectively, are
(a) 4.93 and 36
(b) 0 and 34
(c) 0 and 36^{\prime}
(d) None .

D Watch Video Solution

28. The π acceptor ligands are those which possess vacant π orbitals in addition to the lone pairs of electrons

Which of the following complex ion has lowest $M-C$ bond length?
(a) $\left[V(\mathrm{CO})_{6}\right]^{\oplus}$
(b) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{\oplus}$
(c) $\mathrm{Ni}(\mathrm{CO})_{4}$
(d) $\mathrm{Fe}(\mathrm{CO})_{5}$.

D Watch Video Solution

29. The π acceptor ligands are those which possess vacant π orbitals in addition to the lone pairs of electrons

Which of the following complex ion has the highest $C-O$ bond length ?
(a) $\left[V(\mathrm{CO})_{6}\right]^{\oplus}$
(b) $\mathrm{Ni}(\mathrm{CO})_{4}$
(c) $\mathrm{Fe}(\mathrm{CO})_{5}$
(d) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{\oplus}$.

(D) Watch Video Solution

30. The π acceptor ligands are those which possess vacant π orbitals in addition to the lone pairs of electrons

Which of the following complex// ion has lowest C - O bond order?
(a) $\left[V(\mathrm{CO})_{6}\right]^{\oplus}$
(b) $\mathrm{Ni}(\mathrm{CO})_{4}$
(c) $\mathrm{Fe}(\mathrm{CO})_{5}$
(d) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{\oplus}$.
31. The π acceptor ligands are those which possess vacant π orbitals in addition to the lone pairs of electrons

Which of the following complex// ion has lowest $M-C$ bond order?
(a) $\left[V(\mathrm{CO})_{6}\right]^{\oplus}$
(b) $\mathrm{Ni}(\mathrm{CO})_{4}$
(c) $\mathrm{Fe}(\mathrm{CO})_{5}$
(d) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{\oplus}$.

D Watch Video Solution

32. The pi acid ligands donate their lone pairs to the metal to form a normal o bond with the latter in addition to it the vacant orbitals accepct electrons from the filled mental orbitals to form a type of pi bonand which suppliments the o bond

Which of the following has lowest $M-C$ bond lenght?
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(b) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{\oplus}$
(c) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(d) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\oplus}$.

- Watch Video Solution

33. The pi acid ligands donate their lone pairs to the metal to form a normal o bond with the latter in addition to it the vacant orbitals accepct electrons from the filled mental orbitals to form a type of pi bonand which suppliments the o bond

Which of the following has lowest $M-C$ bond lenght?
(a) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(b) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\Theta}$
(c) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(d) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{\oplus}$.
34. The pi acid ligands donate their lone pairs to the metal to form a normal o bond with the latter in addition to it the vacant orbitals accepct electrons from the filled mental orbitals to form a type of pi bonand which suppliments the o bond

Which of the following has lowest C - O bond lenght?
(a) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(b) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\Theta}$
(c) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(d) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{\oplus}$.

D Watch Video Solution

35. Coordination compounds plays many important roles in animals and plants. The are essential in the storage and transport of oxygen as electrons transfer agents as catalysts and in photosynthesis Wide range of application in daily life takes place through formation of complexes Photographic fixing qualitative and quantitative analysis
purification of water metallurgical extraction are some specific worth mentioning

The complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$ is formed in the brown ring test for nitrates when freshly prepared FeSO_{4} soultion is added to aqueous solution of NO_{3}^{Θ} followed by addition of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ Select correct statement about this complex
(a) Colour change is due to charge transfer
(b) It has iron in +1 oxidation state and nitrosyl as NO^{\oplus}
(c) It has magnetic moment of $3.87 B M$ confirming three unpaired electrons in Fe
(a) All the above are correct statements .

- Watch Video Solution

36. Coordination compounds plays many important roles in animals and plants. The are essential in the storage and transport of oxygen as electrons transfer agents as catalysts and in photosynthesis Wide
range of application in daily life takes place through formation of complexes Photographic fixing qualitative and quantitative analysis purification of water metallurgical extraction are some specific worth mentioning

Extraction of Ag from sulphide ore and removal of unreacted silver from photographic plate involve complexes:
(a) $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$ ion both
(b) $\left[A g(C N)_{2}\right]^{\Theta}$ in both
(c) $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)\right]^{3-},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{\Theta}$
(d) $\left[A g(C N)_{2}\right]^{\Theta},\left[\text { gg_ }_{-}(2)\left(\mathrm{S}_{-}(2) \mathrm{O}_{-}(3)\right)_{-}(2)\right]^{\wedge}(3-)^{\wedge}$.

D Watch Video Solution

37. Coordination compounds plays many important roles in animals and plants. The are essential in the storage and transport of oxygen as electrons transfer agents as catalysts and in photosynthesis Wide range of application in daily life takes place through formation of
complexes Photographic fixing qualitative and quantitative analysis purification of water metallurgical extraction are some specific worth mentioning

Lead poisoning in the body can be removed by
(a) EDTA in the form of calcium dthydrogen salt
(b) Cis-platin
(c) Zeisse' s salt
(d) $D M G$.

- Watch Video Solution

38. Coordination compounds plays many important roles in animals and plants. The are essential in the storage and transport of oxygen as electrons transfer agents as catalysts and in photosynthesis Wide range of application in daily life takes place through formation of complexes Photographic fixing qualitative and quantitative analysis purification of water metallurgical extraction are some specific worth mentioning
Cu^{2+} and Cd^{2+} both are precipitated as sulphides on passing $\mathrm{H}_{2} \mathrm{~S}$ gas in dil HCI medium However, precipitation of Cu^{2+} is prevented by
(a) Adding excess of $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ when Cd^{2+} is only precipitated (b) Adding excess of KNC when Cu^{2+} for stable complex $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ and Cd^{2+} forms unstable complex $\left[\mathrm{Cd}(\mathrm{CN})_{4}\right]^{2-}$ (c) All of the above

D Watch Video Solution

39. Coordination compounds plays many important roles in animals and plants. The are essential in the storage and transport of oxygen as electrons transfer agents as catalysts and in photosynthesis Wide range of application in daily life takes place through formation of complexes Photographic fixing qualitative and quantitative analysis purification of water metallurgical extraction are some specific worth mentioning

Arrange of the following in order of decreasing number of unpaired
electrons
(I) $\left.\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{6}\right]^{2+}$
(II) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(III) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(IV) $\left[f e\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(a) IV,I,II,III
(b) I, II, III, IV
(c) III, II, IIV
(d) II,III,I,IV .

- Watch Video Solution

Exercises Multiple Correct(Naming And Terminology)

1. Selcet the correct statement(s) for double salt .
A. Double salts are stable in solid state but lose their identity in aqueous solution.
B. In double salt the properties of constituent ions are not changed in their aqueous solution .
C. Double salts are stable in solid state and do not lose their identity in aqueous solution.
D. In double salt the properties of constituent ions are changed in their aqueous solution.

Answer: A::B

D Watch Video Solution

2. Which of the following ligand (s) is/are ambidentate ?
A. $\operatorname{NOS}^{\Theta}$
B. $S C N^{\Theta}$
C. $\mathrm{NO}_{2}{ }^{\Theta}$
D. $\mathrm{CH}_{3} \mathrm{COO}^{\Theta}$

Answer: A:B::C

D Watch Video Solution

3. Select the correct IUPA name for $\left[\mathrm{CoCI}_{2}(e n)_{2}\right]_{2}\left(\mathrm{CIO}_{3}\right)_{2}$.
A. Dichloridobis (ethylenediamine)cobalt(III)chlorate .
B. Dichloridobis (ethane-1,2-diamine)cobalt(III)chlorate .
C. bis\{dichloridoethylenediaminecobalt(III)\}chlorate
D. bis\{di(chlorido)ethylenediaminecobalt(III)\}chlorate

Answer: A::B

4. Bidentate ligands are
A. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ (oxalate)
B. en(ethylenediamine)
C. $D M G$ (dimethyl glyoxime)
D. Gly (glycine)

Answer: A::B::C::D

- Watch Video Solution

5. Which of the following complex (s) is/are having correct name ?
A. $\mathrm{Cs}\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{I}_{5}\right]$ Ceasium amminepentaiodidoplatirate(IV)
B. $\left[A g(C N)_{2}\right]^{\Theta}$ Dicyanidoargentate(I)ion
C. $\left[\operatorname{Rb} b_{3}\left[\operatorname{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]\right.$-Rubidium trioxalatochromate(III)
D. $K_{2}[\mathrm{Ni}(E D T A)]$ Potassium ethylenediaminetetraacetatonickel(II)

Answer: A::B::C

- Watch Video Solution

6. Which can form chelates?
A. Ethylene diamine
B. Oxalate
C. Glycinate
D. Cyanide

Answer: A::B::C

7. Select the correct IUPA name for the following
$\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Co}>\mathrm{CO}_{2} \mathrm{NH}_{2} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right]^{3+}$
A. Tetramminecobalt(III)muamido-mu-peroxidotetraamm inedicobalt(III) ion
B. mu-Amido-mu-peroxidobis(tetraammine)dicobalt-(III)ion
C. mu-Amido-mu-peroxidobis(tetraamminecobalt(III))ion
D. mu-Amido-mu-peroxidobis(tetraamminecobalt(III))ion

Answer: A::B::C::D

(D) Watch Video Solution

8. Which of the following statement(s) is//are correct?
A. Primary valency of the central metal of a complex is always satisfied by anions .
B. Secondary valency of the central metal of a complex may be satisfied by either negative ions or neutral molecules .
C. Species which show primary valencies in a complex compound can be precipitated out .
D. None of these

Answer: A::B::C

- Watch Video Solution

9. Which of the following complex(s)is//are an example of homolepic complex.
A. $a)\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. b) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. c) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $d)\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right]$

Answer: A::B::C

D Watch Video Solution

Exercises Multiple Correct(Isomerism)

1. Which of the following molecules(s)is/are not showing optical isomerism?.
A. a. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \oplus$
B. b. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. c. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. d. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3+}$

Answer: A::B::C

D Watch Video Solution

2. Which of the following complex ion(s) is//are not expected to sbsorb visible light?
A. a. $\left[\operatorname{Ti}(e n)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{4+}$
B. b. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. c. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. d. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3+}$

Answer: A::C::D

3. Coordination compounds plays many important roles in animals and plants. The are essential in the storage and transport of oxygen as electrons transfer agents as catalysts and in photosynthesis Wide range of application in daily life takes place through formation of complexes Photographic fixing qualitative and quantitative analysis purification of water metallurgical extraction are some specific worth mentioning

The complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$ is formed in the brown ring test for nitrates when freshly prepared FeSO_{4} soultion is added to aqueous solution of NO_{3}^{Θ} followed by addition of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ Select correct statement about this complex
(a) Colour change is due to charge transfer
(b) It has iron in +1 oxidation state and nitrosyl as NO^{\oplus}
(c) It has magnetic moment of $3.87 B M$ confirming three unpaired electrons in Fe
(a) All the above are correct statements .
A. Colour change is due to charge transfer .
B. It has iron in +1 oxidation state and nitrosyl as $N O^{\oplus}$.
C. It has magnetic moment of 3.87 BM confirming three unpaired electrons in Fe .
D. In complex Fe has $d^{2} s p^{3}$ hybridisation .

Answer: A:B::C

- Watch Video Solution

4. Which of the following represent the correct sequence of indicated property?.
A. a. $\mathrm{Mn}^{2+}<\mathrm{Ni}^{2+}<\mathrm{Co}^{2+}<\mathrm{Fe}^{2+}$: magnetic moment
B. b. $\mathrm{FeO}>\mathrm{CoO}>\mathrm{NiO}$:basic character
C. $c . S c<T i<C r<M n:$ number of oxidation states
D. d.1.73 μ : one unpaired electrons

Answer: B::C::D

D Watch Video Solution

5. Which of the following complexes diamagnetic:
A. $\left[A u I_{4}\right]^{\Theta}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{CoI}_{6}\right]^{3-}$
D. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\Theta}$

Answer: A::D
6. Which of the following molecules(s)is/are not showing optical isomerism?.
A. a. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Br}_{3}\right]$
B. b. $\left[\mathrm{Co}(e n) \mathrm{Br}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}$
C. c. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
D. d. $\left[\mathrm{Co}(e n)_{2} \mathrm{Br}_{2}\right]^{\oplus}$

Answer: B::C::D

- Watch Video Solution

7. Both geometrical and optical isomerisms are not shown by
A. a.dibromidobis (ethylenediamine)cobalt(III)ion
B. b.tetraamminedibromido cobalt(III)ion
C. c.tetraamminedibromido cobalt(III) ion
D. d.trioxalatochromate(III)ion

Answer: B::C::D

- Watch Video Solution

8. Which of the following statement(s) is//are correct?
A. a.The complexes $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ differ in state of hybridisation of nickyl.
B. b.The complexes $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ differ in geometry
C. c.The complexes $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ differ in the magnetic properties.
D. d.The complexes $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ differ in primary valencies of nickel.

Answer: A::B::C

(D) Watch Video Solution

9. In Which case gemetrical isomer cis is possible with M as metal ion if complexes are square planar having $C N=4$?
A. a. $M X_{2} Y_{2}$
B. b. $M X_{2} Y Z$
C. c. $M X Y_{2} Z$
D. d. $M X_{4}$

Answer: A::B::C

10. $d_{x} 2-y^{2}$ orbital is involved in which of the following hybridisation ?
A. $a . s p^{3} d^{3}$
B. b. $d s p^{2}$
C. c. $s p^{3} d^{2}$
D. d. $s p^{3} d$

Answer: B::C

D Watch Video Solution

Exercises Multiple Correct (Hybridisation, Vbt , Cft)

1. A d-block element forms octahedral complex but its spin magnetic moment remains same either in strong field or in weak field ligand Which pf the following is//are correct ?
A. a.Element always forms colourless comound
B. b. Number of electrons in $t_{2 g}$ orbitals are higher than in e_{g} orbitals
C. c.lt can have either d^{3} or d^{8} configuration.
D. d.It can have either d^{7} or d^{8} configuration

Answer: B::C

- Watch Video Solution

2. Which of the following is//are characteristic of a tetrahedral complex ?
A. a. $d_{x} 2-y^{2}$ and $d_{z} 2$ orbitals are low energy orbitals
B. b.Most tetrahedral complexes are high spin
C. c.Crystal field splitting is found double in octahedral complexes
D. d.Splitting pattern in tetrahedral complex is just opposite of that in octahedral complexes.

Answer: A::B::D

D Watch Video Solution

3. The complex $K_{4}\left[\mathrm{Zn}(\mathrm{CN})_{4}\left(\mathrm{O}_{2}\right)_{2}\right]$ is oxidised into
$K_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\left(\mathrm{O}_{2}\right)\right]$, then whichof the following is//are correct:
A. a. $\mathrm{Zn}(\mathrm{II})$ is oxidised to $\mathrm{Zn}(\mathrm{IV})$
B. b.magnetic moment decreases
C. c.O-O bond length decreases
D. d.magnetic moment remains same.

D Watch Video Solution

4. Select the correct statement:
A. a. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is $\mathrm{Co}(\mathrm{III})$, low spin, 0 unpaired electrons diamagnetic.
B.b. $\left[\mathrm{CoF}_{6}\right]^{3-}$ is $\mathrm{Co}(\mathrm{III})$, high spin $d^{6}, 4$ unpaired electron paramagnetic.
C. c. $\left[R h F_{6}\right]^{3-}$ is $R h(I I I)$ low spin $d^{6}, 0$ unpaired eletrons diamagnetic.
D. d. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ high spin $d^{6}, 0$ unpaired electron dimagentic.

Answer: A::C::D
5. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex is
A. a.High spin complex
B. b.Having $d^{2} s p^{3}$-hybridization
C. c.Low spin complex
D. d.Having octahedral structure .

Answer: B::C::D

D Watch Video Solution
6. Colourless tetrahedral complexes among the following are
A. a. $K_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
B. b. $\mathrm{Ca}\left[\mathrm{NiCI}_{4}\right]$
C. c. $\mathrm{Na}\left[\mathrm{BF}_{4}\right]$
D. d. $\mathrm{Ni}(\mathrm{CO})_{4}$

Answer: A::C::D

(D) Watch Video Solution

Exercises Multiple Correct(Application Of Coordination Compounds)

1. The coordination number of a central metal atom in a complex(s)
is//are not determined by
A. a.The number of anionic ligands bonded to the metal ion
B. b.The number of ligands around metal ion bonded by pi-bonds
C. c.The number of ligands around a metal ion bonded by both pi and o-bonds
D. d.The number of ligands around a metal ion bonded by obonds

Answer: A::B::C

D Watch Video Solution

2. Which of the folowing statement (s) is//are incorrect?
A. Metal carbonyls are the examples of only o-boned organometallic complexes
B. Metal carbonyls are the examples of only o-boned organometallic complexes
C. Metal carbonyls are the examples of only o-boned organometallic complexes which involve both o and pi-bonds
between metal and carbon of the carbonyl group .
D. Metal carbonyls involve both o and π bonds between metal and oxygen of the carbonyl group .

- Watch Video Solution

3. Which of the folowing is an example of π boneded organometallic complex ?
A. Ferrocene
B. Dibenzenechromium
C. $\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$
D. $\operatorname{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$

Answer: A::B

D Watch Video Solution
4. Which of the following is/are example (s) of o-bonded organometallic compound?
A. $\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{6}$
B. $\mathrm{Pb}\left(\mathrm{CH}_{3}\right)_{4}$
C. $\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$
D. Ferrocene

Answer: A::B::C

D Watch Video Solution

5. Which of the following statement is correct regarding metal carbonyl ?
A. a.ln $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ bond order of $\mathrm{Mn}-\mathrm{Mn}$ is 0 .
B. b.In $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ number of Fe - Fe bonds is 1
C. c.In $\mathrm{Ni}(\mathrm{CO})_{4}$ all bond length are same
D. d. $\mathrm{Fe}(\mathrm{CO})_{5}$ is diamagnetic

Answer: B::C::D

D Watch Video Solution

6. Select correct statements:
A. a. $\left[\mathrm{Ni}(e n)_{3}\right]^{2+}$ is less stable than $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
B. b.Increase in stability of the complexes due to the presence of multidentate cyclic ligand is called macro-cyclic effect.
C. c. $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$ is more stable than $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. d.For a given ion and ligand the greater the charge on the metal ion the greater is the stability
7. IN which of the following cases the synergic bonding takes place at the pi orbital of the ligand.
A. $\left[\operatorname{PtCI}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{\Theta}$
B. $\left[N i\left(P F_{3}\right)_{4}\right]$
C. $\operatorname{Cr}\left[\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]$
D. $\mathrm{Fe}\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$

Answer: A::B::C

- Watch Video Solution

8. Which of the following statement(s) is/are correct?
A. The stability constant of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is larger than that of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. The cyano complexes more stable than those formed by halide ions.
C. The stability of halide complexes follows the order $I^{\Theta}>B r^{\Theta}>C I^{\Theta}>F^{\Theta}$.
D. The stability constant of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is less than that of $\left[\mathrm{CuCI}_{4}\right]^{2-}$.

Answer: A::B

- Watch Video Solution

Exercises Single Correct (Naming And Terminology)

1. Select the correct IUPAC name for

$$
\left[\mathrm{Ti}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] .
$$

A. (η^{5}-cyclopentadine) bis (cyvclopentadierthyl) titanate(IV) .
B. (η^{5}-cyclopentadine) bis (cyvclopentadierthyl) titanate(IV) .
C. (cyclopentadine) bis (beta^(5)-cyvclopentadierthyl) titanate(IV).
D. $\left(\eta^{5}\right.$ - cyclopentad $\left.\in e\right)$ bis (cyvclopentadierthyl) titanate(IV).

Answer: B

- Watch Video Solution

2. Select the correct IUPA name of

$$
\left[\mathrm{Mo}\left(\sigma-C_{3} H_{5}\right)\left(\pi-C_{5} H_{5}\right)\left(\mathrm{CO}_{3}\right)\right] .
$$

A. Tricarbonyl (η^{5}-cyclopentadinenyl) ally1 molybdate(II) .
B. Allytricarbonyl (η^{5}-cyclopentadiene)molybdate(II)
C. Allytricarbonyl (η^{5}-cyclopentadiene)molybdate(II)
D. Allytricarbonyl (η^{5}-cyclopentadiene)molybdate(II)

Answer: D

D Watch Video Solution

3. IUPA name for $\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\sigma-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ complex :
A. Dicarbony1 (η^{5}-cyclopentadieny1)(cyclopentadieny1) ferrate(II)
B. Dicarbony1 (η^{5}-cyclopentadieny1)(cyclopentadieny1) iron(II)
C. Dicarbony1 (η^{5}-cyclopentadieny1)(cyclopentadieny1) iron(II)
D. Dicarbony1 (η^{5}-cyclopentadieny1)(cyclopentadieny1) iron(II)

Answer: A

4. Select the correct IUPA name for $\left[\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{CO})_{3}\right]$.
A. $\left(\eta^{6}\right.$ benzene) tricarbonylchromate(0)
B. Tricarbony1 (η^{6} benzene) tricarbonylchromate(0)
C. Tricarbony1 $\left(\eta^{6}\right.$ benzene) tricarbonylchromate(0)
D. $\left(\eta^{6}\right.$ benzene) tricarbonylchromate(0)

Answer: D

(D) Watch Video Solution

5. IUPAC name for complex $\left[\mathrm{Mn}\left(\pi-\mathrm{C}_{6} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}\right]$:
A. Tricarbonyl (η^{5}-cyclopentadiene)manganes(I)
B. Tricarbonyl (η^{5}-cyclopentadiene)manganes(I)
C. Tricarbonyl (η^{5}-cyclopentadiene)manganes(I)
D. $\left(\eta^{5}\right.$-cyclopentadiene) manganes(I)

Answer: C

D Watch Video Solution

6. Ligand with two or more points of attachment to single metal atoms are called .
A. Monodentate ligand
B. Chelating ligand
C. Ambidentate ligand
D. None of these

Answer: B

7. The number of ions produced by the complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{CIO}_{3}$ is.
A. 2
B. 3
C. 4
D. 6

Answer: A

8. Which of the following is a tridentate ligand?
A. $N O_{2}^{\Theta}$
B. Oxalate ion
C. Glycinate ion
D. Dien

Answer: D

D Watch Video Solution

9. Coordination number of calcium is six in .
A. $[M g(E D T A)]^{2-}$
B. $\mathrm{MgC}_{2} \mathrm{O}_{4}$
C. $\mathrm{Mg}\left[\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2-}$
D. $\mathrm{MgSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

10. Coordination number of Cu^{2+} in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is .
A. 5
B. 4
C. 3
D. 2

Answer: B

(D) Watch Video Solution

11. The colsed ring compounds formed by bidentate ligands on binding to a metal or metal ions are called.
A. MoNodentate
B. Chelates
C. Ambidentate
D. None of these

Answer: B

D Watch Video Solution

12. Which is the pair of ambidentate ligand?
A. $\mathrm{CN}^{-}, \mathrm{NO}_{2}^{-}$
B. $\mathrm{NO}_{3}^{-}, \mathrm{SCN}^{-}$
C. $\mathrm{N}_{3}^{-}, \mathrm{NO}_{2}^{-}$
D. $N C S^{-}, C_{2} O_{4}^{2-}$

Answer: A

- Watch Video Solution

13. Number of water molecules acting as ligands in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ respectively are .
A. 5, 5, 7
B. $4,5,4$
C. $4,4,6$
D. $4,4,7$

Answer: C

D Watch Video Solution

14. Select the correct IUPA name for

$$
\left[P t (C _ { 5 } \mathrm { H } _ { 5 } \mathrm { N }) _ { 4 } \left[\left[\mathrm{PtCI}_{4}\right]\right.\right. \text { complex }
$$

A. Tetrapyridineplatinate(II)tetrachloridoplatinate(II)
B. Tetrapyridineplatinate(II)tetrachloridoplatinate(II)
C. Tetrapyridineplatinate(II)tetrachloridoplatinate(II)
D. Tetrapyridineplatinum(II)tetrachloridoplatinate(II)

Answer: D

- Watch Video Solution

15. Select the correct IUPAC name of $\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Fe}(\mathrm{CO})_{3}\right]$ complex .
A. η^{4}-cyclebutadiene tricarbonyliron(0)
B. Tricarbonyl (η^{4}-cyclobutadienyl) iron(0)
C. Tricarbonyl (η^{4}-cyclobutadienyl) iron(1)
D. Tricarbonyl (η^{4}-cyclobutadienyl) iron(0)

Answer: D

16. Oxidation state of " V " in $R b_{4} K\left[H V_{10} \mathrm{O}_{28}\right]$ is .
A. +5
B. +6
C. $+\frac{7}{5}$
D. +4

Answer: A

- Watch Video Solution

17. Coordination number of Cr is six A complex with $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ en and superoxide O_{2} will be in the ration to make complex

$$
\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{x^{\prime}}(e n)_{y}\left(\mathrm{O}_{2-}(\mathrm{z})\right]^{\Theta} .\right.
$$

A. $\begin{array}{lll}x & y & z \\ 1 & 1 & 1\end{array}$
$\begin{array}{ll}x & y \\ z\end{array}$
B.

112
$\begin{array}{lll}x & y & z\end{array}$
C. 122
x $\begin{array}{ll}x & z\end{array}$
D. $\begin{array}{lll}2 & 1\end{array}$

Answer: D

- Watch Video Solution

18. The compound $\left[\mathrm{CoCI}_{3} I\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$ Br will show the chemical test for which of the following ions? .
A. $B r^{\Theta}$
B. $C I^{\Theta}$
C. I^{Θ}
D. $B r^{\Theta}$ as well as $C I^{\Theta}$

Answer: A
19. The correct IUPAC name of $\left[\mathrm{Mn}_{3}(\mathrm{CO})_{12}\right]$ is .
A. Dodecacarbonylmanganate(0)
B. Dodecacarbonylmanganate(II)
C. Dodecacarbonylmanganate(0)
D. Manganiododecarbonyl(0)

Answer: C

- Watch Video Solution

20. The correct name of

A. Tri-mu-carbonylbis(tricarbonyl)iron(0))
B. Hexacarbonyliron(III)mu-tricarbonylferrate(0)
C. Tricarbonyliron(0)mu-tricarbonyliron(0)
D. Nonacarbonyl iron

Answer: A

D Watch Video Solution

21. The correct IUPAC name of the complex

A. Dichloridodimethylglyoximatocobalt(II)
B. Bis(dimethylglyoxime) dichlorocobalt(II)
C. Dimethylglyoximecobalt(II)chloride
D. Dichloridodimethylglyomine-N,N-cobalt(II)

Answer: A

D Watch Video Solution

22. The correct IUPA name of $\left[\mathrm{AICI}_{3}\right] \cdot 4(\mathrm{EtOH})$ is .
A. Aluminium(II) chloride-4-ethanol
B. Trichloridoaluminium(III)-4-ethaol
C. Aluminium(III)chloride-4-hydroxyethane
D. Aluminium chloride-4-ethanol
23. In octaamine - μ-dihydroxodiiron(III)sulphate the number of bridging ligands is
A. 2
B. 1
C. 3
D. None

Answer: A

D Watch Video Solution

24. The IUPA name of the complex having formula
$\left.[\mathrm{CO})_{3} \mathrm{Fe}(\mathrm{CO})_{3} \mathrm{Fe}(\mathrm{CO})_{3}\right]$ is.
A. Monocarbonylferrate(0)
B. Tricarbonyliron(0) - μ-tricarbonyliron(0)
C. Tri- μ carbonylbis-\{tricarbonyliron(0)\}
D. Hexacarbony1 '-mu- tricarbonyliron(III)

Answer: C

D Watch Video Solution

25. A group of atoms can funcation as a ligand only when .
A. a.lt is a small molecule
B. b.It is capable of acting as donor of electron pair
C. c.it is a negatively charged ion
D. d.It is a positively charged ion .

- Watch Video Solution

26. Which of the following is most likely structure of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ if $1 / 3$ of total chlorine of the compound is precipitated by adding AgNO_{3} to its aqueous solution?
A. $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$
C. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{CrCl} .\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Answer: C

D Watch Video Solution

27. The coordination number of a central ion may be obtained from
A.a.The number of only anionic bonds formed with the surrounding ions
B.b.The number of coordinate bonds formed with the surrounding atoms
C.c.The number of ions of opposite charge immediately surrounding the specific ion .
D. d.None of the above

Answer: D

- Watch Video Solution

28. Which of the following is nonionisable?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{3}\right]$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{CI}$
c. $\left[\mathrm{Co}\left(\mathrm{Nh}_{3}\right)_{5} \mathrm{CI}\right] \mathrm{CI}_{2}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] C I_{3}$

Answer: A

(D) Watch Video Solution

29. Which of the following pair contains complex salt and double salt respectively?
A. $\mathrm{FeSO}_{4}, \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
B. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}, \mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{SO}_{4} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Answer: C

30. In Which of the following compunds the metal is in the lowest oxidation state?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$
B. $\mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$
C. $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$
D. $K\left[\operatorname{PtCI}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$

Answer: C

- Watch Video Solution

31. Which of the following can be termed as mixed complex? .
A. a. $K_{4}\left[F e(C N)_{6}\right]$
B. b. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
C. c. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{NO}_{2} \mathrm{CI}\right] \mathrm{CI}$
D. d. $\mathrm{K}_{2} \mathrm{FeSO}_{4}$

Answer: C

D Watch Video Solution

Exercises Single Correct (Isomerism)

1. Among the following select the order of decreasing EAN valuse $\left[\mathrm{cr}(\mathrm{CO})_{6}\right]$
(II) $\left[\operatorname{Cr}(\mathrm{CO})_{6}\right]^{\Theta}$
(III) $\left[\operatorname{Cr}(\mathrm{CO})_{6}\right]^{\oplus}$
A. I > II > III
B. III > II > I
C. $I I>I>$ III
D. $I I=I>I I I$

Answer: C

- Watch Video Solution

2. Increasing order EAN of the metals in
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(II) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(III) $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ is .
A. $I<$ II $<$ III
B. $I<I I=I I I$
C. $I<I I I<I I$
D. III $<$ II $<$ I

D Watch Video Solution

3. EAN of na $\left[\operatorname{PtCI}_{3}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}\right)\right]$ is .
A. 86
B. 78
C. 84
D. 34

Answer: C

Watch Video Solution
4. EANof $\left.\left[\mathrm{Fe} \mathrm{\eta}^{2}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{CI}\right]$:
A. 36
B. 35
C. 37
D. 34

Answer: A

D Watch Video Solution

5. Which has maximum EAN of the underbold atoms?
$(C r=24, C o=27, F e=26, N i=28)$.
A. a. $[\operatorname{Cr}(E D T A)]^{\Theta}$
B. b. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
C. c. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
D. d. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

D Watch Video Solution

6. Give $E A N$ value of Mg in $[M g(E D T A)]^{2-}$.
A. 16
B. 20
C. 22
D. 18

Answer: C

(D) Watch Video Solution

7. EAN of cobalt is 36 in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{O}_{2}(e n) b r\right]$ Thus O_{2} is .
A. dioxide
B. superoxide ion
C. peroxide ion
D. oxide

Answer: C

- Watch Video Solution

8. $E A N$ of Fe in $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4-}(3)\right]^{3-}\right.$ is .
A. 27
B. 24
C. 35
D. 29

Watch Video Solution

9. The $E A N$ of Fe atom in `

$$
(\mathrm{CO})_{3} \mathrm{Fe}{\underset{\sim}{(\mathrm{CO})_{3}}}^{\mathrm{Fe}(\mathrm{CO})_{3}}
$$

A. 34
B. 35
C. 36
D. 37

Answer: C

10. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ are .
A. Linkage isomers
B. Ionisation isomers
C. Coordination isomers
D. None of these

Answer: C

- Watch Video Solution

11. The Type of isomerism present in pentaammine nitro chromium(III) perchlorate is .
A. Optical
B. Linkage
C. Hydrate
D. Polymerisation

Answer: B

D Watch Video Solution

12. Which of the following has the largest number of isomers? .
A. a. $\left[\mathrm{Cr}(e n)_{2} \mathrm{Cl}_{2}\right]^{\oplus}$
B. b. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
C. c. $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{\oplus}$
D. d. $\left[\operatorname{Ir}\left(\mathrm{PR}_{3}\right)_{2}(\mathrm{CO})_{2}\right]^{2+}$

Answer: A
13. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right] \mathrm{SO}_{4}$ are related to each other as: .
A. Geometrical isomers
B. Linkage ismomers
C. Coordination isomers
D. Ionisation ismers

Answer: B

D Watch Video Solution

14. Which one of the following will be able to show geometrical isomerism if complexes are square planar?.
A. Ma_{4}
B. $M a_{3} b$
C. Mabcd
D. $\left[M(A A)_{2}\right]$

Answer: C

D Watch Video Solution

15. The number of geometrical and optical isomers of
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)_{3}\right]$ is .
A. 3
B. 2
C. 0
D. 4

Answer: B

16. Both geometrical and optical isomerisms are not shown by
A. a. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{\oplus}$
B. b. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{4}\right]-$
C. c. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. d. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{\oplus}$

Answer: A

D Watch Video Solution
17. In $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$, the isomerism shown is .
A. Ligand
B. Optical
C. Geometrical
D. Ionisation

Answer: B

- Watch Video Solution

18. Which of the following octahedral complex does not show geometrical isomerism (A and B are monodentate ligands) ?
A. a. $\left[M A_{3} B_{3}\right]$
B. b. $\left[M A_{4} B_{2}\right]$
C. c. $\left[M A_{5} B\right]$
D. d. $\left[M A_{2} B_{4}\right]$

Answer: C

19. Facial-meridional isomers is associated with which one of the following complex ($M=$ central metal).
A. $\left[M(A A)_{2}\right]$
B. $\left[M A_{3} B_{3}\right]$
C. [MABCD]
D. $\left[M(A A)_{3}\right]$

Answer: B

(D) Watch Video Solution

20. The total number of possibel coordination isomer for the given compounds $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)(4) \mathrm{Br}_{2}\right]\left[\mathrm{PtBr}_{4}\right]$ is .
A. 2
B. 4
C. 5
D. 3

Answer: B

- Watch Video Solution

21. The following complexs are given?
trans- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} 1_{2}\right]^{\oplus}$
cis - $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(\text { en })_{2}\right]^{3+}$
trans- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(e n)_{2}\right]^{3+}$
$[\operatorname{Ni1}(4)]^{\wedge}(2-)\left[T i f _(6)\right]^{\wedge}(2-)\left[\text { CoF_ }_{-}(6)\right]^{\wedge}(3-)^{\wedge}$
Choose the correct code .
A. 4,5 are coloured 6 is colourless
B. 2 is optically active 1,3 are optically inactive
C. 1, 2 are optically active 3 optically inactive .
D. 4 is coloured, 5,6 are colourless .

Answer: B

- Watch Video Solution

22. The following represents a pair of enantiomers:
A. a.trans- $\left[\mathrm{CrCl}_{2}(e n)_{2}\right]^{\oplus}$
B. b.cis $-\left[\mathrm{CrCl}_{2}(e n)_{2}\right]^{\oplus}$
C. c.trans- $\left[\mathrm{CrCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{\oplus}$
D. d.cis $-\left[\mathrm{CrCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{\oplus}$

Answer: B
23. The compounds $\left[\operatorname{PtBr}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ can form .
A. Geometrical isomers
B. Coordination isomers
C. Optical isomers
D. Linkage isomers

Answer: A

D Watch Video Solution

24. The compound $\left[\mathrm{CrCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right.$ (en) $]$ can form .
A. Geometrical isomers
B. Coordination isomers
C. Optical isomers
D. Linkage isomers

Answer: C

- Watch Video Solution

25. One mole of complex compound $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}_{3}$ gives 3 moles of ions on
A. a. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right] \mathrm{Cl}_{2}$. NH_{3}
B. b. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} . \mathrm{NH}_{3}$
C. c. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
D. d. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3} .2 \mathrm{NH}_{3}\right.$

Answer: C

26. Which of the following will show optical isomerism? .
A. $\left[\mathrm{ZnCl}_{4}\right]^{2-}$
B. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
C. $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$

Answer: C

D Watch Video Solution

27. In which of the following pairs both the complex show optical isomerism? .
A. a)cis - $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \mathrm{CI}_{2}\right]^{3-}$, cis - $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right]$
B. b) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]_{C I_{3}}$, cis $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{CI}_{2}\right] C I$
C. c) $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$, cis $-\left[\mathrm{Pt}(e n)_{2} \mathrm{CI}_{2}\right]$
D. d) $[\operatorname{PtCI}(e n) C I],\left[\mathrm{NiCI}_{2} \mathrm{Br}_{2}\right]^{2-}$

Answer: B

(D) Watch Video Solution

28. Which of the following gives the maxium number of isomers?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$
B. $\left[\mathrm{Ni}(\text { en })\left(\mathrm{NH}_{3}\right)_{4}\right]^{\oplus}$
C. $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)(e n)_{2}\right]$
D. $\left[\mathrm{Cr}(\mathrm{SCN})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \oplus$

Answer: D

29. The possible number of the optical isomers in $\left[\mathrm{Cr}(e n)_{2} \mathrm{CI}_{2}\right]^{\oplus}$ is .
A. 6
B. 3
C. 4
D. 2

Answer: B

30. Which of the following molecules(s)is/are not showing optical isomerism?.
A. $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Br}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Br}_{3}\right]$
C. $\left[\mathrm{Co}(\text { en })_{2} \mathrm{Br} r_{2}\right] \mathrm{Br}$
D. $\left[\mathrm{Co}(\right.$ en $\left.)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br} r_{2}\right] \mathrm{Br}$

Answer: B

- Watch Video Solution

31. Which of the following will give a pair of enantiomorphs? .
A. a) $\left[\operatorname{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
B. b) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{CI}_{2}\right] C I$
C. c) $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCI}_{6}\right]$
D. d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{NO}_{2}$
32. Both Cr^{3+} and Pt^{4+} have a coordination number of 6 Which of the following pairs of complexes will show approximately the same electrical conductance for their 0.1 M aqueous solutions ?
A. a) $\mathrm{CrCI}_{3} \cdot 4 \mathrm{NH}_{3}$ and $\mathrm{PtCI}_{4} \cdot 4 \mathrm{NH}_{3}$
B. b) $\mathrm{CrCI}_{3} .3 \mathrm{NH}_{3}$ and $\mathrm{PtCI}_{4} \cdot 5 \mathrm{NH}_{3}$
C. c) $\mathrm{CrCI}_{3} .6 \mathrm{NH}_{3}$ and $\mathrm{PtCI}_{4} \cdot 5 \mathrm{NH}_{3}$
D. d) $\mathrm{CrCI}_{3} .5 \mathrm{NH}_{3}$ and $\mathrm{PtCI}_{4} \cdot 5 \mathrm{NH}_{3}$

Answer: C

D Watch Video Solution

33. Select the correct statement for $\left[M(A B) b_{2} C d\right]$.
A. a.All geometrical isomers are optically active .
B. b.It has four trans isomer with respect to b
C. c.lt has seven geometrical isomers .
D. d.It has three cis and two trans isomers with respect to b.

Answer: C

- Watch Video Solution

Exercises Single Correct (Hybridisation , Magnetic And Optical

 Properties)1. The d- electron configurations of $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{3+}$ and Ni^{2+} ard $3 d^{5}, 3 d^{6}, 3 d^{6}, 3 d^{8}$, respectively Which of the following aqua complexes will exhibit the minimum paramagnetic behviour? .
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left.\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

2. Which of the folliwng is paramagnetic ? .
A. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
B. $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
D. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: D
3. The pair in which both species have same magnetic moment (spin only value) is .
A. a. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{CoCl}_{4}\right]^{2-}$
B. b. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. c. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. d. $\left[\mathrm{CoCl}_{4}\right]^{2-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

4. Select the correct order of magnetic moment (inBM) from the folliwng options
(I) $\left[\mathrm{MnCI}_{4}\right]^{2-}$ (II) $\left[\mathrm{CoCI}_{4}\right]^{2-}$
(III) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$.
A. $I>I I>I I I$
B. $I I I>I I>I$
C. $I I I>I>I I$
D. $I>$ III $>$ II

Answer: A

- Watch Video Solution

5. Which of the pair of complex compounds are tettrahedral as well as diamagnetic? .
A. a. $\left[\mathrm{CoCl}_{4}\right]^{\Theta}$ and $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\Theta}$
B. b. $\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]^{2-}$ and $\left[\mathrm{NiCl}_{4}\right]^{2-}$
C. c. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{\Theta}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{4-}$
D. d. $\left[\mathrm{PdCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

Answer: C

D Watch Video Solution

6. Which of the following has a square planar geometry? .
A. $\left[\mathrm{PtCl}_{4}\right]^{2-}$
B. $\left[\mathrm{CoCl}_{4}\right]^{2-}$
C. $\left[\mathrm{FeCl}_{4}\right]^{2-}$
D. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

Answer: A
7. Among $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\left[\mathrm{NiBr}_{4}\right]^{2-}$ species, the hybridisation state of Ni atoms are respectively .
A. $s p^{3}, d s^{2} p, d s p^{2}$
B. $s p^{3}, d s p^{2}, s p^{3}$
C. $d s p^{2}, s p^{3}, s p^{3}$
D. $s p^{3}, s p^{3}, d s p^{2}$

Answer: B

(D) Watch Video Solution

8. Coordination compounds plays many important roles in animals and plants. The are essential in the storage and transport of oxygen as electrons transfer agents as catalysts and in photosynthesis Wide range of application in daily life takes place through formation of complexes Photographic fixing qualitative and quantitative analysis
purification of water metallurgical extraction are some specific worth mentioning

Arrange of the following in order of decreasing number of unpaired electrons
(I) $\left.\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{6}\right]^{2+}$
(II) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(III) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(IV) $\left[f e\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(a) $\mathrm{IV}, \mathrm{I}, \mathrm{II}, \mathrm{III}$
(b) I, II, III, IV
(c) III, II, IIV
(d) II,III,I,IV .
A. IV, I, II, III
B. I, II, III, IV
C. III, II, I, IV
D. II, III, I, IV

- Watch Video Solution

9. A substance which is not paramagnetic is .
A. $\mathrm{Cr}\left(\mathrm{CIO}_{4}\right)_{3}$
B. KMnO_{4}
C. TiCI_{3}
D. VOBr_{2}

Answer: B

D Watch Video Solution

10. Which of the following statements is correct ?
A. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ complex is more stable than $\left[\mathrm{Ni}(\mathrm{dmg})_{2}\right]$ due to higher CFSE value .
B. With $d^{2} s p^{3}$ hybridisation $\left[\mathrm{FeCl}(\mathrm{CN})_{4}\left(\mathrm{O}_{2}\right)\right]^{4-}$ complex is diamagnetic.
C. $\left[\mathrm{VO}(\mathrm{CO})_{6}\right]$ is not very stable and easily reduces to $\left[\mathrm{VO}(\mathrm{CO})_{6}\right]^{\Theta}$.
D. Liagands such as $\mathrm{CO}, \mathrm{CN}^{\Theta}, \mathrm{NO}^{\oplus}$ are pi electron donor due to the presence of filled pi-molecular orbital .

Answer: C

- Watch Video Solution

11. An aqueous solution of titanium bromide shows zero magnetic moment. Assuming the complex as octahedral in aqueous solution the formula of the complex is .
A. $\left[\mathrm{TiBr}_{6}\right]^{3-}$
B. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Br}_{4}\right.$
C. $\left[T i B r_{6}\right]^{2-}$
D. $\left.\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right]$

Answer: B

D Watch Video Solution

12. Geometry, hybridisation and magnetic moment of the ions $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-},\left[\mathrm{MnBr}_{4}\right]^{2-}$ and $\left[\mathrm{FeF}_{6}\right]^{3-}$ respectively are .
A. Tetrahedral square planar,octahedral $d s p^{2}, s p^{3}, s p^{3}: 0,5.9,4.9$.
B. Tetrahedral square
planar,octahedral

$$
s p^{3}, d s p^{2}, s p^{3} d^{2}: 5.9,0,4,9 .
$$

$$
d s p^{2}, s p^{3}, d^{2} s p^{3}: 5.9,4.9,0 .
$$

D. Tetrahedral square planar,octahedral $d s p^{2}, s p^{3}, s p^{3} d^{2}: 0,5,4.9$.

Answer: D

- Watch Video Solution

13. The correct order of magnetic moment (spin values in is .
(Atomic number $\mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)
(I) $\left[\mathrm{MnBr}_{4}\right]^{2-}$
(II) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(III) $\left[\mathrm{CoBr}_{4}\right]^{2-}$.
A. $I I>I I I>I$
B. $I>I I>I I I$
C. $I I>I>I I I$
D. $I>I I I>I I$

D Watch Video Solution

14. A square planar complex is formed by hybridisation of which atomic oritals?
A. s, $p_{x}, p_{y}, d_{y z}$
B. s, $p_{x}, p_{y}, d_{x 2-y 2}$
C. s, $p_{y}, p_{z}, d_{x y}$
D. s, $p_{x}, p_{y}, d_{x 2}$

Answer: B

D Watch Video Solution

15. The colour of a complex compound is due to .
A. Promotion of 3 d -electrons of the central atom//ion to 4 p orbitals.
B. Promation of 3 d -electrons of the central atom//ion to 4 s orbitals
C. Promation of 3d-electrons of the central atom//ion within dorbitals
D. Promation of 3 d -electrons of the central atom//ion to 4 s orbitals

Answer: C

D Watch Video Solution

16. If a transition-metla compound absorbs violet-indigo radiation in the visible region Its colour would be .
A. Green
B. Yellow
C. Orange
D. Blue

Answer: B

D Watch Video Solution

17. Transition metal compounds are usually coloured This is due to the electronic transition .
A. From d-orbital to s-orbital
B. From p-orbital to s-orbital
C. From d-orbital to s-orbital
D. Within the d-orbital
18. Which of the following compound is not coloured ?
A. $\mathrm{Na}_{2}\left[\mathrm{CuCl}_{4}\right]$
B. $\mathrm{Na}_{2}\left[\mathrm{CdCl}_{4}\right]$
C. $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
D. $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Answer: B

D Watch Video Solution

19. The colour of Cu^{\oplus} compounds is .
A. White
B. Blue
C. Orange
D. Yellow

Answer: A

D Watch Video Solution

Exercises Single Correct (Crystal Field Theory (Cft))

1. Which of the following complex has higher $D e<A_{0}$ VALUE?
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{FeCl}_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D. All have equal

Answer: C

D Watch Video Solution

2. Relative to the average enerage in the spherical crystal field the $t_{2 g}$ orbitals in tetrahedral field is .
A. Reised $(2 / 5) \Delta_{t}$
B. Lowered by (2/5) Δ_{t}
C. Reised (3/5) Δ_{t}
D. Lowered by $(1 / 5) \Delta_{t}$

Answer: A

3. The crystal field splitting energy for octahedral $\left(\Delta_{0}\right)$ and tetrahedral $\left(\Delta_{t}\right)$ complexes is related as .
A. $\Delta_{t}=\frac{4}{9} \Delta_{0}$
B. $\Delta_{t}=\frac{1}{2} \Delta_{0}$
C. $\Delta_{0}=-2 \Delta_{t}$
D. $\Delta_{0}=-\frac{4}{9} \Delta_{t}$

Answer: A

- Watch Video Solution

4. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (at no. of $\mathrm{Cr}=24$) has a magnetic moment of 3.83B. M. The correct distribution of $3 d$ electrons the chromium of the complex.
A. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{z x}^{1}$
B. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{z 2}^{1}$
C. $3 d^{1}\left(x^{2}-y^{2}\right)^{3 d^{2}}{ }^{1}, 3 d_{x z}^{1}$
D. $3 d_{x y}^{1}, 3 d^{1}\left(x^{2}-y^{2}\right), 3 d^{1} x z$

Answer: A

D Watch Video Solution

5. In which of the following cordination entities, the magnitude of
Δ_{0} [CFSE in octahedral field] will be maximum ?
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
B. $\left[\mathrm{CoF}_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
6. In which of the following configuration will there be the possibillity of both para and diamagnetism depending on the nature of the ligands?
A. d^{3}
B. d^{7}
C. d^{6}
D. d^{5}

Answer: C

7. For Mn^{3+} ion the electron pairing energy P is about $28,000 \mathrm{~cm}^{1-}, \Delta_{0}$ values for the complexes $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$ are $15,800 \mathrm{~cm}^{-1}$ and $38,500 \mathrm{~cm}^{-1}$ respectively which of the following complex is high spin .
A. Both are high spin
B. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[M n(C N)_{6}\right]^{3-}$
D. Noen of these

Answer: B

D Watch Video Solution

8. Which of the following ligands are correctly represented in an
A. a. $S C N^{\Theta}, F^{\Theta}, C N^{\Theta}$
B. b. $S C N^{\Theta}, C N^{\Theta}, F^{\Theta}$
C. c. $F^{\Theta}, S C N^{\Theta}, C N^{\Theta}$
D. d. $F^{\Theta}, C N^{\Theta}, S C N^{\Theta}$

Answer: A

D Watch Video Solution

9. The increasing of the crystal field splitting power of some common ligands is?.
A. $\mathrm{NH}_{3}<\mathrm{NO}_{2}^{\Theta}<\mathrm{CN}^{\Theta}<\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NO}_{2}^{\Theta}<\mathrm{CN}^{\Theta}<\mathrm{NH}_{3}$
C. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NO}_{2}^{\Theta}<\mathrm{CN}^{\Theta}$
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CN}^{\Theta}<\mathrm{NO}_{2}^{\Theta}$

Answer: C

D Watch Video Solution

10. Velence bond theroy describes the bonding in complexs in terms of coordinate -covalent bond resulting from overlap filled ligand orbitals with vacant metal hybrid orbitals This theory explains magnetic behaviour and geometrical shape of coordination compounds Magnetic moment of a complex compound can be determined experimentally and theoretically by using spin only formula

Magnetic moment $\sqrt{n}(n+2) B M$ (where $\mathrm{n}=$ No. unpaired electrons).
The value of of spin only magnetic moment for octahedral complex of the following configuration is $2.84 B M$ The correct statement is
(a) d^{4} (in weak field ligand)
(b) d^{2} (in weak field and in strong field ligand)
(c) d^{3} (in weak field and in strong field ligand)
(d) d^{5} (in strong field ligand).
A. d^{4} (in strong field ligand)
B. d^{2} (in strong field ligand)
C. d^{3} (in weak as well as in strong field ligand)
D. d^{5} (in strong field ligand)

Answer: B

- Watch Video Solution

11. The complex which has no d-electron in the central metal atom is .
A. $\left[\mathrm{MnO}_{4}\right]^{\Theta}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: A

- Watch Video Solution

12. Which of the following statement is correct for the complex $\mathrm{Ca}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{O}_{2}\right]$ having $t_{2 g}^{6}, e_{g}^{0}$ electronic configuration?.
A. $d^{2} s p^{3}$ hybridised and diamagnetic
B. $s p^{3} d^{2}$ hybridised and paramagnetic
C. $s p^{3} d^{2}$ hybridised and diamagnetic
D. $d^{2} s p^{3}$ hybridised and paramagnetic

Answer: D

13. Which of the folliwing complex is inner orbital as well as low spin complex?.
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$
D. $\left[\mathrm{Mn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: B

D Watch Video Solution

14. The magnetic moment of a complex (A) of Co was found to be 4.89BM and the EANas36 co alos forms complex (B) with magnetic moment $3.47 B M$ and $E A N$ as 37 and complex (C) with EAN as $36 b u t$ diamagnetic Which of the following statements is true regarding the above observation?
A. The oxidation states of $C o$ in (A),(B) and (C) are $+3,+2$ and +3 respectively .
B. Complexes (A) and (B) have $s p^{3} d^{2}$ hybridisation state while (C) has $d s p^{3}$ hybrisation state .
C. The spin multiplicities of Co in $(A),(B)$ and (C) are 3,2 and 1,respectively .
D. The oxidation states of $C o$ in $(A),(B)$ and (C) are $+6,+8$ and + 1 respectively .

Answer: A

D Watch Video Solution

15. Spin only magnetic moments of a d^{8} ion in octahedral square planar and tetrahedral complexes, respectively are .
A. $2.8 B M, 0$ and $2.8 B M$
B. 0,0 and $B M$
C. 2.8, 2.8 and $B M$
D. None of these

Answer: A

D Watch Video Solution

Exercises Single Correct (Application Of Coordination Compounds And Miscellaneous)

1. Which of the following is incorrect about Wilkinson s catalyst ? .
A. a)It is a diamagnetic complex
B. b)It is a non-ionic complex
C. c)It is a tetrahedral complex
D. d)It is very effective for selective hydrogenation of organic molecule at room temperature and pressure .

Answer: C

D Watch Video Solution

2. Which bond properties are consistent with one another?

A. Bondorder	Bondlength	Vibrationalequency
higher	shorter	higher
B.Bondorder lower	Bondlength shorter	Vibrationalequency lower
Bondorder	Bondlength	Vibrationalequency
C.		
higher	longer	lower
Bondorder	Bondlength	Vibrationalequency
D.lower	longer	higher

Answer: A

3. Select the correct order of C - O bond order in mixed phosphine carbony1 complex
(I) $\left[\mathrm{Mo}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3}(\mathrm{CO})_{3}\right]$ (II) $\left[\mathrm{Mn}\left(\mathrm{Ph}_{2} \mathrm{PCI}_{3}\right)(\mathrm{CO})_{3}\right]$
$\left[\mathrm{Mo}\left(\mathrm{PhCI}_{2}\right)_{3}(\mathrm{CO})_{3}\right]$.
A. IgtIIgtIII
B. 'IgtIIgtIII'
C. I=IIgtIII
D. IltIIgtIII

Answer: B

4. Compare C - C bond length (x) of $C_{2} H_{4}$ in Zeise 's salt and $C-C$ bond length (y) of $\mathrm{C}_{2}(\mathrm{CN})_{4}$ in $K\left[\mathrm{PtCI}_{3} \mathrm{C}_{2}(\mathrm{CN})_{4}\right]$.
A. $x>y$
B. $y>x$
C. $x=y$
D. None of these

Answer: B

- Watch Video Solution

5. Which of the following organometallic compound is a sigma and pi bonded? .
A. $\left[F e\left(\eta^{5}-C_{5} H_{5}\right)_{2}\right]$
B. $K\left[\operatorname{PtCI}_{3}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$
C. $\left[\mathrm{Co}(\mathrm{CO})_{5} \mathrm{NH}_{3}\right]^{2+}$
D. $\left[\mathrm{Fe}\left(\mathrm{CN}_{3}\right)_{3}\right]$

Answer: C

- Watch Video Solution

6. Which of the following statement(s) is//are true or false?
S_{1} Complexes having d^{0} or d^{10} configuration of metal ions are always diamagnetic
S_{2} In organometallic compounds, carbon is bonded to metals directly
$S_{3} \ln \mathrm{Fe}(\mathrm{CO})_{5}$ the $\mathrm{Fe}-\mathrm{C}$ bond possesses both σ and π characteristics
S_{4} Extra stability of metal carbonyls is explained by synergic bonding
A. TTTT
B. FTFT
C. TTFF
D. FTTT

D Watch Video Solution

7. Which of the following complex can act as an oxidising agent as well as reducing agent?
A. $\mathrm{Mn}(\mathrm{CO})_{5}$
B. $\mathrm{Ti}(\mathrm{CO})_{6}$
C. $\mathrm{Mn}(\mathrm{CO})_{6}$
D. None of these

Answer: D

- Watch Video Solution

8. Which of the following statements is correct for the $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ complex ? .
A. The $E A N$ value of Fe in this complex depends on the charge of NO ligand.
B. The EAN value of Fe in this complex depends on the charge of NO ligand .
C. The hybridisation of the central atom is $d^{2} s p^{3}$.
D. It is paramagnetic with $\mu=1.73 B M$.

Answer: B

(D) Watch Video Solution

9. Which of the following is not considered as an organometallic compounds?.
A. Ferrocene
B. Cis-platin
C. Zeise's salt
D. Grignard reagent

Answer: B

- Watch Video Solution

10. Among the following which is not the pi-bonded organpmetallic compound?.
A. $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~Pb}$
B. $\left[\operatorname{Cr}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right]$
C. $\left[F e\left(\eta^{5}-C_{5} H_{5}\right)_{2}\right]$
D. $K\left[\operatorname{PtCI}_{3}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$

D Watch Video Solution

11. Magnesium is an important component of which biomolecule occuring extensively in living world?
A. Haeomoglobin
B. Chlorophy11
C. Florigen
D. ATP

Answer: B

12. Among the properties (A) reducing (B) oxidising (C) complexing the set of properties shown by $C N^{\Theta}$ ion towards metal species is .
A. Tetrahedral $d_{x^{2}-y^{2}}$
B. Tetrahedral bipyramidal $d_{x^{2}-y^{2}}$
C. Tetrahedral bipyramidal $d_{z 2}$
D. Asquare pyramidal

Answer: C

- Watch Video Solution

13. Among the properties (A) reducing (B) oxidising (C) complexing the set of properties shown by $C N^{\Theta}$ ion towards metal species is .
A. B, C
B. A, B, C
C. C, A
D. A, B

Answer: C

- Watch Video Solution

14. Ferrocene is
A. $\left[\mathrm{Fe}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$
B. $\left[F e\left(\eta^{5}-C_{5} H_{5}\right)_{2}\right]$
C. $\left[F e\left(\eta^{6}-C_{6} H_{5}\right)_{2}\right]$
D. $\left[\mathrm{Fe}\left(\eta^{3}-\mathrm{C}_{3} H_{3}\right)_{2}\right]$

Answer: B

15. Dimethylglyoxime is coordinated to Ni^{2+} through .
A. Two oxgen atoms
B. Two nitrogen atoms
C. Two oxygen and one nitrogen atoms
D. Two oxygen and one nitrogen atoms

Answer: B

D Watch Video Solution

16. in isolated condition $C-C$ bond length of $C_{2} H_{4}$ is x than the bond length ofn $C-C$ bond of $C_{2} H_{4}$ in Zeise 's salt is .
A. Greater thanx
B. Less than x
C. Equal to x
D. None of these

Answer: B

D Watch Video Solution

17. When $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is treated with FeCI_{3} a blue colour is obtained It is due to the formation of .
A. $F e^{I I}\left[F e^{I I I}(C N)_{6}\right]^{\Theta}$
B. $F e^{I I I}\left[F e^{I I}(C N)_{6}\right]^{\Theta}$
C. Both (a) and (b)
D. None of these

Answer: C

18. The common features among the species $\mathrm{CN}^{-}, \mathrm{CO}$ and NO^{+}are :
A. bond order three ans isoelectronic
B. bond order three and weak field ligands
C. isoelectronic and weak field ligands
D. bond order two and pi acceptors.

Answer: A

D Watch Video Solution

19. Consider the follwing complex:

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CO}_{3}\right] \mathrm{BrO}
$$

The coordiantion number, oxidation number, number of d-electrons and number of unpaired d-electrons of the metal are respectively:
A. $6,3,6,0$
B. $7,1,6,4$
C. $7,2,7,1$
D. $6,2,7,3$

Answer: A

D Watch Video Solution

20. The bond length of $C-O$ bond in carbon monoxide is $1.128 A$ The C - O bond in $\left[f e(C O)_{5}\right]$ is .
A. 1.115 A
B. 1.128 A
C. 1.178A
D. 1.150 A
21. The most stable ion is .
A. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
B. $\left[\mathrm{Fe}(\mathrm{Cl})_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Fe}(\mathrm{SCN})_{6}\right]^{3-}$

Answer: A

- Watch Video Solution

22. The number of sigma and π-bonds in $\mathrm{Fe}_{2}(\mathrm{CO})_{9}{ }^{\text {' }}$ respectively are .
A. 22σ and 15π
B. 22σ and 16π
C. 23σ and 15π
D. 15σ and 8π

Answer: A

- Watch Video Solution

23. Ag^{\oplus} forms complexes some of these are
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}, 2\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{\Theta},\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$
Which of the following statements is true? .
A. In these complexes, $A g^{\oplus}$ is a Lewis bese .
B. The hybrisation $A g^{\oplus}$ is $s p^{2}$.
C. The Ag^{\oplus} complexes are good reducing agents.
D. These complexes are all linear .
24. Hardness of water is estimated by simple complex formation titration Complex formed by cation in hard water during estimation of hardness is .
A. $\mathrm{Na} 2\left[\mathrm{Ca}\left(\mathrm{PO}_{3}\right)_{6}\right]$
B. $N a_{2}[M g(E D T A)]$
C. $\left[C a\left(\mathrm{So}_{4}\right)_{2}\right]^{2-}$
D. $\operatorname{Na}[\operatorname{Pb}(E D T A)]$

Answer: B

25. The ligand called pi- acid is .
A. $C O$
B. $\mathrm{C}_{2} \mathrm{O}_{2}^{2-}$
C. NH_{3}
D. ethylene

Answer: A

D Watch Video Solution
26. The complex used as an anticancer agent is
A. $\mathrm{mer}-\left[\mathrm{co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{3}\right]$
B. cis - $\left[\mathrm{PtCI}_{2}\left(\mathrm{NH}_{3}-(2)\right]\right.$
C. $\mathrm{Na}_{2}\left[\mathrm{CoCI}_{4}\right]$
D. cis $-K_{2}\left[\mathrm{Pt}^{\left(\mathrm{CI}_{2} \mathrm{Br}_{2}\right]}\right.$
27. Which is uses in cancer chemotherapy? .
A. cis-platin
B. Zeisse's salt
C. Both(a) and(b)
D. Noe of these

Answer: A

D Watch Video Solution
28. Zeise' s salt is
A. $C r\left(\eta^{6}-C_{6} H_{6}\right)_{2}$
B. $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$
C. $K\left[P t\left(\eta^{2}-C_{2} H_{4}\right) C I_{3}\right]$
D. $K\left[P t\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{CI}_{2}\right]$

Answer: C

- Watch Video Solution

29. cis-diamminedichlorichloridoplatinum(II), $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{2}\right]$, is

One of the number of platinum coordination compound is used in the treatment of cancer. Commonly known as cis-platin, this compound has the abillity to block the uncontrolled division of cancerous cells that results in the growth of tumours. Recent studies show that cisplatin can cause serious side effects including severe kidney damage. cis-platin is replaced by which of the following

compounds

$\left[\begin{array}{l}\mathrm{H}_{3} \mathrm{~N} \\ \mathrm{H}_{3} \mathrm{~N}\end{array}>\mathrm{Pt}<\begin{array}{c}\mathrm{Cl} \\ \mathrm{Cl}\end{array}\right]$

A.

B.

C.

$$
\text { c. }\left[\begin{array}{l}
\mathrm{H}_{3} \mathrm{~N} \\
\mathrm{H}_{3} \mathrm{~N}
\end{array}>\mathrm{Pt}<\begin{array}{l}
\mathrm{Cl} \\
\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-\mathrm{H}_{2} \mathrm{~N}
\end{array}>\mathrm{Pt}_{3} \mathrm{~N}<\mathrm{NH}_{3}\right]
$$

D. None of the above is correct

Answer: A

1. Assertion: All square planar complexes can exhibit geometrical isomerism

Reason: In square planar complexes .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is not the correct explanation of (A).
C. If(A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

D Watch Video Solution

2. Assertion Metal carbonyls can be called organometallics

Reason Metal carbonyls do contain metal carbon bond.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: D

- Watch Video Solution

3. Assertion A sulphate ion is a biden tate ligand and can also act as monodentate in cartain complexes

Reason Many a times multidentate ligands do have flexidentate character .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: A

D Watch Video Solution

4. Assertion: Optical isomerism is not shown by square planar complexes.

Reason :Square planar complexes do not possess chiral structures.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is not the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: A

D Watch Video Solution

5. Assertion In aqueous solution Mohr's salt gives $\mathrm{NH}_{4}^{\oplus} \mathrm{Fe}^{2+}$ and SO_{4}^{2-} ions

Reason Mohr's salt is a double salt .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: A

- Watch Video Solution

6. Assertion Coordination compounds are generally formed by transition metals

Reason Transition metals generally have partly filled d-orbitals of the nth shell.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If(A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: C

D Watch Video Solution

7. Assertion Chelates are relatively more stable than non-cheltated complexes

Reason Complexes containing ligands which can be easily replaced by other ligands are called labile complexes.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

D Watch Video Solution

8. Assertion The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{3}\right]$ gives no precipitate with AgNO_{3} solution

Reason The given complex is non-ionisable .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: A

9. Ethylenediaminetraac etate ion froms an octo hedral complex with be metal ion

Reason It has six donor atoms which coordinate simultaneously to the metal ion .
A. If both (A) and
(R) are correct and
(R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If(A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: A

10. Assertion The $\left[\mathrm{Ni}(e n)_{3}\right] \mathrm{CI}_{2}$ (en $=$ ethylenediamine has lower stability than $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{CI}_{2}$
Reason In $\left[\mathrm{Ni}(e n)_{3}\right] \mathrm{CI}_{2}$ the geometry of Ni is trigonal bipyramidal .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

D Watch Video Solution

11. Assertion NF_{3} is weaker ligands than $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$

Reason $N F_{3}$ ionises to give F^{Θ} ions in aqueous solution.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: C

D Watch Video Solution

12. Assertion The total number of isomers shown by $\left[\mathrm{Co}(e n)_{2} \mathrm{CI}_{2}\right]^{\oplus}$ complex ion is three
$\left[\mathrm{Co}(e n)_{2} \mathrm{CI}_{2}\right]^{2+}$ complex ion has an octahedral geometry.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If(A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: B

- Watch Video Solution

13. Assertion The ligands nitro and nitrito are called ambidenatate Reason These ligands give likage isomers .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: A

- Watch Video Solution

14. Assertion Number of unpaired electrons present in
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)(2)\right]^{\oplus}$ complex is zero
Reason The complex is linear with sp-hybrisation .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

- Watch Video Solution

15. Assertion Glycinate ion is an example of monodentate ligand

Reason It contains N as the only donor atom.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .
16. Assertion The number of unpaired electrons in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is zero Reason In this compounds 4 s -electrons of Ni atom enter the inner d orbitals to facilitate the $s p^{3}$ hybridisation in Ni atom.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: A

(D) Watch Video Solution

17. Assertion $\mathrm{Ni}(\mathrm{CO})_{4}$ is tetrahedral in shape

Reason Ni atom is in zero oxidation state and undergoes $s p^{3}$ -
hybridisation in $\mathrm{Ni}(\mathrm{CO})_{4}$.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: A

- Watch Video Solution

18. Assertion $\left[M(\forall)_{3}\right]^{n \pm}$ is optically inactive

Reason Plane of symmetry and center of symmetry are not present.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: D

- Watch Video Solution

19. Assertion The d_{C-O} in bridging carbonyl geroup is longer than that of terminal carbonyl group

Reason With increase in extent of synergic bonding the $C-O$ bond length increases .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: A

- Watch Video Solution

20. Assertion A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green but a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2+}$ is colourless

Reason $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2+}$ is square planar complex .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: B

- Watch Video Solution

21.

Δ_{0}
increases
in
the
order
of
$\left[\mathrm{CrCI}_{6}\right]^{3-}<\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
reason The stronger the ligand field the higher will be Δ_{0} value .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: D

- Watch Video Solution

22. Assertion Hybridisation of $\left[A u C I_{4}\right]^{\Theta}$ is $s p^{3}$

Reason Hybridisation of Au in above complex compound does not depend upon the nature of ligand.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If(A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: D

- Watch Video Solution

23. Assertion $N O^{\oplus}$ has a lower pi accepting tendency than the $C O$ Reason No donates 3 electrons into the vacant orbital of metal cation or atom .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: D

D Watch Video Solution

24. Assertion Complexes containing three bidentate ligands do not show optical activity

Reason Octahedral complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] C I$ shows geometrical isomerism.
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If (A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

Answer: D

D Watch Video Solution

25. AssertionCu ${ }^{\oplus}$ ion is unstable in aqueous solution, whereas Fe^{2+} ion is stable
$C u^{\oplus}$ disproportionate in aqueous solution .
A. If both (A) and (R) are correct and (R) is the correct explanation of (A).
B. If both (A) and (R) are correct and (R) is the correct explanation of (A).
C. If(A) is correct, but (R) is incorrect .
D. Both (A) and (R) are incorrect .

- Watch Video Solution

Exercises Integer (Naming And Terminology)

1. Give the number of ligand(s) in which donor atoms is only $\mathrm{NNH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{\Theta}$, en, dinen, Py, EDTA ,ph .

- Watch Video Solution

2. Give number of non-classical ligands which are negative ligands
$C N^{\Theta}, S_{2} O_{3}^{2-}, C_{3} H_{5}^{\Theta}, C_{5} H_{5}^{\Theta}$.

Watch Video Solution
3. Give the number of ligand which are monodentate as well as ambidentate
$\mathrm{C}_{3}^{2-}, \mathrm{CH}_{3} \mathrm{COO}^{\Theta}, X^{\Theta}, \mathrm{H}^{\Theta}, \mathrm{SO}_{4}^{2-}$.

- Watch Video Solution

4. Give the number of ligands which are monodentate as well as ambidentate
$\stackrel{\Theta}{C N}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}, \mathrm{S}_{2}^{2-}, \mathrm{NO}_{2}^{\Theta}, \stackrel{\Theta}{O C N}, \mathrm{SCN}^{\Theta}$.

(D) Watch Video Solution

5. Give the number of strong field ligand(s) from the following
NH_{3}, en, $\mathrm{CI}^{\Theta}, \mathrm{CH}_{3} \mathrm{COO}^{\Theta}, \stackrel{\Theta}{\mathrm{CN}}, \mathrm{CO}, \mathrm{NO}_{2}^{\Theta}$.
6. Give the number of weak filed ligand (s) from the following
Θ
$S^{2}, O H, C I^{\Theta}, H_{2} \Theta, N O_{3} \Theta .$.

D Watch Video Solution

7. The sum of primary and secondary valencies of chromium in the complex $\mathrm{CrBr}_{3} .6 \mathrm{NH}_{3}$ is .

- Watch Video Solution

8. Find the number of ligand (s) which is//are polydentate ligand en, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ acac, $D M G$ gly,ph .

- Watch Video Solution

9. Find the number of ligand (s) which is//are polydentate ligand en, dmgdienEDTA'.

D Watch Video Solution

10. How many corrdinated water molecule(s) is//are present in brown ring complex?.

D Watch Video Solution

11. Sodium nitroprusside is used to test S^{2-} ion How many $C N^{\Theta}$ ion acts as ligand in the compound .

- Watch Video Solution

12. Give the number of ligand(s) which is//are non-classical ligand
$S^{\Theta} \mathrm{CN}, \stackrel{\Theta}{\mathrm{OCN}}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}, \mathrm{S}^{2-}$.

D Watch Video Solution

13. Give the number of ligand(s) which is//are non-classical ligand $\mathrm{CO}, \mathrm{NO}, \mathrm{c}_{2} \mathrm{H}-(4), \mathrm{C}_{3} \mathrm{H}_{5} \Theta, H^{\Theta}$.

D Watch Video Solution

14. Give the number of ligand(s) which are non-classical ligand $\mathrm{CO}, \mathrm{NO}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{3} \mathrm{H}_{5} \Theta, H^{\Theta}$.
15. Give the number of ligand(s) which is/are non-classical ligand an π donor as well as pi acceptor ligand $C O, P H_{3}, P F_{3}, C_{3} H_{5}^{\Theta}, C_{5} H_{5} \Theta$.

D Watch Video Solution

16. What are the values of m and n in the anionic species $\left[V(C O)_{m}\right]^{n-}$ if it is fllowing Sidwick EAN rule and having octahedral shape? .

D Watch Video Solution

Exercises Integer (Isomerism)

1. Give the total number of possible isomers of $\left[\mathrm{ZnBr}_{2} F_{2}\right]^{2-}$.
2. Give the number of pair enantiomer of $\left[M a_{2} b_{2} c d\right]$.

D Watch Video Solution

3. Give the total number of isomer of $\left[\mathrm{Be}(\mathrm{gly})_{2}\right]$

D Watch Video Solution

4. How many pairs of enantiomers are possible for $[M(A A)(B C) d e]$? .

D Watch Video Solution

5. Find the number of geometrical isomers in $\left[\mathrm{Co}(\mathrm{en})(\mathrm{Pn})\left(\mathrm{NO}_{2}\right)_{2}\right]$ $\left[\mathrm{Co}(\mathrm{en})(\mathrm{Pn})\left(\mathrm{NO}_{2}\right)_{2}\right]$.

D Watch Video Solution

6. Write the sum of geometrical isomers in
$\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}\left(\mathrm{CN}_{3}\right)-\mathrm{COO}\right)_{2}{ }^{\ominus}\right]$ complex and stereoisomers of
$\left[\mathrm{Pt}(\mathrm{gly})_{3}\right]^{\oplus}$ complex .

D Watch Video Solution

7. Write the sum of geometrical isomers in $\left[\mathrm{Ma}_{2} \mathrm{~b}_{2} \mathrm{C}_{2}\right]$ complex and stereoisomers in $\left[M(A B)_{3}\right]$ complex .
8. Give the ration of geometrical isomers in $\left[M(A A)_{2} b_{2}\right]$ and optical isomers of $\left[M(A A)_{3}\right]$.

D Watch Video Solution

9. Give the number of geometrical isomers in $\left[\mathrm{Pt}(\mathrm{gly})_{2}\right]$.

D Watch Video Solution

10. Give the total number of possible isomers of $\left[\mathrm{Co1}_{2}(\mathrm{CN})\left(\mathrm{NH}_{3}\right) \mathrm{en}\right]$.
11. Give the number of possibel isomers of
$\left[\mathrm{CrCI}_{2} e n_{2}\right]^{\oplus}$.

(D) Watch Video Solution

12. Give the total number of possible structural isomers of the compound $(\mathrm{CU})\left(\mathrm{NH}_{3}\right)_{4}\left[\begin{array}{c}\mathrm{II} \\ \mathrm{Pt1}\end{array}\right]$.

- Watch Video Solution

13. Give the number of total possible ionisation isomers in $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{Br}_{2}$.
14. Give the number of total possible ionisation isomers in $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{Br}_{2}$.

D Watch Video Solution

15. Give the ratio of trans- isomers is $\left[M\left(A a b_{2} c_{2}\right](\mathrm{A})\right.$ and $\left[M a_{4} b_{2}\right](B)$ respectively.

D Watch Video Solution

Exercises Integer (Hybridisation , Vbt , Cft And Application)

1. In hexacyanidomanganate(II) ion the Mn atom assumes $d^{2} s p^{3}$ hybrid sates. Then the number of unpaired electrons in the complex is .
2. Give the number of unpaired electron(s) in the complex ion $\left[\mathrm{CoCI}_{6}\right]^{3-}$.

Watch Video Solution

3. Predict the number of unpaired electrons in a tetrahedral d^{6} ion and in a square planar d^{7} ion.

- Watch Video Solution

4. Give the number of unpaired electron present in the d-orbitals (whose lobes are present along the axis) for the complex $\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-}$.
5. Give the number of $3 d$ electrons occupied in $t_{2 g}$ orbitals of hydrated Cr^{3+} ion (octahedral).

- Watch Video Solution

6. How many unpaired electrons are present in e_{g} orbital of $\mathrm{MnO}_{4} \Theta$.

D Watch Video Solution

7. How many electrons are present in $d_{z 2}$ orbital of $\left[\mathrm{Ni}(\mathrm{gly})_{2}\right]$? .

D Watch Video Solution

8. Give the total number of $t_{2 g}$ and e_{g} electrons in $\left[\mathrm{NiF}_{6}\right]^{2-}$.
9. How many electrons are present in d-orbitals which are present along the axis in $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$?.

D Watch Video Solution

10. If Hund' s rule is violated then how many unpaired electrons are present In $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ complexion ? .

D Watch Video Solution

11. Give the number of unpaired electrons in $t_{2 g}$ set of d-orbitals in $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{~F}_{3}\right]$ complex .
12. How many maximum atom (s)is//are are present in same plane of $\operatorname{Cr}(\mathrm{CO})_{6}$?.

- Watch Video Solution

13. Find out the number of hydrogen bonds present in the structure of the nickel dimethylglyoxime complex .

- Watch Video Solution

Exercises Fill The Blanks

1. In a coordination complex the negative groups or neutral molecules attached to the central atoms are termed as \qquad .
2. According to Werner' s coordination theory, there are two kinds of valence primary or \qquad and secondary or \qquad The former type of valency is \qquad while the latter type is \qquad .

- Watch Video Solution

3. A ligand is termed as monodentate, didentate etc, depending upon the \qquad present in it .

D Watch Video Solution

4. The number of ligands attached to the central atom is termed the of the central atom .

- Watch Video Solution

5. The total number of electrons on the central atom including those gained by bonding is called the \qquad abbreviated as \qquad .

D Watch Video Solution

6. Coordination isomerism occurs when both cation and anion are \qquad .

D Watch Video Solution

7. The magnitude of stability constant gives an indication of the stability of \qquad in \qquad .

D Watch Video Solution

8. Under the influence of strong the ligands the electrons can be forced \qquad against the \qquad rule of \qquad .

- Watch Video Solution

9. $d_{x 2}, d_{y z}$ and $d_{z x}$ orbitals have \qquad energies and are collectively termed \qquad or \qquad or \qquad orbitals.

D Watch Video Solution

10. $d_{x y}, d_{y z}$ and $d_{z x}$ orbitals have___ energies and are collectively termed \qquad or \qquad orbitals.
11. Organometallic compounds are those compounds which contain one or more \qquad .

D Watch Video Solution

12. $d^{2} s p^{3}$ hybridisation of the central atom gives the \qquad orbital complex while $s p^{3} d^{2}$ hybridisation gives the \qquad orbital complex.

D Watch Video Solution

13. Wilkinson's catalyst, unsed as a catalyst in the hydrogenation of alkene is \qquad and is an example of \qquad catalysis .
14. Recently the platinum complex known as cisplatin has been found in the treatment of \qquad and is represented as \qquad .

- Watch Video Solution

15. Ziegker-Natta catalyst, used as a catalyst for the low temperature polmerisation al alkene is an example of \qquad catalysis and is represented as \qquad .

D Watch Video Solution

16. Zeisse's-salt Ferrocene and Dibenzene chromium are the example of _______bonded organometallic compounds and are called \qquad
17. Calcium dihydrogen salt of EDTA is used as an antidote for the poisoning of \qquad .

D Watch Video Solution

18. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ shown isomerism.

- Watch Video Solution

19. According to valence bond theory the geometry of $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is \qquad .
20. $K_{4} \mathrm{Fe}(\mathrm{CO})_{6}$ is considered to a be a complex but potash alum is____and bleaching powder is \qquad .

- Watch Video Solution

21. Grignard reagent is a \qquad organometaollic compound.

D Watch Video Solution

22. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is diamagnetic while $\left[\mathrm{CoF}_{6}\right]^{3-}$ is \qquad

- Watch Video Solution

23. $[\text { ptabcd }]^{n \pm}$ has \qquad shape and has geometrical isomers .
24. Geomerical isomerism is not observed in complexes of coordination number 4 of geometry .

D Watch Video Solution

25. Trans form of $\left[M(\forall)_{2} a_{2}\right]^{n+}$ complex does not show isomerism .

D Watch Video Solution

26. Dimethylglyoxime is used from the gravimetic estimation of _____ion.

D Watch Video Solution
27. EDTA is used as a complexing agent in \qquad estimation of metal ions like $\mathrm{Ca}^{2+}, \mathrm{M}^{2+}$ and Zn^{2+} ions.

(D) Watch Video Solution

28. Potassium hexanitrocobaltate III $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$ is called \qquad

- Watch Video Solution

29. Haemoglobin is a complex of \qquad chlorophyll is a complex of \qquad and vitamin B_{12} is a complex of \qquad .

- Watch Video Solution

30. Organo arsenic compounds are used ar remedy for \qquad .
31. is used to prevent the infection of young plants.

- Watch Video Solution

32. \qquad is an important anti knock compound added to petrol used in internal combustion engines .

D Watch Video Solution

Exercises True/False

1. A biodentate ligand has 3 coordination sites .
2. Tetrahedral complex cannot show geometrical isomerism .

(D) Watch Video Solution

3. Coordination number and oxidation state of a metal means the same thing.

(D) Watch Video Solution

4. Coordination compounds are mainly known for transition metals .

D Watch Video Solution

5. Ambidentate ligands can show linkage isomerism .
6. $\mathrm{Fe}(\mathrm{CO})_{5}$ has htrigonal bipyramidal geometry .

D Watch Video Solution

7. Valence bond theory explains the geometry and magnetic nature of the coordination compounds .

D Watch Video Solution

8. Valence bond theory explains the colour of the coordination compounds.

D Watch Video Solution

9. Stability of coordination compounds increases with increase in charge density of the metal ions .
10. $\left[\mathrm{NiCI}_{4}\right]^{2-}$ is diamagnetic in nature .

- Watch Video Solution

11. The pair $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{CI}_{3}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}_{2}\right] \mathrm{CI}$. $\mathrm{H}_{2} \mathrm{O}$ shows ionisation isomerism .

- Watch Video Solution

12. EAN rule is followed by $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ complex .

Watch Video Solution
13. $\mathrm{A1}_{2}\left(\mathrm{CH}_{3}\right)_{6}$ is a dimeric compound and has a structure similar to diborane.

(D) Watch Video Solution

14. Carbonyls are organometallic compounds .

D Watch Video Solution

Archives (Linked Comprehension)

1. The coordination number of Ni^{2+} is 4
$\mathrm{NiCI}_{2}+K C N$ (excess)rarrA (cyano complex)
$\mathrm{NiCI}_{2}+$ conc. HCI (excess) rarr B (Chloro complex)
The IUPAC name of A and B are .
A. potassium
B. tetracyanopotassiumnickelate(II)tetrrachloropotassiumnickelate(II)
C. tetracyanonickel(II) tetrachloronickel(II)
D. potassium tetracyanonickel(II),tetracholoronickel(II) .

Answer: a

D Watch Video Solution

2. The coordination number of Ni^{2+} is 4
$\mathrm{NiCI}_{2}+\mathrm{KCN}$ (excess)rarrA (cyano complex)
Predict the magnetic nature of A and B.
A. Both are diamagnetic .
B. A is diamagnetic and B is paramagnetic with one unpaired electron .
C. A is diamagnetic and B is paramagnetic with two unpaired electrons .
D. Both are paramagnetic .

Answer: b

- Watch Video Solution

3. The coordination number of Ni^{2+} is 4
$\mathrm{NiCI}_{2}+\mathrm{KCN}$ (excess)rarrA (cyano complex)
The hybridisation of A and B are.
A. $d s p^{2}, s p^{3}$
B. $s p^{3}, s p^{3}$
C. $d s p^{2}, d s p^{2}$
D. $s p^{3}, d^{2}, d^{2} s p^{3}$.

Answer: a

(D) Watch Video Solution

4. An aqueous solution of metal ion MI reacts separately with reagents Q and R in excess to give tetrahedral and square planar complexes, respectively An aqueous solution of another metal ion M2 always forms tetrahedral complexs with theses reagents. Aqueous solution of $M 2$ on reaction with reagent S gives white precipitate which dissolves in excess of S The reactions are summarised in the scheme given below: SCHEME :

Tetrahedral $\underset{\text { excess }}{\stackrel{Q}{Q}} \mathbf{M 1} \xrightarrow[\text { excess }]{\mathrm{R}}$ Square Planar
Tetrahedrall $\underset{\text { excess }}{\mathrm{Q}} \mathbf{M 2} \underset{\substack{\text { excess } \\ \text { S stoichiometric amount }}}{\mathrm{R}}$ Tetrahedral
White precipitate $\underset{\text { excess }}{\text { s }}$ precipitate dissolves
A. $\mathrm{Zn}^{2+}, K C N$ and $H C I$.
B. $\mathrm{Ni}^{2+}, \mathrm{HCI}$ and KCN .
C. $\mathrm{Cd}^{2+}, \mathrm{KCN}$ and HCI
D. $\mathrm{Co}^{2+}, \mathrm{HCI}$ and KCN

Answer: b

- Watch Video Solution

5. An aqueous solution of metal ion MI reacts separately with reagents Q and R in excess to give tetrahedral and square planar complexes, respectively An aqueous solution of another metal ion M2 always forms tetrahedral complexs with theses reagents. Aqueous solution of $M 2$ on reaction with reagent S gives white precipitate which dissolves in excess of S The reactions are
summarised in the scheme given below: SCHEME :
Tetrahedral $\underset{\text { excess }}{\stackrel{Q}{4}}$ M1 $\underset{\text { excess }}{\stackrel{R}{\longrightarrow}}$ Square Planar
Tetrahedral $\underset{\text { excess }}{\stackrel{Q}{M}} \underset{\substack{\text { excess }}}{\mathrm{R}}$ Tetrahedral
White precipitate $\xrightarrow[\text { excess }]{\text { S }}$ precipitate dissolves
A. $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
B. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
C. $\mathrm{K}_{2} \mathrm{CrO}_{4}$
D. KOH

Answer: Double salt

D Watch Video Solution

Archives Multiple Correct

1. The pair of coordination complexes//ion exhibiting the same kind of isomerism is (are).
A. a. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
B. b. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{\oplus}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{\oplus}$
C. c. $\left[\mathrm{CoBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ and $\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$
D. d. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{Cl}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Br}$

Answer: b,d

D Watch Video Solution

Archives Single Correct

1. Among ni(CO) $)_{4},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and NiCl_{4}^{2-}.
A. $n i(\mathrm{CO})_{4}$ and NiCI_{4}^{2-} are diamagnetic and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is paramagnetic.
B. NiCI_{4}^{2-} and $\left[\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\right.$ are diamagnetic and $\mathrm{Ni}(\mathrm{CO})_{4}$ is paramagnetic.
C. NiCI_{4}^{2-} and $\left[\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\right.$ are diamagnetic and $\left[\mathrm{Ni}(\mathrm{CO})_{4}^{2-}\right.$ is paramagnetic.
D. $\mathrm{Ni}(\mathrm{CO})_{4}$ is diamagnetic and NiCl_{4}^{2-} and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are paramagnetic.

Answer: c

(D) Watch Video Solution

2. Among the following ions which has the highest paramagntism?.
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: b

D Watch Video Solution

3. Which of the following is formed when excess of KCN is added to an aqueous solution of copper sulphate?
A. $\mathrm{Cu}(\mathrm{CN})_{2}$
B. $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
C. $K\left[\mathrm{Cu}(\mathrm{CN})_{2}\right]$
D. $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
4. The geometries of $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{CI}_{2}$ are.
A. Both square planar
B. Tetrahedral and square planar,respectively
C. Both tetrahedral
D. Square planar and tetrahedral,respectively

Answer: c

D Watch Video Solution

5. Among the following identify the species with an atom in +6 oxidation state: .
A. $\mathrm{MnO}_{4}^{\Theta}$
B. $\mathrm{Cr}(\mathrm{CN})_{6}^{3-}$
C. $N i F_{6}^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{CI}_{2}$

Answer: Double salt

- Watch Video Solution

6. The complex which has no d-electron in the central metal atom is .
A. $\left[\mathrm{MnO}_{4}\right]^{\Theta}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: a
7. The pair of compounds having metals in their highest oxidation state is .
A. $\mathrm{MnO}_{2}, \mathrm{FeCI}_{3}$
B. $\left[\mathrm{MnO}_{4}\right]^{\Theta}, \mathrm{CrO}_{2} \mathrm{CI}_{2}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{NiCI}_{4}\right]^{2-},\left[\mathrm{CoCI}_{4}\right]^{\Theta}$

Answer: b

- Watch Video Solution

8. The compound having a tetrahedral geometry is .
A. $\left[N i\left(C N_{4}\right)\right]^{2-}$
B. $\left[\operatorname{Pd}(C N)_{4}\right]^{2-}$
C. $\left[P d C I_{4}\right]^{2-}$
D. $\left[\mathrm{NiCI}_{4}\right]^{2-}$

Answer: Double salt

- Watch Video Solution

9. The spin magnetic moment of cobalt in the compound $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$ is
A. $\sqrt{3}$
B. $\sqrt{15}$
C. $\sqrt{24}$
D. $\sqrt{8}$

Answer: b
10. Which kind of isomerism is exhibited by octahedral $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2} \mathrm{CI}$? .
A. geometrical and ionisation
B. geometrical and optical
C. optical and ionisation
D. geometrical only

Answer: a

- Watch Video Solution

11. The bond length of $C-O$ bond in carbon monoxide is $1.128 A$ The C - O bond length in $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ is .
A. 1.15A
B. 1.128 A
C. 1.13A
D. 1.118 A

Answer: c

D Watch Video Solution

12. Among the following metal carbonyls the $C-O$ bond order is lowest in .
A. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{\oplus}$
B. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
C. $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
D. $\left[V(C O)_{6}\right]^{\Theta}$

Watch Video Solution

13. Both $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic The hybridisations of nickel in these complexes, respectively are :
A. $s p^{3}, s p^{3}$
B. $s p^{3}, d s p^{2}$
C. $d s p^{2}, s p^{3}$
D. $d s p^{2}, d s p^{2}$

Answer: b

D Watch Video Solution

14. The IUPAC name of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{NiCI}_{4}\right]$ is.
A. tetrachloronickel (II)-tetraaminenickel(II)
B. tetrachloronickel (II)-tetraaminenickel(II)
C. tetrachloronickel (II)-tetraaminenickel(II)
D. tetrachloronickel (II)-tetraaminenickel(II)

Answer: c

- Watch Video Solution

15. Among the following the coloured compound is .
A. CuCI
B. $K_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
C. CuF_{2}
D. $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{BF}_{4}$

Answer: c

16. The correct structure of ethylenediamineteraacetic acid (EDTA) is
A.

B.

C.

D.

Answer: c

(Watch Video Solution

17. The ionisation isomer of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}\left(\mathrm{NO}_{2}\right)\right] \mathrm{CI}$ is .
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{O}_{2} \mathrm{~N}\right)\right] \mathrm{CI}_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}_{2}\right]\left(\mathrm{NO}_{2}\right.$
c. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}(\mathrm{ONO})\right] C I$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{CI}_{2}\left(\mathrm{NO}_{2}\right)\right] \mathrm{H}_{2} \mathrm{O}$

Answer: b

D Watch Video Solution

18. The complex showing a spin -magnetic momnet of $2.82 B M$ is .
A. $\mathrm{Ni}(\mathrm{CO})_{4}$
B. $\left[\mathrm{NiCI}_{4}\right]^{2-}$
C. $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{4}$
D. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

Answer: d
19. Geometrical shapes of the complews formed by the reaction of Ni^{2+} with $\mathrm{CI}^{\Theta}, \mathrm{CN}^{\Theta}$ and $\mathrm{H}_{2} \mathrm{O}$ respectively, are.
A. Octahedral tetrahedral and square planar
B. Tetrahedral,square planar and octahedral
C. Square planar,tetrahedral,octahedral
D. Octahedral,square palnar and octahedral

Answer: b

- Watch Video Solution

20. Among the following complexes ($K-P$)
$K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\mathrm{K}),\left[\mathrm{Co}\left(\mathrm{Nh}_{3}\right)_{6}\right] \mathrm{CI}_{3}(\mathrm{~L})$
$\mathrm{Na}_{3}\left[\mathrm{Co}(\otimes \text { alate })_{3}\right](\mathrm{M}),\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{CI}_{2}(\mathrm{~N})$
$\left[\mathrm{Pt}(\mathrm{CN})_{4}\right](\mathrm{O})$ and $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3-}\right.\right.$ (2)(P)
The diamagnetic are .
A. K, L, M, N
B. K, M, O, P
C. L, M, O, P
D. L, M, N, O

Answer: c

D Watch Video Solution

21. As per IUPAC nomenclature, the name of complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{CI}_{3}$ is.
A. Tetaaquadiaminecobalt(III) chloride .
B. Tetaaquadiaminecobalt(III) chloride .
C. Tetaaquadiaminecobalt(III) chloride .
D. Tetaaquadiaminecobalt(III) chloride .

Answer: d

D Watch Video Solution

22. The colour of light absobed by an aqueous solution of CuSO_{4} is
A. orange-red
B. blue-green
C. yellow
D. violet

Answer: a

23. $\left[\mathrm{NiCI}_{2}\left\{P\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}_{2}\right]$ exhibits temperature dependent magnetic behaviour(paramagnetic//diamagnetic) The coordination geometries of Ni^{2+} in the paramagnetic and diamagnetic states are respectively .
A. Tetrahedral and tetrahedral
B. Square planar and square planar
C. Tetrahedral and square planar
D. Square planar and tetrahedral

Answer: c

(D) Watch Video Solution

24. Which of the following complex species is not expected to exhibit optical isomerism?
A. $\left[\mathrm{Co}(e n)_{2} C I_{2}\right]^{\oplus}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{3}\right]$
C. $\left[\mathrm{Co}(\right.$ en $\left.)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{CI}_{2}\right] \oplus$
D. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$

Answer: b

D Watch Video Solution

25. Consider the follwing complexes ion P, Q and R
$P=\left[\mathrm{FeF}_{6}\right]^{3-}, Q=\left[V\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\mathrm{R}=\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
The correct order of the complex ions, according to their spin only magnetic moment values (inBM) is .
A. $R<Q>R$
B. $Q<R<P$
C. $R<P<Q$
D. $Q<P<R$

Answer: b

(D) Watch Video Solution

26. An excess of AgNO_{3} is added to 100 mL of a 0.01 M solution of dichlorotetraaquachromium(III) chloride The number of moles of AgCI precipitated would be .
A. 0.003
B. 0.01
C. 0.0001
D. 0.002

Answer: c
27. The octahedral complex of a metal ion M^{3+} with four monodentate ligands L_{1}, L_{2}, L_{3} and L_{4} absorb wavelengths in the region of red,green, yellow and bule, respectively The increasing order of ligand strengh of the four ligands is
A. $L_{3}<L_{2}<L_{4}<L_{1}$
B. $L_{1}<L_{2}<L_{4}<L_{3}$
C. $L_{4}<L_{3}<L_{2}<L_{1}$
D. $L_{1}<L_{3}<L_{2}<L_{4}$

Answer: d

- Watch Video Solution

28. The equation which is balanced and represents the correct product(s) is .
A. $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+(E D T A)^{4-} \xrightarrow{\text { ExcessNaOH }}[\mathrm{Mg}(\text { EDTA })]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CuSO}_{4}+4 \mathrm{KCN} \rightarrow \mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]+\mathrm{K}_{2} \mathrm{SO}_{4}$
C. $\mathrm{Li}_{2} \mathrm{O}+2 \mathrm{KCI} \rightarrow 2 \mathrm{LiCI}+\mathrm{K}_{2} \mathrm{O}$
D. $\left[\mathrm{CuCI}\left(\mathrm{NH}_{3}\right)_{5}\right]^{\oplus}+5 \mathrm{H}^{\oplus} \rightarrow \mathrm{Co}^{2+}+5 \mathrm{NH}_{4}^{\oplus}+\mathrm{CI}^{\Theta}$

Answer: d

D Watch Video Solution

Archives Assertion Reasoning

1. Statement I $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}^{\mathrm{SO}} \mathrm{SO}_{4}\right.$ is paramagnetic

Statement II The Fe in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ has three unpaired
electrons.
A. Stament I is true, Statement II is also true Statement II is a correct explanation for Statement I.
B. Statement I is true Statement II is false.
C. Statement I is false, Statement II is true .
D.

Answer: a

- Watch Video Solution

2. Statement-1: The geometrical isomers of the complex $\left[M\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ are optically inactive.

Statement-2: Both geometrical isomers of the complex
$\left[M\left[\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ possess axis of symmetry.
A. Stament I is true, Statement II is also true Statement II is a correct explanation for Statement I .
B. Statement I is true Statement II is false.
C. Statement I is false, Statement II is true .
D. Stament I is true, Statement II is also true Statement II is not a correct explanation for Statement I.

Answer: a

D Watch Video Solution

Archives Integer

1. The volume (in $m L$) of $0.1 \mathrm{MAgNO}_{3}$ required for complete precipitation of chloride ions present in 30 mL of 0.01 M solution of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$, as silver chloride is close to:
2. $E D T A^{4-}$ i9s ethylenediamine tetraacetate ion The total number of $N-C O-O$ bond angles in $[\operatorname{Co}(E D T A)]^{-1}$ complex ion is .

D Watch Video Solution

Archives Fill The Blanks

1. AgCI dissolves in excess of $K C N$ solution to give the \qquad complex compound.

D Watch Video Solution

2. The type of magnetism exhibited by $\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion is \qquad
3. The IUPAC name of $\left[\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{6}\right] C I_{3}$ is \qquad

D Watch Video Solution

Archives True/False

1. Both potassium ferrocyanide and potassium ferricyanide are diamagnetic.

- Watch Video Solution

Archives Subjective

1. Write the balanced chemical equations for the following
"Potassium ferricyanide reacts with hydrogen peroxide in basic

D Watch Video Solution

2. Give reasons in two or three sentences only for the following "The species $\left[\mathrm{CuCI}_{4}\right]^{2-}$ exitsts, while $\left[\mathrm{CuI}_{4}\right]^{2-}$ does not" .

D Watch Video Solution

3. The acidic aqueous solution of ferrous ion forms a brown complex in the presence of NO_{3}^{Θ} by the follwing two steps:

$$
\begin{aligned}
& {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO}_{3}^{\Theta}+\mathrm{H}^{\oplus} \rightarrow \ldots+\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O}} \\
& {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\ldots \rightarrow \ldots+\mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

Complete and balance the equations .
4. Identify the complex which are expected to be coloured Explain
(a) $\left[\mathrm{Ti}\left(\mathrm{NO}_{3}\right)_{4}\right]$
(b) $\left[\mathrm{Cu}\left(\mathrm{NCH}_{3}\right)\right]{ }^{\oplus} B F_{4}^{\Theta}$
(c) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 3 \mathrm{CI}{ }^{\Theta}$
(d) $K_{3}\left[V F_{6}\right]$.

- Watch Video Solution

5. Write the IUPAC name for the following compounds
(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right] \mathrm{Cl}_{2}$
(b) $K_{3}\left[\operatorname{Cr}(C N)_{6}\right]$.

D Watch Video Solution

6. Write the IUPAC name for $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CO}_{3}\right] \mathrm{CI}$.
7. Write a balanced equation for the reaction of argentite with $K C N$ and name the products in the solution .

D Watch Video Solution

8. Write the formulae of the following complexes
(a) Pentamminechlorocobalt(III) ion
(b) Lithiumtetrahydridoaluminate(III) .

D Watch Video Solution

9. A, B and C are three complexes of chromium(III) with the empirical formula $\mathrm{H}_{12} \mathrm{O}_{6} \mathrm{C}_{13} \mathrm{Cr}$ All the three complexes not react with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ whereas complexes B and C lose 6.75% and
13.5% of their original mass respectively, on treatment on treatment with conectrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ Identify A, B and C .

D Watch Video Solution

10. An aqueous solution containing 1 mol of HgI_{2} and 2 mol of Nal is orange in colour. On addition of excess Nal the solution becomes colourless The orange colour reappears on subsequent addition of Na OCI Explain with equations .

D Watch Video Solution

11. Draw the structures of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ Write the hybridisation of atomic orbitals of the transition metal in each case.
12. A metal complex having composition $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CI}_{2} \mathrm{Br}$ has been isolated in two forms A and B The A reacts with AgNO_{3} to give a white precipitate readily soluble in dilute queous ammonia, whereas B gives a pale-yellow precipitate soluble in concentrated ammonia Write the formula of A and B and state the hybridisation of chromium in each. Calculate their magnetic moment (spin only value).

- Watch Video Solution

13. Dedue the structures of $\left[\mathrm{NiCI}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ considering the hybridisation of the metal ion Calulate the magnetic moment(spin only) of the species .
14. Write the IUPAC nomenclature of the given complex along with its hybridisation and structure $\mathrm{K}_{2}\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)(\mathrm{CN})_{4}\right], \mu=1.73 . \mathrm{BM}$.

D Watch Video Solution

15. NiCI_{2} in the presence of dimethy1 glyoxime $(D M G)$ gives a complex which precipitates in the presence of $\mathrm{NH}_{4} \mathrm{OH}$ giving a bright red colour .
(a) Draw its structure and show H bonding
(b) Give the oxidation state of Ni and its hybridisation
(c) Predict whether it is paramagnetic or dimagnetic .
16. $A I F_{3}$ is insoluble in anhydrous HF but when little $K F$ is added to the compound it becomes soluble On addition of $\mathrm{BF}_{3}, \mathrm{AIF}_{3}$ precipitated Write the balanced chemical equations .

D Watch Video Solution

17. Write the balanced chemical equations for developing a black and white photographic film Also, give the reason as to why the solution of sodium thiosulphate on acidification turns milky white and give the balanced chemical equation of this reaction .

D Watch Video Solution

$S^{S N C^{\Theta}}$ (Excess) $\quad F^{\Theta \text { Excess }}$
18. $\mathrm{Fe}^{3+} \rightarrow \quad$ ABloodred \rightarrow BColourless

Identify A and B
(a) Write the IUPAC name of A and B
(b) Find out the spin only magnetic moment of B.

- View Text Solution

