©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

ORGANIC COMPOUNDS WITH FUNCTIONAL

GROUP

Illustration 15.1

1. Give the decresing order of boiling points for the following :
I. $E t_{2} N H$
I. $\mathrm{Et}_{2} \mathrm{NH}$
II. $\mathrm{Me} \sim \mathrm{NH}_{2}$
III. $\mathrm{Et}-\mathrm{N}<\mathrm{Me}$
b. I.

II. Me^{\sim}

II

- Watch Video Solution

2. Give the decreasing orderof solubility of the following in $\mathrm{H}_{2} \mathrm{O}:$
(I) $\mathrm{PhNH}_{2},(\mathrm{II}) E t_{2} \mathrm{NH},(I I I) E t N H_{2}$
(b)Give the decreasing order to boiling point of the followings:
(I) EtOH , (II) $\mathrm{Me}_{2} \mathrm{NH}$ (II) $E t \mathrm{NH}_{2}$
c.

Ethanoamine
$\left(\mathrm{HO} \leadsto \mathrm{NH}_{2}\right)$
can form
two differnt interamolecular H-bonds. Write their structrues. Which form is more stable?

D Watch Video Solution

3. Why is an an amine of the type 'RR'R"N chiral and why cannot their enamtimers be separated?
4. Arrange the following in the decreasing order of their basic strength :
a. i. $P h N H_{2}$ ii. $E t N H_{2}$ ii. $E t N H_{2}$ iii. $E t_{2} N H$ iv, NH_{3}
b. i. $E t N H_{2}$ ii. $\mathrm{PhNH} \mathrm{H}_{2}$ iii. NH_{3} iv. $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$
v. $E t_{2} N H$
c. i. $E t N H_{2}$ ii. $E t_{2}$ ii. $E t_{3} \mathrm{~N}$ iv $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$
d. i. $\mathrm{MeNH} \mathrm{H}_{2}$ ii. $\mathrm{Me} e_{2} \mathrm{NH}$ ii. $\mathrm{Me}_{3} \mathrm{~N}$ iv. PhNH_{2}
v. $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$
II. Complete the following acid -base reaction and name the products .
i. $\mathrm{Me}^{\mathrm{NH}}+\mathrm{HCl} \longrightarrow$
i. ii. $\mathrm{Et}_{3} \mathrm{~N}+\mathrm{HCl} \longrightarrow$
5. Write chemical reactions for the following :
a. Reaction of ethanolic NH_{3} with EtBr .
b. Ammonolusis of benzlbromide and reaction of amine so formed with 2 mol MeBr .

- Watch Video Solution

6. a. Prepare n-butylamine by Gabriel synthesis .
b. Which of the following cannot be prepared by Gabriel methaod from their corresponding halides or tosylates .
I. t-Butylamine , II . Neopentylamine,
III. Diethylamine , IV. P-Toluidine ,
V. m-Nitroaniline ,
Vi. Vinylamine, VII. p-Nitroaniline, VIII. o-Nitroaniline, and XI. Allylamine .
7. a. What kind of halides cannot be used to alkylate an amine :
b. Give the first amine formed from the reaction of
I. $\mathrm{MeCl}+\mathrm{EtNH}, \mathrm{II}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}+\mathrm{Me}_{2} \mathrm{NH}$, and III. $\mathrm{PhCH}_{2} \mathrm{Cl}+\mathrm{EtNHMe}$.
c. Identify (A) to (E).

$$
\begin{array}{r}
\mathrm{PhSO}_{2} \mathrm{Br}+\mathrm{PrNH}_{2} \xrightarrow{-\mathrm{HCl}}(\mathrm{~A}) \xrightarrow{\mathrm{KOH}}(\mathrm{~B}) \xrightarrow{\mathrm{EtBr}} \\
(\mathrm{D})+(\mathrm{E}) \stackrel{\mathrm{H}_{3} \mathrm{O}^{\oplus}}{\downarrow} \text { (C) }
\end{array}
$$

d. Complete the following reactions :

8. Complete the following :

ii. Allychloride veide ion

i.

9. Complete the folllwing reactions :

b.

$$
\mathrm{PhCH}=\mathrm{O}+\mathrm{PhNH}_{2} \rightarrow \underset{(A)}{[\operatorname{Intermediate}]} \underset{\text { or } \mathrm{NaCNBH}_{3}}{\mathrm{H}_{2} / N i}(B)
$$

(Watch Video Solution

10. Complete the following reactions:
a. $\mathrm{Et}_{2} \mathrm{NH}+\mathrm{PhSO}_{2} \mathrm{Cl} \rightarrow$
c. $\mathrm{PhCH}_{2} \mathrm{NH}_{2}+\mathrm{HCOOH} \xrightarrow{\Delta}$
c. $\mathrm{PhNH}_{2}+\mathrm{PhCHO} \rightarrow$.
11. Complete the following reactions :
a. $\mathrm{Ma} \rightarrow \mathrm{NH}_{2} \xrightarrow{\mathrm{NaNO}_{2}+\mathrm{HCl}}(\mathrm{B})$
(A)
b. $\mathrm{Me}_{\mathrm{Me}}^{\mathrm{Me}} \mathrm{NH}_{2} \xrightarrow{\mathrm{HNO}_{2}}(\mathrm{D})$
(C)

Me

(E)
d. $\square-\mathrm{NH}_{2} \xrightarrow{\mathrm{NaNO}_{2}+\mathrm{HCl}}(\mathrm{H})$
a.
(G)
 $[\mathrm{Me} \sim_{\mathrm{NMe}_{3}}^{\mathrm{Me}} \overbrace{\mathrm{OH}}^{\oplus}$

- View Text Solution

13. Complete the following :

b. Give the products of the following by application of

Hofmann's exhaustive methylation and elimination :

- View Text Solution

14. Give the alkene formed on heating the following (Hofmann degradation) :

i. $\left[\begin{array}{c}\stackrel{\beta}{\mathrm{C}} \stackrel{\alpha}{\mathrm{C}} \mathrm{C}_{3} \mathrm{CH}_{2}-\stackrel{\alpha}{\stackrel{N}{\mathrm{~N}}} \underset{\mathrm{Me}}{\mathrm{Me}} \mathrm{H}_{2}-\stackrel{\beta}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{3}\end{array}\right]^{\oplus} \stackrel{\jmath}{\mathrm{O}} \mathrm{H}$
ii.

iii.

- Watch Video Solution

15. Give the decreasing order of reactivity opf diazonium ion coupling with phenol.
a. I. $p-N O_{2}-C_{6} H_{4} \stackrel{\oplus}{N}_{2}$ II. $p-C l-C_{6} H_{4} \stackrel{\oplus}{N_{2}}$
III. $C_{6} H_{5} \stackrel{\oplus}{N_{2}}$ IV. $p-M e-C_{6} H_{4} \stackrel{\oplus}{N_{2}}$
V. $p-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4} \stackrel{\oplus}{N_{2}}$
b. I. $p-N O_{2}-C_{6} H_{4} \stackrel{\oplus}{N}$ II. $m-N O_{2}-C_{2}-C_{6} H_{4} \stackrel{\oplus}{N}$
III. $p-C l-C_{6} H_{4} \stackrel{\oplus}{N} \quad$ IV. $\quad m-C l-C_{6} H_{4} \stackrel{\oplus}{N_{2}} \quad$ IV.

Phoveset $(\oplus)\left(N_{2}\right)$
c. I. $m-\mathrm{NO}_{2}-C_{6} H_{4} \stackrel{\oplus}{N}$ 2 II. m-MeO-C_6 H_4 overset (o+)
($\mathrm{N} _2$ 2)III. p- MeO - C_6 H_4 overset (o+) (N_2)IV. o-MeO-
C_6H_4 overset (o+) (N_2)IV. Ph oveset (o+) (N_2).

D Watch Video Solution

16. Give the decreasing order of reactivity for the following coupling compounds with $\mathrm{Ph} \mathrm{N}_{2} \mathrm{Cl}$.
a. I. Aniline II. Phenol III. Toluene IV. Chlorobenzene V.

Nitrobenzee
b. I. toluene II. Ethyl benzene III. Cymene IV. T-Butyl benzene
V. Anisole .

- Watch Video Solution

17. Explain whty 2,4-dinitrobenzen diazoninum ion couples
with anisole byt $P h N_{2}^{\oplus}$ does not. Write the coupling reactio .

- Watch Video Solution

18. Synthesise benzylamine $\left(\mathrm{PhCH}_{2} \mathrm{NH}_{2}\right)$ by
a. Hofman degradation
b. Reductive amination
c. Alkyl halide amination
d. Gabriel method
e. Nitrile reduction .

- Watch Video Solution

19. Starting from benzene or toluene or aniline and with the aid of diazonim salt synthesis the following : a. pNitrobenzene
b. p-Cyano benzoic acid
c. o-Bromotoluene
d. 1,3,5,-Tribromobenzene
e. m-Bromotoluene
f. m-Bromochlorobenzene
g. p-Iodotoluene.
20. a.Convert the following
a. (I)

COOEt

NH_{2}
a.
b. b. (III) Aniline $\longrightarrow(\mathrm{IV}) \mathrm{H}_{2} \mathrm{~N} \rightarrow$ -

- View Text Solution

21. Identify (A) and (B).

Hofmann
 $\underset{\text { active amine }}{\text { An optically }} \xrightarrow[\text { methylation and }]{\text { exhaustive }}(\mathrm{B})$ (Alkene) (A)
 climination
 $\downarrow)_{3} /$ Red.
 $\mathrm{HCH}=\mathrm{O}+$ Butanal

- View Text Solution

22. Identify (A) to (E) and write chemical equations for the vairous reactions involed.

- View Text Solution

23. Give the major alkene resulting from the thermal decomposition of hydroxide salt of the following: $\left[P h \stackrel{\oplus}{N} M e_{3}\right] \stackrel{\ominus}{O} H$
a. $\left[\mathrm{Ph} \stackrel{\oplus}{\mathrm{N}} \mathrm{Me}_{3}\right] \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
b.
c. $[$ Me $\underbrace{\mathrm{Me}}_{\mathrm{Me}}$
24. Give the product obtained on heating the following :
a.
a.

b.

D Watch Video Solution

25. Complete the following :

26. Distinguish between the following pairs:
$((I),, .(I I)),\left(a .\left(P h N H_{3}\right)_{2}^{+} S O_{4}^{2-}\right.$, and,
(I)
(II)
a. $\left(\mathrm{PhNH}_{3}\right)_{2}^{+} \mathrm{SO}_{4}{ }^{2-}$ and

b. $\quad \mathrm{Me}_{4} \mathrm{~N}^{\oplus} \mathrm{Cl}$ हnd
c. PhNMe_{2} and
$\left[\mathrm{Me}_{3} \stackrel{\oplus}{\mathrm{NH}}\right] \mathrm{Cl}^{-}$
PHNHMe
d. $\mathrm{Me}_{2} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{OH}$ and
e. $\mathrm{Ph} \stackrel{\oplus}{\mathrm{H}_{3}} \mathrm{Cl}^{\ominus}$ and
f. PhNH_{2}
g. PhNHCOMe
and
and
$\mathrm{Me}_{4} \stackrel{\oplus}{\mathrm{~N}} \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$

PhNH_{2}
,(b.
$M e_{4} N^{\oplus} C I^{\Theta}$,and, $\left.\left[M e_{3} \stackrel{\oplus}{N} H\right] C I^{\Theta}\right),\left(c . P h N M e_{2}\right.$,and,PHNHMe),(d. $\mathrm{Me}_{2} \mathrm{~N}-\mathrm{CH}_{2} \mathrm{OH}$, and, $\left.M e_{4} \stackrel{\oplus}{\mathrm{~N}} \stackrel{\ominus}{\mathrm{O}} \mathrm{H}\right),\left(e . P h \stackrel{\oplus}{N} H_{3} C I^{\Theta}\right.$, and,(f.PhNH$H_{2}$, and, (g.PhNHCOMe,and, $P h N_{2}$) : $\}$
27. Complete the following reactions.
a. $\mathrm{PhNO}_{2} \xrightarrow{\mathrm{Zn+aq} \cdot \mathrm{NH}_{4} C I}(I)$

c. $m-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2} \xrightarrow{\text { LAH }}(I I I)$
d. $\mathrm{PhNO}_{2} \xrightarrow{\mathrm{Zn+Alc.NaOH}}(I V)$
e. $p-M e-C_{6} H_{4} N O_{2} \xrightarrow[\substack{\text { or } \\ \text { ExcessZn/NaOH }}]{\mathrm{H}_{2} N N H_{2} / \text { Raney } N i}(V)$
f. $P h \stackrel{\oplus}{N_{2}} B r^{\Theta} \xrightarrow{\mathrm{Na}_{2} S O_{3}}(V I)$
g. $p-E t-C_{6} H_{4} \stackrel{\oplus}{N_{2}} B r \xrightarrow[\text { power }]{\Theta}(V I I)$
h. $\square+\mathrm{I}-\mathrm{N}=\mathrm{C}=\mathrm{O} \longrightarrow$ (VIII) $\xrightarrow{\mathrm{H}_{2} \mathrm{O}}$ (IX)
i. $\square \underset{\mathrm{NH}_{2}}{\mathrm{OH}}(\mathrm{X})$
28. Give the reagents in the following reactions:

b.

c.

- View Text Solution

4. Complete the following reactions
a. $\underset{(A)}{\mathrm{PhNH}_{2}} \underset{0.5^{\circ} \mathrm{C}}{\mathrm{HNO}_{2}}(B) \xrightarrow[D \mathrm{H}_{2} \mathrm{PO}_{2}]{ }(C)$

$\mathrm{PhH}+\mathrm{Me}$ (A)
 Me
 (B)

b.
c. $P h C H=O+H C N \rightarrow(C) \xrightarrow{L A H} D$ (A)
Θ
d. $\mathrm{PhC} \underset{(A)}{\mathrm{CH}}=\mathrm{O}+\underset{(B)}{\mathrm{MeNO}_{2}} \xrightarrow{\mathrm{OH}} \underset{H^{\oplus}}{\mathrm{Fe}, \mathrm{FeSO}_{4}} \mathrm{D}$
e. $\mathrm{E}_{2} \mathrm{NH}+{ }_{\mathrm{O}} \longrightarrow(\mathrm{C})$
 (A) (B)
e.

$$
\underset{\substack{\text { Novocaine } \\ \text { (Local anaesthetic) }}}{\stackrel{\mathrm{H}_{2}+\mathrm{Ni}}{\stackrel{\mathrm{Room}}{\text { temp }}} \stackrel{\downarrow}{\text { tem }}} \stackrel{\downarrow}{\mathrm{D})}
$$

5. Explain the formation of the mixture $\mathrm{PhCH}_{2} \mathrm{CHO}(\mathrm{I})$ and $\mathrm{PhCOMe}(\mathrm{II})$ when $\mathrm{PhCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{NH}_{2}(\mathrm{~A})$ is treated with HNO_{2}

- Watch Video Solution

6. a. Distinguish between $1^{\circ}, 2^{\circ}$, and 3° amines by using succine anhydride (A).
b. What are the limitations of Hinsberg reagent?
c. Give the structural formula of a chiral compound $C_{8} H_{11} N(X)$, which dissolves in dilute HCl and evolves N_{2} gas with HNO_{2}.
7. Identify compounds (A) through (E) in the following:
$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH} \underset{2 \cdot \mathrm{EtBr}}{\stackrel{\ominus}{\mathrm{O}} \mathrm{OH}}(A) \xrightarrow{\mathrm{Zn} / \mathrm{HCI}}(B)$
$\xrightarrow[5^{\circ} \mathrm{C}]{\mathrm{NaNO}_{2} / \mathrm{HCI}}(C) \xrightarrow{\mathrm{PhOH}}(D) \xrightarrow{\mathrm{LiAIH}_{4}}(E)+(F)$

- Watch Video Solution

8. Identify compound (A) to (E) in the following:

$$
\begin{aligned}
& \left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}\right)
\end{aligned}
$$

9. (a) Identify the products:

(b) Identify $(A),(B),(X),(Y)$ and (Z) in the following reactions.

(c) Convert benzene to o-nitro aniline as the only product.

- Watch Video Solution

10. An organic compound (A) of molecular. Weight 135 on boiling with NaOH extracts a gas which gives dense white
fumes on bringing a rod dipped in HCl near it. The alkaline solution thus obtained on acidification gives the precipitate of a compound (B), having molecular weight 136. treatment of (A) with HNO_{2} also yields (B), whreas its treatement with $\mathrm{Br}_{2} / \mathrm{KOH}$ gives (C). compound (C) reacts with cold HNO_{2} to give (D) which gives red colour with ceric ammonium nitrate. on the other hand, (E) and isomer of (A) on boiling with dilute HCl gives an acid (F)
, havign molecular wheight 136. on oxidation followed by heating, (F) gives an anhydride (G) which condenses with benzene in the presence of AlCl_{3} to give anthraquinone.
give structures of (A) to (G) with proper reasoning.

- Watch Video Solution

11. The aqueous solution of a nitrogen and chlorine containing organic compound (A) is acidic to litmus. (A) on treatment with aqueous NaOHgives a compound (B) on treatement with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{CI}$ in the presence of NaOH gives an insoluble product (C) $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$. give the structures of (A) and (B).

- View Text Solution

12. A mixture of two organic compound is added to cold water. After filtration, water-insoluble compound (A) burns with a smoky flame and it does not respond to Lassaigne's and Beilsteins test. When a small amount of this is added to NaHCO_{3} solution, a colourless gas is evolved with effervescene. when this comopound is heated with
$\mathrm{CH}_{3} \mathrm{OH}$ in acidic medium, it gives the characteristic smell of oil of wintergreen. compound (B), which is water soluble, burns with a non-smoky flame and its sodium extract is prepared with cane sugar. It gives the Prussian blue colour with freshly prepared solutions of $\mathrm{FeSO}_{4}+2-3$ drops NaOH and with few drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$. when a small amount of this compound is heated in a dry test tube, a colourless gas is evolved that turns moist red litmus paper blue and a white residue is left. this white residue is dissolved in water and a drop of $\mathrm{CuSO} \mathrm{S}_{4}$ is added in the basic medium -a violet colour is obtained. identify the compounds (A) and (B) with the help of the reactions involved.

Exercises Subjective

1. Identify :
a. $\underbrace{\mathrm{Me}} \mathrm{Br}, \mathrm{NH}_{3} \longrightarrow(\Lambda)$

Mc
b. $\begin{gathered}\mathrm{Me} \\ \mathrm{Me}\end{gathered}>\mathrm{Br}+\mathrm{NH}_{3} \longrightarrow(\Lambda)$
c. $(\Lambda) \xrightarrow[\Lambda]{\mathrm{KOHI} \mid \mathrm{Br}_{3}}(\mathrm{~B}) \xrightarrow[\Lambda]{\mathrm{CHCO}_{3} / \mathrm{KOH}}\left(\mathrm{C}^{\prime}\right) \xrightarrow{\mathrm{Red}}$

a.
(B)

Give the reactants of the following amines obtained by
reduction with $L A H$.

ii.

- View Text Solution

2. Convert $\mathrm{CH}_{3} \mathrm{COOH}$ into $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$.

- Watch Video Solution

3. $\mathrm{Me}^{\text {Me }}-\mathrm{NH}_{2}+2 \mathrm{HCHO}+\mathrm{HCOOH} \xrightarrow{\Delta}(\mathrm{A})$

- View Text Solution

D View Text Solution

- Watch Video Solution

6.
$N a \mathrm{NO}_{2}+$ Dil. HCI . What are the possible products?

D View Text Solution

7.

What
are the possible products.
8. Identify (A),(B),(C) and (D).

$$
\begin{aligned}
& \mathrm{B}+\mathrm{HCOOH} \stackrel{\mathrm{H}_{3}()^{(+)}}{\longleftrightarrow} \text { (C) } \\
& \begin{array}{c}
\\
\mathrm{Me} \\
\mathrm{Me} \\
\mathrm{Me}
\end{array} \stackrel{\downarrow}{\downarrow} \stackrel{{ }^{\text {Red }}}{\downarrow} \mathrm{N}-\mathrm{Me}
\end{aligned}
$$

D View Text Solution

9. What happenes when the follwing react with HNO_{2} ?
i. $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I} \xrightarrow{\mathrm{NaCN}}(\mathrm{A}) \xrightarrow[\text { Partial hydrolysis }]{\mathrm{OH}}(\mathrm{B})$

10.

(C) (Mixture)

D View Text Solution

11. $C_{3} H_{6} N$ racts with Hinsberg reagent and the product formed is insoluble in alkali but soluble in ether. What is $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$?

D View Text Solution

13. a. Convert cyclohexyl amine into cyclopentyl amine .
b. Convert cyclohexene oxide into aminocyclohexamol.

- View Text Solution

14. Arrange in the decreasing order of basic nature,
a. i. Pyrrole ii. Pyridine ii. Aniline
b. i. Diphenylamine ii. Aniline ii. Cyclohexyl amine
c. i. p-Nitroaniline ii. Aniline iii. P-Methyl aniline.
15. Complete the folowing :
a.

b. (D) $\stackrel{\text { (i) } \mathrm{NH}_{2} \mathrm{NH}_{2}}{{\text { (ii) } \mathrm{H}^{\oplus}}^{(\mathrm{C}}}(\mathrm{C}) \stackrel{\left.\left.\mathrm{Br}^{(\mathrm{CH}}\right)_{2}\right)_{5} \mathrm{COO}}{ }{ }^{\ominus}$

$$
(\mathrm{B}) \stackrel{\ominus}{\mathrm{O}} \stackrel{\ominus}{\longleftarrow}(\mathrm{~A}) \longleftarrow
$$

c.

d.

e. $(\mathrm{B}) \stackrel{\mathrm{H}_{2} \mathrm{SO}_{5}}{\leftarrow} \mathrm{Cl} \longrightarrow-\mathrm{NH}_{2}+\mathrm{CF}_{3} \mathrm{CO}_{3} \mathrm{H} \rightarrow(\mathrm{A})$
16. When tetramethyl ammonium hydroxide is heated strongly, it yields methanol and trimethylamine. How is methanol formed : To what general calss of reaction does this belong ?

- View Text Solution

17. Complete the following :

View Text Solution

18. Complete the following :

19. Complete the following :

c. $\mathrm{MeO}-\mathrm{NH}_{2}+\mathrm{NH}_{2} \mathrm{CONH}_{2} \xrightarrow[\Delta]{\mathrm{HCl}-\mathrm{AcOH}}(\mathrm{A})$
d.

e.

f. $\mathrm{Mc}-\mathrm{O}-\mathrm{NH}_{2} \xrightarrow[a+\mathrm{O}^{\circ} \mathrm{C}]{\mathrm{NaNO}_{2} \mathrm{HCl}}(A) \xrightarrow{\mathrm{NaOH}}(B)$
g.

(A)
h.

i.

j.

m.

20. $\mathrm{PhN}_{2} \mathrm{Cl}+\mathrm{CH}_{2}=\mathrm{N} . \mathrm{OH} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus}}(\mathrm{A})$

Formaldoxime

s. $\mathrm{H}_{2} \mathrm{~N}-\bigcirc-\mathrm{NH}_{2} \xrightarrow{\mathrm{NaNO}_{2} / \mathrm{H}^{\circ} \mathrm{Cl}}(\mathrm{A}) \frac{\text { Excess }}{\mathrm{HBF}_{4} \downarrow}$
(C) $\longleftarrow \Delta$ (B)

- View Text Solution

20. Identify (A) , (B) and (C).

View Text Solution
21. a.
b. $\mathrm{H}_{2} \mathrm{~N}$
β-Amino acid
c. $\mathrm{H}_{2} \mathrm{~N}$
γ-Amino acid

- View Text Solution

Exercises Concept Application

1. Wirte $I U P A C$ names of the following compounds and classity them into primary, secondary and tertiary amines .
i. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$ ii. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$
iii. $\mathrm{CH}_{2} \mathrm{NHCH}\left(\mathrm{CH}_{3}\right)_{2}$ iv. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{2}$
v. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3}$ vi. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}$
vii. $m-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$

D View Text Solution

2. Give one chemical test to distinguish between the following pairs of compounds .
i. Methylamine and dimethylamine
ii. Secondary and tertiary amines
iii. Ethylamine and aniline iv. Aniline and benzylamine
v. Aniline and N -methylaniline
3. Account for the following:
(i) $p K_{b}$ of aniline is more than that of methylamine.
(ii) Ethylamine is soluble in water whereas aniline is not.
(iii) Methylamine in water reacts with ferric chloride to precipitate hydrated feric oxide.
(iv) Although amino group is o - and p - directing in aromatic electrophilic substitution reactions, aniline on nitration gives a substantial amount of m-nitroaniline.
(v) Aniline does not undergo Friedel-Crafts reaction.

Diazonium salts of aromatic amines are more stable than those of aliphatic amines.
(vii) Gabriel phthalimide synthesis is preferred for synthesising primary amines.
4. Convert :
i. Ethanoic acid into methanamine
ii. Hexanenitrile into 1-aminopentane
iii. Methanol to ethanoic acid
iv. Ethanoic acid into propanoic acid
v. Ethanamine into methanamine
iv. Methanamine into ethanamine
vii. Nitromethane into dimethulamine
viii. Propanoic acid into ethanoic acid .

D Watch Video Solution

5. Describe a method for the identification of primary,
secondary and tertiary amines. Also write the chemical
equations for the reactions involved.

- Watch Video Solution

6. Write short notes on the following :
i. Carbylamine reaction
ii. Diazotisation
iii . Hofmann bromamide reaction
iv.Coupling reaction
v. Ammonolusis
iv. Acetylation
vii. gabriel phthalimide synthesis
7. Accomplish the following conversions :
i. Nitrobenzene to benzoic acid ItbRgt ii. Benzone to mbromophenol
iii. Benzoic acid to aniline ItbRgt iv. Aniline to 2,4,6, tribromofluorobenzene ItbRgt v. Benxyl chloride to 2phenylethanamine
iv. Chlorobenzen to p-bromoaniline
vii. Aniline to p-bromoaniline ItbRgt viii. Benzamide to toluene ltbRgt xi. Aniline to benzyl alcohol .

- Watch Video Solution

8. Give the strutures of (A), (B) and (C) in the following reactions:
i. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I} \xrightarrow{\mathrm{NaCN}}(\mathrm{A}) \xrightarrow[\text { Partial hydrolysis }]{\mathrm{OH}}(\mathrm{B})$

$$
\begin{aligned}
& \underset{(\mathrm{NaOH}}{+} \\
& \downarrow \\
& \mathrm{Br}_{2} \\
& (\mathrm{C})
\end{aligned}
$$

i.
ii. $C_{6} H_{5} N_{2} C I \xrightarrow{C u C N}(A) \xrightarrow{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}}(B) \xrightarrow[\Delta]{\mathrm{NH}_{3}}(C)$
iii. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\mathrm{KCN}}(A) \xrightarrow{\mathrm{LiAIH}_{4}}(B) \xrightarrow[0^{\circ} C]{\mathrm{HNO}_{2}}(C)$
iv. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \xrightarrow{\mathrm{Fe} / \mathrm{HCI}}(A) \xrightarrow[273 \mathrm{~K}]{\stackrel{N a N O_{2}+\mathrm{HCI}}{ }}(B) \xrightarrow[\Delta]{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}}(C)$
v. $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow[\Delta]{\mathrm{NH}_{3}}(A) \xrightarrow{N a O B r}(B) \xrightarrow{\mathrm{NaNO}_{2} / \mathrm{HCI}}(C)$
vi. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \xrightarrow{\mathrm{Fe} / \mathrm{HCI}}(A) \xrightarrow[273 \mathrm{~K}]{\mathrm{HNO}_{2}}(B) \xrightarrow{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}}(C)$

(D) View Text Solution

9. An aromatic compound (A) on teratment with aqueous
ammonia and heating frms compound (B) which on heating with $B r_{2}$ and $K O H$ froms a compound (C) of the
molecular formula $C_{6} H_{7} N$. Write the struatures and IUPAC names of compounds (A). (B) and (C).

- Watch Video Solution

10. Comlete the following reactions:
i. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+$ Alc. $\mathrm{KOH} \rightarrow$
ii. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}+\mathrm{H}_{3} \mathrm{H}_{3} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
iii. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (Conc. $) \rightarrow$
iv. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{H}_{2} \mathrm{cl}+\mathrm{C}-\mathrm{H}_{5} \mathrm{OH} \rightarrow$
v. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow$
vi. $C_{6} H_{5} \mathrm{NH}_{2}+B r_{2}(A q.) \rightarrow$.
vii $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl} \xrightarrow[(i i) \mathrm{NaNO}_{2} / \mathrm{Cu}, \Delta]{(i) \mathrm{HBF}_{4}}$
11. Why cannot be aromatic primary amines prepared by Gabriel phalimide synthesis ?

- Watch Video Solution

12. Write the reaction of (i) aromatic and (ii) aliphatic promary amines with nitrous acid.

(Watch Video Solution

13. Give plausible explanation for each of the following :
(i) Why are amines less acidic than alcohols of comparable molecular masses ?
(ii). Why do primary amines have higher boiling poings han

tertiary amines ?

iii. Why are aliphatic amines stroner bases than aromatic amines ?

Watch Video Solution

Exercises Linked Comprehension

i. $\underset{\substack{\text { Organic compound } \\(\text { Molar mass }=251) \\(\text { Contains } 63.7 \% \text { of } \mathrm{Br})}}{ } \downarrow$

Solid (B)
(Contains 67.8% of Br) $\underset{\text { nitro compound }}{\text { One mono }}$
ii. Compound (C) [Isomer of (A)]
$\frac{\text { (i) Diazotisation }}{\text { (ii) } \mathrm{CuBr}}$
Compound (D)
(Contains 76.4\% of Br)
$\underset{\text { nitro compound }}{\text { One mono }} \stackrel{\text { Nitration }}{\longleftrightarrow}$
nitro compound

1. (i)

Compound (A) is:
A.

B.

b.

c.
 (III)
C.
d.

D. $\quad \mathrm{Br}$

- Watch Video Solution

i. $\begin{array}{r}\text { Organic compound (A) } \\ \begin{array}{c}\text { (Molar mass }=251) \\ (\text { Contains } 63.7 \% \text { of } \mathrm{Br})\end{array}\end{array} \frac{\text { (i) Diazotisation }}{\text { (ii) } \mathrm{Na}_{2} \mathrm{SnO}_{2}}{ }^{\downarrow}$
(Contains 67.8% of Br)
One mono \quad Nitration nitro compound
ii. Compound (C) [Isomer of (A)]
$\frac{\text { (i) Diazotisation }}{\text { (ii) } \mathrm{CuBr}} \downarrow$
Compound (D)
(Contains 76.4\% of Br)
One mono $\longleftarrow \stackrel{\text { Nitration }}{\longleftrightarrow}$ nitro compound
2. (i)

Compound (C) is:
A. (I)
B. (II)
C. (III)
D. (IV)
i. Organic compound (A) (i) Diazotisation
(Molar mass =251)
(Contains 63.7% of Br)
Solid (B)
(Contains 67.8% of Br) One mono \leftarrow Nitration nitro compound

ii. Compound (C) [Isomer of (A)]

(i) Diazotisation
(ii) CuBr

Compound (D)
(Contains 76.4\% of Br)
One mono \longleftarrow Nitration nitro compound
3. (i)
(ii)

Compound (B) is:

A.

b.

B.
C.

(VII)
D.
 (VIII)

D Watch Video Solution

i. Organic compound (A) $\underset{\substack{\text { (Molar mass }=251) \\ \text { (Contains } 63.7 \% \text { of } \mathrm{Br})}}{\text { (i) Diazotisation }} \underset{\text { (ii) } \mathrm{Na}_{2} \mathrm{SnO}_{2}}{ } \downarrow$

Solid (B)
(Contains 67.8\% of Br)
One mono \longleftarrow Nitration nitro compound

Compound (D)
(Contains 76.4% of Br)
One mono \longleftarrow Nitration nitro compound
4. (i)
(ii)

Compound (D) is:
A. (V)
B. (VI)
C. (VII)
D. (VIII)

- Watch Video Solution

5. An amino acid reacts with 10 ml 0.05 MNaOH and the final solution has $p H=2.30$ When 20 ml of these base is added in the resulting solution. The $p H$ become9.7.Identify the amino acid and calculate the isoelectric point of the amino acid.This amino acid is prepared by the reaction of compound (X) with NH_{3} and further hydrolysis with HCN
compound (X) is less C atom containing compound that gives postitive iodoform test and positive Fehling's solution test.

Amino acid is:
A. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\underset{\substack{\mathrm{l} \\ \mathrm{NH}}}{\mathrm{CH}}-\mathrm{COOH}$
B. $\mathrm{H}_{3} \mathrm{C}-\underset{\substack{\mathrm{C} \\ \mathrm{NH}}}{\mathrm{CH}}-\mathrm{COOH}$
C. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COOH}$ NH_{2}
D. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
6. An amino acid reacts with 10 ml 0.05 MNaOH and the final solution haspH=2.30 When 20 ml of these base is added in the resulting solution. The $p H$ become9.7.Identify the amino acid and calculate the isoelectric point of the amino acid.This amino acid is prepared by the reaction of compound (X) with NH_{3} and further hydrolysis with HCN compound (X) is less C atom containing compound that gives postitive iodoform test and positive Fehling's solution test.

Compound (X) is:
A. $\mathrm{CH}_{3} \mathrm{CHO}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
c. $\left.{ }_{\mathrm{Me}}^{\mathrm{Me}}\right\rangle=\mathrm{O}$

D.

- Watch Video Solution

7. An amino acid reacts with 10 ml 0.05 MNaOH and the final solution has $p H=2.30$ When 20 ml of these base is added in the resulting solution.The $p H$ become9.7.Identify the amino acid and calculate the isoelectric point of the amino acid.This amino acid is prepared by the reaction of compound (X) with NH_{3} and further hydrolysis with HCN compound (X) is less C atom containing compound that gives postitive iodoform test and positive Fehling's
solution test.

Isoelectric point of the amino acid is:

$$
\text { A. } p H=7.0
$$

B. $p H=8.0$
C. $p H=6.0$
D. $p H=9.0$

- Watch Video Solution

8.

Compound (A) is:
OCH_{3}
A. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH} \\ \mathrm{CH}_{3}}}{\stackrel{\mathrm{C}}{\mathrm{C}}}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
B. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br}$
$\mathrm{CH}_{3} \quad \mathrm{OCH}_{3}$
C. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{Br}$
$\mathrm{CH}_{3} \quad \mathrm{OCH}_{3}$
OCH_{3}

$(\mathrm{B}) \xrightarrow{\mathrm{CH}_{3} \mathrm{l}}(\mathrm{C})$
$\downarrow \begin{aligned} & \text { Oxidation and } \\ & \text { decarboxylation }\end{aligned}$
2-Methoxy-2-methyl
propane
(E)
HNO_{2}
9.

Compound (B) is:

$$
\begin{aligned}
& \mathrm{OCH}_{3} \\
& \text { A. } \mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\stackrel{\text { | }}{\mathrm{C}}}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \\
& \text { B. } \mathrm{CH}_{3}-\underset{\mid}{\mathrm{CH}} \mathrm{CH}-\underset{\mid}{\mathrm{CH}} \underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{OCH}_{3} \\
& \text { C. } \mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{NH}_{2} \\
& \mathrm{CH}_{3} \quad \mathrm{OCH}_{3} \\
& \mathrm{OCH}_{3} \\
& \text { D. } \mathrm{CH}_{2}-\underset{\mid}{\mathrm{C}} \underset{\substack{\text { | } \\
\mathrm{CH}}}{\mathrm{C}}-\underset{\text { | }}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}
\end{aligned}
$$

$1 \mathrm{~mol}(\mathrm{~A})$
Alkyl bromide

$(\mathrm{B}) \xrightarrow{\mathrm{CH}_{3} \mathrm{l}}(\mathrm{C})$
(E)
2-Methoxy-2-methyl $\downarrow \begin{aligned} & \text { Oxidation and } \\ & \text { decarboxylation }\end{aligned}$ propane
10.

Compound (C) is:
A. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{NHCH}_{3}$ $\mathrm{CH}_{3} \quad \mathrm{OCH}_{3} \quad \mathrm{OCH}_{3}$ OCH_{3}
B. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3} \\ \mathrm{OCH}_{3}}}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$
c. $\mathrm{CH}_{3}-\underset{\mid}{\mathrm{C}} \underset{\mathrm{CH}}{\mathrm{C}}-\underset{\substack{\text { | } \\ \mathrm{NHCH}}}{\mathrm{CH}}-\mathrm{CH}_{3}$
D. $\mathrm{CH}_{3}-\underset{\mid}{\mathrm{CH}} \mathrm{H}-\mathrm{CH}_{2}-\underset{\mid}{\mathrm{CH}} \underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{NHCH}_{3}$
$1 \mathrm{~mol}(\mathrm{~A}) \mid \mathrm{NH}_{3} \longrightarrow 1 \mathrm{~mol}$ $(\mathrm{B}) \xrightarrow{\mathrm{CH}_{3} \mathrm{I}}(\mathrm{C})$ Alkyl bromide

11.

Compound (D) is:
A. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{CH}_{3} \quad \mathrm{OCH}_{3}$ OCH_{3}
B. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH} \\ \hline}}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CHOH}$
OCH_{3}
CH_{3}
D. $\mathrm{CH}_{3}-\underset{\mid c}{\mathrm{C}} \underset{\substack{\text { | } \\ \mathrm{CH}}}{\mathrm{C}}-\underset{\mathrm{OH}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
$1 \mathrm{~mol}(\mathrm{~A}) \mid \mathrm{NH}_{3} \longrightarrow 1 \mathrm{~mol}(\mathrm{~B}) \xrightarrow{\mathrm{CH}_{3} \mathrm{l}}(\mathrm{C})$ Alkyl bromide
$\underset{(\mathrm{D})}{\downarrow} \mathrm{HNO}_{2}$
(E)
2-Methoxy-2-methyl propane
12.

Compound (E) is:

C.

13. $[A],[B],[C],[D],[E],[F]$,and $[G]$ are amines,each of which forms a hydrochloride containing 32.42% chloride.
$[A],[B],[C]$ and, $[D]$ evole N_{2} on reaction with HNO_{2} but $[E],[F]$,and $[G]$ donot.

Which of the following are 1° amines?
A. $(A),(B),(C),(D)$
B. (E),(F) and(G)
C. All
D. None
14. $[A],[B],[C],[D],[E],[F]$,and $[G]$ are amines,each of which forms a hydrochloride containing 32.42% chloride.
$[A],[B],[C]$ and, $[D]$ evole N_{2} on reaction with HNO_{2} but $[E],[F]$,and $[G]$ donot.

Which of the following are 2° amines?
A. $(A),(B),(C),(D)$
B. (E),(F) and(G)
C. All
D. None
15. $[A],[B],[C],[D],[E],[F]$, and $[G]$ are amines,each of which forms a hydrochloride containing 32.42% chloride.
$[A],[B],[C]$ and, $[D]$ evole N_{2} on reaction with HNO_{2} but $[E],[F]$,and $[G]$ donot.

If all the amines aree represented by the formula $R-N H_{2}$, the value of R in all the amines is:
A. $\mathrm{C}_{3} \mathrm{H}_{7-}$
B. $\mathrm{C}_{4} \mathrm{H}_{9}-$
C. $C_{5} H_{11-}$
D. $\mathrm{C}_{2} \mathrm{H}_{5-}$
16. $[A],[B],[C],[D],[E],[F]$,and $[G]$ are amines,each of which forms a hydrochloride containing 32.42% chloride. $[A],[B],[C]$ and, $[D]$ evole N_{2} on reaction with HNO_{2} but $[E],[F]$,and $[G]$ donot.

Which of the following does not represent the structure of (A),(B),(C), and (D)?
a. $\mathrm{Mc}^{\sim} \mathrm{NH}_{2}$
A.
b.

B.

d.

D.
17. $[A],[b],[C],[D],[E],[F]$,and $[\mathrm{G}]$ are amines,each of which forms a hydrochloride containing 32.42% chloride.
$[A],[B],[C]$ and, [D]evole N_{2} on reaction with HNO_{2} but [E], [F],and[G]'do not.

Which of the following does not represent the structure of
(E),)F), and (G)?
A.
a. Me Me
B.
b. $\mathrm{Me}_{\mathrm{Me}}^{\mathrm{NH}}$
c.

D.

- Watch Video Solution

18. $[A],[b],[C],[D],[E],[F]$,and $[\mathrm{G}]$ are amines,each of which forms a hydrochloride containing 32.42% chloride.
$[A],[B],[C]$ and,[D]evole N_{2} on reaction with HNO_{2} but [E],
[F],and[G]
do \neg. Whichofthefollow \in ggivesalcohol and evolves

N_(2)` gas?
A.

B.

C.

D.
d. Me

Me

- Watch Video Solution

19. $[A],[b],[C],[D],[E],[F]$,and $[G]$ are amines,each of which forms a hydrochloride containing 32.42% chloride.
$[A],[B],[C]$ and, [D]evole N_{2} on reaction with HNO_{2} but [E],
[F],and[G]'donot.
A.
a.

B.
b. Me
c.

D.

D Watch Video Solution

20.

A substance (X)
contains
$41.37 \% C, 6.89 \% H .0 .166 \mathrm{gm}$ of (X) gave NH_{3} which was
absorbed in 50 ml of $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess of acid required $30 \mathrm{mlof} N / 10 \mathrm{NaOH}$ for neutralisation.(X) on treatment with HNO_{2} gave succinc acid (X) on heating lost
NH_{3} to give(A).(A) reacts with Br_{2} and NAOH to give(B) containing $41.02 \% C, 5.88 \% H$, and $11.96 \% N .(B)$ on further treatment with $B r_{2}$ and $\mathrm{NaOHgives}(C)$ (3-amino propanoic acid).(C)reats with NHO_{2} to give β-hydroxypropanoic acid.

Percentage of N is (X) is:
A. 34.38%
B. 24.38%
C. 14.38%
D. 44.48%

- Watch Video Solution

21. A substance (X) contains $41.37 \% C, 6.89 \% H .0 .166 g m$ of (X) gave NH_{3} which was absorbed in50ml of $\mathrm{N} / \mathrm{TOH}_{2} \mathrm{SO}_{4}$. The excess of acid required 30 mlof $N / 10 \mathrm{NaOH}$ for neutralisation.(X) on treatment with HNO_{2} gave succinc acid (X) on heating lost NH_{3} to give(A).(A) reacts with $B r_{2}$ and $N A O H$ to give(B)
containing $41.02 \% C, 5.88 \% H$, and $11.96 \% N .(B)$ on further treatment with Br_{2} and $\mathrm{NaOHgives}(\mathrm{C})$ (3-amino propanoic acid).(C)reats with NHO_{2} to give β-hydroxypropanoic acid.

Compound (X) is:
A.
(\#\#KSV_CHM_ORG_P2_C15_E01_056_O01.png"
width="30\%">
B. (\#\#KSV_CHM_ORG_P2_C15_EO1_056_O02.png"
width="30\%">
C.

D.
(\#\#KSV_CHM_ORG_P2_C15_E01_056_O04.png"
width="30\%">

- Watch Video Solution

22.

A substance (X)
contains
$41.37 \% C, 6.89 \% H .0 .166 \mathrm{gm}$ of (X) gave NH_{3} which was absorbed in 50 ml of $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess of acid required $30 \mathrm{mlof} N / 10 \mathrm{NaOH}$ for neutralisation.(X)on treatment with HNO_{2} gave succinc acid (X) on heating lost NH_{3} to give(A).(A) reacts with Br_{2} and NAOH to give(B) containing $41.02 \% C, 5.88 \% H$, and $11.96 \% N .(B)$ on further treatment with Br_{2} and $\mathrm{NaOHgives}(\mathrm{C})$ (3-amino propanoic acid).(C)reats with NHO_{2} to give β-hydroxypropanoic acid.

Compound (A) is:
A. (I)
B. (II)
C. (III)
D. (IV)

- Watch Video Solution

23.

A
substance (X)
contains
$41.37 \% C, 6.89 \% H .0 .166 \mathrm{gm}$ of (X) gave NH_{3} which was absorbed in 50 ml of $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess of acid required $30 \mathrm{mlof} \mathrm{N} / 10 \mathrm{NaOH}$ for neutralisation.(X) on treatment with HNO_{2} gave succinc acid (X) on heating lost NH_{3} to give(A).(A) reacts with $B r_{2}$ and NAOH to give(B) containing $41.02 \% C, 5.88 \% H$, and $11.96 \% N$. (B)on further treatment with Br_{2} and $\mathrm{NaOHgives}(\mathrm{C})$ (3-amino
propanoic acid).(C)reats with NHO_{2} to give β-hydroxypropanoic acid.

Compound (B) is:
A.
(\#\#KSV_CHM_ORG_P2_C15_E01_058_001.png"
width="30\%">
B.
(\#\#KSV_CHM_ORG_P2_C15_E01_058_001.png"
width="30\%">
C. (\#\#KSV_CHM_ORG_P2_C15_E01_058_003.png"
width="30\%">
D.
(\#\#KSV_CHM_ORG_P2_C15_EO1_058_004.png"
width="30\%">
$41.37 \% C, 6.89 \% H .0 .166 g m$ of (X) gave NH_{3} which was absorbed in 50 ml of $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess of acid required $30 \mathrm{mlof} N / 10 \mathrm{NaOH}$ for neutralisation.(X) on treatment with HNO_{2} gave succinc acid (X) on heating lost NH_{3} to give(A).(A) reacts with Br_{2} and NAOH to give(B) containing $41.02 \% C, 5.88 \% H$, and $11.96 \% N .(B)$ on further treatment with Br_{2} and $\mathrm{NaOHgives}(\mathrm{C})$ (3-amino propanoic acid).(C)reats with NHO_{2} to give β-hydroxypropanoic acid.

Compound (C) is:
A. (V)
B. (VI)
C. (VII)
D. (VIII)

- Watch Video Solution

25.

A substance (X)
contains
$41.37 \% C, 6.89 \% H .0 .166 \mathrm{gm}$ of (X) gave NH_{3} which was absorbed in 50 ml of $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$. The excess of acid required $30 \mathrm{mlof} N / 10 \mathrm{NaOH}$ for neutralisation.(X) on treatment with HNO_{2} gave succinc acid (X) on heating lost NH_{3} to give(A).(A) reacts with Br_{2} and NAOH to give(B) containing $41.02 \% C, 5.88 \% H$, and $11.96 \% N .(B)$ on further treatment with Br_{2} and $\mathrm{NaOHgives}(\mathrm{C})$ (3-amino propanoic acid).(C)reats with NHO_{2} to give β-hydroxy-
propanoic acid.
The conversion of (B) to (C) is called:
A. Hofmann ammonolysis
B. Hofmann bromanid degradation
C. Lassen rearrangement
D. Curtius rearrangement

- Watch Video Solution

Exercises Multiple Correct

1. Which statements are correct ?
A. Phenol and aniline give coupling reaction with diazonium salt.
B. Phenol couples with diazonium salt in mild basic conditions $(p H=8-10)$.
C. Aniline couples with diazonium salt in mild acidic condition $(p H=4-6)$.
D. Both phenol and aniline couple with diazonium salt in neutral condition $(p H=7)$.

Answer: A::B::C

(Watch Video Solution

2. Which statements are correct about the reaction?

A. A mixture of two amines is formed, which suggests that rerrangement is intramolecular.
B. If R is chiral, it migrates with retention of configuration.
C. A mixture of four different amines is formed, which suggests that a free acyl nitrene

$$
\left[\begin{array}{c}
O \\
R-\stackrel{\|}{C}-\ddot{N}:
\end{array}\right]
$$

intermediate is formed.
D. A mixture of two different amines and a free acyl nitrene intermediate is formed.

Answer: A::B

D Watch Video Solution

3. Which of the following statement are correct?
A. α-Amino acids on heating give piperazine (cyclic diamide).
B. β-Amino acids on heating give α, β-unsaturated acids.
C. γ - Amino acids on heating give lactam (fivemembered cyclic ester).
D. δ-Amino acids on heating give lactam (six-membered cyclic ester).

Answer: A::B::C::D

- Watch Video Solution

4. Which of the following statement are correct reactions?
A.

B.

C.

D.

Answer: A::B::C

- Watch Video Solution

5. What of the following statements are correect?
A. The extent of H-bonding is greater in 1° than 2° and 3° amines.
B. The boiling points of isomeric amines are in the order:
$1^{\circ}>2^{\circ}>3^{\circ}$.
C. The boiling points of
(I) $\square-\mathrm{NH}_{2}>$ (II) $\mathrm{Me}-\square \mathrm{N}>$
(III) $\square \mathrm{N}-\mathrm{Me}$
D. The
boiling
points

$$
(I) C_{4} H_{9} N H_{2}>(I I) M e_{2} N-E t>(I I I)\left(C_{2} H_{5}\right)_{2} N H
$$

Answer: C::D

D View Text Solution

6. Which of the following reaction are correct?

C. $\cdot\left[X_{-n_{1}}^{0 n}\right.$

Answer: A::C::D

- Watch Video Solution

7. Which of the following statement are correct?
A. In gas phase, the basic character of amine is $3^{\circ}>2^{\circ}>1^{\circ}$, Due to the $+I$ effect $(R-)$, the availability of $L P \overline{e^{\prime}} s \mathrm{pm} N$ increases.
B. In aqueous medium, the basic characterof amines is

$$
M e_{2} N H>M E_{3} N>M e N H_{2}>N H_{3}
$$

C. In aqueoys medium, the addition of protons increases of crowding and thus strains setup, which being the highest in 3° amine decreases its basic character.
D. In aqueous medium, the ammonium ions in solution are stabilised not only by alkyl groups but also by H bond donation to the solvent.

Answer: A::C::D

- View Text Solution

8. Which of the following are the correct orders of basic character?
A.

B.

c.

D.

Answer: A::B::C

- View Text Solution

9. Which statements are correct about MIC (methyl isocyanate, $M e-N=C=O$).
A. $M I C$ is prepared byt the reaction of MeNH_{2} and
COCl_{2} (phosgene).
B. Hydrolysis of $M I C$ gives

$$
\binom{\stackrel{O}{\|!}}{M e-N H-O H}
$$

as the intermediate, which gives MeNH_{2} and CO_{2}
on further hydrolysis.
C. MIC is used to prepare insecticide, carbaryl under the commercial name Sevin.
reacted with $M I C$ beacause N is more basic and nucleophilic.

Answer: A::B::C::D

D View Text Solution

10. Which of the following statements are correct?
A. Aryldiazonium ions are more stable than alkyldiazonium ions.
B. Electron release from the ortho-and para-positions of the ring stabilises the aryldiazonium ion.
C. The increased stability of aryldiazonium is due to the great difficuly of forming $A r^{\oplus}$ as compared to R^{\oplus}.
D. Alkyldiazonium is more stable than aryldiazonium ion.

Answer: A::B::C

- Watch Video Solution

11. Which of the following reagents are correct for the given reaction?

A. (i) $\mathrm{NaNO}_{2}+\mathrm{HCl}, 0-5^{\circ} \mathrm{C}$, (ii) $\mathrm{H}_{3} \mathrm{PO}_{2}$
B. (i) $K N O_{2}+H B r, 0-5^{\circ} C$, (ii) $N a_{2} S n O$ (2)
C. (i) HNO_{2}, (ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and heat
D. (i) $\mathrm{KNO}_{2}+\mathrm{HCl}$, (ii) $\mathrm{H}_{2} \mathrm{O}$ (Steam)

Answer: A::B::C

- Watch Video Solution

12. Which of the following would give Hofmann alkene?
A.

B.

C. c. iii. $\left[\begin{array}{c}\mathrm{Me} \\ \mathrm{Me}\end{array}\right]$
D.
d.iv. $[$ Ph

Answer: A::C

D Watch Video Solution

13. Which of the following are Cope reactions?
A.

B.
b. II. $\left[\begin{array}{c}\mathrm{Mc}-\mathrm{N-} \\ \mathrm{Mc} \\ \mathrm{Me}\end{array}\right] \mathrm{OH} \xrightarrow{\Lambda}$
C. ${ }^{\text {c. III. }}$ - $\mathrm{NH}_{2} \xrightarrow[\mathrm{HNO}_{2}]{\mathrm{S}_{\mathrm{C}}}$

Answer: A::D

D Watch Video Solution

14. Which of the following statements are correct?
A. $C H_{3} \stackrel{\oplus}{N} \equiv \stackrel{\Theta}{C}$ on partial hydrolysis gives N-methyl
methanamide.
B. $\mathrm{CH}_{3} \stackrel{\oplus}{N} \equiv \stackrel{\ominus}{\mathrm{C}}$ on partial hydrolysis gives $\mathrm{CH}_{3} \mathrm{NH}_{2}$
and HCOOH .
C. In an isocyanide, first an electrophile and then a nucleoplile add at the same C atom bearing negative charge.
D. In an isocyanide, first a nucleophile and then an electrophile add at the same C atom bearing negative charge.

Answer: A::B::C

D View Text Solution

15. Which of the following statements are correct?
A. Ethanenitrile on partial hydrolysis gives acetamide.
B. Ethanenitrile on complete hydrolysis gives acetic acid and NH_{3}.
C. Cyanides are hydrolysed with aqueous mineral acids or alkali.
D. Isocyanides are hydrolysed with dilute acids and not by alkali.

Answer: A::B::C::D

D View Text Solution

16. By which of the following reactions can $M I C$ (methyl
isocyante) be obtained?
A. $C H_{3}-\stackrel{\oplus}{N} \equiv \stackrel{\ominus}{C}+H g O \rightarrow$
B. $C H_{3}-\stackrel{\oplus}{N} \equiv \stackrel{\ominus}{C}+O_{3} \rightarrow$
C. $C H_{3}-\stackrel{\oplus}{N} \equiv \stackrel{\ominus}{C}+S \rightarrow$
D. $C H_{3}-\stackrel{\oplus}{N} \equiv \stackrel{\ominus}{C}+D M S O \rightarrow$

Answer: A::C::D

- View Text Solution

17. Which of the following statements are correct?
A. $1^{\circ}, 2^{\circ}$, and 3° nitro compounds can be distinguished by HNO_{2}.
B. 1° nitro compound with $H N O(2)$ gives nitrolic acid,
which gives blood-red colour with base.
C. 2° nitro compound with HNO_{2} gives pseudo nitrole, which gives blue colour with base.
D. 3° nitro compound does not react with HNO_{2}.

Answer: A: B:: $:$:: D

D View Text Solution

18. Which of the following reaction are correct?

C.
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{2} \mathrm{OH}$
D.

Answer: A::B::C::D

D View Text Solution

19. Which of the following reaction is/ are correct?
A. $\mathrm{PhNO}_{2} \xrightarrow{\text { LAH }} \mathrm{PhNH}_{2}$
B. $\mathrm{PhNO}_{2} \xrightarrow[+\mathrm{NaOH}]{\mathrm{NaSnO} \mathrm{N}_{2}} P h-N=N-P h$
C. $\mathrm{PhNO}_{2} \xrightarrow{\mathrm{Na}_{3} \mathrm{AsO}_{3}+\mathrm{NaOH}} \mathrm{Ph}-\stackrel{\oplus}{N}=N-\mathrm{Ph}$ ${ }_{-1}{ }^{-1}$
D. $\mathrm{PhNO} \mathrm{N}_{2} \xrightarrow{\mathrm{Al}-\mathrm{Hg} / \mathrm{H}_{2} \mathrm{O}} \mathrm{Ph}-\mathrm{NH}-\mathrm{NH}-\mathrm{Ph}$

- View Text Solution

20. Which of the following reaction are wrong?

B. b. $\mathrm{PhNO}_{2} \xrightarrow[\text { reduction }(\mathrm{pH}=3-4)]{\text { Elcetrolyic }} \mathrm{PhNHOH}$

D.

Answer: A::B

Exercises Single Correct

1. Which of the following substaces on treatment with
$P_{2} O_{5}$ gives ethanenitrile?
A. Propanamide
B. Enthanamide
C. Ethanoic acid
D. N-Methylethyl amine

Answer: B

- Watch Video Solution

2. Methyl cyanide on treatment with methyl magnesium bromide followed by of subsequent hydrolysis gives:
A. Propanone
B. Ethanone
C. Ethanal
D. Propanal

Answer: A

- Watch Video Solution

3. The product formed by the treatment of ethanol and ethane nitrile in the presence of sulphuric acid is:
A. Ethyl acetate
B. Diethyl ether
C. Ethyl methyl ketone
D. Butanal

Answer: A

- Watch Video Solution

4. Which of the following reagents on treatment with benzenamine in basic medium produces phynyl isocyanide?
A. $C C l_{4}$
B. Trichloromethane
C. Methylene dichloride

D. Hexachloroethane

Answer: B

(Watch Video Solution

5. Which of the following is not an ambident nucleophile?
A. $N O_{2}^{\ominus}$
θ
B. $O H$
C. $C S N^{\ominus}$
D. $C N^{\ominus}$

Answer: B
6. (A) is subjected to reduction with $\mathrm{Zn}-(\mathrm{Hg} / \mathrm{HCl})$ and the product formed is N -methylmethanamine. (A) can be.

A. Ethane nitrile

B. Nitroethane
C. Carbylaminoethane
D. carbylaminomethane

Answer: D

- Watch Video Solution

7. Mendius reaction involves the:
A. Reduction of aldehydes to give alcohols
B. Reduction of nitriles with sodium and ethanol
C. Oxidation of nitriles
D. Hydrolysis of cyanides.

Answer: B

D Watch Video Solution

8. The reaction of primary amine with chloroform and ethanolic solution of KOH is called:
A. Hofmann reaction
B. Reimer-Tiemann reaction
C. Carbylamine reaction

D. Kolbe reaction

Answer: C

- Watch Video Solution

9. Ethanamine is treated with nitrous acid at ordinary temperature, the products will be:
A. Ethanol only
B. ethanol acetic acid, N_{2}, and $\mathrm{H}_{2} \mathrm{O}$
C. Acetic acid, ethane, and $\mathrm{H}_{2} \mathrm{O}$
D. Ethanol, ethene, N_{2} and $\mathrm{H}_{2} \mathrm{O}$
10. Stephen's reduction converts nitriles into:
A. Aldehydes
B. Ketones
C. Amines
D. Carboxylic acids

Answer: A

- Watch Video Solution

11. When propane is subjected to the treatment with fuming nitric acid at 673 K which of the following will not

form ?

A. 1-Nitropropane
B. 2-Nitropropane
C. Nitromethane
D. Nitrohexane

Answer: D

D Watch Video Solution
12. Nitrobenzene is subjected to reduction with zinc dust and ammonium chloride. The main product formed will be:
A. Benzenamine
B. Aniline
C. N-Phenylhydroxylamine
D. None of these

Answer: C

D View Text Solution

13. A primary nitroalkane is treated with nitrous acid,which of the following will be the main product?
A. Pseudonitrol
B. Nitrolic acid
C. A primary amine
D. Primary alcohol

- Watch Video Solution

14. Nitromethane is subjected to treatment with chlorine in the presence of sodium hydroxide, the main product is:
A. Monochloronitromethane
B. Trichloromethane
C. Chloropicrin
D. None of the above

Answer: C
15. Which of the following nitro compounds will show tautomerism?
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNO}_{2}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}$
D. None of the above

Answer: C

- Watch Video Solution

16. Which of the following groups will facilitate the electrophilic attackon benzene ring?
A. $-\mathrm{NO}_{2}$
B. -CHO
C. $-C l$
D. $-\mathrm{SO}_{3} \mathrm{H}$

Answer: C

- Watch Video Solution

17. Gabriel synthesis is used for the preparation of
A. 1° amine
B. 2° amine
C. 3° amine
D. all can be prepared

Answer: A

- Watch Video Solution

18. Hinsberg's reagent is:
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
B. $\mathrm{CH}_{3} \mathrm{COCl}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}$

Answer: D
19. Which of the following statements is correct?
A. Methyl amine is slighty acidic.
B. Methyl amine is less basic than ammonia.
C. Methyl amine is less basic than dimethyl amine.
D. Methyl amine is less basic than aniline.

Answer: C

D View Text Solution

20. Which of the following amines will form stable doazonium salt at $273-283 K$?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$

Answer: B

- Watch Video Solution

21. Which of flowing is the weakest base ?
A. NH_{3}
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{6} \mathrm{NH}_{2}$
D. $\mathrm{CH}_{3} \mathrm{NH}_{2}$

Answer: B

- Watch Video Solution

22. Which of the following are not functional isomers of each other?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{ON}=\mathrm{O}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}-2 \mathrm{CH}_{2}$ and $\mathrm{CH}_{30}-2 \mathrm{cHNH} \mathrm{H}_{2}$
D. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$
23. A nitrogenous substamnce (X) is treated with HNO_{2} and the product so formed is further treate with NaOH solution, which produces blue coloruation. Which of the following can (X) be ?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{ONO}$
D. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}_{2}$

Answer: D

24. Which of the following cannot react with HNO_{2} ?
A. $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNO}_{2}$
C. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Answer: B

- Watch Video Solution

25. Nitrobenzene on eelctrolutic reduction gies:.
A. Azobebzene
B. Hydrazobebzene
C. Aminophenol
D. Aniline

Answer: D

D View Text Solution

26. An orgnic compoud with the formula $C_{3} H_{5} N$ hydrolysis forms a acid which reduces Fehling solution. The compound can be :
A. Ethanenitrile
B. Isocyanoethane
C. Ethoxyethane
D. Propanenitrile

- Watch Video Solution

27. In order to distinguigh between $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ and
$C_{6} H_{5} \mathrm{NH}_{2}$ which of the following reagenis is useful ?
A. Hinsberg reagent
B. p-Naphatheol
C. Benzene diazomium chloride
D. None of the above

Answer: B
28. The compound 1- (N-ethyl-N-methyl)- propanamine forms non-superimposable mirror images . But this compound does not show optical activity because of the :
A. Absence fo a chiral (N) atom
B. Prersence of chiral (N) atom
C. Presence of lone pair on (N) atom
D. Rapid filipping of one form into the another

Answer: D

D Watch Video Solution
29. Which of the following will yield phenlhydrazine hydrochloride?
A. Benzenamine and hydrazine
B. Hydrazine and HCl
C. Benzenediazonium chlorid and $\mathrm{SnCl}_{2} / \mathrm{HCl}$
D. Nitrobenzene and $\mathrm{SnCl}_{2} / \mathrm{HCl}$

Answer: C

D View Text Solution

30. Which of the following rooduces one mononitro and three isomeric dinitro derivatives ?
A. p-Xylene
B. ethyl benzene
C. o-Xylene
D. m-Xylene

Answer: A

- Watch Video Solution

31. $\mathrm{CHl}_{3} \xrightarrow{\mathrm{HNO}_{3}}(\mathrm{X})$ ltbRgt In the above sequence , (X) is :
A. Nitrochloromethane
B. Chloropicrin
C. Ethanenitrile

D. None of the above

Answer: B

- View Text Solution

32. Which of the following is formed when $R N H_{2}$ reacts with RCHO ?
A. Hemiacetals
B. Acetals
C. Ketals
D. Imines
33. Which of the following represents the poinsonous gas which caused the tragedy in Bhopal in 1984 ?
A. $C H_{3} C=N=S$
B. $\mathrm{CH}_{3}-\mathrm{N}=\mathrm{C}=\mathrm{O}$
C. $C H_{3}-N=C=S$
D. $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{N}=\mathrm{C}$

Answer: B

- Watch Video Solution

34. The conjugate base of $\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}^{\oplus}$ is:
A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
C. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{2}$

Answer: B

- Watch Video Solution

35. Which of the following is the weakest base?
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$

Answer: C

- View Text Solution

36. Which of the following reactions does not yield an amine?
A. $R-X+\mathrm{NH}_{3} \rightarrow$
B. $R-C H=N O H=[H] \xrightarrow[C_{2} \mathrm{H}_{5} \mathrm{OH}]{\mathrm{Na}}$
C. $R-\mathrm{CN}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{\oplus}}$
D. $\mathrm{R}-\mathrm{CONH}+4[\mathrm{H}] \xrightarrow{\mathrm{LiAIH}_{4}}$
37. Primary and secondary amines are distinguished by :
A. $B r_{2} / K O H$
B. HClO
C. NHO_{2}
D. NH_{3}

Answer: C

- View Text Solution

38. Indicate which nitrogen compound amonfst the following would undergo Hofmann reaction (i.e., reaction
with $\mathrm{Br}-2$ and strong KOH) tom furmish the primary amine $\left(R-N H_{2}\right)$.
A. $\mathrm{RCONHCH}_{3}$
B. $\mathrm{RCOONH} H_{2}$
C. RCONH_{2}
D. $\mathrm{R}-\mathrm{CO}-\mathrm{NHOH}$

Answer: C

- Watch Video Solution

39. Pick up the correct stament :
A. The boling points of alkly halides are more than those of the corresponding alkances .
B. In water , the solulity of

$$
\mathrm{CH}_{3} \mathrm{OH}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}>\mathrm{C}-6 \mathrm{H}_{5} \mathrm{OH} .
$$

C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is a weaker base thann NH_{3}.
D. All the above statements are correct .

Answer: D

- View Text Solution

40. The producet of the reaction of alcoholic silver nitrite
with ethyl bromide is :
A. Ethane nitrile

B. Ethene

C. Nitroethane
D. Ethyl alcohol

Answer: C

- Watch Video Solution

41. The electrolytic reduction of nitrobenzene in strongly acidic medium produces.
A. Phenol
B. p-Aminophenol
C. Hydroazobenzen
D. Azohebzene

Answer: B

- Watch Video Solution

42. Azoxybenzene can be obtained by the treatment of mitro-benzene with :
A. O_{2}
B. $H_{2} / P t$
C. $\mathrm{NaAsO}_{3} / \mathrm{NaOH}$
D. $\mathrm{Zn} / \mathrm{NaOH}$

Answer: C
43. Tertiary nitro compounds cannot show tautomerism becauses :
A. They are very stable .
B. They isomerise to give secondary intro compounds
C. They do not have labile hydrogen atom.
D. They are highly reactive .

Answer: C

- Watch Video Solution

44. Diazo coupling is useful to prepare some :

A. Pesticides

B. Dyes
C. Proteins
D. Vitamins

Answer: B

- Watch Video Solution

45. The following reaction constituts :

$$
R \mathrm{NH}_{2}+S=C=S \xrightarrow[H_{2} S]{\mathrm{H}_{g} \mathrm{Cl}_{2}} R \underset{\text { Alkyl isothicoyanate }}{\mathrm{N}}=\underset{=}{C}=H_{2} S
$$

A. Mustaard ila reaction
B. Test for 3° amine
C. Test for 2° amine

```
D. Test for \(C S_{2}\)
```


Answer: A

- View Text Solution

46. Primary, secondary, tertiary amines can be separated by the following except :
A. Fractional distillation
B. Fractional method ysubg duetgtk oxalate
C. Hinsberg' s method using $\mathrm{C}_{6} \mathrm{H}-5 \mathrm{SOCl}$
D. Selective crtystallisation
$47.1^{\circ} .2^{\circ}$. And 3° amines can be best distinguished by:
A. HNO_{2} treatment `
B. Exthaustive alkylation
C. Mustard oil reaction
D. Carbylamine reaction

Answer: A

- View Text Solution

48. When $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$ is reduced with $\mathrm{Na}_{2} \mathrm{SnOO}_{2}$, the product is :
width="30\%">

B.

D.

Answer: B

49. Nitrogen is likely to be evolved when NaNO_{2} in dilute HCl warmed with :
A. $\mathrm{CH}_{3} \mathrm{NHCH}_{2} \mathrm{CH}_{3}$
B. $\left(C_{2} H_{5}\right)_{3} N$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
D. $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Answer: D

- Watch Video Solution

50. When PhNO_{2} is reduced in alkaline medium, the product is
B. $P h-N=N-P h$ (Azohenzene)
C. $P h-N H-N H-P h$ (Hydrazobenzene)
D. All

Answer: D

51. The following reaction is

$\mathrm{Ph}-\mathrm{NH}-\mathrm{NH}-\mathrm{Ph}$

A. Benzidine rearrangement
B. Pinacol-Pinacolone rearrangement
C. Fries rearrangement
D. Benzil-benzilic acid arrangement

Answer: A
52. A compound (X) has the molecular formula $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}$. On treatment with $B r_{2}$ and $K O H .(\mathrm{X})$ gives an amine $(\mathrm{Y}),(\mathrm{Y})$ gives carbylamine lest . (Y) upon diazotisation and couupling with phenol gives an azodye (Z). (X) is :
A. PhCONH 2
B. PhCONHCOCH 3
C. $\mathrm{PhNO} \mathrm{N}_{2}$
D. PhCOONH 4

Answer: A
53. A compound (X) has the molecular formula $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$.

With $B r_{2}$ and $K O H$, (X) gives (Y) . (Y) responds to mustard oil reaction . (Y) upon treatment with HNO_{2} evolves N_{2} and gives an alcohol (Z) which gives iodoform test , (X) is likelty to be :
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{COH}_{2}$
C. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CNO}$

Answer: A

54. An amine on treatment with HNO_{2} evolved N_{2} The amine on exhaustive methylation with $C H_{3} I$ formed a quatermary dalt containing 95.07% iodine . The amine is likely to be:
A. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
C. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$

Answer: C

1. Assertion (A) : Aniline hydrogen sulphate on heating froms a mixture of o - and p -amineo- sulphonic acid.

Reason (R) : The suphonic acid is `overline e withdrawing .
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true, but (R) is false .
D. If both (A) and (R) are false .

Answer: B
2. Assertion (A) : $P h \stackrel{\oplus}{N_{2}} B r^{\Theta}$ couples with N, N-dimethyl aniline (I) but not with 2,6, -dimethyl- N, N-dimethuyl aniline (II)

Reason (R): Due to steric inhibition of resonce, the ppotion of (II) is not sufficiently activated fro the coupling reation.

Due to steric inhibition of resonamne, the p-position of (II) is not sufficiently activated for the coupling reaction.
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true , but (R) is false .

D. If both (A) and (R) are false .

Answer: A

- Watch Video Solution

3. Assertion (A) : Gabriel phthalimide reaction is used for the prepartion fo $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ and p-nitro aniline .

Reason (R): $S N^{2}$ reaction takes place with $1^{\circ} R X$ and $1^{\circ} \operatorname{Ar} X$ containing \bar{e} - withdrawing group at o-and p positions
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true, but (R) is false .
D. If both (A) and (R) are false .

Answer: A

D Watch Video Solution

4. Assertion (A) : Pyridine is more basic than piperidine. Reason (R): N atom is $s p^{2}$-hybridised in both.
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true, but (R) is false .
D. If both (A) and (R) are false .

Answer: D

D Watch Video Solution

5. Assertion (A) : $P h \stackrel{\oplus}{N_{2}} B r{ }^{\Theta}$ is more acidic than $N H_{4} B r$.

Reason (R) : Ph $\stackrel{\oplus}{N} H_{3}$ (anilinum ion) is resonance stabilinsed .
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true, but (R) is false .
D. If both (A) and (R) are false .

Answer: C

D View Text Solution

6. Assertion (A) : Carbylamine reaction takes place between 1° amine and CHBrCII in basic medium. ItbRgt Reaspm
$(\mathrm{R}):$ The reaction takes place by the formation of bromiodo carbene (:C Brl) as intemediate .
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true, but (R) is false .
D. If both (A) and (R) are false .

Answer: C

Watch Video Solution

7. Assertion (A) : Hofmann bromamide reaction takes place
btween an arthide and $B r_{2}$ in basic medium . ItbRgt

Reason (R). The reaction proceeds by the formation of $(R-\bar{N}:)$ nitrene intremediate.
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true, but (R) is false .
D. If both (A) and (R) are false .

Answer: C

D Watch Video Solution

8. Assettio (A) : $\mathrm{Ph} \stackrel{\oplus}{N_{2}} \mathrm{Br}^{\Theta}$ on reaction with NaOH gives bebzene diazohroxile

Reason (R) : $\stackrel{\ominus}{O} H$ is a strong nucleophile, attacks the terminal (N) atom , and forms a covalent bond.
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true, but (R) is false .
D. If both (A) and (R) are false .

Answer: A

9. Assettion (A) : $\operatorname{Ph} \stackrel{\oplus}{N}_{2} B r^{\Theta}$ pm reactopm wotj motrpnemzeme om the [resemce pf $N a O H$ gives pnitrbiphenyl

Reason(R) : The reaction takes jplace by free radical mechanism .
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true, but (R) is false .
D. If both (A) and (R) are false .

- View Text Solution

10. Assettion (A) : Coupling of $P h \stackrel{\oplus}{N_{2}} B r^{\Theta}$ with aniline is faster than with phenol.

Reason (R): Aniline is more \bar{e} donating than phenol.
A. If both (A) and (R) ar true, and (R) is the correct explanation of (A).
B. If both (A) and (R) are true, and (R) is not the correct explanation of (A).
C. If (A) is true, but (R) is false .
D. If both (A) and (R) are false .

(Watch Video Solution

Archives Single Correct

1. The compound which on reaction with aqueous nitrous
acid at low tremperature produces an oily nitrosoamine is :
A. Methylamine
B. Ethylamine
C. Diethylamine
D. Triethgylamin

- View Text Solution

2. Acetamide is reated separately with the following reagents. Which one of these would give methylamine ?
A. PCl_{5}
B. $S o d a \lim e$
C. $\mathrm{NaOH}+\mathrm{Br}_{2}$
D. Hotconc. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: C

- Watch Video Solution

3. Carbylamine test is performed in alc. $K O H$ by heating a mixture of :
A. Choloroform and silver powder
B. Trihalogenated methane and a primary amine
C. An alkyl halide and a primary amine
D. An alkyl cyanide and a primary amine

Answer: B

- Watch Video Solution

Examine the following two structures for the anilinium ion and choose the correct statement from the ones given below:
A. (II) is not an acceptabnle canonical structure because
carbionium ions are less stable than ammonium ions
B. (II) is not an acceptable canonical structure becauses
it is non -aromatic.
C. (II) is not an acceptable canonical structure becauses nitrogen has 10 valence eelctrons .
D. (II) is an acceptable canonical structure.

Answer: C

- Watch Video Solution

5. The most unlikely representation of resonance structures of p-nitrophenoxide ion is:
A.
(\#\#KSV_CHM_ORG_P2_C15_E01_150_O01.png"
width="30\%">
B.

6. Among the following the strongest base is

A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
B. $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$
C. $m-\mathrm{NO}_{2} . \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Answer: D
7. The correct order of basictiies of the following compounds is:

A. $(2)>(1)>(3)>(4)$
B. $(1)>(3)>(2)>(4)$
C. $(3)>(1)>(2)>(4)$
D. $(1)>(2)>(3)>(4)$

Answer: B

$$
\mathrm{F} \rightarrow \mathrm{NO}_{2} \xrightarrow[\text { DMF, } \Delta]{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}}(\mathrm{~A}) \xrightarrow[\substack{0-\mathrm{S}^{\circ} \mathrm{C} \\ \text { (ii) } \mathrm{H}_{2} \mathrm{Ni}}]{\text { (i) } \mathrm{NaNO}_{2} / \mathrm{HCl}}(\mathrm{~B})
$$

8.

A.
B.

C.

D.

Answer: A

- View Text Solution

9. In the following reaction,

the structure of the major product (X) is :
A. (\#\#KSV_CHM_ORG_P2_C15_EO1_154_001.png"
width="30\%">
B. (\#\#KSV_CHM_ORG_P2_C15_EO1_154_OO2.png"
width="30\%">
C.

D.

- View Text Solution

10. In the reaction

struture of the product (T) is :
A.
(\#\#KSV_CHM_ORG_P2_C15_E01_155_O01.png"
width="30\%">
B.
(\#\#KSV_CHM_ORG_P2_C15_E01_155_O02.png"
width="30\%">

D.

Answer: C

- View Text Solution

Archives Assertion-Reasoning

1. Statement I: In strongly acidic solutions, anline becomes more reactive towards electrophilic reagents ItbRgt

Statement II: The amino group being completely protonated in strongly acidic solution, the line pair of electrons on nitrogen is no longer avalible for resonace.
A. Statement (I) is true : Statement (II) is true :

Statement (II) is the correct esplanation of Statement
B. Statement (I) is true : Statement (II) is true

Statement (II) is not the correct exphanation fo
sTatement (I)
C. Statement I is True, Statament II is false
D. Statement (I) is false , Statement (II) is true .

Answer: (d)

- Watch Video Solution

2. Statement I: Aniline on reaction with $\mathrm{NaNO} \mathrm{O}_{2} \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ followed by coupling with β-naphthol gives a dark blue coloured precipitate.

Statement II: The colour of the compound formed in the
reaction of aniline with $\mathrm{NaNO}_{2} / \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ followed by coupling with β-naphthol is due to extended conjugation.
A. Statement
(I) is true : Statement (II) is true :

Statement (II) is the correct esplanation of Statement
(I)
B. Statement (I) is true : Statement (II) is true ,

Statement (II) is not the correct exphanation fo
sTatement (I)
C. Statement I is True, Statament II is false
D. Statement (I) is false , Statement (II) is true .

Answer: (d)

Archives Multiple Correct

1. When nitrobezene is treated with $B r_{2}$ in the presence of FeBr_{2} the major product formed is m -bromonitrobenzene. Statements which are related to obtatining the m-isomer are:
A. The electron densitty on meta-carbon is more than that on ortho-and para -positons
B. The intemediate carbonium ion formed after intial attakc of Br^{\oplus} at the meta-position is least destabnilise
C. Loss of aromaticity when Br^{\oplus} attacks at the orthand para -positions and not at meta-position.
D. Easier loss of H^{\oplus} to regain aromaticity from the meta-position than fromm the ortho- and parapositions

Answer: (a)

D View Text Solution

2. p-Chloroaniline and anilinium hydrochloride can be distinguished by :
A. Sandmeyer reaction
B. NaHCO 3
C. AgNIO 3
D. Carbylamine test

- View Text Solution

3. A positive carbylamine test is given by:
A. N,N-Dimethyl aniline
B. 2, 4 - Dimethyl aniline
C. N-methyl -o-methyl aniline
D. p-Methyl benzylamine

Answer: (b,d)

Archives Fill In The Blanks

1. In an acidic medium behaves as the strongest base (nitrobenzen. Aniline, phenol),

- View Text Solution

2. Amongst the three ismers of nitrophenol, the one that is
least soluble in water is \qquad

- Watch Video Solution

3. The high melting point and insolubility of sulphanilic acid in organic solvents are due to its structure .

Archives Analytical And Descriptive

1. State the equations for the preparation of the following compounds. (Equations need not to be balance).
(i) Chlorobenzene from aniline (in two steps)
(ii) N-Propyl amine from ethyl chloride (in two steps)

- View Text Solution

2. State the conditons under which the following preparatiojn in carried out . Give the necessary equyations which need not to be balance : Aniline from bensesn'

3. How would you convert ?

'Aniline to chorobenzene' .

- Watch Video Solution

4. For intromethane movecule, write structures (s) (i) showing signifcant resonance stabilisation (ii) indicationg tautomerism.
5. Complete the following with appropriate structures :

- View Text Solution

6. Give a chemical test and the reagents used to distinguish between the following :
'Ethylamine and diethylamine'

- Watch Video Solution

7. Arrange the following in increasing orde of base strength
: methylamine, dimethylamine, aniline, N-methylamiline .
8. How will you bring about the following conversion ?

4 - nitroaniline to $1,2,3$-tribromobensene

- View Text Solution

9. Write the structure of the major organci product expected from the following reaction .

D View Text Solution

10. A basic volatile nitrogen compound give a foul smelling gas when treated with chaloroform and alcoholic potash.
$A 0.295 \mathrm{gm}$ sample of the substance dissolved in aqueous
HCl and treated with NaNO_{2} solution at $0^{\circ} \mathrm{C}$ libreated a
colourless, odorless gas whose volume corresponded to
$112 m l$ at $S T P$. After the evoltion fo the gas was complte,
the aqueous solution was distilled to give an orgfanic liquid which did not coniain nitrogen and wihic on watemiing with alkali and iodine gave a uellow preciptitate , Idntify the orginal substance assuming that it contains one (N) atom per molecule .

- View Text Solution

11. Outline a synthesis of p-bromonitrobenzene from benzene in two steps .

- Watch Video Solution

12. Give the structure of (A) (exphanations are not resquired). $A\left(C_{3} H_{9} N\right)$ reacts with bezenesulphonly chloride to give a solid insoluble in alkali'.

- Watch Video Solution

13. Complete the following with appropriate structures:

2, 3-Dinitroaniline $\xrightarrow{(i) \mathrm{NaNO}_{2} \text { and } \mathrm{HClata}^{\circ} \mathrm{C}}(A)^{\text {. }}$. (ii) Anisol
14. Write the structure of the foul-smelling compound obtained when aniline is treated with chloroform in the poresence of KOH .

- Watch Video Solution

15. Give reason for the following in one or two sectences:
'Dimethyl amine is a stronger base than trimethyl amine'

- View Text Solution

16. Following reaction gives tow products . Write the structures of the products .

Watch Video Solution

17. How would you bring about the following conversion (in three steps) ?

Aniline \rightarrow Benxylamine.

- Watch Video Solution

18. There is a solution fo p-hydroxybenzoic acid and p amino benzoic acid. Discuss one method by which we can separate them and slso write down the confimatory test of the functional groups present .
19. Which of the following is more acidic and why?

- View Text Solution

20.

Convert

more than four steps. Also mention the temperature and reaction conditions.

- View Text Solution

21. $\underset{\text { Optically active }}{\mathrm{C}_{5} \mathrm{CH}_{13} N} \xrightarrow[N_{2}]{\mathrm{NaNO}_{2} / \mathrm{HCl}}(Y) \underset{\substack{\text { Tertiary alcohlo } \\+ \\ \text { Other product }}}{ }$ (X)

Find (X) and (Y) . Is (Y) optically active ? Write the
intermediate steps .

- Watch Video Solution

22. A mixture of two aromatic compounds (A) and
separated by dissolving it in chloroform followed by extraction with aqwueous $K O H$ solution. The organic layer containing compound (A) when heate with alcoholic solution of KOH produced a compound (C) $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}\right)$ associated with an unpleasnt odour. The alkaline aqueous layer on the other hand, when heated with chloroform and then acidified gave a mixture of two isometic compounds
(D) and (E) of molecular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$. Identity the compounds (A), (B) . (C) (D), and (E) and write their structures.
23.

- View Text Solution

24. An organic compound (A) $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{3}$, in dry bebzene in the presence of anhydrous $A l C l_{3}$ gives compound (B). The compound (B) on treatment with PCl_{5} followed by reaction with $\mathrm{H}_{2} / \mathrm{Pd}\left(\mathrm{BaSo}_{4}\right)$ gives compound (C) which on reaction with hydrazine gives a cyclide compound $\left(C_{14} H_{10} N_{2}\right)$. Identify (A), (B) (C), and (D) Explain the formation of (D) from (C).

