©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (HINGLISH)

REDUCTION AND OXIDATION REACTION OF ORGANIC COMPOUNDS

Illustration

1. Complete the following reactions:
a.

b.

(D)

(J)
c.

Salicylaldehydo
(J)
$\underset{(N)}{\text { d. Propane nitrile }} \xrightarrow[(i i) H_{3} O^{\oplus}]{(i) P h M g B r}(O) \xrightarrow[H C l]{Z n-H g}(P)$

- Watch Video Solution

2. Give the products of the following and the name of the reactions:

(A)
b.

(C)
c.

(3-Ethyl cyclopentene)

(3-Ethyl cyclopentanol)

$\mathrm{K} \Rightarrow$

(3-Ethyl cyclopentene)
(4-Ethyl cyclopentene)
or

(4-Ethyl cyclopentene)
$L \Rightarrow$

(1-Bromo-3-cthylcyclopentanu)

- View Text Solution

3. Convert the following:

ii.

How will you decide whether Clemmensen, Wolff-Kishner, or Raney Ni desulphurisation is the most efficacious for reducing a carbonyl compound?

- Watch Video Solution

4. Selects the best way for reducing

a. $\mathrm{Br} \sim \mathrm{CH}=\mathrm{O}$

OH
c.

O
d. Me

5. Complete the following:

a. $\mathrm{Me}-(\mathrm{C} \equiv \mathrm{C})_{3}-\mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{NaBH}_{+}}$(B)
(A)
(C) $\stackrel{H^{\oplus}}{ }$
b. Me

(F)
(D)
c.

I

(J)
f.

(L)
(M)

$$
(\mathrm{P})+(\mathrm{Q}) \stackrel{O, R \mathrm{Red}}{¿}(\mathrm{O})
$$

6. Which alcohol is prepared from the following ketones via MPV reduction?
a.

O
c.

- Watch Video Solution

7. Give the products of LAH with:
a.

b.

c.

d. Me

Me
e. Me^{\prime}
$\mathrm{C} \equiv \mathrm{N}$
8. Give the products of the following:

- View Text Solution

9. Give the product of the reaction of LAH with:
a.

b.

c.

O
d.

e.

f.

10. Complete the following reduction reactions with LAH and NaBH_{4} :

(Watch Video Solution

11. Complete the following MPV reductions:

- Watch Video Solution

12. Complete the following Clemmensen and Wolff-Kishner reductions:

13. Complete the following Mendius and Stephen's reductions:

$$
\mathrm{Me}-\mathrm{C} \equiv \mathrm{~N}
$$

D Watch Video Solution

14. Complete the following Bouveault- Blane (B.B) reduction:
a. $\underset{(A)}{\mathrm{Me} \mathrm{CH}}=O \xrightarrow{\mathrm{Na+PrOD}}(B)$
b. $M e_{2} \underset{(C)}{C}=O \xrightarrow{K+n-B u O D}(D)$
$\mathrm{MeCOOEt} \xrightarrow{C s+E t O D}(F)$
()
15.

a. $4 \mathrm{EtO}-\mathrm{O}-\mathrm{NO}_{2}+3 \mathrm{CH}_{3} \mathrm{ONa} \longrightarrow \mathrm{A}$
b.

c. $2 \mathrm{MeO}-\mathrm{O}-\mathrm{NO}_{2}+57 \mathrm{n}+10 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{A}$
d.

e. Convert

f. Convert Me

to

D

D
g. $\mathrm{B} \stackrel{\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}+\stackrel{\ominus}{\mathrm{O}} \stackrel{+}{4}}{ }$
Me
16. Give the products of
a. p-Benzoquinone

and
b. $\mathrm{PhCH}=\mathrm{CH}-\mathrm{CHO}$ with
i. $H_{2}+P t$
ii. $H_{2}+P d-C(1 a t m)$
iii. $L A H$
iv. NaBH_{4}
v. $Z n+H A c$
vi. $\mathrm{NH}_{2} \mathrm{NH}_{2}+\mathrm{KOH}+$ glycol $+\Delta$
vii. $H I+P$
viii. $L A H+A l C l_{3}$
ix. $\left(\mathrm{Me}_{2} \mathrm{CHO}-\right)_{3} \mathrm{Al}+\mathrm{Me}_{2} \mathrm{CHOH}$
x. Li or Na , liq. $\mathrm{NH}_{3}+E t O H$
xi. $N a+E t O H$

- View Text Solution

17. Give the product of each of the following reactions:
a.

b.

c. $\mathrm{Ph}_{2} \mathrm{CHOH}+\mathrm{H}_{2} / \mathrm{Pd}\left(\mathrm{HClO}_{+}\right)$
d. $\mathrm{PhCOCH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{LiAlD}_{4}$, followed by $\mathrm{H}_{2} \mathrm{O}$
e. $m-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{LAH}$

OH
f. $\mathrm{Ph}_{\mathrm{Me}}{ }^{+\mathrm{PBr}_{3}}$
18. Select the most suitable alcohol and oxidant to parpare the following compounds.

a.
 $\mathrm{Me}_{3} \mathrm{C}-\mathrm{COOH}$

19. Give the product of the following with chromate oxidation.
a.

c.

d.

OH

e. Me
g. $\langle=0$
f. HO

a.
20. Find the following A, B, and C product of the reaction

1-Nitronaphthalene

- View Text Solution

21. Distinguish between acetaldehye and benzaldehyde.

D Watch Video Solution

22. Which of the following compounds is/not oxidised by Fehling's

a. Acetaldehyde

b. Phenylacetaldehyde
c. Benzaldehyde
d. p-Methyl benzaldehyde

D Watch Video Solution

23.

- Watch Video Solution

24. An organic compound of molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ did not give a silver mirror with Tollens reagent but gave a positive Brady's test
and positive iodoform test. It may be:
a. OH

c. Me

- Watch Video Solution

25. a. Ketone (A) which undergoes haloform reaction gives compound (B) on reduction. (B) on heating with sulphuric acid gives compounds (C) which forms monozonide (D). (D) on hydrolysis in the presence of Zn dust gives only acetaldehyde. Identify (A), (B), (C).
b. $C_{6} H_{14} O(A)$ on heating with KOH and I_{2} gives yellow precipitate (A) on dehydration using $\mathrm{Al}_{2} \mathrm{O}_{3}$ gives (B) which on catalytic hydration gives (C) which gives Lucas test readily. Identify (A), (B), and (C).
c. Compound (A) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ forms a phenylhydrazone and gives a negative Tollens and negative iodoform tests. (A) on reduction gives
n-pentane. Identify A.
d. One gram mixture of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CHO}$ reacts with Bendict's reagent to give a red precipitate. The mass of the red precipitate obtained is $\frac{1}{43} \mathrm{gm}$. Calculate the $\%$ of $\mathrm{CH}_{3} \mathrm{CHO}$ in the mixture.

- View Text Solution

26. Complete the
$\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-\mathrm{CH}_{3} \xrightarrow{?}$
$\bigcirc-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$

D Watch Video Solution

27. Which of the following give(s) iodoform test? Give their oxidation products after acidification.
a.

Me
b.

c.

e. Cyclopentylmethyl carbinol $(\mathrm{Me}-\mathrm{CH}-\mathrm{OH})$
f. 1-Methyl cyclohexanol

Watch Video Solution
28. Give the oxidation products of reaction of the following with KOI.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
c. PhCHO
b. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

e.

g. $\mathrm{PhCH}_{2} \mathrm{OH}$
29. Give a simple test to distinguish between the compounds in each of the following paris.
a. $\mathrm{PhCH}=\mathrm{CHCH}_{2} \mathrm{OH}$ and $\mathrm{PhCH}=\mathrm{CH}$
b. Me CHO and Me

O
c. Ph
 and

d.

- Watch Video Solution

30. Compound $X, C_{9} \mathrm{H}_{10} \mathrm{O}$, is intert to Br_{2} in CCl_{4}. Vigorous oxidation with hot alkaline KMnO_{4} yields benzoic acid. X gives a precipitate with Bragy's regent. Write all possible structures for X.
31. Give the products of the periodate oxidation of:
$\mathrm{Me} \quad \mathrm{CH}=\mathrm{O}$
a.

O
b. 1,2-Cyclohexane dione
c. ${ }_{\mathrm{OH}}^{\mathrm{Ph}} \mathrm{CH}=\mathrm{O}$

32. Identify the compound A that gives each the following products on oxidative cleavage with HIO_{4}.
a. $\mathrm{PhCHO}+\mathrm{MeCOMe}$
b. Cyclopentanone +HCHO
c. $2 \mathrm{HCHO}+\mathrm{HCOOH}$
d. $5 \mathrm{HCOOH}+\mathrm{HCHO}$
e. $3 \mathrm{HCOOH}+2 \mathrm{HCHO}+\mathrm{CO}_{2}$

- View Text Solution

Solved Example

1. Give the products of the following compounds reduced with:
a. $\mathrm{NaBH}_{4} / \mathrm{MeOH}$
b. $L A H$ / ether
c. $H_{2} / N i, \Delta, 100$ atm or $H_{2} / P t+A l_{2} O_{3}, \Delta, 35$ atm.

(A)

(B)

(C) O ET

D Watch Video Solution

2. Complete the following reactions:
a. (A) $\underset{\text { 2. } \mathrm{H}_{2} \mathrm{O}_{2}, \stackrel{\mathrm{OH}}{\mathrm{O}}}{\stackrel{\text { 1. } \mathrm{BH}_{3}, \mathrm{THF}}{\leftrightarrows}} \mathrm{O}=\square=\mathrm{CH}_{2} \xrightarrow{\mathrm{SaBH}_{4}}(\mathrm{~B})$
b. (A) $\stackrel{\text { 2. } \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{O}_{6}, \mathrm{THF}}{\stackrel{\text { OH}}{ }} \xrightarrow{-\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{\oplus}}(\mathrm{B})$

3. Complete the following:
i. Give the oxidation product of
i. Give the oxidation products of $\square \mathrm{OH}$ with:
a. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$
b. $\mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone
c. $\mathrm{CrO}_{3} /$ pyridine
d. PCC
ii.

Me OH
iii.

v. Distinguish between allyl alcohol (A) and n-propyl alcohol (B).
vi. Complete the following:
a. $\mathrm{Mc}_{2} \mathrm{CO}+\mathrm{Me}-\equiv-\mathrm{Me} \xrightarrow{\mathrm{CH}_{3} \mathrm{ONa}}(\mathrm{A})$

c. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HC} \equiv \mathrm{CD} \xrightarrow{\mathrm{CH}_{3} \mathrm{ONa}}(A)$
c. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{HC} \equiv \mathrm{CD} \xrightarrow{\mathrm{CH}_{3} \mathrm{ONa}}(\mathrm{A})$
d.
d. $\mathrm{Me}-\underset{\text { Peroxide }}{\underset{\substack{\text { CCl } \\ \mathrm{CCH}_{3} \mathrm{Br}}}{\equiv}-\mathrm{H}+\mathrm{CCl}_{3} \text {. }}$
vii. Write the stereochmical products of the following:

O
4. Convert the following:
a.
 to (i)
 and (ii)

b.

to (i)

a.

b.

Me OH

c.

5.

a. Me \qquad

a. B (mixture) $\underset{\Delta}{\stackrel{\mathrm{KMnO}_{4} / \mathrm{H}^{\oplus}}{\mathrm{R}} \xrightarrow{\text { (2) }} \xrightarrow[\text { reagent }]{\text { Tollens }} \mathrm{CHO}} \mathrm{A}$
b. Ph

c.

d.

$E\left(C_{2}-C_{3}\right.$ cleavage $)+F\left(C_{3}-C_{4}\right.$ cleavage $)$
6. Complete the following reactions:

ii.

iii.

iv. Identify the following:

a.

$$
\xrightarrow{-\mathrm{OH}} \underset{\mathrm{H}^{\oplus}}{\text { One equivalent of }} \mathrm{I} \xrightarrow{\mathrm{NaBH}_{3} \mathrm{OH}} \mathrm{~J} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus}}
$$

$$
\left[\mathrm{OH}+\mathrm{H}^{\oplus}\right.
$$

v. a.

b.

vi.

b.

c.

O
d.

vii. a.

vi. a. $\bigcirc \xrightarrow{\mathrm{TiCl}_{3}+\mathrm{HCl}}$ A b. $\mathrm{B} \stackrel{\mathrm{NH}_{4} \mathrm{HS}}{\leftarrow}$

c. $\xrightarrow[\sim]{\text { (}} \xrightarrow{\text { Alkaline } \mathrm{Fc}^{2+} \text { or } \mathrm{SnCl}_{2} / \mathrm{HCl}} \mathrm{A}$
CHO

- View Text Solution

EXAMPLE

1. Give the products of nitrobenzene when it is reacted with the following:
a. $P d / H_{2}$
b. $P / H I$
c. $\mathrm{Fe} / \mathrm{HCl}$
d. $P P h_{3}$
e. $\mathrm{Ph} \mathrm{NH}_{2}$
f. $\mathrm{PhCH}_{2} \mathrm{CN}$
g. $\mathrm{NH}_{2} \mathrm{OH}$
h. $\mathrm{RMgBr} / \mathrm{H}_{2} \mathrm{O}$

View Text Solution

Exercise

1. Complete the follwing:
a.

b.

c.

d.

e.

g.

h. (B) $\leftarrow \stackrel{\mathrm{HCl}}{ }$

CHO

k.

$$
\xrightarrow[\Delta]{\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}}(\mathrm{~A})
$$

1.

OH
$\bigcirc+\square^{\mathrm{Br}} \xrightarrow{\mathrm{K}_{2} \mathrm{CO}_{3}}(\mathrm{~A})$

n.

0.

NO_{2}
m.

o.

q. Discuss the mechanism:

- View Text Solution

(Note that KMnO_{4} can cause cleavage of the ring in the presence of the activating) (-OH) group.

D Watch Video Solution

3. In which of the following compounds does intramolecular H bonding occure?
a. o-Nitro phenol
b, o-Cresol
c. o-Hydrox benzoic acid
d. Salicylaldehyde
e. o-Fluoro phenol
f. o-Hydrox-benzonitrile
g. Methyl salicylate (oil of wintergreen)

- Watch Video Solution

4. Identify $(A),(B),(C)$,

5. Convert

COOH

- Watch Video Solution

6. Complete the following:
$(\mathrm{A}) \leftarrow \mathrm{NaNO}_{2}+\mathrm{HCl}+$

OH

b.

7. Certain cyclic 1, 3-diketone give, under Clemmensen reduction, a fully reduced product along with a monoketone with ring contraction. Explain.

Watch Video Solution
8. a. $\mathrm{CH}_{3}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{2}-\stackrel{\|}{\mathrm{C}}-\mathrm{CH}_{3} \xrightarrow[\mathrm{HCl}]{\mathrm{Zn}-\mathrm{Hg}_{\mathrm{I}}}(\mathrm{A})$
b.

CH_{3}

d. $\mathrm{Ph}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{COOH} \xrightarrow[\mathrm{HCl}]{\mathrm{Zn}-\mathrm{Hg}}(\mathrm{A})$

8.

9.

Watch Video Solution
10. $\mathrm{Ph}-\underset{\|}{\mathrm{C}}-\mathrm{OCH}_{2}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\Delta}(\mathrm{~A})$
CR_{2}
10.

- Watch Video Solution

1. (A) $A\left(C_{7} H_{14}\right) \xrightarrow{O_{3} / \text { Red }} B\left(C_{3} H_{6} O\right)+C$
(B) Gives positive Tollens test but negative iodform test.
(C) Give negative Tollens test but positive iodoform test.
The compound (A) is:
a.

A. a.
B.b.
b.

C. c.

D. d.Both (a) and (b)

Answer: D

2. (A) $A\left(C_{7} H_{14}\right) \xrightarrow{O_{3} / \text { Red }} B\left(C_{3} H_{6} O\right)+C$
(B) Gives positive Tollens test but negative iodform test.
(C) Give negative Tollens test but positive iodoform test.
The compound (B) is:

a.

A.a. Me Me
B.b. b. $\widehat{\mathrm{Me}} \mathrm{CH}=\mathrm{O}$
C. c.
c. Me
D. d.Both (b) and (c)

Answer: D

3. (A) $A\left(C_{7} H_{14}\right) \xrightarrow{O_{3} / \text { Red }} B\left(C_{3} H_{6} O\right)+C$
(B) Gives positive Tollens test but negative iodform test.
(C) Give negative Tollens test but positive iodoform test.

The compound (C) is:
a.

A. a.

Me
B.b.
b. $\mathrm{Me} \sim \mathrm{CH}=\mathrm{O}$
C. c.
c.

D. d.Both (a) and (c)

Answer: D

D Watch Video Solution

4. (A) $A\left(C_{7} H_{14}\right) \xrightarrow{O_{3} / \text { Red }} B\left(C_{3} H_{6} O\right)+C$
(B) Gives positive Tollens test but negative iodform test.
(C) Give negative Tollens test but positive iodoform test.
The compound (B) can be converted to (C) by using the reagents:
A. a.i. $E t \mathrm{MgBr} / \mathrm{H}_{3} \mathrm{O}^{\oplus}$, ii. $\operatorname{AcidicKMnO} \mathrm{O}_{4}$
B. b.i. $\mathrm{MeMgBr} / \mathrm{H}_{3} \mathrm{O}^{\oplus}$, ii. AcidicK MnO_{4}
C. c.i. $E t \mathrm{MgBr} / \mathrm{H}_{3} \mathrm{O}^{\oplus}$, ii. Aqueous KMnO_{4}
D. d.i. $\mathrm{Me} \mathrm{MgBr} / \mathrm{H}_{3} \mathrm{O}^{\oplus}$, ii. Aqueous KMnO_{4}

Answer: B

(D) Watch Video Solution

5. (A) $\left(C_{8} H_{14}\right) \xrightarrow[A c i d i c \mathrm{KMnO}]{4} \mathrm{C}(B)+(C)+(D)$
(A) requires 2 mol of H_{2} for its saturation.
(B) reduces ammoniacal AgNO_{3} and gives yellow colour with
$\mathrm{NaOH}+\mathrm{I}_{2}$.
(C) does not reduce Tollens reagent but gives iodoform test.
(D) on dehydration with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives a mixture of colourless
gases.
The compound (A) is:
a.

A. a.

b. Me
B.b.

Me
C. c.
c.

D.d.

Answer: A

D Watch Video Solution

6. (A) $\left(\mathrm{C}_{8} \mathrm{H}_{14}\right) \xrightarrow[\text { AcidicKMnO }_{4}]{[\mathrm{O}]}(B)+(C)+(D)$
(A) requires 2 mol of H_{2} for its saturation.
(B) reduces ammoniacal AgNO_{3} and gives yellow colour with
$\mathrm{NaOH}+\mathrm{I}_{2}$.
(C) does not reduce Tollens reagent but gives iodoform test.
(D) on dehydration with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives a mixture of colourless
gases.
The compound (B) is:
A. a. ${ }^{\text {a. }} \mathrm{Me}$
$\mathrm{CH}=\mathrm{O}$
B. $\mathrm{Me}-\mathrm{CH}=\mathrm{O}$
c.

D. d.

Answer: B
7. $(\mathrm{A})\left(\mathrm{C}_{8} H_{14}\right) \xrightarrow[\text { AcidicKMnO}]{[O]}(B)+(C)+(D)$
(A) requires 2 mol of H_{2} for its saturation.
(B) reduces ammoniacal AgNO_{3} and gives yellow colour with $\mathrm{NaOH}+\mathrm{I}_{2}$.
(C) does not reduce Tollens reagent but gives iodoform test.
(D) on dehydration with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives a mixture of colourless
gases.
The compound (C) is:

B. b.

b. Me
C. c.

D.d.
d. Me

- Watch Video Solution

8. (A) $\left(\mathrm{C}_{8} H_{14}\right) \xrightarrow[\text { AcidicKMnO}]{[O]}(B)+(C)+(D)$
(A) requires 2 mol of H_{2} for its saturation.
(B) reduces ammoniacal AgNO_{3} and gives yellow colour with $\mathrm{NaOH}+\mathrm{I}_{2}$.
(C) does not reduce Tollens reagent but gives iodoform test.
(D) on dehydration with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives a mixture of colourless
gases.
The compound (D) is:

B.b.
b. Me COOH
c. c. $\mathrm{HOOC}-\mathrm{COOH}$
D. d.
d.

Answer: C

- Watch Video Solution

9. (A) $\left(C_{8} H_{14}\right) \xrightarrow[A c i d i c K M n O_{4}]{[O]}(B)+(C)+(D)$
(A) requires 2 mol of H_{2} for its saturation.
(B) reduces ammoniacal AgNO_{3} and gives yellow colour with $\mathrm{NaOH}+\mathrm{I}_{2}$.
(C) does not reduce Tollens reagent but gives iodoform test.
(D) on dehydration with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives a mixture of colourless
gases.
The mixture of colourless gases is:
A. a. CO_{2}
B. b. $C O$
C. c. $\mathrm{CO}_{2}+\mathrm{CO}$
D. d. $\mathrm{CO}_{2}+\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

The compound (A) is:
A. a. a. Me
B.b.
b. Me
OH
C. c. ${ }^{\text {c. }}$

D. d.
d. ${ }^{\mathrm{HO}}$

Answer: A

D Watch Video Solution

$\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)$
$\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$
11. Acid

The compound (B) is:
A. a.

B. b. b. Me

COOH
C. c. c. $\mathrm{O}=\mathrm{HC}$
D. d.
d. $\mathrm{O}=\mathrm{HC}$ COOMe

Answer: A

- Watch Video Solution

$\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)$
$\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$

12. Acid

The compound (C) is:
A. a. a. $\mathrm{Me} \mathrm{CH}=\mathrm{O}$
в.b.b. Me Me
c.

c. $\rightleftharpoons \mathrm{CH}_{2}$
C. c.
Me
D. d. d. Me

A. a. ${ }^{\text {a. }} \mathrm{Me}$
B. b.
b.

C. c. ${ }^{\text {c. }}$

D. d.Both (a) and (b)

Answer: A

- Watch Video Solution

14.

Complete
the
following
reaction

$$
\begin{aligned}
& \text { (A) }\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}\right) \xrightarrow[\text { Mild oxidising }]{[\mathrm{O} \mid}(\mathrm{B}) \quad \begin{array}{c}
\text { (unstabie, syrup } \\
\text { substance) }
\end{array} \\
& \downarrow \text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \text { (D) } \\
& \text { (C) }+\mathrm{CO}_{2} \\
& \left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right) \\
& \left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)
\end{aligned}
$$

A. a.i. Acidic KMnO_{4}, ii. $\mathrm{Ca}(\mathrm{OH})_{2}$ and heat
B. b.i. Aqueous KMnO_{4}, ii. $\mathrm{Ba}(\mathrm{OH})_{2}$ and heat
C. c. Acidic KMnO_{4}, ii. NaOH and heat
D. d. Aqueous KMnO_{4}, ii. NaOH and heat

Answer: A

- Watch Video Solution

15. (A) $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}\right) \xrightarrow[\mathrm{HotKMnO}_{4}]{[\mathrm{O}]} \mathrm{PhCOOH}$
i. (A) does not decolourise Br_{2} in CCl_{4}, reacts with Na to give a colourless and odourless gas (B).
ii. (A) does not give iodoform test.
iii. (A) is a chiral compound and oxidation of (A) with $\mathrm{CrO}_{3} / \mathrm{Py}$ gives a chiral compound (C).
iv. The colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ change to blue-green when added to
compound (A).

The structure of compound (A) is:

B.b.

C. c.

Answer: C
16. (A) $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}\right) \xrightarrow[\mathrm{HotKMOO}_{4}]{[\mathrm{O}]} \mathrm{PhCOOH}$
i. (A) does not decolourise Br_{2} in CCl_{4}, reacts with Na to give a colourless and odourless gas (B).
ii. (A) does not give iodoform test.
iii. (A) is a chiral compound and oxidation of (A) with $\mathrm{CrO}_{3} / \mathrm{Py}$ gives a chiral compound (C).
iv. The colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ change to blue-green when added to compound (A).

The colourless and odourless gas (B) is:
A. a. $C O$
B. b. CO_{2}
C. c. H_{2}
D. d. $\mathrm{H}_{2} \mathrm{O}$

Answer: C

17. (A) $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}\right) \xrightarrow[\mathrm{Hot}_{\mathrm{KMnO}}^{4}]{ } \xrightarrow{[\mathrm{O}]} \mathrm{PhCOOH}$
i. (A) does not decolourise Br_{2} in CCl_{4}, reacts with Na to give a colourless and odourless gas (B).
ii. (A) does not give iodoform test.
iii. (A) is a chiral compound and oxidation of (A) with $\mathrm{CrO}_{3} / \mathrm{Py}$ gives a chiral compound (C).
iv. The colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ change to blue-green when added to compound (A).

The compound (C) is:

C. c.
c.

D. d.

Answer: B

D Watch Video Solution

18. (A) $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}\right) \xrightarrow[\mathrm{HotKMOO}_{4}]{[\mathrm{O}]} \mathrm{PhCOOH}$
i. (A) does not decolourise Br_{2} in CCl_{4}, reacts with Na to give a colourless and odourless gas (B).
ii. (A) does not give iodoform test.
iii. (A) is a chiral compound and oxidation of (A) with $\mathrm{CrO}_{3} / \mathrm{Py}$ gives a chiral compound (C).
iv. The colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ change to blue-green when added to compound (A).

The colour of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ changes from orange to blue-green when added to compound (A). The blue-green colour is due to the formation of:
A. a. $C r^{2+}$
B. b. $C r^{3+}$
C. c. CrO_{4}^{2-}
D. d. CrO_{5}

Answer: B

Me

$$
=-\mathrm{H} \frac{\text { (i) } \mathrm{NaNH}_{2}}{\text { (ii) } \mathrm{EtBr}}
$$

(A)

$$
(\mathrm{B}) \xrightarrow{\downarrow} \xrightarrow{\mathrm{H}_{2}+\mathrm{Pd}-\mathrm{BaSO}_{4}}(\mathrm{C}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{D}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{E})
$$

$$
\xrightarrow[+ \text { EtOH }]{\mathrm{Na}+\text { liq. } \mathrm{NH}_{3}}(\mathrm{~F}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{G}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{H})
$$

19.

The compound (C) is:

A. a.
B.b.

C. $E t-\equiv-E t$
D. d.Both (a) and (b)

Answer: A

$$
\begin{aligned}
& \underbrace{\mathrm{Me}} \equiv-\mathrm{H} \frac{\text { (i) } \mathrm{NaNH}_{2}}{\text { (ii) } \mathrm{EtBr}} \\
& \text { (A) } \\
& \text { (B) } \xrightarrow{\downarrow} \mathrm{H}_{2}+\mathrm{Pd}-\mathrm{BaSO}_{4}(C) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{D}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{E}) \\
& \xrightarrow[+ \text { EtOH }]{\mathrm{Na}+\text { liq. } \mathrm{NH}_{3}}(\mathrm{~F}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{G}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{H})
\end{aligned}
$$

20.

The compound (F) is:
A. a.
B. b.

C. $E t-\equiv-E t$
D. d.Both (a) and (b)

Answer: B

Me

(A)

$$
(\mathrm{B}) \xrightarrow{\downarrow} \xrightarrow{\mathrm{H}_{2}+\mathrm{Pd}-\mathrm{BaSO}_{4}}(\mathrm{C}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{D}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{E})
$$

$$
\xrightarrow[+ \text { EtOH }]{\mathrm{Na}+\text { liq. } \mathrm{NH}_{3}}(\mathrm{~F}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{G}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{H})
$$

21.

The compound (D) is:
A. a.

Et
B.b.

C. c.

D. d.Both (b) and (c)

$$
\begin{aligned}
& \mathrm{Me} \\
& \downarrow \equiv-\mathrm{H} \frac{\text { (i) } \mathrm{NaNH}_{2}}{\text { (ii) } \mathrm{EBBr}} \\
& \text { (A) } \\
& (\mathrm{B}) \xrightarrow{\downarrow} \xrightarrow{\mathrm{H}_{2}+\mathrm{Pd}-\mathrm{BaSO}_{4}}(\mathrm{C}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{D}) \xrightarrow{\mathrm{HIO}_{+}}(\mathrm{E}) \\
& \xrightarrow[+ \text { EtOn }]{\mathrm{Na}+\text { liq. } \mathrm{NH}_{3}}(\mathrm{~F}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{G}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{H})
\end{aligned}
$$

22.

The compound (G) is:
A. a.

B. b.

Answer: D

D Watch Video Solution

Me
E——
(A)

$$
(\mathrm{B}) \xrightarrow{\downarrow} \xrightarrow{\mathrm{H}_{2}+\mathrm{Pd}-\mathrm{BaSO}_{4}}(\mathrm{C}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{D}) \xrightarrow{\mathrm{HIO}_{+}}(\mathrm{E})
$$

23.

$$
\xrightarrow[+ \text { EtOH }]{\mathrm{Na}+\text { liq. } \mathrm{NH}_{3}}(\mathrm{~F}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{G}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{H})
$$

The compound (E) is:
A. a.
B. b. b. Two moles of Me ${ }_{\text {Coor }}$
C. c.One mole of (a) and one mol of (b).
D. d. No reaction.

Answer: A

$$
\begin{aligned}
& \mathrm{Me}^{\mathrm{Me}}=-\mathrm{H} \frac{\text { (i) } \mathrm{NaNH}_{2}}{\text { (ii) } \mathrm{EtBr}} \\
& \text { (A) } \\
& \stackrel{\rightharpoonup}{\vee}) \xrightarrow{\mathrm{H}_{2}+\mathrm{Pd}-\mathrm{BaSO}_{4}}(\mathrm{C}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{D}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{E}) \\
& \xrightarrow[+ \text { EtOH }]{\mathrm{Na}+\text { liq. } \mathrm{NH}_{3}}(\mathrm{~F}) \xrightarrow[\mathrm{KMnO}_{4}]{\text { alkaline }}(\mathrm{G}) \xrightarrow{\mathrm{HIO}_{4}}(\mathrm{H})
\end{aligned}
$$

24.

The compound (H) is:
A. a. a. Two moles of Me CHO.
B. b.b. Two moles of $\mathrm{Me} \sim_{\mathrm{COOH} \text {. }}$
C. c.One mole of (a) and one mol of (b).
D. d. No reaction.

Answer: D

The compound (C) is:

A. a.

B. b.

D. d.

Answer: B

D Watch Video Solution

26.

The compound (D) is:
A. a.
B. b.
b. $\mathrm{HO}-\mathrm{O}-\mathrm{SO}_{3} \mathrm{H}$
C. c.

D. d.

d. $\mathrm{HO}_{3} \mathrm{~S}-\mathrm{O}-\mathrm{SO}_{3} \mathrm{H}$

Answer: C

- Watch Video Solution

27.

The compound (E) is:
A. a.Benzene
B. b.Phenol
C. c.
c.

d. HO

D. d.

Answer: C

D Watch Video Solution

28.

In the formation of compoud (E) from (A), the name of the reaction is:
A. a.Elbs persulphate oxidation
B. b.Mannich reaction

C. c.Dakin's reaction

D. d.Oppenauer oxidation

Answer: C

- Watch Video Solution

29.

The compound (F) is:
A. a.Benzene
B. b.Phenol

d.
D.d.

Answer: A

Watch Video Solution

$$
\begin{aligned}
& \xrightarrow[\mathrm{NH}_{3}]{\mathrm{Me}}(\mathrm{~B}) \xrightarrow{\mathrm{L}_{3} \text { ined liquid }}(\mathrm{C})+(\mathrm{D}) \\
& \text { (A) } \\
& \xrightarrow{\text { Li in liquid }}(\mathrm{F}) \xrightarrow{\mathrm{NH}_{3} / \mathrm{Red}}(\mathrm{G})+(\mathrm{H}) \\
& \text { (E) } \xrightarrow[\text { Or }]{\underset{\mathrm{Zn}+\mathrm{NH}_{4} \mathrm{Cl}}{\longrightarrow}}(\mathrm{I}) \xrightarrow{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}}(\mathrm{J})+(\mathrm{K})
\end{aligned}
$$

30.

$\mathrm{Al}-\mathrm{Hg} / \mathrm{H}_{2} \mathrm{O}$

The compound (B) is:

A. a.

B. b.

C. c.
D. d.

Answer: D

- View Text Solution

$$
\underbrace{\text { Li in liquid }}_{\substack{\text { NH } \\ \text { (A) }}}(\mathrm{B}) \xrightarrow{\mathrm{O}_{3} / \text { Red }}(\mathrm{C})+(\mathrm{D})
$$

31.

The compound (C) and (D), respectively, are:
A. a.

B. b.

C. C.

D.d.

Answer: A

View Text Solution

$$
\begin{aligned}
& \xrightarrow[\mathrm{NH}_{3}]{\mathrm{Me}}(\mathrm{~B}) \xrightarrow{\mathrm{O}_{3} / \text { Red }}(\mathrm{C})+(\mathrm{D}) \\
& \text { (A) } \\
& \mathrm{NO}_{2} \\
& \xrightarrow[\mathrm{NH}_{3}]{\mathrm{Li} \text { in liquid }}(\mathrm{F}) \xrightarrow{\mathrm{O}_{3} / \mathrm{Red}}(\mathrm{G})+(\mathrm{H}) \\
& \text { (E) } \xrightarrow[\text { Or }]{\underset{\mathrm{Zn}+\mathrm{NH}_{4} \mathrm{Cl}}{\longrightarrow}} \text { (I) } \xrightarrow{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}}(\mathrm{J})+(\mathrm{K}) \\
& \mathrm{Al}-\mathrm{Hg} / \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

32.

The compound (F) is:

A. a.

B. b.

Answer: A

D Watch Video Solution

$$
\begin{aligned}
& \xrightarrow[\mathrm{NH}_{3}]{\mathrm{Me}}(\mathrm{~B}) \xrightarrow{\mathrm{O} \text { Red in liquid }}(\mathrm{C})+(\mathrm{D}) \\
& \text { (A) } \\
& \mathrm{NO}_{2} \\
& \xrightarrow[\mathrm{NH}_{3}]{\text { Li in liquid }}(\mathrm{F}) \xrightarrow{\mathrm{O}_{\text {z Red }}}(\mathrm{G})+(\mathrm{H}) \\
& \text { (E) } \underset{\text { Or }}{\underset{\mathrm{Zn}+\mathrm{NH}_{4} \mathrm{Cl}}{\longrightarrow}}(\mathrm{I}) \xrightarrow{\left[\mathrm{Ag}\left(\mathrm{NI}_{3}\right)_{2}\right]^{\oplus}}(\mathrm{J})+(\mathrm{K} \text { : } \\
& \mathrm{Al}-\mathrm{Hg} / \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

33.

The compound (G) and (H), respectively, are:
A. a.

B.b.

C. C.

D.d.

Answer: B

$$
\begin{aligned}
& \xrightarrow\left[(\mathrm{NH}]{\text { Li in liquid }}(\mathrm{B}) \xrightarrow{\mathrm{O}_{3} / \mathrm{Red}}(\mathrm{C})+(\mathrm{D})\right. \\
& \text { (A) } \\
& \mathrm{NO}_{2} \\
& \xrightarrow{\text { Li in liquid }}(\mathrm{F}) \xrightarrow{\mathrm{O}_{3} / \mathrm{Red}}(\mathrm{G})+(\mathrm{H}) \\
& \text { (E) } \underset{\mathrm{Ot}}{\mathrm{Zn}+\mathrm{NH}_{4} \mathrm{Cl}}(\mathrm{I}) \xrightarrow{\left[\mathrm{g}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}}(\mathrm{J})+(\mathrm{K}) \\
& \mathrm{Al}-\mathrm{Hg} / \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

34.

The compound (1) is:
$\mathrm{NH}-\mathrm{OH}$

NH_{2}

B. b.
C. c.
c. $\langle\mathrm{O}-\mathrm{N}=\mathrm{N}-\mathrm{O}\rangle$
D. d.
d. $\langle\mathrm{O}$ - $\mathrm{NH}-\mathrm{NH}-$ (O)

Answer: A

- Watch Video Solution

(A)

(E) $\xrightarrow[\text { Or }]{\underset{\mathrm{Zn}+\mathrm{NH}_{4} \mathrm{Cl}}{\longrightarrow}}$ (I) $\xrightarrow{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]}$ (J) $+(\mathrm{K})$

$$
\mathrm{Al}-\mathrm{Hg} / \mathrm{H}_{2} \mathrm{O}
$$

35.

The compound (J) and (K), respectively, are:
A. a. Noreaction, Noreaction
B.b.
b.

C. c.

D. d.
d.
 Ag

Answer: B

Watch Video Solution

36.

The compound (A) is:
a. $\mathrm{HO}-\mathrm{N}=\mathrm{O}$
p-Nitrosophenol
A. a. (Benzenoid form)

p-Nitrosophenol
B.b.
(Quinoid form)
C. C.

D. d.Both (a) and (b).

Answer: D

The red colour of compound (B) is due to the formation of:
a.

A. a.

B.b.

Indophenol hydrogen sulphate
C. c.

Indophenol sodium salt
D. d.Both (a) and (b).

Answer: A

38.

The deep green colour of compound (C) is due to the formation of:

A. a.

Indophenol
a.

B.b. Indophenol
C. c.

D. d.Both (a) and (b).

Answer: B

39.

The deep blue colour of compound (D) is due to the formation of:

A. a.

Indophenol
B.b.

Indophenol hydrogen sulphate
C. c.

D. d.Both (a) and (b).

Answer: C

40. Deep blue

The formation of different-colour compounds (B), (C), and (D) from
(A) is called:
A. a.Lemieux reaction
B. b.Liebermann's nitroso reaction
C. c.Oppenaur oxidation
D. d.Brady's reaction

Answer: B

The compound B is:
A. a. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{CHO}$
B.b. $\mathrm{Me}_{3} \mathrm{C}$
c.c. $\mathrm{Me}_{3} \mathrm{C}$
D.d. $\mathrm{Me}_{3} \mathrm{C}$

Answer: C

LAH/

42.

The compound (C) and the reaction involving the conversion of (B) to (C) are:
A. a. an mi $\mathrm{C}_{6} \mathrm{CNO}_{\mathrm{C}}$ Baeyer-Villiger oxidation

C. c.

D. d.

Answer: A

The compounds (D) and (E) respectively are:
A. a. $\mathrm{PhOH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$
B. b. $\mathrm{PhCH}_{2} \mathrm{OH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}$
C. c. $\mathrm{PhOH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{CHO}$
D. d. $\mathrm{PhCHO}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}$

Answer: B

(D) Watch Video Solution

The compounds (F) and (G), repectively, are:
A. a. $\mathrm{PhOH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{CHD}(\mathrm{OH})$
B. b. $\mathrm{PhOH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OD}$
C. c. $\mathrm{PhCHD}(\mathrm{OH})+\mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}$
D. d. $\mathrm{pHCH} \mathrm{H}_{2} \mathrm{OD}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}$

Answer: C

45.

The compounds (H) and (I), repectively, are:
A. a. $\mathrm{PhCOH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}$
B. b. $\mathrm{PhCH}_{2} \mathrm{OH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{OH}$
C. c. $\mathrm{PhOH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{COH}$
D. d. $\mathrm{pHOH}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$

Answer: A

$$
\xrightarrow[\mathrm{LiAlD}_{4} /]{ }(\mathrm{F})+(\mathrm{G})
$$

 $\mathrm{H}_{2} \mathrm{O}$ $\rightarrow(\mathrm{H})+(\mathrm{I})$
46.

The compounds (J) is:
A. a. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{CHO}$
B. b. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$
C. c. $\mathrm{Me}_{3} \mathrm{COOH}$
D. d. $\mathrm{Me}_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{NH}_{2}$

Answer: A

47.

The compounds (K) is:
A. a. $\mathrm{Me}_{3} \mathrm{C}-C \mathrm{D}_{2}-\mathrm{NH}_{2}$
B. b. $M e_{3} C D=O$
C. c. $\mathrm{Me}_{3} \mathrm{CH}=\mathrm{O}$
D. d. $M e_{3} C-C D_{2}-N D_{2}$

Answer: B

- Watch Video Solution

Compound (A) $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) \xrightarrow{\mathrm{HCl}}(\mathrm{B})+(\mathrm{C})$ (Both have same

$(\mathrm{F})+(\mathrm{G})$
(Both gave positive
Tollen's test but negative
48. iodoform test)

The compounds (A) is:
a.

A. a.

Me
b.

B.b. Me
C. c.
c.

D. d.
d.

Answer: A

$$
(\mathrm{F})+(\mathrm{G})
$$

(Both gave positive Tollen's test but negative
49. iodoform test)
alc. KOH formula
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}$)
test and negative iodoform test)

The compounds (B) and (C), respectively, are:

A. a.

b. (d) and (l) form of Me
B.b.

C. c.
c. (d) and (l) form of $\underbrace{\mathrm{Me}}_{\mathrm{Me}}$
D. d.
d. (d) and (l) form of Me

Answer: A

- Watch Video Solution

Compound $(\mathrm{A})\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) \xrightarrow{\mathrm{HCl}}(\mathrm{B})+(\mathrm{C})$ (Both have same

(F) $+(\mathrm{G})$
(Both gave positive Tollen's test but negative 50. iodoform test)
$\stackrel{\mathrm{D}) \xrightarrow{\mathrm{O}_{3} / \text { Red }}}{\mathrm{D}}(\mathrm{E}) \underset{\substack{\text { negative Fehling } \\ \text { test and }}}{\text { (}}$
test and negative iodoform test)

The compounds (D) is:
A. a.

B.b.

C. c.
c.

D. d.
d.

Answer: B

The compounds (E) is:

51.

A. a.
a.
Me Me
B. b. $\mathrm{HCHO}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{CHO}$
C. c.

D. d.

d.

Answer: A

Compound (A) $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) \xrightarrow{\mathrm{HCl}}(\mathrm{B})+(\mathrm{C})$ (Both have same
52.

The compounds (F) are (G), resprctively, are:
A. a.
a. $\widehat{\mathrm{Me} \mathrm{CHO}}+\widehat{\mathrm{Me}} \mathrm{Me}_{\mathrm{O}^{\mathrm{M}}}$
B. b. $\mathrm{HCHO}+\mathrm{Me}_{3} \mathrm{C}-\mathrm{CHO}$
C. C. $\mathrm{c} \cdot \mathrm{Me}-\mathrm{CHO}+\underset{\mathrm{Me}}{ }$
D.d.
d. Two moles of Me CHO

Answer: B

1. Which statement(s) is/are correct about the reaction:

(D)
a. The products in (A), (B), (C), and (D) are Me Me
A.

b. The products (E), (F), and (G) are $\underbrace{\mathrm{Me}}_{\mathrm{OH}}$ and
B.

C. c. No reaction takes place in $(A),(B),(C)$, and (D)
D. d. No reaction takes place in $(E),(F)$, and (G).

Answer: A::D

- View Text Solution

2.

Which statement(s) is/are correct?
A.

B.

C .
D. Me

Answer: A::C

Watch Video Solution
3. Consider the following reactions:

$\begin{aligned} & \text { c. } \mathrm{A} \Rightarrow \mathrm{OH}_{\mathrm{OH}}, \\ & \text { C. } \quad \begin{array}{l}\mathrm{O}\end{array} \mathrm{C} \Rightarrow \mathrm{LAH} / \text { ether }, \mathrm{H}_{3} \mathrm{O}^{\oplus} \\ & \mathrm{CCC}, \mathrm{D} \Rightarrow \mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}, \mathrm{E} \Rightarrow \mathrm{H}_{3} \mathrm{O}^{\oplus}\end{aligned}$
D.

Answer: C::D

D Watch Video Solution

4. In Q. No. 3, direct conversion of II to V can be carried by:
A. a. NaAlH_{4}
B. b. $D l B A L-H$
C. c. $L A H+A l C l 3$
D. d. $\mathrm{NaBH}_{4}+\mathrm{AlCl}_{3}$ in diglyme

Answer: A::B

5. Consider the following reactions:

Which of the following group(s) of reagents is/are used in the above conversion?
A. a. $(A) \Rightarrow \operatorname{Acidic} \mathrm{KMnO}_{4},(B) \Rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$,
$(C) \Rightarrow \mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
B. b. $(A) \Rightarrow O_{3} / P h_{3} P,(B) \Rightarrow B a(O H)_{2},(C) \Rightarrow L A H /$ ether
C. c. $(A) \Rightarrow O_{3} / H_{2} O,(B) \Rightarrow \operatorname{Sr}(O H)_{2}$,
$(C) \Rightarrow \mathrm{NH}_{2} \mathrm{NH}_{2} / \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$
D. d. $(A) \Rightarrow O_{3} / A g_{2} O,(B) \Rightarrow B a(O H)_{2},(C) \Rightarrow H I+\operatorname{Red} P$

Answer: A::C::D

6. Compound $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ exists in various strutures as shown:
(I)

(III)
 OH

CHO
(IV)

(V) Me

Which statement(s) is/are correct?
A. a.Compounds I and II give iodoform test. Compound I gives white turbidity on heating with Lucas reagent, while compound Il reduces Tollens reagent.
B. b.Compound III gives silver mirror with $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus}$ and does not react with NaOBr .
C.c.Compound IV on acid hydrolysis gives $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ and

MeOH

D. d.Compound V on heating is decarboxylated to propane.

Answer: A::B

D Watch Video Solution

7. Consider the following Baeyer-Villiger oxidation.

A. a. $E W G$ in peracid facilitates the reaction.
B. b.Strong \bar{e}-dobating group migrates.
C. c.The
D. d.The migrating group order of substituted phenyl group is

Answer: A::B::C::D

- View Text Solution

8. Select the correct Baeyer-Villiger oxidation reaction:
A. a.
B.b.

C. c.

D.d.

Answer: A::B::D
9. Select the correct groups) of reagents) used in the following conversions:

NO_{2}
COOH

NO_{2}

$\xrightarrow{\mathrm{IV}}$

COOH

COOH

A. a. $I \Rightarrow$ dil. $\mathrm{HNO}_{3}, \mathrm{II} \Rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\mathrm{III} \Rightarrow \mathrm{KMnO}_{4} / \mathrm{NaOH}, \mathrm{IV} \Rightarrow \mathrm{PbO}_{4} / \stackrel{\ominus}{\mathrm{O}} \mathrm{H}, \mathrm{H}_{3} \mathrm{O}^{\oplus}
$$

B. b. $I \Rightarrow$ dil. $\mathrm{HNO}_{3}, \mathrm{II} \Rightarrow \mathrm{KMnO}_{4} / \mathrm{H}^{\oplus}$

$$
I I I \Rightarrow \mathrm{KMnO}_{4} / \mathrm{NaOH}
$$

$I V \Rightarrow \mathrm{TsCl}+$ acidicK $\mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}$
C. c. $I \Rightarrow \mathrm{KMnO}_{4} / \mathrm{NaOH}, \mathrm{II} \Rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{\oplus}$,
$I I I \Rightarrow \mathrm{KMnO}_{4} / \stackrel{\ominus}{\mathrm{O}} \mathrm{H}, \mathrm{IV} \Rightarrow$ dil. HNO_{3}
D. d. $\mathrm{I} \Rightarrow \mathrm{CrO}_{3} / \mathrm{MeCOOH}, \mathrm{II} \Rightarrow \mathrm{KMnO}_{4} / \stackrel{\ominus}{\mathrm{O}} \mathrm{H}$,

$$
I I I \Rightarrow \mathrm{KMnO}_{4} / H^{\oplus}, I V \Rightarrow \text { dil. } \mathrm{HNO}_{3}
$$

Answer: A::B

10. Which statements(s) is//are correct:

A. a.The intermediates I and II can be isolated.
B. b.In the intermediates I and II, all the resonance energy has
been lost and the activation anergy of this step is much greater than that required for each succeeding step in which the double bond behave like their acylic analogue.
C. c.The conditions required for the formation of I and II are more vigorous than those required for the successive steps.
D. d.Because to this, it is not possible to stop the reaction proceeding to complete the reduction of benzene to II (cyclohexane), and consequently it is not possible ti isolate the intermediates II and III.

- View Text Solution

11.

Which of the following statement(s) is/are correct?
a. The compound (B) is
A.

b. The compound (B) is
B.

C. c.The compound (A) on reaction with $H I+\operatorname{RedP}$ gives

D. d.The compound (A) on oxidation with MnO_{2} gives

Answer: B::C

D Watch Video Solution

12. In Q.No. 11, which of the following reagents can be used to convert (A) to (B)?
A. a.Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $413 \mathrm{~K}\left(140^{\circ} \mathrm{C}\right)$
B. b. $D C C$
C. c. $P_{2} O_{5}$
D. d.Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $383 \mathrm{~K}\left(110^{\circ} \mathrm{C}\right)$
13. Which of the following will give yellow precipitate with KOI?
A. a.Cyclopentyl methyl carbinol
B. b. α-Phenyl ethanol
C. c. $A A E$
D. d. $\mathrm{I}_{3} \mathrm{C}-\mathrm{CHO}$

Answer: A::B::D

D Watch Video Solution

14. Which of the following will undergo periodic oxidation?
a.

A. a.
b.

H
H
B.b.
c.

C. c.
D. d.Glyoxal

Answer: A::C::D

- View Text Solution

15. Which of the following reactions is//are correct?
A. a.
B.b.
C. C.

D. d.

Answer: A::B::C::D

D Watch Video Solution

16. Which of the following reactions is//are correct?
A. a.

B.b.

C. C.

D. d.

D View Text Solution

17. Which statement(s) is/are wrong?

A. a.Path I is Claisen-Schmidt rearrangement reaction, whereas Path II is Hofmann bromamide rearrangement reaction.
B. b.Both path proceeds via the formation of acyl nitrene as an intermediate species $\binom{O}{\stackrel{\|}{C}-\ddot{N}:}$.
C. c.In path I and Path II, the intermediate compound formed is alkyl isocynaye $(R-N=C=O)$
D.d.Both the path proceed via the formation of nitrene

$$
(R-\ddot{N}:) \text { as a intermediate species. }
$$

Answer: D

18. Which of the following reaction(s) is/are correct?
A. a.

B. b.

C. c.

D.d.

Answer: A::D

19. Which of the following reaction(s) is/are wrong?
A. a.

B. b.

C. c.

D.d.

Answer: B::C

D Watch Video Solution
20. Which of the following reactions is/are wrong?
A. a.

$$
\mathrm{MeCH}_{2} \mathrm{I} \xrightarrow{\mathrm{AgNO}_{2}} \mathrm{MeCH}_{2} \mathrm{NO}_{2} \xrightarrow{\mathrm{HNO}_{2}} \mathrm{Me}-\underset{\substack{\mathrm{C} \\ \mathrm{~N} . \mathrm{OH}}}{\mathrm{C}}-\mathrm{NO}_{2} \xrightarrow{\stackrel{\ominus}{\mathrm{OH}}}
$$

Blue colour
B. b.

Blood red colour
C. c.
$M e_{3} C-I \xrightarrow{\mathrm{AgNO}_{2}} \mathrm{Me}{ }_{3} \mathrm{C}-\stackrel{\stackrel{\mathrm{O}}{\mathrm{N}}}{\mathrm{A}}=\mathrm{O} \xrightarrow{\mathrm{HNO}_{2}}$ Noreaction $\xrightarrow{\stackrel{\ominus}{O}}$

Colourless solution
D. d.

Colourless solution

Answer: A::B::D

21. Which of the following unbalanced reactions is/are correct?
a. (0)- - -
A. a.
(- $\mathrm{N}=\mathrm{O}+\underset{\text { Silver mirror }}{\mathrm{Ag} \downarrow+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}}$
b. $\mathrm{Me}-\mathrm{CHO}+\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+\mathrm{OH} \rightarrow-\mathrm{COO}+\mathrm{Cu}_{2} \mathrm{O}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
B. b.

Red ppt.
C. C.

D.

Answer: A::C::D

D Watch Video Solution

22. Which of the following methods is/are correct for the synthesis of benzaldehyde?
A. a. $\mathrm{PhCOCl} \xrightarrow{\mathrm{H}_{2}+\mathrm{Pd}+\mathrm{BaSO}_{4}}$
B. b. $\mathrm{PhCOCl} \xrightarrow[\mathrm{LiAlH}\left(\mathrm{OCMe}_{3}\right)_{3}]{ }$
C. C.
c. $\mathrm{PhC} \equiv \mathrm{N} \xrightarrow[\binom{\mathrm{Me}}{\mathrm{Me}}_{\mathrm{L}} \mathcal{L}_{\mathrm{AlH}}]{\longrightarrow}$
D. d. $\mathrm{PhCH} \mathrm{H}_{2} \mathrm{Oh} \xrightarrow[\text { Collins reagent }]{ }$

Answer: A::B::C::D

Watch Video Solution

23. Which of the following reaction is/are correct?

B.b.

C. c.
$\mathrm{ph}_{1} \mathrm{O}_{\mathrm{O}} \mathrm{SO}-\mathrm{NO}_{2}$
D. d.

$$
\stackrel{O}{\mathrm{~d} \cdot \mathrm{Ph}} \sqrt{\mathrm{O}}-\mathrm{Mc} \xrightarrow[\mathrm{HCO}_{3} \mathrm{H} / \mathrm{H}_{3} \mathrm{O}^{\oplus}]{ }
$$

(${ }^{\mathrm{O}}$

Answer: A::B::C::D
24. Which of the following methods is/are correct for the synthesis of

$$
\mathrm{MH}^{?}
$$

A. a. $\mathrm{PhBr} \xrightarrow[\text { (1) } \mathrm{Li}(2) \mathrm{CuI}(3) \mathrm{PrCOCl}]{\text { (4) } \mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}}$
B. b. $\mathrm{PhCOPr} \xrightarrow{\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}}$
C. c. $\mathrm{PhCOPr} \xrightarrow[\substack{\stackrel{\ominus}{\mathrm{OH}, \Delta}}]{\mathrm{NH}_{2} \mathrm{NH}_{2}}$
D. d. d. $\operatorname{PhCOPr} \xrightarrow[\text { (ii) Raney } \mathrm{Ni}+\mathrm{H}_{2}]{\text { (i) }\left\lfloor\mathrm{SH} / \mathrm{H}^{\ominus}\right.}$

Answer: A::B::C::D

- View Text Solution

25. Which of the following on oxidation with alkaline KMnO_{4} follwed by acidification with dil. HCl gives terephthalic acid?
A. a.p-Ethyl toluene
B. b. p-Xylene
C. c.1, 3-Diisopropyl benzene
D. d. m-Xylene

Answer: A::B

D Watch Video Solution

26. Which of the following methods can be used to prepare propanoic acid?
a. $\mathrm{Me} \overbrace{\mathrm{O}}^{\mathrm{Me}} \underset{\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{\oplus}}{(\mathrm{i}) \mathrm{Ca}(\mathrm{O})_{2}}$
B. b. $\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{CO}+\underset{\text { (Steam) }}{\mathrm{H}_{2} \mathrm{O}} \xrightarrow[\text { High pressure }]{\text { 570-670K }}$
C. c.Reaction of $E t M g B r$ with dry ice followed by the acidification with dil. HCl .
D. d.Sodium ethoxide is heated with $C O$ under pressure followed by the acidification with dil. HCl .

Answer: A::B::C::D

D Watch Video Solution

27. Which of the following statements is/are correct about formic acid?
A. a.It reduces Tollens reagent.
B. b.It gives CO and $\mathrm{H}_{2} \mathrm{O}$ on heating with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.
C. c.lt is a stronger acid than benzoic acid
D. d.It forms formyl chloride with PCl_{5}.
28. Which of the following can reduce Benedict's solution?
A. a.Ethanoic acid
B. b.Methanoic acid
C. c.Phenyl methanal
D. d.Methanal

Answer: B::D

D Watch Video Solution

29. Benzoic acid and carbolic acid can be distiguished by:
A. a.Aqueous NaHCO 3
B. b.Netural FeCl_{3}
C. c.Aqueous NaOH
D. d.Aqueous NH_{3}

Answer: A::B

- View Text Solution

30. Which of the following compounds do(es) not give haloform reaction?
A. a.

b. Me
B.b.

C. C.

c.

D. d.

Answer: A
31. Which of the following compounds do(es) not react with
$H_{2}+P d+C ?$
A. a. $M e-\equiv-M e$
B.b.

C. c. MeCOMe
D. d. $\mathrm{Me}-\mathrm{N}_{3}$
32. Which of the following compounds reacts with NaCNBH_{3} ?
A. a. $\mathrm{Me}-\mathrm{CH}=\mathrm{NH}$
B. b. $M e_{2} C=N-M e$
C. C.
c. $-\mathrm{CH}_{2} \mathrm{OH}$
D. d. $\mathrm{Ph} \mathrm{NO}_{2}$

Answer: A::B
33. Acetonitrile $(M e \stackrel{\oplus}{N} \equiv \stackrel{\ominus}{C})$ on reaction with $C l_{2}$ with $D M S O$ gives methyl isocyanate ($M e N=C=O$). Isocyanides can also be oxidised to alkyl isocyanates with:
A. a. HgO
B. b. $\mathrm{Hg}_{2} \mathrm{O}$
C. c. $A g_{2} O$
D. d. O_{3}

Answer: A::D

- View Text Solution

34. Alkyl isocyanides $(R \stackrel{\oplus}{N} \equiv \stackrel{\ominus}{C})$ are reduced to 2° amines ($\mathrm{R}-\mathrm{NH}-\mathrm{CH}_{3}$) with:
A. a. $L A H$
B. b. $\mathrm{NaBH} \mathrm{H}_{4}$
C. c. $H I+P$
D. d. $H_{2}+P t$

Answer: A::C

35. Methanamide is reduced to methanamine with:
A. a. $L A H$
B. b. $\mathrm{NaBH} \mathrm{H}_{4}$
C. c. $\mathrm{H}_{2}+\mathrm{Ni}$
D. d. $B_{2} H_{6}$

Exercise (Single Correct)

1. Which of the following gives yellow precipitate with NaOI ?

A. a.

B. b.

Cl
C. c.

D. d.All

Answer: D

2.
3. (A$) \stackrel{\text { HIP } \mathrm{P}}{\mathrm{Pl}} \xrightarrow{\text { LaH/ether }}(\mathrm{B})$

The products (A) and (B), respectively, are:
A. a.

B.b.

C. c.

D.d.

Answer: C

- View Text Solution

3. Compound $(A)\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ reacts with NaHCO_{3} and evolves
$\mathrm{CO}_{2}(g) .(A)$ reacts with $L A H$ to give a compound (B) which is a chiral. The structure of (A) is:
A. a.
b.

B. b.
c.

D.d. $\quad \mathrm{OH}$

Answer: A

D Watch Video Solution

4.

The compound (C) is:

The compound (C) is:
A. a.
a. $\mathrm{Me} \prod_{\mathrm{O}}$
B.b.

C. c.

D. d.

Answer: A

(Watch Video Solution

5.

The compound (B) and (C), respectively, are:
A. a.

B.b.

C. c.

D.d.

Answer: B

D Watch Video Solution

6.

The compound (A) is:
A. a. $L A H$
B. b. $H I+P$
C. c. NaAlH_{4}
D. d. $\mathrm{B}_{2} \mathrm{H}_{6} / \mathrm{H}_{2} \mathrm{O}$

Answer: D

D Watch Video Solution

7.

The compound (A) is:
a.

A. a.
b.

B. b.
c.

C. c.

D. d.

Answer: C

(D) Watch Video Solution

The compound (A) is:

B.b.
b.

C. c.

D.d.

Answer: C

D Watch Video Solution

9. Acid-catalysed hydration oxymercuration-demercu-ration, and hydroboration oxidation reaction will give the same product with:
A. a.But-2-ene
B. b.But-1-ene
c.

C. c.
D.d.
d. Me

Answer: A

- Watch Video Solution

10. The increasing order of the rate of oxidation with HIO_{4} oxidation of the following is:
(I) $\begin{array}{r}\mathrm{OH} \\ -\mathrm{OH}\end{array}$
(II)

(III)

(IV)

A. a.IV It III It II It I

B. b. It II It III It IV

C. c.IV It III = II It I
D. d.I It II = III It Iv

Answer: A

D Watch Video Solution

11. Compound $(A) \xrightarrow[\mathrm{HIO}_{4}]{1 \text { molof }}$
12. Compound $(\mathrm{A}) \xrightarrow[\mathrm{HOO}_{4}]{1 \mathrm{~mol}^{2}} \underset{\mathrm{HOOC}}{ }$

The compound (A) is:

The compound (A) is:

A. a.
B.b.

c.

C. c.
D. d.
d.

Answer: C

D Watch Video Solution

12. Conpound $(A) \xrightarrow[\mathrm{HIO}_{4}]{2 \text { molof }} 2 \mathrm{~mol}$ of glyoxalic acid.

The compound (A) is:
a.

A. a.

B. b.

C. c.

D. d.

Answer: D

D Watch Video Solution

13.

13. The compound (B) is:

The compound (B) is:
a. Ph

A. a.
B. b.

C. c.
D. d.

Answer: D

- Watch Video Solution

14. Which type of reaction in the reduction of carbonyl compound with $L A H$ and NaBH_{4} occurs, and which nucleophile takes part in the reaction?
A. a.Nucleophilic addition and $A l H_{4}^{\ominus}$ or $B H_{4}^{\ominus}$
B. b.Nucleophilic addition and H^{\ominus}
C. c.Nucleophilic substitution and $A l H_{4}^{\ominus}$ or $B H_{4}^{\ominus}$
D. d.Nucleophilic substitution and H^{\ominus}

Answer: B

D Watch Video Solution

15. Oxidation of aldehyde and ketone by peroxybenzoic acid to ester is called:
A. a.Elbs oxidation
B. b.Hell-Volhard-Zelinsky oxidation
C. c.Oppenaur oxidation
D. d.Baeyer-Villiger oxidation
16. Bariumadipate $\xrightarrow{\text { Drydistillation }}(A) \xrightarrow{\mathrm{MeCO}_{3} \mathrm{H}}(B)$

The compounds (A) and (B), respectively, are:
(A)
(B)
A. a.
a.

(B)
b.

(A)
B. b.

The products (A) is:
A. a.

b.

C. c.

D. d.

D Watch Video Solution

18.
19. (C) $\underset{\left(\text { (i) } \mathrm{BD}_{3}+\text { THF }\right.}{\stackrel{\ominus}{\leftarrow}}$
20. (C) $\underset{\text { (ii) } \mathrm{D}_{2} \mathrm{O}_{2} / \stackrel{\ominus}{\mathrm{OD}}}{\stackrel{\ominus}{\mathrm{D}}}$

Me

The products $(A),(B)$, and (C) are:
A. a.

B. b.

C. c.

D. d.

Answer: B

19.

The products $(A),(B)$, and (C) are:
A. a.

B. b.

C. C.

D. d.

Answer: A

20. For the following reaction, which of the following sttaments is correct?

A. a.Ring (A) is oxidised
B. b.Ring (B) is oxidised
C. c.Both are oxidised
D. d.None is oxidised

Answer: A

21. $\mathrm{MeC} \equiv \mathrm{C}-\mathrm{COCl} \xrightarrow{\mathrm{H}_{2}+\text { Lindlar's Catalyst }}(A)$

The Product (A) is:
A. a.Me $-\mathrm{C} \equiv \mathrm{C}-\mathrm{CHO}$
b.

B.b.

c. $\left.{ }_{\mathrm{H}^{\prime}}^{\mathrm{Me}} \mathrm{C}_{\mathrm{C}}^{\mathrm{C}}\right\rangle_{\mathrm{CHO}}^{\prime \mathrm{H}}$
C. C.

D. d.

Answer: B
22.

The products (A) and (B), are:
A. a.
B.b.

C. c.
D.d. ${ }^{\text {Me }}{ }^{\text {MeH }} \mathrm{I}_{\mathrm{o}}$

Answer: B

(D) Watch Video Solution

23. $\stackrel{H_{2}+N i}{\rightleftarrows} \mathrm{PhNO}_{2} \xrightarrow{L A H}(A)$.

The products (A) and (B) are:
A. a. $\mathrm{Ph} \mathrm{NH}_{2}, \mathrm{PhNH}_{2}$
B. b. $P h-N=N-P h, P h-N=N-P h$
C. c. $\mathrm{Ph}-\mathrm{N}=\mathrm{N}-\mathrm{Ph}, \mathrm{PhNH}_{2}$
D. d. $\mathrm{Ph}-\mathrm{NH}-\mathrm{NH}-\mathrm{Ph}, \mathrm{PhNH}_{2}$

Answer: C

D Watch Video Solution

24. $\stackrel{\mathrm{NaBH}_{4}}{\leftarrow} \mathrm{PhCH}=\mathrm{CH}-\mathrm{CHO} \xrightarrow[2 . \mathrm{H}_{3} \mathrm{O}^{+}]{\text {1.LAH, ether }}($

The products (A) and (B) are:
A. a. ${ }^{\text {a. }} \mathrm{Ph}^{-\mathrm{Me}}$
B. b. b. Ph $\widehat{O H}^{\text {OH }}$

Ph
C. c. c. $\mathrm{ph}^{\bigwedge_{\text {oh }}}$

D. d. d. Ph $\bigcap_{\text {oh }}$
25.

The product (A) and (B) are:
A. a.

B.b.

C. c.

D. d.

26.

The product (A) is:
A. a.
B.b.

C. c.

d. $\mathrm{EtO}-\mathrm{O}-\mathrm{NHOH}$
D.d.

Answer: A

- View Text Solution

27.

The product (A) is:
A. a.
a. $\mathrm{Me}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
B.b.

C. c.

D. d.

Answer: B
$2 \mathrm{MeO}-\mathrm{NO}_{2}+5 \mathrm{Zn}+10 \mathrm{NaOH}$
28.

$$
+\mathrm{H}_{2} \mathrm{O} \longrightarrow(\mathrm{~A})
$$

The product (A) is:
A. a. ${ }^{\text {a. } \mathrm{CH}_{3} \mathrm{O}-\widehat{O}-\mathrm{N}=\stackrel{\uparrow}{N}-\mathrm{O}-\mathrm{OCH}_{3}}$
B. b. ${ }^{\text {b. } \mathrm{CH}_{3} \mathrm{O}-\left(\mathrm{O}-\mathrm{N}=\mathrm{N}-\mathrm{O}-\mathrm{OCH}_{3}\right.}$
C. C. ${ }^{\text {c. } \mathrm{cH}_{3}-(\underline{O})_{-N H}-\mathrm{NH}-(\mathrm{O})-\mathrm{och}_{3},}$
D. d.
d. $\mathrm{CH}_{3} \mathrm{O}-\mathrm{O}-\mathrm{N}=\mathrm{O}$

Answer: C

(D) Watch Video Solution

29.

$\xrightarrow{\mathrm{Br}} \mathrm{NO}_{2}+2 \mathrm{Fe}+\mathrm{HCl}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow(\mathrm{A}$

The product (A) is:
a.

B. b.

C. c.

D. d. None

D Watch Video Solution

30.

The reagent (A) is:
A. a.Wolff-Kishner reduction
B. b.Clemmensen reduction
C. c.LAH
D. d. $\mathrm{NaBH} H_{4}$

Answer: A

31.

The reagent (A) is:
A. a. $L A H+\mathrm{AlCl}_{3}$
B. b. $\mathrm{NaBH}_{4}+\mathrm{PtCl}_{2}$
C. c.Wolff-Kishner reduction
D. d.Clemmensen reduction

Answer: C
32. In Rosenmund reduction, which of the following does not poison the catalyst $P d$?
A. a. BaSO_{4}
B.b.S
C. c.Quinoline
D. d.Xylene

Answer: D

- View Text Solution

33.

The reagent (A) is:
A. a.Wolff-Kishner reduction
B. b.Clemmensen reduction
C. c. $\mathrm{HI}+\mathrm{P}$
D. d.All

Answer: D

D Watch Video Solution

34.

$(B) \underset{100 \mathrm{~atm}}{\stackrel{\mathrm{H}_{2}, \mathrm{Ni}}{\leftrightarrows} \longrightarrow \mathrm{CHO} \xrightarrow{\mathrm{H}_{2}+\mathrm{Ni}}(\mathrm{A}), ~(\mathrm{Ni}}$

$$
\begin{equation*}
\mathrm{Na}+\text { liq. } \mathrm{NH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \tag{C}
\end{equation*}
$$

The products (A), (B), and (c) are:

D Watch Video Solution

35.

The products (A), and (B) are:
A. a.

B.b.

C. c.

D.d.

Answer: C

36. $\stackrel{\mathrm{NaBH}_{4}}{\longleftrightarrow} \mathrm{CH}_{3} \mathrm{~N}_{3} \xrightarrow{L A H}(A)$
the products (A) and (B) are:
A. a. $\mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
B. b. $\mathrm{CH}_{3} \mathrm{NH}_{2}$, No reaction
C. c.No reaction, $\mathrm{CH}_{3} \mathrm{NH}_{2}$
D. d.No reaction, No reaction

Answer: A

D Watch Video Solution

37. $\stackrel{N a B H_{4}}{\longleftrightarrow}$ Ethanoic anhydride $\xrightarrow{L A H}(A)$

$$
\int_{(C)} H_{2} / P t
$$

The products (A), (B), and (C) are:
B. b. $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, No reaction, $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$,
C. c. $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, No reaction, No reaction
D. d.No reaction, No reaction, $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{H}$,

Answer: B

D Watch Video Solution

38. The catalyst and solvent used in MPV (Meerwein- Ponndorf-

Verley) reaction are:
A. a.

B.b.

C. c.
c. $\left(\begin{array}{l}\mathrm{Mc}_{\mathrm{C}} \\ \mathrm{Mc} \\ \mathrm{Me}\end{array} \mathrm{C}_{3} \mathrm{O}_{\mathrm{Al}+} \mathrm{Mc}_{\mathrm{Mc}}^{\mathrm{Mc}}\right\rangle=0$
D.d.
d. $\left.\left(\begin{array}{l}\mathrm{Me} \\ \mathrm{Ne} \\ \mathrm{Me}\end{array}\right\rangle-\mathrm{O}-\mathrm{Al}+\begin{array}{l}\mathrm{Me} \\ \mathrm{Me}\end{array}\right\rangle-\mathrm{OH}$

D Watch Video Solution

39.

The reagents $(A),(B)$, and (C) are:
A. a.
a.
 in all cases
B.b.

c.
 in all cases
C. c.

d. $\mathrm{A} \rightarrow$
D.d.

$$
\mathrm{c} \Rightarrow \mathrm{QO}^{\mathrm{oH}}
$$

Answer: D

The products (A), and (B) are:
a.

b.

C. C.
 $\mathrm{B} \Rightarrow \overbrace{\mathrm{OH}}^{\mathrm{O}}$
D. No reaction in both cases

Answer: C

The product (A) is:
41.

The product ${ }^{(}(A)$, is:
A. a.

B. b.

C. c.

Answer: C

D Watch Video Solution

42.

The product (A)心:

The product ${ }^{(}(A)$, is:
A. a.

B. b.
c.

D. d.

Answer: D

43.

The product ${ }^{(}(A)$, is:

B.b.

C. c.

Answer: A

44.

The product ${ }^{(}(A)$, is:

COCl

B. b.

D. d.

Answer: A

- Watch Video Solution

45.
46.

The product ${ }^{(}(A)$, is:
A. No reaction
B.b.

C. c.

D. d.

Answer: A
46.

The product (A), and (B) are:
A. a.
B.b.

C. c.

d. No reaction
D. d.

Answer: D

47.

The product (B), and (C) are:

A. a.
B.b.

c.

C. C.

D. d.

Answer: A

(B) $\underset{\substack{\mathrm{Alk} \cdot \mathrm{Na}_{2} \mathrm{SnO}_{2}}}{\mathrm{Zn}+\begin{array}{l}\mathrm{NaOH}+\mathrm{McOH} \\ \mathrm{Or} \\ \mathrm{Na}-\mathrm{Hg} / \mathrm{H}^{\oplus}\end{array}}$
48.

(C)

The product $(A),(B)$, and (C) are:
A. a. $(A) \Rightarrow \quad$ Azobenzene, $\quad(B) \Rightarrow \quad$ Hydrazobenzene, $\quad(C) \Rightarrow$

Azoxybenzene
B. b. $(A) \Rightarrow \quad$ Azobenzene,$\quad(B) \Rightarrow \quad$ Azoxybenzene, $\quad(C) \Rightarrow$

Hydrazobenzene
C. c. $(A) \Rightarrow \quad$ Azoxybenzene,$\quad(B) \Rightarrow \quad$ Azobenzene,$\quad(C) \Rightarrow$

Hydrazobezene
D.d.(A) \Rightarrow Azoxybenzene, (B) \Rightarrow Hydrazobenzene, (C) \Rightarrow

Azobenzene
$(\mathrm{B}) \underset{\text { In strongly acidic }}{\stackrel{\text { Electrolytic red }}{\leftrightarrows}}$ medium
 49.

The product (A) and (B) are:
A. a. $(A) \Rightarrow$ Aniline $(B) \Rightarrow$ Aniline
B. b.(A) \Rightarrow Aniline (B) \Rightarrow Phenylhydroxylamine
C. c. $(A) \Rightarrow$ p-Aminophenol (B) \Rightarrow Phenylhydroxylamine
D. d.(A) \Rightarrow Aniline (B) \Rightarrow p-Aminophenol

Answer: D

- View Text Solution

50.

The product are:
a. Me

A. a.

OH
B.b.

C. c.Both (a) and (b)
D. d.None

Answer: C

D Watch Video Solution

51. Toluene on reaction with CrO_{3} and $\mathrm{Ac}_{2} \mathrm{O}$ gives benzaldehyde as the main product. The intermediate compound formed in the

reaction is:

A. a. $\mathrm{PhCH}_{2} \mathrm{OH}$
B. b. $\mathrm{PhCH}(O a c)_{2}$
C. c. $\mathrm{PhCH} \mathrm{C}_{2} \mathrm{Oac}$
D. d. $\mathrm{PhCH}(O H)_{2}$

Answer: B

- Watch Video Solution

52. The final product obtained in the oxidation of t-butyl benzene with $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
A. a.Benzene acid
B. b. $\mathrm{PhCH} \mathrm{H}_{2} \mathrm{COOH}$
C. c.
c. $\mathrm{Me} \underset{{ }_{\mathrm{Me}}}{\mathrm{Me}} \mathrm{COOH}$
D. d. $\mathrm{CH}_{3} \mathrm{COOH}$

Answer: D

(D) Watch Video Solution

53. An aromatic compound $(A), C_{8} H_{10}$, on oxidation with acidic $K \mathrm{MnO}_{4}$ gives dibasic acid. The compound (A) on nitration gives three isomeric nitro derivatives. The compound (A) is:
A. a.o-Xylene
B. b.m-Xylene
C. c.p-Xylene
D. d.Ethyl benzene

D Watch Video Solution

54. $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow\left[\left(\text { ii) } h_{2} \mathrm{O}\right]{\text { (i) } \mathrm{CrO}_{2} \mathrm{Cl}_{2} / \mathrm{CCl}_{4}}(A)\right.$

The product (A) is:
A. a. PhCHO
B. b. $\mathrm{PhCH} \mathrm{H}_{2} \mathrm{CHO}$
C. c. $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
D. d. $\mathrm{Ph} \stackrel{\mathrm{CH}_{3}}{\mathrm{I}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}}-\mathrm{CHO}$

Answer: C

- Watch Video Solution

55. Identify (A) and $\cdot(B)$ in the reaction
$(\mathrm{A}) \stackrel{\text { Acidic }}{\leftarrow \mathrm{KMnO}_{4}}$

A. a.
a.

B. b.
b.

C. c.

D. d.
d.

Answer: C

- Watch Video Solution

56. The compound $\mathrm{Me}_{3} \mathrm{C}-\mathrm{NH}_{2}$ on oxidation with acidic KMnO_{4} gives:
A. a. ${ }^{a}$
$\mathrm{Me} \quad \mathrm{COOH}$
B.b.

C. c.

D. d.

Answer: D

- Watch Video Solution

The product (A) is:
A. a. ${ }^{\text {a. Месоон }+ \text { Me }}{ }_{\text {cоон }}$
B. b.
C. c. $\mathrm{Me}-\equiv-\mathrm{COOH}+\mathrm{MeCOOH}$
D. d.None

Answer: C

- View Text Solution

58.

The product (A) and (B) are:
A. a.

B. b. ${ }^{\text {b. }}$

D. None
59. an Organic compound $(A)\left(C_{4} H_{6}\right)$ forms a precipitate with Tollens and Fehling's reagents. (A) has an isomer (B). (B) reacts with 1 mol of $B r_{2}$ to form 1, 4-dibromo-2-butene. (A) and (B) are:
A. a..
a. $^{\mathrm{Me}} \square_{\equiv-\mathrm{H} \text { and }}$
B.b.
b. $\mathrm{Me}-\equiv-\mathrm{Me}$ and Me
C. C.

D. d.
d. $\mathrm{Me}-\equiv-\mathrm{Me}$ and Δ

Answer: A

D Watch Video Solution

60. An alkene on ozonolysis yields only ethanal. There is an isomer of the alkene which on ozonolysis yields:
A. a.Propanone and methanal
B. b.Propanone and ethanal
C. c.Ethanal and nethanal
D. d.Only propanone

Answer: A

D Watch Video Solution

61.
(A) can be:
a.

A. a.

B.b.

C. c.Both correct
D. d.None is correct

Answer: C

- Watch Video Solution

62. Which of the following is an incorrect statement:
A. a.The oxidation of 1, 2-ethanediol with HIO_{4} gives formaldehyde.
B. b. 1° Alcohol turns $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{\oplus}$ solution green
C. c.t-Butyl alochol is converted to isobutene on heating with Cu .
D. d. $\mathrm{CH}_{3} \mathrm{OH}$ is also called denatured spirit.

Answer: D

- View Text Solution

- $\xrightarrow{\text { Cold alk. }}(\mathrm{A}) \xrightarrow[\mathrm{KMnO}_{4}]{\mathrm{CrO}_{3} / \mathrm{AcOH}}(\mathrm{B})$
(B) are:

63.

(A) and (B) are:
A. a.

B.b.

C. c.

d.

D. d.

- View Text Solution

64. The oxidation product of 1,2 -cyclopentane diol with HIO_{4} or $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4} \mathrm{~Pb}$ is:

A. a.
B. b.

b.

C. c.

D. d. None

Answer: A
65. Chromic anhydride in $\mathrm{H}_{2} \mathrm{SO}_{4}$ is not blue by:
A. a. 1° alcohol
B. b. 2° alcohol
C. c. 3° alcohol
D.d. $\longrightarrow \mathrm{OH}$

Answer: C

- View Text Solution

66. Which of the following reactions is correct?
A. a.

B. b.

C. c.
D. d.
$\mathrm{Me} \underset{\mathrm{Me}}{\mathrm{Me}_{\mathrm{Me}} \mathrm{Cl}}+\mathrm{CH}_{3} \mathrm{ONa} \longrightarrow \mathrm{Me} \underset{\mathrm{Me}}{\stackrel{\mathrm{Me}}{ } \mathrm{O}-\mathrm{CH}_{3}}$

Answer: B

67. Fehling's solution can make distinction between:
A. MeCHO and PhCHO
B. MeCHO and $\mathrm{CH}_{3}-\underset{\substack{\text { ॥ }}}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{H}_{3} \mathrm{C}-\underset{\mathrm{OH}}{\mathrm{C}} \underset{\mathrm{O}}{\mathrm{C}} \mathrm{H}-\underset{\mathrm{O}}{\mathrm{C}} \mathrm{C}-\mathrm{CH}_{3}$ and HCHO
D. MeCHO and HCHO

Answer: A
68. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3}(\mathrm{Ke} \rightarrow$ ester $)(A) \xrightarrow[\Delta]{\mathrm{NaOH}+\mathrm{I}_{2}}$ Yellowppt.
$+(B) \xrightarrow{H^{\oplus}}(C) \xrightarrow[-\mathrm{CO}_{2}]{\Delta} C H_{3} \mathrm{COOH} .(A)$ and (B) are:
A. a.
B. b.
C. c.
D. d.

Answer: B

- Watch Video Solution

69. Suggest a suitable oxidising reagent for the following conversions:
(A) Me

A. a. MnO_{2} in (A) and CrO_{3} (in glacial acetic acid) in (B).
B. b. CrO_{3} in (A) and MnO_{2} in (B).
C. c.Both are correct
D. d.Both are incorrect

Answer: A
 can:
A. a.give iodoform test.
B. b.further react with $\mathrm{MeMgBr} / \mathrm{H}_{3} \mathrm{O}^{\oplus}$ to give t-butyl alcohol.
C. c.be obtained by the ozonolysis of 2, 3-dimethyl 1-2-butene.
D. d.all correct

Answer: D

D Watch Video Solution

71. Which of the following compounds will not give haloform reaction?
A. a.alpha-Phenyl ethanol
B. b.Acetophenone
C. c.Ethyl bromide
D. d. $(\mathrm{MeCO}){ }_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

72. Identify the set from the following which connot form acetone in a single-step reaction.
A. a.

B.b.
$\left.\begin{array}{ll}\text { (MeCOO} & ⺊_{2} \mathrm{Ca}, \\ & \mathrm{Mc}_{c}\end{array}\right\rangle=$
C. c. $(\mathrm{MeCOO})_{2} \mathrm{Ca}, \mathrm{Me}-\equiv-\mathrm{H}$
D. d.
d. $\mathrm{HC} \equiv \mathrm{CH}, \mathrm{Me} \psi_{\mathrm{Cl}}^{\mathrm{Cl}} \mathrm{Me}$

- View Text Solution

Me
 $\begin{array}{ll}\mathrm{Me}\end{array}=\mathrm{O}+\mathrm{SeO}_{2} \longrightarrow(\mathrm{~A})$

73.

(A) will not
A. a.reduce Tollens reagent.
B. b.give lodoform test
C. c.form dioxime
D. d.give ceric ammonium nitrate test.

Answer: D

74. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2} \xrightarrow[a t 0^{\circ} \mathrm{C}]{\mathrm{NaNO}_{2}+\mathrm{HBr}}(A) .(A)$ is
A. a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B. b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
$\begin{gathered}\text { C. c. } \mathrm{CH}_{3} \mathrm{C} \\ \mathrm{C} \\ \mathrm{NO}_{2}\end{gathered}=\mathrm{N}$.
D. d.Noreaction

Answer: C

- View Text Solution

75. Which of the following does not give Liebermann's nitroso reaction?
A. a. PhOH
B. b. $\mathrm{Ph} \mathrm{NHCH}_{3}$
C. c. $\mathrm{Ph} N\left(\mathrm{CH}_{3}\right)_{2}$
D. d. $\mathrm{Ph}-\stackrel{\mathrm{CH}_{3}}{\stackrel{1}{N}-\mathrm{NO}}$

Answer: C

- View Text Solution

76. Of the following compounds, whose ozonolysis proves the Kekule structure of benzene?
A. a.Benzene
B. b.Toluene
C. c.o-Xylene
D. d.p-Xylene

Answer: C

CH_{3}

77. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{NO}_{2} \xrightarrow[a t 0^{\circ} \mathrm{C}]{\mathrm{NaNO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}}(A) .(A)$ is:
A. a. $\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}-\mathrm{OH}$
B. b. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{N}=\mathrm{N}-\mathrm{Br}$
C. c. $\left(\mathrm{CH}_{3}\right)_{2} \underset{\substack{\text { | } \\ \mathrm{NO}_{2}}}{\mathrm{C}}-\mathrm{N}=\mathrm{O}$
D. d. $\left(\mathrm{CH}_{3}\right)_{2} \underset{\substack{\mathrm{C} \\ \mathrm{NO}_{2}}}{\mathrm{C}}-\mathrm{NHOH}$

Answer: C

- View Text Solution

78.

Which of the following compounds are $(A),(B),(C)$, and (D) ?
$\mathrm{Ph}-\stackrel{\stackrel{\mathrm{CH}_{3}}{\mathrm{C}}}{\mathrm{C}}=\mathrm{O}, \mathrm{CH}_{3} \underset{(I I)}{\mathrm{CH}}=\mathrm{O}$
$\mathrm{CH}_{3}-\underset{(\mathrm{III})}{\mathrm{COOH}}, \mathrm{Ph}-\underset{(\mathrm{IV})}{\mathrm{CH}}-\mathrm{OH}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{PhCOOH}$
(V)
(VI)
A. a. $I, I I, I, I I$
B. b. $I, I I I, I, I I$
C. c.IV, $V, I, I I I$
D. d.VI, III, I, III

Answer: B

View Text Solution
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C}-\mathrm{NO}_{2} \quad \mathrm{NaNO}_{2}+\mathrm{HCl}$

79.

$\stackrel{\mathrm{CH}_{3}}{ }$

The compound (A)
A. a.

B. b.

C. c.

D. d.Noreaction

80. Fenton's regent $\left(\mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2}\right)$ with benzene gives:

A. a.Noreaction
B. b.

b.

81. Lactic acid on oxidation with Fenton's reagent gives:
A. a. $\mathrm{CH}_{3} \mathrm{COCOOH}$ (Pyruvicacid)
B. b. $\mathrm{CH}_{3} \mathrm{COOH}$
c. c. $\mathrm{HOOC}-\underset{\substack{| | \\ O}}{\mathrm{C}}-\mathrm{COOH}$
D. d. $\mathrm{HOOC}-\mathrm{COOH}$

Answer: A

82.

The compounds (A) and (B) are:
A. a.Noreaction
B. b. ${ }^{(\mathrm{A}) \text { and }(\mathrm{B}) \text { are } \Rightarrow \mathrm{Me}}$
c. $(\mathrm{A}) \Rightarrow \mathrm{Me} \mathrm{COOH}$
C. C. $\quad(\mathrm{B}) \Rightarrow \mathrm{Me}$
D. $\mathrm{d} .(\mathrm{A}) \Rightarrow$ No reaction $(\mathrm{B}) \Rightarrow \mathrm{Me}$

Answer: D

(A) is:

A. a.

B. b.

C. c. ${ }^{\text {c. } \mathrm{MeCHO}+\mathrm{O}=}\left\langle_{\mathrm{Me}}^{\mathrm{Me}}\right.$
D. d.Noreaction

Answer: B

84. The compound (A) is:

The compound (A) is:
A. a.Acidic KMnO_{4}
B. b. $\mathrm{KOBr} / \mathrm{H}_{3} \mathrm{O}^{\oplus}$
C. c. $\mathrm{SeO}_{2} / \mathrm{MeCOOH}$
D. d.Jones reagent

Answer: B

- View Text Solution

$\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO} \xrightarrow{\mathrm{A}}$
 $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$

85.

The compound (A) is:
A. a.Aq. KMnO_{4}
B. b. NaOI
C. c. $\left[A g\left(N H_{3}\right)_{2}\right]^{\oplus} / H_{3} O^{\oplus}$
D. d. MnO_{2}

Answer: C

D Watch Video Solution

86. Which single reagent can be used in the following conversions?
A. a. $H_{2}+$ Poisoned Pd
B. b. $\mathrm{H}_{2}+$ Raney Ni
C. с. $\mathrm{H}_{2}+P d+C$
D. d. $H_{2}+N i+B$

Answer: C

- View Text Solution

87. $E t-N^{\oplus} \equiv C^{\ominus} \xrightarrow[\text { or } \mathrm{HgO} \text { or } \mathrm{O}_{3}]{\mathrm{Cl}_{2}+D M S O}$. The compound (A) is:
A. a.Ethyl methyl amine
B. b.Ethylnitri \leq
C. c.Ethyl isocyanate
D. d.Ethyl cyanate
88. Imines or enamines are selectively reduced to 1° or 2° amines with:
A. a. $\mathrm{NaBH} H_{4}$
B. b. $L A H$
C. c. NaCNBH 3
D. d. NaAiH_{4}

Answer: C

- View Text Solution

89. Caprolactone on reduction with $L A H$ or $H_{2}+P t$ or $P d$ gives:
A. a.Butane-1,4-diol`
B. b.Pentane-1,5-diol
C. c.Heexane-1,6-diol
D. d.Heptane-1,7-diol

Answer: B

D Watch Video Solution

90. Caprolactam on reduction with $L A H$ or $H_{2}+P t$ or $P d$ gives:
A. a.4-Amino butan-1 $-o l$
B. b.5-Aminopentam-1 - ol
C. c.6-Aminohexan-1 - ol
D. d.7-Aminoheptan-1 - ol

Answer: B

Exercise (Assertion And Reasoning)

Statement 1: The product (B) formed will be a racemic mixture.

Statement 2: The above reaction is oxymercuration and demercuration, and it proceeds via the addition of $D_{2} O$, according to Markovnikov's rule, and with antiregiospecificity.
A. a.Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
B. b.Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: A

- View Text Solution

2.
(B)

Statement 1: The product formed is (B).

Statement 2: The reaction proceeds via the formation of the following species in the order: Radical anion \rightarrow Vinylic anion \rightarrow Vinylic redical \rightarrow Product
A. a.Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
B. b.Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: C

- View Text Solution

3. The reaction of $\left(\begin{array}{c}\left.R^{\prime}-\underset{O}{C} \begin{array}{c}\| \\ O\end{array}\right) \text { with }\left(R_{2} C d\right) \text { or with }\left(R_{2} C u L i\right) ~\end{array}\right.$ gives a ketone but with $(R M g X)$ gives a 3° alcohol $\left(R_{2} R^{\prime} C O H\right)$. Statement 2: $(C-M g)$ bond has more ionic character than $(C-C u)$ or $(C-C d)$ bond abd (R) group in Grignard reagent is more like R^{\ominus} and is much more reactive for nuleophilic addition reaction.
A. a.Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
B. b.Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: A

D Watch Video Solution

$(\mathrm{B}) \stackrel{\mathrm{CH}_{3} \mathrm{OH} / \mathrm{MeO}^{\ominus}}{\text { Path II }} \stackrel{\mathrm{Me}}{\mathrm{Me}}{ }_{\mathrm{O}} \xrightarrow[\text { Path I }]{\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}^{\oplus}}(\mathrm{A})$

Statement
1: \quad The
products
(A) and
(B) are

Statement 2: Path I takes place by $S N^{2}$ mechanism and Path II take place by $S N^{1}$ mechanism.
A. a.Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
B. b.Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: D

- Watch Video Solution

5. Statement 1: Reduction of 3-phenyl prop-2-en-1-al with $L A H$ gives

3-phenyl propan-1-ol.

Statement 2: Both the double bond and the aldehyde group of α, β unsaturated aldehydes are reduced by $L A H$.
A. a.Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
B. b.Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: A

D Watch Video Solution

6. Statement 1: Formic acid reduces 'Tollens reagent'.

Statement 2: Compounds containing (-CHO) group reduce 'Tollens reagent'.
A. a.Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
B. b.Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: B

D Watch Video Solution

7. Statement 1: tert-Butybenzene on oxidation does not give benzoic acid on oxidation with acidic KMnO_{4}.

Statement 2: Due to the absence of benzylic hydrogen.
A. a.Statement 1 and Statement 2 are true and Statement 2 is the
B. b.Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: A

D Watch Video Solution

8. Statement 1: Diisopropyl ketone on reaction with isopropyl magnesium bromide followed by hydrolysis gives 2° alcohol.

Statement 2: Grignard reagent acts as a reducing agent.
A. a.Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
B. b.Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: A

- View Text Solution

9. Statement 1: Schiff's regent is a dilute solution of rosaniline hydrochloride in water whoce magneta colour is discharged with aqueous SO_{2} or $\mathrm{H}_{2} \mathrm{SO}_{3}$.

Statement 2: Schiff's reagent oxidies benzaldehyde to benzoic acid.
A. a.Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
B. b.Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: C

- View Text Solution

10. Statement 1: Acryaldehyde $\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}\right)$ is oxidised to acrylic acid
$\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}\right)$ by Benedict's solution.
Statement 2: Benedict's solution is ammoniacal CuSO_{4} solution containing sodium potassium tartarate.
A. a.Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1.
B. b.Statement 1 and Statement 2 are true and Statement 2 is not
the correct explanation of Statement 1.
C. c.Statement 1 is true and statement 2 is false.
D. d.Statement 1 is false and statement 2 is false

Answer: C

- View Text Solution

Exercise Archives (Subjective)

1. The reagent with which both acetadehyde and acetone react easily
is:
A. a.Tollens regent
B. b.Schiffs reagent
C. c.Grignard reagent
D. d.Fehling's solution
2. A compound that gives a positive iodoform test is:
A. a.1- Pentanol
B. b.3-Pentanone
C. c.2- Pentanal
D. d.

Answer: C

- View Text Solution

3. When acetaldehyde is heated with Fehling's solution it gives a precipitate of
A. a. $C u$
B. b. CuO
C. c. $\mathrm{Cu}_{2} \mathrm{O}$
D. d. $\mathrm{Cu}+\mathrm{Cu}_{2} \mathrm{O}+\mathrm{CuO}$

Answer: C

D Watch Video Solution

4. The compound that will not give iodoform on treatment with alkali and iodine is :
A. a.Acetone
B. b.Ethanol
C. c.Diethyl ketone
D. d.Isopropyl alcohol
5. Which of the following compounds is oxidised to prepare methyl ethyl ketone?
A. a.2-Propanol
B. b.1-Butanol
C. c.2-Butanol
D. d.t-Butyl alcohol

Answer: C

- Watch Video Solution

6. Hydrogenation of benzoyl chloride in the presence of Pd on BaSO_{4} gives
A. a.Benzyl alcohol
B. b.Benzaldehyde
C. c.Benzoic zcid
D. d.Phenol

Answer: B

- Watch Video Solution

7. The appropriate reagent for the following transformation is

A. a. $Z n(H g), H C l$ θ
B. b. $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{OH}$
C. c. H_{2} / Ni
D. d. NaBH_{4}

Answer: B

(D) Watch Video Solution

8. Which one of the following will most readily be dehydrated in acidic condition?
A. a.

B. b.

b.

C. c.
OH

D. d.
d.

OH

- View Text Solution

9. 1-Propanol and 2-propanol can be distinguished by:
A. a.Oxidation with alkaline KMnO_{4} followed by reaction with Fehiling's solution.
B. b.Oxidation with acidic dichromate followed by reaction with

Fehling's solution
C. c.Oxidation by heating with copper followed by reaction with

Fehling's solution.
D. d.Oxidation with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ follwed by reaction with

Fehling's solution.
10. Compound (A) [molecular formula $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$] is treated with acidified potassium dichromate to form a product (B) [molecular formula $\left.\left(C_{3} H_{6} O\right)\right]$. (B) forms a shining silver mirror on warming with ammoniacal silver nitrate. (B) when treated with an aqueous solution of $\mathrm{H}_{2} \mathrm{NCONHNH}$ and sodium acetate gives a product (C). Identify the structure of (C).
A. a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N} . \mathrm{NHCONH} 2$
B. b. $\mathrm{CH}_{3}-\mathrm{CH}_{3}=\mathrm{N} . \mathrm{NHCONH}_{2}$ CH_{3}
C. c. $\mathrm{CH}_{3}-\mathrm{CH}_{3}=\mathrm{N} . \mathrm{CONHNH}_{2}$ CH_{3}
D. d. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{N} . \mathrm{CONHNH}_{2}$

Answer: A

11.

$P h C \equiv C P h \xrightarrow{\mathrm{Hg}^{2+}+\mathrm{H}^{\oplus}}(A)$. Thecompound (A) isThecompound
(A)' is:

A. a. $\quad \mathrm{OH}$
B.b.

c.
C. c.
d.
D. d.
Me
OH
b.

Answer: A

- View Text Solution

12. The products of acid hydrolysis of P and Q can be distinguished by
$(\mathrm{P}) \Rightarrow \mathrm{H}_{2} \mathrm{C}=\left\langle_{\mathrm{Me}}^{\mathrm{OCOMc}}(\mathrm{Q}) \Rightarrow \mathrm{Me}^{\text {()COMe }}\right.$
A. a. Lucas reagent
B. b. $2,4-D N P$
C. c.Fehling's solution
D. d. NaHSO_{3}

Answer: C

- View Text Solution

13. How will you convert butan-2-one to propanoic acid?
A. a.Tollens reagent
B. b.Fehling's solution
C. c. $\mathrm{NaOH} / I_{2} / H^{\oplus}$
D. d. $\mathrm{NaOH} / \mathrm{NaI} / H^{\oplus}$

Answer: C

- View Text Solution

14. Which of the following compound will give a yellow precipitate with iodine and alkali?
A. a.2-Hydroxy
B. b.Acetophenone
C. c.Methyl acetone
D. d.Acetone
15. Under Wolff-Kishner reduction conditions, the conversion which may be brought about is:
A. a.Benzophenone to diphenyl methane
B. b.Benzaldehyde to benzyl alcohol
C. c.Cyclohexanone to cyclohexane
D. d.Cyclohexanone to cyclohexanol

Answer: A::C

- View Text Solution

16. Fehling's solution 'A' consists of an aqueous solution of copper sulphate, while Fehling's solution 'B' consists of an akaline solution of
17. The yield of ketone when a secondary alcohol is oxidised is more than the yield of aldehyde when a primary alcohol is oxidised.

- View Text Solution

18. Statement I: Acetic acid does not undergo haloform reaction.

Statement II: Acetic acid has no alpha hydrogen.
A. a.Statement I and Statement II are true and Statement II is the correct explanation of Statement I.
B. b.Statement I and Statement II are true and Statement II is not the correct explanation of Statement I.
C. c.Statement I is true and statement II is false.
D. d.Statement I is false and statement II is false

Answer: C

- View Text Solution

19. Give a chemical test to distinguish between methanol and ethanol.

- View Text Solution

20. Suggest a suitable reagent to distinguish acetaldehyde from acetone.

- View Text Solution

21. Ketone (A), which indergoes halform reaction, give compound (B) on reduction. (B) on heating with $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives compound (C), which forms mono-ozonide $(D) .(D)$ on hydrolysis in the presence
of $Z n$ dust gives only acetaldehyde. Identify $(A) .(B)$, and (C). Write down the reactions involved.

- View Text Solution

22. Give reason on one or two sentances for the following: lodoform is obtained by the reaction of acetone with hypoiodote but not with iodode

- View Text Solution

23. When t-butanol and n-butanol are separately treated with a few drops of dilute KMnO_{4} in one case only, the purple colour disappears and brown precipitate is formed. Which of the two alcohols gives the above reaction and which is the brown precipitate?
24. A compound $(D)\left(C_{8} H_{10} O\right)$ upon treatement with alkaline solution of iodine gives a yellow precipitate. The filterate on acidification gives a white solid $(E)\left(C_{7} H_{6} O_{2}\right)$. Write the structures of (D) and (E), and explain the formation of (E).

- View Text Solution

25. Identify $(A),(B)$, and (C) and give their strucyures.

- View Text Solution

26. An alkene $(A) C_{16} H_{16}$ on ozonolysis gives only one product $(B)\left(C_{8} H_{8} O\right)$. Compound (B) on reaction with NaOH / I_{2} yields
sodium benzoate. Compound (B) reacts with $\mathrm{KOH} / \mathrm{NH}_{2}$ yielding a hydrocarbon $\left(C_{8} H_{10}\right)$. Write the structures of compounds (B) and (C). Based on this information, two isomeric structures can be proposed for alkene (A). write thair structures and identify the isomer which on catalytic hydrogenation $\left(H_{2}+P d+C\right)$ gives a recemic mixture.

- View Text Solution

SUBJECTIVE TYPE

1. Write the statements of the products $(A),(B),(C),(D)$, and (E) in the following scheme.

2. Identify $(X),(Y)$, and (Z) in the following synthetic scheme and write their structures.

Is the compound (Z) optically active? Justify your answer.

- View Text Solution

3. Compound (A) of molecular formula $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{Cl}$ exists in ketoform and predominantly in enolic form (B). On oxidation with $\mathrm{KMnO}_{4},(A)$ gives m-chlorobenzoic acid. Identify (A) and (B).
