©゙doubtnut

CHEMISTRY

BOOKS - P BAHADUR CHEMISTRY (HINGLISH)

CHEMICAL BONDING

Exercise

1. The energy needed for $L i_{g} \rightarrow L i_{g}^{3+}+3 e$ is
2. $96 \times 10^{4} \mathrm{kJmol}^{-1}$. If the first ionisation
energy of Li is $520 \mathrm{kJmol}^{-1}$. Calcuate the second
ionisation energy of $L i$.
(Given : $I E_{1}$ for $H=2.2 .18 \times 10^{-18} \mathrm{kJatom}^{-1}$
).

- Watch Video Solution

2. The first IP lithium is 5.41 eV and electron gain enthalpy of $C l$ is -3.61 eV . Calculate ΔH in $K \mathrm{Jmol}^{-1}$ for the reaction:
$L i_{g}+C l_{g} \rightarrow L i_{g}^{=}+C l_{g}^{-}$.

D Watch Video Solution

3. You are given Avogadro's no. Of X atoms. If half of the atoms of X transfer one electron to the other half of X atoms $409 k J$ must be added . If these X^{-}ions are subsequently converted to X^{+}, and additional $733 k J$ must be added.

Calculate $I P$ and $E A$ of X in $e V$ Uses
$\left(1 e V=1.602 \times 10^{-19} J\right.$
and
$\left.N_{a}=6.023 \times 10^{23}\right)$.

D Watch Video Solution

4. How many $C l$ atosm can you ionise in the process $\mathrm{Cl} \rightarrow \mathrm{Cl}^{+}+e$, by the energy liberated for the process $\mathrm{Cl}+e \rightarrow \rightarrow \mathrm{Cl}^{-}$for one Avogadro's number of atoms ? (Given : $I P=13.0 \mathrm{eV}$ and $E A=3.60 \mathrm{eV})$.

D Watch Video Solution

5. The elecron affinity of chlorine is 3.7 eV . How much energy in kcal is released when $2 g$ chlorine is completely converted to cl^{-}ion in a gaseous
state?
$\left(1 e V=23.06 k^{2} a l \mathrm{~mol}^{-10}\right)$.

(D) Watch Video Solution

6. Electron gain enthalpy value for oxygen is negative $\left(-142 k J\right.$ mol $\left.e^{-1}\right)$ while sum of electron gain enthaplies of O and $\left(\mathrm{O}^{-}\right)$ respectively si positive is $\left(702 k J \mathrm{~mol}^{-1}\right)$.Explain the reason for opposite sign for two values. Also calcularte $E A_{2}$ value .
7. How many $C s$ atoms can be converted to $C s^{+}$ ions by 1 joule energy, If $I E_{1}$ for $C s$ si $376 \mathrm{kJmol}^{-1}$?

Watch Video Solution

8. A mixture contains F and $C l$ atoms. The removal of an electron form each atom of the sample requires $28 k J$ while addition of an electron to each atom of mixture releases $68.8 k J$ energy .Calcualte the \% composition of mixture
.Given $I E$ per atoms for F and $C l$ are
$27.91 \times 10^{-22} k J$ and $20.77 \times 10^{-22} k J$.

Electron gain enthaply for F and Cl are $-5.31 \times 10^{-22} k J \quad$ and $\quad-5.78 \times 10^{22} k J$ respectivley

- Watch Video Solution

9. Using the data given below,predict the nature of heat changes for the reaction .
$M g_{g}+2 F_{g} \rightarrow M g_{g}^{2+}+2 F_{g}^{-}$
$I E_{1}$ and $I E_{2}$ of $M g_{g}$ are 737.7 and $451 \mathrm{kJmol}^{-1}$.
$E A_{1}$ for F_{g} is $-328 \mathrm{kJmol}^{-1}$.
10. Calculate the effective nuclear charge at the periphery of nitrogen atom when an extre electron is added in the formation of anion. Also calculate the effective nuclear charge of N -atom.

- Watch Video Solution

11. The $I E_{1}$ of $L i$ is 5.4 eV and $I E_{1}$ of H is 13.6 eV .

Calculate the charge acting on the outermost electron of $L i$ atom.
12. Calculate electronegativity of carbon at Pauling scale Given that :
$E_{H-H}=104.2 \mathrm{kcalmol}^{-1} E_{C-C}=83.1 \mathrm{kcalmol}^{-1}$
,
$E_{C-H}=98.8 k c a l \mathrm{~mol}^{-1}$.
Electronegativity of hydrogen $=2.1$.

(Watch Video Solution

13. Electronegativity of F on Pauling scale si 4.0

Calculate its value on Mulliken scale .
14. Calculate the electronegativity of fluorine form the following data :
$E_{H-H}=104.2 \mathrm{kcal} \mathrm{mol}^{-1}, E_{C-C}=83.1 \mathrm{kcal}$ mol^{-1}.
$E_{C-H}=9.8 . s \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
Electronegativity of $H=2.1$.

D Watch Video Solution

15. Ionisation paotential and electron affinity of fluorine are 17.42 and 3.45 eV respectively
.Calculate the electronegativity of fluorine on Mulliken scale and Pauling scale .

(D) Watch Video Solution

16. Calculate the electonegativity of silicon using

Allred -Rochow method .(Covalent radius of silicoan $=1.175 \AA)$.

D Watch Video Solution

17. Covalent radius of .82 Pb is $1.53 \AA$. Calculate its
electroneagitity at Allred -Rochow sale .

- Watch Video Solution

18. Atomic radius and ionic radius of F_{g} and F_{g}^{-} are 72 and 136 pm prespectivley. Calculate the ratio and percentage increase in terms of volume during formation of $F_{g}{ }^{-}$form F_{g}.

(D) Watch Video Solution

19. Calculate the theoretical value of bond length in $H-F$, if f_{H} and r_{F} are $-0.37 \AA$ respectively.

Electronegativites of F and H are 4.0 and 2.1 respectively .

(D) Watch Video Solution

20. $X_{B e}$ and $S_{C l}$ are 1.6 and 3.2 respectively. Calculate Delta H_{f} for BeCl_{2} molecule .

(D) Watch Video Solution

21. Diatomic molecule has a dipole moment of
$1.2 D$ If its bond $1.0 \AA$ what fraction of an electronic charge exists on each atom?.

- Watch Video Solution

22. The dipole moment of $L i H$ is
$1.964 \times 10^{29} C-m$ and the interatomic diatance
between $L i$ and H in this molceule is $1.596 \AA$
.What is the per cent ionic character in $L i H$.

(D) Watch Video Solution

23. Calcaulate the molecular weight of $H F$, if density of $H F$ gas is $3.17 \mathrm{~g} / L$ at $300 K$ and 1.0 atm . Comment of the result .

- Watch Video Solution

24. The experimental dipole moment of water molecule is 1.84 D . Calculater the bond angle $H-O-H$ in water molecule if dispole moment of $O H$ bond is $1.5 D$.

D Watch Video Solution

25. The $H-O-H$ bond angle in the water molecule is 105°, the $H-O$ bond distance being
$0.94 \AA$, The dipole moment for the moelcule is $1.85 D$. Calculate the charge on the oxygen atom .

Watch Video Solution

26. Estimate the lattice energy of CaCO_{3} if $r_{c a^{+}}=114 \pm$ and $r_{C O_{3}^{2-}}=185 p m$.

- Watch Video Solution

27. Suppose a gaseous mixtures of $\mathrm{He}, \mathrm{Ne} \mathrm{Ar}$ and $K r$ is irradiated with photons fo frequency
appropriate to ionize Ar, What ions will be present in the mixture?

(D) Watch Video Solution

Exercise 2 A

1. Which of the following molecule consists of numlticentre pi-bonding ?
A. Ethene
B. Butane
C. Benzene

D. None of thes

Answer: C

- Watch Video Solution

2. The hybrid state of postively charged carbon in vinyl $\left(\mathrm{CH}_{2}=\mathrm{CH}^{+}\right)$cation is :
A. $s p^{2}$
B. $s p$
C. $s p^{3}$
D. unpredictable

Answer: B

D Watch Video Solution

3. In which of the following species the hybrid state of the central atom is same ?
A. $\mathrm{SO}_{2}, \mathrm{SO}_{3}$
B. $\mathrm{SO}_{3}, \mathrm{SO}_{4}^{2-}$
C. $\mathrm{SO}_{2}, \mathrm{SO}_{2}^{2-}$
D. $\mathrm{CH}_{4} \mathrm{HCOOH}$

- Watch Video Solution

4. The correct roder of electrongativity regardig the hybrid orbitals of carbnon is :
A. $s p<s p^{2}<s p^{3}$
B. $s p<s p^{2}<s p^{3}$
C. $s p<s p^{2}>s p^{3}$
D. $s p^{3}<s p^{2}<s p$

Answer: D

5. A sigama-bonded moelcuar $M X_{3}$ is T-shaped .

 The number of lone paris of electons around M isA. zero
B. 2
C. 1
D. unpredictable

Answer: B
6. Two ice cubse are pressed over each other and unite to form one cube . Which ofrce is responsible of holidng them togther ?
A. van der Waals forces
B. Covalent attraction
C. Hydrogen bond formation
D. Dipole-dipole attraction

Answer: C
7. Which of the following has fractional nond order?
A. O_{2}^{2+}
B. O_{2}^{2-}
C. $F_{2^{2-}}$
D. H_{2}^{-}

Answer: D

- Watch Video Solution

8. Carbon atoms in $C_{2}(C N)_{4}$ are :
A. $s p$-hybridsed
B. $s p^{2}-$ hybrdised
C. $s p$ and $s p^{2}$-hybridesed
D. $s p, s p^{2}$ and $s p^{3}$-hubridesed

Answer: C

D Watch Video Solution

9. The correct order of dipole moment is :

A. $\mathrm{CH}_{4}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{NF}_{3}<\mathrm{CH}_{4}<n \mathrm{H}_{3}<\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}$

Answer: A
(D) Watch Video Solution
10. The bond angle in PH_{3} is :
A. much lesser than NH_{3}
B. equal to NH_{3}
C. much greater than NH_{3}
D. slightly more than NH_{3}

Answer: A

(Watch Video Solution

11. The bond length in $O_{2}^{+}, O_{2}, O_{2}^{-}$and O_{2}^{2-} follows the order :
A. $O_{2}^{2-}>O_{2}^{-1}>O_{2}>O_{2}^{+}$
B. $O_{2}^{2-}>O_{2}^{-1}>O_{2}>O_{2}^{+}$
C. $O_{2}^{2-}>O_{2}^{-1}>O_{2}>O_{2}^{+}$
D. $O_{2}^{2-}>O_{2}^{-1}>O_{2}>O_{2}^{+}$

Answer: A

(D) Watch Video Solution

12. The species which does not show paramagetism is :
A. O^{2-}
B. O_{2}^{+}
C. O_{2}^{2-}
D. H_{2}^{+}

Answer: C

D Watch Video Solution

13. $\mathrm{H}-\mathrm{B}-\mathrm{H}$ bond angel in BH_{4}^{-}is :
A. 180°
B. 120°
C. 109°
D. 90°

Answer: C
14. The bond angel and hybridisation in ether $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$ is :
A. $106^{\circ} 51, s p^{3}$
B. $104^{\circ} 31^{\prime}, s p^{3}$
C. $110^{\circ}, s p^{3}$
D. None of these

Answer: C
15. The shape of a molecule which has 3 bond paires and one lone pair is :
A. octahedral
B. pyramidal
C. triangular planar
D. tetrahedral

Answer: B

16. $P C l_{5}$ exists but $N C l_{5}$ does not because :

A. nitrogen has no vacant $2 d-$ orbitals
B. NCl_{5} is unstable
C. nitrogen atoms is much smaller than phosphorus
D. nitrogen is highly inert

Answer: A
17. In dry ice , there are :
A. ionic bond
B. covalent bond
C. hydrogen bond
D. none of these

Answer: B

- Watch Video Solution

18. Which moleucle is T-shaped ?
A. $B e F_{2}$
B. $B C l_{3}$
C. NH_{3}
D. ClF_{3}

Answer: D

- Watch Video Solution

19. Which fomulae does not correctluy represents
the bonding capacity of the atom involued ?
(a) $\left[\begin{array}{c}\stackrel{\mathrm{H}}{\mathrm{P}} \\ \mathrm{H}\end{array}\right]$
(b) ${ }^{\mathrm{F}}{ }_{\mathrm{O}} /{ }^{\mathrm{F}}$
B.
(b) ${ }^{\mathrm{F}} \mathrm{O}_{\mathrm{O}} /^{\mathrm{F}}$
C.
D.
(d) $\mathrm{H}-\mathrm{C}=\mathrm{C} _{\mathrm{O}}^{0} \gamma_{\mathrm{H}}^{\mathrm{H}}$

Answer: D

- Watch Video Solution

20. CO_{2} has the same geometry as:
A. A and C
B. B and D
C. A and D
D. C and D

Answer: C

- View Text Solution

21. Which bond angel θ would result in the maximum dipole moment for the triatomic
molecule $X Y_{2}$ shown below?

A. $\theta=90^{\circ}$
B. $\theta=120^{\circ}$
C. $\theta=150^{\circ}$
D. $\theta=180^{\circ}$

Answer: A

D View Text Solution

22. Dipole moment is highest for:

A. CHCl_{3}
B. CH_{4}
C. CHF_{3}
D. $C-C l_{4}$

Answer: C
23. The molecules having dipole moment are :
A. 2, 2 - dimethylpropane
B. trans-3- hexene
C. trans-2 - pentene
D. 2, 2, 3, 3-tetramethylbutane

Answer: C

(D) Watch Video Solution
24. Bond angle between two hybrid orbitals is 106° Hybride charcter in orbital is:
A. between $20-21 \%$
B. between $20-21 \%$
C. between $20-22 \%$
D. between $20-23 \%$

Answer: D

25. In the cyanide ion, the formal negative charge is on :
A. C
B. N
C. both C and N
D. resonate between C and N

Answer: D

- Watch Video Solution

26. Which statement is correct about HCHO ?

A. It has $s p^{2}-$ hybridised carbon
B. The bond angles $\angle H C H$ and $\angle H C O$ are
116° and 122° respectively
C. It involves multiple bond pair -bond pair repulsion
D. All of these

Answer: D

27. Which of the following halides is not oxidised by Mno_{2} ?
A. F^{-}
B. Cl^{-}
C. $B r^{-}$
D. I^{-}

Answer: A

- Watch Video Solution

28. The enolic form of acetone contains:
A. $9 \sigma, 1$ pi bond and 2 lone pairs
B. $8 \sigma, 1$ pi bond and 2 lone pairs
C. $10 \sigma, 1$ pi bond and 1 lone pairs
D. $9 \sigma, 2$ pi bond and 1 lone pairs

Answer: A

- Watch Video Solution

29. Amongst $\mathrm{LiCl}, \mathrm{RbCl}, \mathrm{BeCl}_{2}$ and MgCl_{2}, the compounds whith the greatrest and the least ionic character respecitely are :
A. LiCl and RbCl
B. RbCl and $B e C l_{2}$
C. RbCl and MgCl_{2}
D. MgCl_{2} and BeCl_{2}

Answer: B

D Watch Video Solution

30. The total number of valence electrons in $4.2 g$ of N_{3}^{-}ion are :
A. $2.2 N$
B. $4.2 N$
C. 16 N
D. $3.2 N$

Answer: C

- Watch Video Solution

31. In piperdine

$N-H, N$ atom has hybridisation :
A. sp
B. $s p^{2}$
C. $s p^{3}$
D. $d s p^{2}$

Answer: C

(D) Watch Video Solution

32. One among the following is the incrorrect order of increasing ionisation energy :
A. $C l->A r>K^{+}$
B. $K<C a<S e$
C. $A u<A g<C u$
D. $C s<R b<K$
33. $\mathrm{CuSO}_{4} .5 \mathrm{H}_{-} 2 \mathrm{O}^{`}$ is represented as :
A. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SO}_{4}\right.$
B. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{SO}_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{SO}_{4}$

Answer: C

34. The correct order of increasing electropositive character among $C u$. Fe and $M g$ is :
A. $C u \approx F e>M g$
B. $F e>C u>M g$
C. $F e>M g>C u$
D. $M g>F e>C u$

Answer: D

- Watch Video Solution

35. Which shows a changes in the type of hybridisation when :
A. NH_{3} combines with H^{+}
B. AlH_{3} combines with H^{-}
C. in both cases
D. in none cases

Answer: B

- Watch Video Solution

36. When temperature is lowered NO_{2} dimerises .

It is accompanised by :
A. an increase in pressure
B. darkening in colour
C. decrease in paramangetism
D. increase in paramagetism

Answer: C

37. The dipole moment of $N F_{3}$ is very much less compatred to that of NH_{3} because :
A. the size of N atom is much less than that of
H atom
B. F atom is more electronegative than N
atoms whereas H atoms is less
electronegative tha N atom
C. unshared electron pair is not present in
$N F_{3}$
D. no. of lone pairs in $N F_{3}$ is nuch greater than in NH_{3}

Answer: B

- Watch Video Solution

38. In HCHO , there are X no-bonding electron pairs Y sigama -bonds and Z pi-bonds, X, Y and Z are :
A. $1,1,3$
B. $2,3,1$
C. $1,2,3$

D. none of these

Answer: B

D Watch Video Solution

39. For compounds,

A : Tetracuanoethern

B: Carbon dioxide

C: Benzene

D: 1, 3-Butaidene .

Ratio of σ and π bonds is in order :
A. A: Tetracynoethene
B. B: Carbon dioxide
C. C:Benzene
D. D , 1, 3 -Butadiene

Answer: A
(Watch Video Solution
40. Hypervalent compound is :
A. $A=B>C>D$
B. $A=B>B>D>C$
C. $a=B=C=D$
D. $C>D>A>B$

Answer: A

- View Text Solution

41. Which set contains par of elements that do not belong to same froup but show chemical resemblaces ?
A. Hf, Zr
B. K, Rb
C. Be ,Al
D. B, Al

Answer: C

(D) Watch Video Solution

42. An element of p -block in which last electron enters into s-orbital of valence shell insteatd of porbital is :
A. As
B. Ga
C. Te
D. He

Answer: D

(D) Watch Video Solution

43. Covelant radius of Liis $123 \pm$.The crystal
radius of Li will be:
A. $>123 \pm$
B. $<123 \pm$
C. $=123 \pm$

$$
\text { D. }=\frac{123}{2} \pm
$$

Answer: A

- Watch Video Solution

44. A molecule which cannot exist theoretcally is :
A. $S F_{4}$
B. $P F_{2}$
C. $O F_{4}$
D. $O_{2} F_{2}$

Answer: C

(D) Watch Video Solution

45. Which are true statements among the following ?
A. , 13
B. $1,2,5$
C. 1,35
D. $1,2,4$

Answer: B

D View Text Solution

46. The structure of $I F_{4}$ can be best desribed by:

D. none of these

Answer: C

D Watch Video Solution

47. The solublity of $K C l$ is relatively more in :
A. $C_{6} H_{6}(D=0)$
B. $(\mathrm{CH}-3){ }_{2} \mathrm{CO}(\mathrm{D}=2)$
C. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{D}=32)$
D. $C C l_{4}(D=0)$

Answer: C
48. Which of the following possess lowest bond energy?
A. $C-C$
B. $N-N$
C. $H-H$
D. $O-O$

Answer: D
(D) Watch Video Solution
49. Molecular size of $I C I$ and $B r_{2}$ is nearly same
but b. pt. of $I C I$ is about 40° higher than $B R_{2}$.

This is due to :
A. $I-C l$ bond is stronger than $B r-B r$ bond
B. ionisation enrgy of I gt ionisation enrgy of Br
C. $I C l$ is polar whereas $B r_{2}$ is non-plar
D. size of I is larger than Br
50. The pair of species having identical shape is :
A. $C F_{4}, S F_{4}$
B. $P C l_{3}, B F_{3}$
C. $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$
D. $P F_{5}, I F_{3}$

Answer: C

D Watch Video Solution
51. The molecule having three fold axid of symmetry is :
A. NH_{3}
B. $C_{2} H_{4}$
C. CO_{2}
D. SO_{2}

Answer: A

D Watch Video Solution
52. Which of the following phenomenon will occure when tow atoms of an element with same spein of electron approach each other ?
A. Orbitals overlap will occur
B. Orbitals overlap will not occur
C. Bonding will occur
D. A diatomic molecule will be formed

Answer: B

D Watch Video Solution
53. Structrue of ICO_{2}^{-}is:
A. trigonal
B. distorted trigonal bipyramid
C. octahedral
D. square planar

Answer: B

Watch Video Solution

54. The most suitable method of separation of a mixture of ortho and para nitrophernol in the
ratio $1: 1$ is :

A. distillation

B. crystallisation
C. vaporisation
D. colour spectrum

Answer: A

D Watch Video Solution

55. In the formation of N_{2}^{+}the electron is lost
form a :
A. σ-orbital
B. $\pi-$ orbital
C. σ^{x}-orbital
D. $\pi^{x}-$ orbital

Answer: A

- Watch Video Solution

56. The bond order in O_{2}^{+}is the same as in :
A. N_{2}^{+}
B. $C N^{-}$
C. CO
D. $N O^{+}$

Answer: A

D Watch Video Solution

57. The correct increasing bond angles order is :
A. $B F_{3}>N F_{3}>P F_{3}>C I F_{3}$

$$
\text { B. } B F_{3}>N F_{3}>P F_{3}<C I F_{3}
$$

C. $B F_{3}>N F_{3}<P F_{3}<C I F_{3}$

$$
\text { D. } B F_{3}>N F_{3}>P F_{3}>C I F_{3}
$$

Answer: B

D Watch Video Solution

58. In which element shielding efferct is not possible?
A. H
B. $B e$
C. B
D. N

Answer: A

(D) Watch Video Solution

59. The higher values of specific heat of water than other liquids has been accounted in terms of :
A. hight dielectric constant
B. Polarity
C. H-bonding

D. None of thes

Answer: C

- Watch Video Solution

60. Which are isostructural species ?
A. CH_{3}^{-}and CH_{3}^{+}
B. NH_{4}^{+}and NH_{3}
C. SO_{4}^{2-} and BF_{4}^{-}
D. NH_{2}^{-}and BeF_{2}

Answer: C

D Watch Video Solution

61. The species having octahedral shape is :
A. $S F_{6}$
B. $B F_{4}^{-}$
C. $P C l_{5}$
D. $B O_{3}^{3-}$

Answer: A
62. The correct order of increaisng bond angles is

$$
\begin{aligned}
& \text { A. } P F_{3}<P C l_{3}<P B r_{3}<P I_{3} \\
& \text { B. } P F_{3}>P B r_{3}<P C_{3}<>P I_{3} \\
& \text { C. } P I_{3}>P B r_{3}>P C l_{3}>P F_{3} \\
& \text { D. } P F_{3}<p C l_{3}>P B r_{3}>P I_{3}
\end{aligned}
$$

Answer: D
63. The hybridisation of P in phosphate ion $\left(\mathrm{PO}_{4}^{2-}\right)$ is the same as in :
A. I in ICl_{4}^{-}
B. S in SO_{3}
C. N in NO_{3}^{-}
D. S in $S O_{3}^{2-}$

Answer: D

- Watch Video Solution

64. The diamagnetic molecules are :
A. B_{2}, C_{2}, N_{2}
B. O_{2}, N_{2}, F_{2}
C. C_{2}, N_{2}, F_{2}
D. B_{2}, I_{2}^{2-}, N_{2}

Answer: C

- Watch Video Solution

65. The correct order in which the $O-O$ bond length increases in the following :
A. $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{2}>\mathrm{O}_{3}$
B. $O_{3}<H_{2} O_{2}<O_{2}$
C. $\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}$
D. $\mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}$

Answer: D
(D) Watch Video Solution
66. Heterolytic bond fission in $C_{2} H_{6}$ gives carbonium and carbonion ions. The hybridisation of carbon atoms in these ions is :
A. $s p^{3}$
B. $s p^{2}$
C. $s p$
D. $s p^{3}, s p^{2}$

Answer: D
67. Maleic acid is stronger than fumaric acid because :
A.fumaric acid shows intermolecular H bonding
B. fumaric acid shows intramolecular H -
bonding
C. maleic acid is dibasic acid
D. maleic acid shows chelation

Answer: B
68. The correct order for bond angles is :

$$
\text { A. } \mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{-}
$$

B. $\mathrm{No}_{2}^{+}>\mathrm{NO}_{2}^{->} \mathrm{NO}_{2}$
C. $\mathrm{NO}_{2}>\mathrm{NO}_{2}^{->} \mathrm{NO}_{2}^{+}$
D. $\mathrm{NO}_{2}^{->} \mathrm{NO}_{2}>\mathrm{NO}_{2}^{+}$

Answer: A

D Watch Video Solution
69. The correct order for bond angles is :
A. $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$
B. $\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-}$
C. $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-1}>\mathrm{NH}_{3}$
D. $\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-1}>\mathrm{NH}_{4}^{+}$

Answer: A

- Watch Video Solution

70. The pair with more ionic nature and less m.pt.
respectively in lithium halides:
A. $L i F, L i I$
B. $L i C l, L i F$
C. $L i B r, L i I$
D. $\mathrm{LiF}, \mathrm{LiCl}$

Answer: A

- Watch Video Solution

71. The correct nond order for CO and CO^{+}are respectively :
A. $3,5 / 2$
B. 3,2
C. $3,7 / 2$
D. $4 / 2,3$

Answer: C

- Watch Video Solution

72. The correct stability order for N_{2} and its given ions is :
A. $N_{2}>N_{2}^{+}>N_{2}^{-1}>N_{2}^{2-}$
B. $N_{2}<N_{2}^{+}<N_{2}^{-1}<N_{2}^{2-}$
C. $N_{2}>N_{2}^{+}<N_{2}>N_{2}^{2}$
D. $N_{2}>N_{2}^{+}=N 2^{->} N_{2}^{2-}$

Answer: A

D Watch Video Solution

73. N_{2} and O_{2} are converted to mono cations N_{2}^{+}and O_{2}^{+}respectively, which statement is wrong ?
A. in N_{2}^{+}, the $N-N$ bond weakens
B. In $O-2^{+}$, the $O-O$ bond order increase
C. in O_{2}^{+}, the paramagnetism decrease
D. N_{2}^{+}become diamagnetic

Answer: D

(D) Watch Video Solution

74. The $O-O$ bond length in $O_{2}, O_{2}\left[A s F_{4}\right]$ and $K\left[O_{2}\right]$ is :
A. $O_{2}\left[A s F_{4}\right]<O_{2}<K\left[O_{2}\right]$
B. $O_{2}\left[A s F_{4}\right]>K\left[O_{2}\right.$
C. $O_{2}>O_{2}\left[A s F_{4}\right]>K\left[O_{2}\right]$
D. $K\left[O_{2}\right]<O_{2}<O_{2}\left[A s F_{4}\right]$

Answer: A

D Watch Video Solution

75. Which statement is incorrect for OSF_{4} ?

A. S-atom has $s p^{3}$ d-hybridisation
B. $O S F_{4}$ have distorted trigonal pyramidal geometry
C. O-atom at one of the two axial positions
having $S=O$ bond
D. O-atom at one of the equatorial position having $S=O$ bond

Answer: C

- Watch Video Solution

76. Which pair is isostructivral and possesses same number of bone pair of electron on central atom?
A. $I F_{5}$ and $X e O F_{4}$
B. NH_{3} and ClO_{3}^{-}
C. $S n C l_{4}$ and $C l_{4}^{-}$
D. AlCl_{3} and SO_{2}

Answer: A

- Watch Video Solution

77. The species having diamagnetic nature and bond order 1.0 is :s
A. O_{2}^{2-}
B. O_{2}^{+}
C. O_{2}^{2-}
D. O_{2}

Answer: A

(D) Watch Video Solution

78. P in $P C l_{5}$ has $s p^{3} d$ hybridisation. Which of following statement is wrong about PCl_{5} structure?
A. Two $P-C l$ bonds are strongest and three
$P-C l$ bonds weaker
B. Two $P-C l$ bonds are axial and larger than three $P-C l$ equatorial bonds
C. $P C l_{5}$ has trigonal bipyramidal geometry
with bond-polar nature
D. All of these

Answer: A

D Watch Video Solution

79. Which statement is wrong about $\mathrm{H}_{2} \mathrm{O}$?
A. It has high specific heat relative to other
liquids or solids due to strong intermolecular H -bonding
B. $\mathrm{H}_{2} \mathrm{O}$ molecule has capaity to form 4 H bonds
C. $\mathrm{H}_{2} \mathrm{O}$ has open cage like structure due to intermolecular H -bonding which give rise to
low density to ice than liquid $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}$ has maximum density at $4^{\circ} \mathrm{C}$ since
upto $4^{\circ} C$ the intermolecular H -bonding
persists more and thereby decreasing
volume and increasing density .

Answer: D

- Watch Video Solution

80. The correct order for triple bond energy in

$$
C O, N_{2}, C N \text { and } C \equiv C \text { is }
$$

$$
\text { A. } C \equiv O>N \equiv N>C \equiv N>C \equiv C
$$

$$
\text { B. } N \equiv N>C \equiv O>C \equiv C>C \equiv N
$$

$$
\text { C. } N \equiv N>C \equiv O>N \equiv C>C \equiv C
$$

$$
\text { D. } N \equiv N>C \equiv O>C=C>C \equiv C
$$

Answer: A

D Watch Video Solution

81. In NO_{3}^{-}ion, the number of bond pair and lone pair of electrons on nitrogen atom are:
A. 2,2
B. 3,1
C. 1,3
D. 4,0

Answer: D

(D) Watch Video Solution

82. Which of the following molecule froms linear polymeric structure due to H -bonding ?
A. HCl
B. $H F$
C. NH_{3}
D. $\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

83. The correct roder o fincreasing $C-O$ bond lengths in $\mathrm{CO}, \mathrm{CO}_{3}^{2-}$ and CO_{2} is:
A. $\mathrm{CO}_{3}^{2-}>\mathrm{CO}_{2}>\mathrm{CO}$
B. $\mathrm{CO}_{2}>\mathrm{CO}_{3}^{2-}>\mathrm{CO}$
C. $\mathrm{CO}>\mathrm{CO}_{3}^{2-}>\mathrm{CO}_{2}$
D. $\mathrm{CO}>\mathrm{CO}_{2}>\mathrm{CO}_{3}^{2-}$

Answer: D
84. Among the following which has resonating structure?
A. $B F_{3}$
B. $P C l_{5}$
C. $S F_{6}$
D. $I F_{7}$

Answer: A

- Watch Video Solution

85. For which crystalline substance does the solubility in water increase upto $312^{\circ} \mathrm{C}$ and then decrease readily?
A. $1 \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Fe} \mathrm{SO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
D. Alums

Answer: B

D Watch Video Solution
86. Which among the following is true ?
A. Bond order $\propto \frac{1}{\text { Bond } \leq n>h} \propto \quad$ Bond energy
B. Bond ordr \propto Bond length

$$
\propto \frac{1}{\text { Bonde } \neq r g y}
$$

C. Bond
order

$$
\propto \frac{1}{\text { Bond } \leq n>h} \propto \frac{1}{\text { Bond energy }}
$$

D. Bond order \propto Bond length \propto Bond energy `.
87. During the formation of a molecular orbital
from atomic orbitral , the electron density is :
A. minimum in nodal plane
B. maximum in nodal plane
C. zero in nodal plane
D. zero on the surface of lobe

Answer: C

88. The shapes of $\mathrm{PCl}_{4}^{+}, \mathrm{PCl}_{4}^{-}$and AsCl_{4} are respectively :
A. square planar, tetrahedral, see -saw
B. tetrahedral , see-saw , trigonal bipyramidal
C. tetrahedral, square planar and pentagonal
bipyramidal
D. trigonal bipyramidal tetrahedral and square
pyramidal

Answer: B
89. Which of the following paires of elements for oxideas of polyanions and polycations respectively?
A. Si and Al
B. Cu and Si
C. Al and B
D. Ti and As

Answer: A

90. $N-O-N$ bond andle is maximum in :

A. NO_{2}^{+}
B. $N O^{2}$
C. NO_{3}^{-1}
D. $N-2 O_{3}$

Answer: B

- Watch Video Solution

91. Which is not a permissible resonating structure?

$\begin{array}{ll} & \\ \text { (b) } \mathrm{CH}_{2}=\underset{\mathrm{N}}{\mathrm{N}}=\ddot{\mathrm{O}} \text { : } \\ \text { B. } & \mathrm{CH}_{3}\end{array}$
C. ${ }^{\text {(c) } \mathrm{CH}_{2}=\underset{\mathrm{CH}_{3}}{\mathrm{~N}}-\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{F}}$

Answer: B
(D) Watch Video Solution

92. Which pair represents canonical from ?

D. All of these

Answer: A

- Watch Video Solution

93. Which of the following would have permanent
dipple moment?
A. $S F_{4}$
B. $X e F_{4}$
C. $S i F_{4}$
D. $B F_{3}$

Answer: A

- Watch Video Solution

94. The correct order of increasing covalent charactre is :
A. $\mathrm{NaCl}>\mathrm{LiCl}<\mathrm{BeCl}_{2}$
B. $\mathrm{BeCl}_{2}<\mathrm{NaCL}>\mathrm{LiCl}$
C. $\mathrm{BeCl}_{2}<\mathrm{LiCl}>\mathrm{NaCl}$
D. $\mathrm{LiCl}<\mathrm{NaCl}<\mathrm{BeCl}_{2}$

Answer: A

(D) Watch Video Solution

95. Which one of the following orders is not correct in accordance whith the property stated against is ?
A. Electronegativity : $F_{2}>C l_{2}>B r_{2}>I_{2}$
B. Bond

$$
: F_{2}>C l_{2}>B r_{2}>I_{2}
$$

C. Oxidsi ing power : $F_{2}>C l_{2}>B r_{2}>I_{2}$
D. acidic
nature
in
water

$H l>H B r>H C l>H F$

Answer: B

D Watch Video Solution

96. The electronegaivity difference between N and F is greater than that between N and H yet
the dipole moment of NH_{2} (1.5 D) is larger than that of $N F_{3}(0.2 D)$. This is because :
A. in $N H_{3}$ as wellas $N F_{3}$ the atomic dipose and bond dipole are in opposite directions
B. in NH_{3} the atomic dipole and bond dipole
and bond dipole are the opposite directions
whereas in $N F_{3}$ these are in the same direction.
C. I NH_{3} as well as in $N F_{3}$ the atomic dipole and bond dipole are in the saem direction

D. in NH_{3} the atomic dipole and bond dipole

 are in the same direction wheras in $N F_{3}$ these are in opposite directions.
Answer: D

Watch Video Solution

97. In which of the following moleucles are all the bonds not equal ?
A. $A l F_{3}$
B. $N F_{3}$
C. ClF_{3}
D. $B F_{3}$

Answer: C

D Watch Video Solution

98. Which of the following is not a correct statement?
A. Every $A B_{5}$ molecule does in fact have square pyramind sructure
B. Multiple bonds are always shorter than corresponding single bonds
C. The electron-deficient molecules can act as

Lewis acids
D. The canonical structures have non real existence

Answer: A

- Watch Video Solution

99. Which of the following species has a linear shape ?
A. NO_{2}^{+}
B. O_{3}
C. NO_{3}^{-}
D. SO_{2}

Answer: A

- Watch Video Solution

100. Which of the following is not isostructural with SiCkl_{4} ?
A. PO_{4}^{3-}
B. NH_{4}^{+1}
C. SO_{2}
D. SO_{4}^{2-}

Answer: C

- Watch Video Solution

101. The number of unpaired electrons in a parmamagnetic diatomic molecyle of an element with atomic number 16 is :
A. 4
B. 1
C. 2
D. 3

Answer: C
(D) Watch Video Solution

Exercise 2 B

1. Which of the following has //have identical nond order?
A. $C N^{-}$
B. O_{2}^{-}
C. NO^{+}
D. $C N^{+}$

Answer: A::C

- Watch Video Solution

2. The molecule ,

OH

A. has intermolecular H-bondings
B. has intramolecular H -bonding
C. reduces Tollens reagent
D. is steam -volatile

Answer: B::D

D Watch Video Solution

3. Dipole moment is shown by:
A. 1, 4 -dichlorobenzene
B. cis-1, 2-dichloroethene
C. trans -1-2-dichloroethene
D. trans -1-2dichloro -2-pentene

Answer: B::D
4. The species that does not contain peroxied bond is //are :
A. PbO_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. MnO_{2}
D. BaO_{2}

Answer: A::C
5. Resonace sturcetures of a molecule should have :
A. identical arrangement of atoms
B. nearly the same energy content
C. the same number of paired electrons
D. identical bonding

Answer: A::B
(D) Watch Video Solution
6. Electron deficent compound s is (are) :
A. $B_{2} H_{6}$
B. $A l F_{3}$
C. NO
D. C_{3}^{4-}

Answer: A::B::C

- Watch Video Solution

7. The linear struture is assumed by :
A. SnCl_{2}
B. NCO^{-}
C. $C S_{2}$
D. NO_{2}^{+}

Answer: B::C::D

- Watch Video Solution

8. Pick out the isoelectronic structures from the
following .
$I \mathrm{CH}_{3}^{+}(\mathrm{II}) \mathrm{H}_{3} \mathrm{O}^{+},(\mathrm{III}) \mathrm{NH}_{3},(\mathrm{IV}) \mathrm{CH}_{3}^{-}:$
A. I and II

B. III and IV

C. I and III

D. II, III and IV

Answer: B::D

- Watch Video Solution

9. Ionic radii of :
A. $T i^{4+}<M n^{7+}$
B. ${ }^{35} \mathrm{Cl}^{-}<{ }^{37} \mathrm{Cl}^{-}$
C. $K^{+}<C l^{-}$
D. $P^{3+}>p^{5+}$

Answer: D

- Watch Video Solution

10. Which hass //have magnetic moment ?
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
D. O_{2}

Answer: A::C::D

- Watch Video Solution

11. Which of the following statements is (are) correct ?
A. CH_{3}^{+}shows $s p^{2}$-hybridization whereas
CH_{3}^{-}shows Sp^{2}-hybridiszation
B. NH_{4}^{+}has a regular tetrahedral geomety
C. $s p^{2}$-hybridiszed orbitals have eqwual s and p-character
D. Hybridized orbitals always form sigmabonds

Answer: A::B::D

- Watch Video Solution

12. Which statements is (are) correct ?
A. A pi- bond is weaker than sigma-nond

B. A sigma-bond is weaker than pi-bond

C. A (double) bond stronger than single bond
D. A covalent bond is stronger than H -bond

Answer: A::C::D

D Watch Video Solution

13. $I E_{2}$ for an element are invariable bhygher thab $I E_{1}$ because :
A. the size of cation is smaller than its atom
B. it is difficult of remove e form cation
C. IE is endothermic

D. All of these

Answer: A::B

- Watch Video Solution

14. Which of the following statement (s) is (are) correct ?
A. The peroxide ion has a bond order of 1
while the oxygen molecule has a bond order
B. the peroxide ion has a longer and weaker bond than theoxygen molecule
C. The peroxid ion as the oxygen molecule are
paramagnetic
D. The bond length of peroxide ion is greater than that of the oxygen molecule

Answer: A::B

D Watch Video Solution

15. Which of the following statements is (are)

 correct?A. PH_{5} and BiCl_{5} does Not exist
B. $p \pi-\mathrm{d}$ pi bonds are present in $S O-2$
C. SeF_{4} and CH_{4} has same shape
D. I_{2}^{+}has bent geometry

Answer: A::B::D

16. Which possess fractional bond order?

A. O_{2}^{+}
B. O_{2}^{-}
C. H_{2}^{+}
D. N_{2}

Answer: A::B::C

- Watch Video Solution

17. Resonance occurs due to the :
A. delocalization of a lone pair of electrons
B. delocalization of a sigma-electrons
C. delocalizatioon pi pi-electrons
D. migration of protons

Answer: A: C

- Watch Video Solution

18. Which of the following conditions apply to resonating structrues ?
A. The contributing structures should have shimilar energies
B. the contributing structures should vbe preeseted such that unlike charges reside on atoms that are far apart
C. The electropositive element showld always
have positive charge and the
electronegative element negative charge
D. Hybridization is the mizing of atomic
orbitals prior to their combining into molecular orbitals

Answer: A::B::C::D

D Watch Video Solution

19. Which of the following statement s is (are) true?
A. $s p^{2}-$ hybride orbitals are at 120° to one
another
B. $d s p^{2}$ - Hybride orbitals are directed
towards the corners of a regular
tetrahedron
C. $s p^{3} d^{3}-\quad$ hybrid orbitls are directed towards the corners of a regular octahedron
D. $s p^{3} d^{3}-\quad$ hybrid orbitls are directed towards the corners of a regular octahedron

Answer: A::B::D
(D) Watch Video Solution
20. In which, central atom s has have one lone pair of electron?
A. $C l_{2}$
B. NH_{3}
C. $P C l l_{3}$
D. $X e F_{6}$

Answer: A::B::C

- Watch Video Solution

21. Ionization energy is influenced by :
A. size of atom
B. charge on the nucleus
C. electrons present in inner shells
D. None of these

Answer: B::C::D

- Watch Video Solution

22. Which statement s is are true ?
A. $P F_{3}$ has higher bond angle than $P C l_{3}$
B. Dipole moment of NH_{3} is more than NF_{3}
C. I^{+}is smaller than I^{-}ion
D. I^{-}is smaller than I^{+}ion

Answer: A::B::C

D Watch Video Solution

23. The type of bond s present in ammonium chloride is (are) :
A. ionic

B. covalent

C. co-ordinate
D. None of these

Answer: A::B::C

D Watch Video Solution

24. Which of the following compounds possesses
zero diple moment?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $C_{6} H_{6}$
C. $C C l_{6}$
D. $B F_{3}$

Answer: B::C::D

D Watch Video Solution

25. Intermolecular H-bonding in $H F$ makes it :
A. high, b pt. liquid
B. capable of forming two series of salt
C. dibasic
D. capable of forming acid salt

Answer: A::B::C::D

(D) Watch Video Solution

Exercise 3

1. In $X e F_{2}, X e F_{4}$ amnd $X e F_{6}$, the number of Ione pair of electrons on $X e$ are respectively:
A. $2,3,1$
B. $1,2,3$
C. $4,1,2$
D. 3,2,1

Answer: D

(D) Watch Video Solution

2. The correct order of bond strength is :
A. $O_{2}^{-}<O_{2}<O_{2}^{+}<O_{2}^{2-}$
B. $O_{2}^{2-}<O_{2}^{-1}<O_{2}<O_{2}^{+}$
C. $O_{2}^{-}<O_{2}^{2-}<O_{2}<O_{2}^{+}$
D. $O_{2}^{+}<O_{2}<O_{2}^{-}<O_{2}^{2-}$

Answer: B

(D) Watch Video Solution

3. In which of the following pairs, bond angle is $109^{\circ} 28^{\prime} ?$
A. $\left[\mathrm{NH}_{4}\right]^{+},\left[B F_{4}^{-}\right]$
B. $N H_{4}^{+},\left[B F_{3}\right]$
C. $\mathrm{NH}_{3},\left[B F_{4}^{-}\right]$
D. $\left[\mathrm{NH}_{3}\right],\left[B F_{3}\right]$

Answer: A

(D) Watch Video Solution

4. In which of the following sepcies, is the underlined carbon has $s p^{3}$-hybridisation?
A. $\mathrm{CH}_{3} \underline{\mathrm{CO}} \mathrm{OOH}$
B. $\mathrm{CH}_{3} \underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \underline{\mathrm{C}} \mathrm{OOH}_{3}$
D. $\mathrm{CH}_{2}=\underline{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$

5. Number of sigma bonds in $P_{4} O_{10}$ is :

A. 6
B. 7
C. 17
D. 16

Answer: D

- Watch Video Solution

6. Which of the following statement is true ?
A. HF is less polar than HBr
B. Absolutely pure water does not contain any
ions
C. Chemical bond formation taken place when
forces of attraction overcome the forces of
repulsion
D. In covalence transfer of electrons takes
place

- Watch Video Solution

7. An ether is more volatile then alcohol having same molecular fromula. This is due to :
A. intermolecular H -bonding in ethers
B. intermolecular H-bonding in alcohols
C. dipolar character of ethers
D. resonance structure in alcohols

Answer: B
8. Which among the following has smallest bond angle ?
A. $H_{2} S$
B. NH_{3}
C. SO_{2}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

9. Which pair of moecules will have permanent dipole moment for both members?
A. NO_{2} and O_{3}
B. SiF_{4} and CO_{2}
C. SiF_{4} and NO_{2}
D. NO_{2} and CO_{2}

Answer: A
(D) Watch Video Solution
10. The pair of species having identical shape of both species :
A. $B F_{3}, P C l_{3}$
B. $P F_{5}, I F_{5}$
C. $C F_{4}, S F_{4}$
D. $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$

Answer: D

11. In the anion HCOO^{-}, the carbon-oxygen bonds are found to be of equal length. This is due to :
A. the anion HCOO^{-}has two resonating

structure

B. the anion is obtained by removal of a proton form the acid molecule
C. electronic orbitals of carbon are hybridised
D. the $C=O$ bond is weaker than the $C-O$

Answer: A

- Watch Video Solution

12. The correct order of nond angles is:

$$
\begin{aligned}
& \text { A. } H_{2} S<N H_{3}<B F_{3}<\mathrm{SiH}_{4} \\
& \text { B. } N H_{3}<H_{2} S<S i H<B F_{3} \\
& \text { C. } H_{2} S<N H_{3}<S i H_{4}<B F_{3} \\
& \text { D. } H_{2} S<S i H_{4}<N H_{3}<B F_{3}
\end{aligned}
$$

Answer: C
13. The states of hybridisation of borom and oxygen atoms in boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ are respecitivelty :
A. $s p^{3}$ and $s p^{3}$
B. $s p^{2}$ and $s p^{3}$
C. $s p^{3}$ and $s p^{2}$
D. $s p^{2}$ and $s p^{2}$

Answer: B
14. Which has regular terrahedral gementory?
A. $S F_{4}$
B. $B F_{4}^{-}$
C. XeF_{4}
D. $\left[N i(C N)_{4}\right]^{2-}$

Answer: B
15. The maximum number of 90° angles hetween
bond pair -bond pair of elecrron is observed in :
A. $s p^{3} d^{2}$ - hybridisation
B. $s p^{3} d$-hybridisation
C. $d s p^{2}$-hybridisation
D. ${ }^{`} \mathrm{dsp}^{\wedge} 3$-hybridisation

Answer: A

16. The bond order in $N O$ is 2.5 , while that in

 NO^{+}is 3 Which statement is true?A. Bond length is unpredictable
B. Bond length is NO is greater than in NO^{+}
C. Bond length in NO^{+}is equal to that in NO
D. Bond length in NO^{+}is greater than in NO

Answer: B

17. Which one of the following sepcies is diamagnetic in nature ?
A. $H e_{2}^{+}$
B. H_{2}
C. H_{2}^{+}
D. H_{2}^{-}

Answer: B

- Watch Video Solution

18. Lattice energy of an ionic compound depedns

upon:

A. charge on the ions only
B. size of the ions only
C. packing of the ions only
D. charge and size of the ions

Answer: D

19. Which of the following does not contain isoellectonic speices?
A. $\mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$
B. $C N^{-}, N_{2}, C_{2}^{2-}$
C. $\mathrm{SO}_{3}^{2-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
D. $\mathrm{BO}_{3}^{3-}, \mathrm{Co}_{3}^{2-}, \mathrm{NO}_{3}^{-}$

Answer: C

20. Which of the following moelcules/ions does not contian upaired electrons ?
A. O_{2}^{2-}
B. B_{2}
C. N_{2}^{+}
D. O_{2}

Answer: A

- Watch Video Solution

21. A metal, M from chaloride in its +2 and +4 oxidation states . Which of the following statement about thes chalorides si correct ?
A. $M C l_{2}$ is more volatile than $M C l_{4}$
B. $M C l_{2}$ is more soluble in anhydrous ethanol than $M C l_{4}$
C. $M C l_{2}$ is more ionic than $M C l_{4}$
D. $M C l_{2}$ is more easily hydrolysed than $M C l_{4}$

Answer: C

D Watch Video Solution

22. In which of the following molecules/ions, are all the bonds not equal ?
A. $S F_{4}$
B. $S i F_{4}$
C. $X e F_{4}$
D. $B F_{4}^{-}$

Answer: A

D Watch Video Solution
23. The incrasing order of the first ionisation enthaplies of th elecments B, P, S and F (lowest first) is :
A. $F<S<F<P$
B. $P<S<B<F$
C. $B<P<S<F$
D. $B<S<P<F$

Answer: D
24. The dercreasing valuers of bond angles from $N H_{3}\left(106^{\circ}\right)$ to $S b H_{3}\left(101^{\circ}\right)$ down the group 15 of the peridic table is due to :
A. increase in bp-bp repulsion
B. increase in p-orbital character in $s p^{3}$
C. decrease in-pp repulsion
D. decrease in electrongativity

Answer: D

D Watch Video Solution

25. Which of the following species exhibits the diamangetic behaviour ?
A. O_{2}^{2-}
B. O_{2}^{+}
C. O_{2}
D. NO

Answer: A

- Watch Video Solution

26. In which of the following ionixation processes,
the bond order has increased and the magnetic behaviour has changed ?
A. $C_{2} \rightarrow C_{2}^{+}$
B. $\mathrm{No} \rightarrow \mathrm{NO}^{+}$
C. $O_{2} \rightarrow O_{2}^{+}$
D. $N_{2} \rightarrow N_{2}^{+}$

Answer: B
27. Which of the following hydrogen bonds is the strongest ?
A. $O-H \ldots \ldots . N$
B. $F-H$.... . F
C. $O-H \ldots O$
D. $O-H \ldots . . F$

Answer: B

- Watch Video Solution

28. The charge /size ratio of a cation dermines its
polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species ,

$$
K^{+}, C a^{+}, M g^{2+}, B e^{2+} ?
$$

A. $\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
B. $\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}$
C. $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$
D. $\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<b e^{2+}<K^{+}$

Answer: C
29. Which one of the following pairs of species
have the same bond order?
A. CN^{-}and NO^{+}
B. $C N^{-}$and $C N^{+}$
C. O_{2}^{-}and $C N^{-}$
D. NO^{+}and $C N^{+}$

Answer: A
30. Which one of the following constitutes a group of the is electronic species ?
A. $C_{2}^{2-}, O_{2}^{-}, C O, N O$
B. $\mathrm{No}^{+}, \mathrm{C}_{2}^{2-}, C N^{-}, N^{-} 2$
C. $C N^{-}, N_{2}, O_{2}^{2-}, C_{2}^{2-}$
D. $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}, \mathrm{NO}^{+} \mathrm{CO}$

Answer: B
31. Using $M O$ theory predict which of the following sepcies has the shortest bond length ?
A. O_{2}^{2+}
B. O_{2}^{+}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: A

- Watch Video Solution

32. Which is not easily preciptated for a queous
soultion?
A. Cl^{-}
B. SO_{4}^{2-}
C. NO_{3}^{-}
D. CO_{3}^{2-}

Answer: C

- Watch Video Solution

33. Number of paired electrons in O_{2} molecules is
A. 7
B. 8
C. 16
D. 14

Answer: C

- Watch Video Solution

34. Which one is most ionic ?

A. $P_{2} O_{5}$
B. CrO_{3}
C. MnO
D. $\mathrm{Mn}_{2} \mathrm{O}_{7}$

Answer: B

- Watch Video Solution

35. The following compounds have been arranged in order of their increasing thermal statbilties . Identify the correct order .

$$
\begin{array}{ll}
\mathrm{K}_{2} \mathrm{CO}_{3}(I) & \mathrm{MgCO}_{3}(I I) \\
\mathrm{CaCO}_{3}(\mathrm{III}) & \mathrm{BeCO}_{3}(\mathrm{IV})
\end{array}
$$

A. $I<I I<I I I<I V$
B. $I V<I I<I I I<I$
C. $I V<I I<I<I I I$
D. $I I<I V<I I I<I$

Answer: C
36. $K F$ combines with to form $K H F_{2}$. The compound contains the species :
A. K^{+}, F^{-0} and H^{+}
B. K^{+}, F^{-}and $H F$
C. K^{+}and $\left[H F_{2}\right]^{-}$
D. $[k H F]^{+}$and F^{-}

Answer: C

D Watch Video Solution
37. Which of the following statements is correct for CsBr_{3} ?
A. It is a covalent compound
B. It contains Cs^{3+} and Br^{-}ions
C. It contains $C s^{+}$and $B r_{3}^{-}$ions
D. It contains $C s^{+}, B r^{-}$and lattice $B r_{2}$ molecule

Answer: C

- Watch Video Solution

38. Among the following species, identify the isostrouctral pairs .

$$
\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}, B F_{3}, \mathrm{H}_{3} \mathrm{O}^{+}, H \mathrm{~N}_{3}
$$

A. $\left[\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}\right]$and $\left[\mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$
B. $\left[\mathrm{NF}_{3}, \mathrm{HN}_{3}\right]$ and $\left[\mathrm{NO}_{3}^{-}, B F_{3}\right]$
C. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{NO}_{3}^{-}, B F_{3}\right]$
D. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{HN}_{3}, B F_{3}\right]$

Answer: C
39. The tow carbon atoms in calcium carbide are held by which of following bonds ?
A. Three sigma bonds
B. loinic bonds
C. Two pi and one sigma bonds
D. Ionic and covalent bonds

Answer: B

D Watch Video Solution
40. Arrange the following compounds in order of increasing dipole moment .

Toluene (I) m-dichlorobenxene (II)
o-dichlorobebncene (III) . P-dichlorobennzebe (IV).
A. $I<I V<I I<I I I$
B. $I V<I<I I<I I I$
C. $I V<I<I I I<I I$
D. $I V<I I<I<I I I$

Answer: C
41. Among $\mathrm{ko}_{2}, \mathrm{AlO}_{2}^{-} \mathrm{Bao}_{2}$ and NO_{2}^{+}unpaired electron is present in :
A. NO_{2}^{+}and BaO_{2}
B. KO_{2} and AlO_{2}^{-}
C. $K O_{2}$ only
D. $\mathrm{BaO} \mathrm{O}_{2}$ only

Answer: C
42. Which contain both polar and non-polar bonds ?
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. $H C N$
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. $C O$

Answer: B

- Watch Video Solution

43. Which has $s p^{2}$-hybridization ?
A. CO_{2}
B. SO_{2}
C. $\mathrm{N}_{2} \mathrm{O}$
D. CO

Answer: D

(D) Watch Video Solution
44. The critical temperatures of water is highe than that of O_{2} becausee the $\mathrm{H}_{2} \mathrm{O}$ molecule has :
A. fewer electrons than O_{2}
B. two covalent bonds
C. V-shape
D. dipole moment

Answer: B
45. The geometry and the type of hybrid orbitals present about the central atom in $B F_{3}$ is :
A. linear ,sp
B. trigonal planar , $s p^{2}$
C. tetrahedral $s p^{3}$
D. pyramidal , $s p^{3}$

Answer: A
46. The geometry of $H_{2} S$ and its moment are :
A. angular and non-zero
B. angular and zero
C. linear and non-zero
D. linear and zero

Answer: B

- Watch Video Solution

47. In compounds of type $E C I_{3}$, where $E=B P$,

As or B, the angles $C I-E-C I$ for different E are in the order
A. $B<P>A s=B i$
B. $B>P>A s>B i$
C. $B<P=A s=B i$
D. $B<P<A s>B i$

Answer: D
48. In the compound
$\stackrel{1}{C} H_{2}=\stackrel{2}{C} H-\stackrel{3}{C} H_{2}-\stackrel{4}{C H}_{2}-\stackrel{5}{C} \equiv \stackrel{6}{C} H$
the $\stackrel{2}{C}-\stackrel{3}{C}$ bond is of the type :
A. $s p-s p^{2}$
B. $s p^{3}-s p^{3}$
C. $s p-s p^{3}$
D. $s p^{2}-s p^{3}$

Answer: D

D Watch Video Solution
49. Molecular shape of $S F_{4}, C F_{4}$ and $X e F_{4}$ are :
A. the same with 2,0 and 1 lone pair of electron respectively
B. the same with 1,1 and 1 lone pair of electron respectively
C. differebnt with 0,1 and 2 lone pairs of
electron respectively
D. different with 1,0 and 2 lone pairs of
electron respectively
50. The hybridisation of atomic orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+}are :
A. $s p, s p^{3}$ and $s p^{2}$ respectively
B. $s p, s p^{2}$ and $s p^{3}$ respectvely
C. $s p^{2}, s p$ and $s p^{3}$ respectively
D. $s p^{2}, s p^{3}$ and $s p$ respectively

Answer: B
51. Amongst $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$, the one with the highest biling point is :
A. $\mathrm{H}_{2} \mathrm{O}$ because of H -bonding
B. $H_{2} T e$ because of higher mole .wt.
C. $\mathrm{H}_{2} \mathrm{~S}$ because of H-bonding
D. $\mathrm{H}_{2} \mathrm{Se}$ because of lower mol . Wt .

Answer: A

- Watch Video Solution

52. The correct order of hybridisation of the
central atom in the ofliwng secies
$\mathrm{NH}_{3}\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{PCl}_{5}$ and BCl_{3} is :
A. $d s p^{2}, d s p^{3}, s p^{2}, s p^{3}$
B. $s p^{3}, d s p^{2}, s p^{3} d, s p^{2}$
C. $d s p^{2}, s p^{2}, s p^{3}, d s p^{3}$
D. $d s p^{2}, s p^{3}, s p^{2}, d s p^{2}$

Answer: B
53. The common features anong the species
$\mathrm{CN}^{-}, \mathrm{CO}$ and NO^{+}are :
A. bond order 3 and isoelectronics
B. bond order (3) and weak field ligands
C. bond order 2 pi-acceptor
D. isoelectric and weak field ligands

Answer: A

D Watch Video Solution

54. Specify the co-ordination geometry around and hybridisation of N and B complex of NH_{3} and $B F_{3}$,
A. N : tetrahedral , $s p^{3}$, B : tetrahedral,$s p^{3}$
B. N : Pyramidal, $s p^{3}$, : Pyramidal , $s p^{3}$
C. $\mathrm{N}:$ Pyramidal $, s p^{3},:$ Pyramidal,$s p^{3}$
D. N : tetrahedral,$s p^{3}$, $\mathrm{B}:$ tetrahedral,$s p^{3}$

Answer: A

D Watch Video Solution

55. The least stable in amongst the following is :
A. Li^{-}
B. $B e^{-}$
C. B^{-}
D. C^{-}

Answer: B

- Watch Video Solution

56. Which of the following molecualr species has unpaired electrons?
A. N_{2}
B. F_{2}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: C

- Watch Video Solution

57. The nodal plane is the pi -bond of ethene is located in :
A. the molecular plane
B. a plane parallel to moelcular plane
C.a plane perpendicular to the molecular plane which bisects the carbon -carbon sigma bond at right angles
D. a plane perpendicular to the moelcular plane which contains the carbon-carbon sigma bond

Answer: A

Watch Video Solution

58. Among the following, the molecule with the highest dipole moment is :
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. CHCl_{3}
D. $C C l_{4}$,

Answer: A

- Watch Video Solution

59. Which of the following are isoelectronics and isostructural ?
A. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
C. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$

Answer: A
(D) Watch Video Solution
60. Which of the following respresents the given mode of hybridisation $s p^{2}-s p^{2}-s p-s p$ from left to right ?
A. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
B. $C H \equiv C-C \equiv C H$
C. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: A
61. Total number of lone pair of electrons in XeOF_{4} is :
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

62. Which statement is correct about O_{2}^{+}?
A. Paramagnetic and bond order $<\mathrm{O}_{2}$
B. Paramagnetic and bond order $>\mathrm{O}_{2}$
C. Diamagnetic and bond order $<\mathrm{O}_{2}$
D. Diamagnetic and bond order $>\mathrm{O}_{2}$

Answer: B

D Watch Video Solution

63. Which species has the maximum number of Ione pair of electrons on the central atom?
A. $\left[\mathrm{ClO}_{3}\right]^{-}$
B. $X e F_{4}$
C. $S F_{4}$
D. $\left[I_{3}\right]^{-}$

Answer: D

D Watch Video Solution

64. The species having bond order differnet from that in $C O$ is .
A. NO^{-}
B. NO^{+}
C. $C N^{-}$
D. N_{2}

Answer: A

- Watch Video Solution

65. Among the following , the paramagnetic compound is :
A. $\mathrm{Na}_{2} \mathrm{O}_{2}$
B. O^{3}
C. $\mathrm{N}_{2} \mathrm{O}$
D. KO_{2}

Answer: D

(D) Watch Video Solution

66. Hyperconjugation involves the overlapping of the following orbitals :
A. $\sigma-\sigma$
B. $\sigma-p$
C. $p-p$
D. $\pi-\pi$

Answer: B

(D) Watch Video Solution

67. Both $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic The hybridisations of nickel in these complexes, respectively are :
A. $s p^{3}, s p^{3}$
B. $s p^{3}, d s p^{2}$
C. $d s p^{2}, s p^{3}$
D. $d s p^{2}, d s p^{2}$

Answer: B

(D) Watch Video Solution

68. The correct stability order of the following resonance structrue is :

$$
\begin{aligned}
& H_{2} C=\stackrel{+}{N}=\bar{N} \\
& H_{2} \stackrel{+}{C}=(N)=\bar{N} \\
& H_{2} \bar{C}-\stackrel{+}{N} \equiv N \\
& H_{2} \bar{C}-\stackrel{+}{N} \equiv N .
\end{aligned}
$$

A. $(I)>(I I)>(I V)>(I I I)$
B. $(I)>(I I I)>(I I)>(I V)$
C. $(I I)>(I)>(I I I)>(I V)$
D. $(I I I)>(I)>(I V)>(I I)$

Answer: B

(D) Watch Video Solution

69. The hybridisation of atomic orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+}are :
A. $s p, s p^{2}, s p^{3}$
B. $s p^{2}, s p, s p^{2}$
C. $s p, s p^{3}, s p^{2}$
D. $s p^{2}, s p^{3}, s p$

Answer: B

D Watch Video Solution

70. Geometrical shapes of the complexes fromed by the reaction of Ni^{2+} with CN^{-}and $\mathrm{H}_{2} \mathrm{O}$, respecitively, are :
A. octahedral , trtrahedral and square planar
B. tetrahdral , square planar ad octaheral
C. square planar , tetrahedral and octaherdreal
D. octahedral , square phanar and octahedral

Answer: B

D Watch Video Solution

Exercise 5

1. How many sigma-bonds are present in
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$?
2. Find the bond order of B_{2}

- Watch Video Solution

3. Find the bond order of $B e_{2}$

D Watch Video Solution

4. Find the bond order of N_{2}

- Watch Video Solution

5. Find the bond order of $C O$

D Watch Video Solution

6. How many line paire of electrons are present in outer shell of Cl^{-}?

- Watch Video Solution

7. How many unpaired of electron are present in

- Watch Video Solution

8. How many π-bonds are present in $C_{2}(C N)_{4}$?

D Watch Video Solution
9. How many line pair of electrons are present in
$x e F_{4}$?

- Watch Video Solution

10. A planar moelcule has $A B_{x}$ structrue with six paires of electrons around A and one lone pair.

Find the value of x.

- Watch Video Solution

11. How many $\mathrm{P}=\mathrm{O}$ bonds are in $\mathrm{P}_{4} O_{10}$?

D Watch Video Solution

12. How many $S-O-S$ bonds are in $S_{2} O_{9}$?
13. Find the formal charge of the O -atoms in $[\because \dot{O}=N=\ddot{O}:+$ ion .

D Watch Video Solution

14. How many π-bonds are in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$?

D Watch Video Solution

15. Based on $V S E P R$ theory, the number of
$90^{\circ} F=B r-F$ angles in $B r R_{5}$ is :

- Watch Video Solution

16. The value of n in the molecular fromula $B e_{n} A l_{2} \mathrm{Si}_{6} O_{18}$.

- Watch Video Solution

Exercise 6

1. $P C l_{5}$ in solid state exists as $P C l_{4}^{+}$and $P C l_{6}^{-}$.

Also in some solvents it undergoes dissoctation
as $2 P C l_{5} \Leftrightarrow P C l_{2}^{+}+P C l_{6}^{-}$.
The geometry and hybridisation of $P C l_{5}$ is :
A. trigonal bipyramid, $s p^{3} d$
B. tetrahedral,$s p^{3}$
C. octahderal , $s p^{3} d^{2}$
D. octahedral,$s p^{3} d^{2}$

Answer: A
2. $P C l_{5}$ in solid state exists as $P C l_{4}^{+}$and $P C l_{6}^{-}$

Also in some solvents it undergoes dissoctation
as $2 P C l_{5} \Leftrightarrow P C l_{2}^{+}+P C l_{6}^{-}$.
The geometry and hybridisation of $P C l_{4}^{+}$is :
A. tetrahedral,$s p^{3}$
B. octahedral , $s p^{3} d^{2}$
C. trigobal pyramid , $s p^{3} d$
D. see - saw , $s p^{3} d$

Answer: A
3. PCl_{5} in solid state exists as PCl_{4}^{+}and PCl_{6}^{-}

Also in some solvents it undergoes dissoctation
as $2 P C l_{5} \Leftrightarrow P C l_{2}^{+}+P C l_{6}^{-}$.
The geometry and hybridisation of PCl_{6}^{-}is:
A. octahedral,$s p^{3} d^{2}$
B. tetrahedral , $s p^{3}$
C. trigobal pyramid , $s p^{3} d$
D. see - saw , $s p^{3}$

Answer: A
4. $P C l_{5}$ in solid state exists as $P C l_{4}^{+}$and $P C l_{6}^{-}$

Also in some solvents it undergoes dissoctation
as $2 P C l_{5} \Leftrightarrow P C l_{2}^{+}+P C l_{6}^{-}$.
The oxidation number of P in $\mathrm{PCl}_{5} . \mathrm{PCl}_{4}^{+}$and
$P C l_{6}^{-}$are respectively :
A. $5,4,4$
B. $5,5,5$
C. $4,5,5$
D. $4,4,4$

- Watch Video Solution

5. $P C l_{5}$ in solid state exists as PCl_{4}^{+}and PCl_{6}^{-}

Also in some solvents it undergoes dissoctation as $2 P C l_{5} \Leftrightarrow P C l_{2}^{+}+P C l_{6}^{-}$.

The van't Hoff factor for diassociation of $P C l_{5}$ is
(if α is its degree of disssociation):
A. $i=1$
B. $1+\alpha$
C. $1+\frac{\alpha}{2}$
D. $1-\alpha$

Answer: A

(D) Watch Video Solution

6. $P C l_{5}$ in solid state exists as $P C l_{4}^{+}$and $P C l_{6}^{-}$

Also in some solvents it undergoes dissoctation as $2 P C l_{5} \Leftrightarrow P C l_{2}^{+}+P C l_{6}^{-}$.

Which statement is wrong ?
A. In $P C l_{5}$, all the $P-C l$ bonds are of same
B. PCl_{5} has no lone pair of electron
C. $P C l_{5}$ is a white solid which melts at $167^{\circ} \mathrm{C}$
D. PCl_{5} gives white fumess with moist air

Answer: A

(Watch Video Solution

7. Lewis concept of covalency of an element involved octet rule .Later on it was found that many elements in their compoinds e. $g, B e F_{2}, B F_{3}$ etc . Have incomplete octet whereas $P C l_{5}, S F_{6}$ etc, have expanded octet .

This classical conept also failed in predicting the geometry of molecules .Modern concept of
covalence was propsed in terms of valence bond theory proposed by Heitler and London and later on modified by Pauling nad Slater. Hybridisation concept alongwith valence bond theory although successfully explained the geometry of various molecules but failed in many molecules . the geometry of such molecules was explained by

VSEPR concept . Finally molecular orbital theory
was porosed by Hund -Mulliken to explain many other anomalies .

Which are true statements among the following ?
(1) I_{3}^{+}has bent structure
(2) $p \pi-d x$ bons are present in SO_{2}
(3) SeF_{4} and CH_{4} has same shape
(4) XeF_{2} and CO_{2} has same shape
(5) $S F_{4}$ is see-saw structure wherear $I C l_{3}$ is T
shaped
A. $1,2,4,5$
B. $1,2,3,4$
C. $2,3,4,5$
D. $1,3,4,5$

Answer: A
8. Lewis concept of covalency of an element involved octet rule .Later on it was found that many elements in their compoinds
e. $g, B e F_{2}, B F_{3}$ etc . Have incomplete octet whereas $P C l_{5}, S F_{6}$ etc, have expanded octet .

This classical conept also failed in predicting the geometry of molecules .Modern concept of covalence was propsed in terms of valence bond theory proposed by Heitler and London and later on modified by Pauling nad Slater. Hybridisation
concept alongwith valence bond theory although successfully explained the geometry of various
molecules but failed in many molecules . the geometry of such molecules was explained by VSEPR concept . Finally molecular orbital theory was porosed by Hund -Mulliken to explain many other anomalies.

Ratio of lone pair-bond pair electrons on central atom in i_{3}^{-}and $X e F_{4}$ are respectively :
A. $2.66,0.5$
B. 1. 5, 0.5
C. $2,0.5$
D. 05,2

Answer: A

D Watch Video Solution

9. Lewis concept of covalency of an element involved octet rule .Later on it was found that many elements in their compoinds
e. $g, B e F_{2}, B F_{3}$ etc . Have incomplete octet
whereas $\mathrm{PCl}_{5}, S F_{6}$ etc , have expanded octet .
This classical conept also failed in predicting the geometry of molecules .Modern concept of
covalence was propsed in terms of valence bond theory proposed by Heitler and London and later
on modified by Pauling nad Slater. Hybridisation concept alongwith valence bond theory although
successfully explained the geometry of various molecules but failed in many molecules . the geometry of such molecules was explained by

VSEPR concept . Finally molecular orbital theory
was porosed by Hund -Mulliken to explain many other anomalies .

The bond angles $\mathrm{NO}_{2}^{+}, \mathrm{NO}$ and NO_{2}^{-}are respectivley :
A. $180^{\circ}, 134^{\circ}, 115^{\circ}$
B. $115^{\circ}, 134^{\circ}, 180^{\circ}$
C. $134^{\circ}, 180^{\circ}, 115^{\circ}$
D. $115^{\circ}, 180^{\circ}, 124^{\circ}$

Answer: A

- Watch Video Solution

10. Lewis concept of covalency of an element involved octet rule .Later on it was found that many elements in their compoinds
e. $g, B e F_{2}, B F_{3}$ etc . Have incomplete octet whereas $\mathrm{PCl}_{5}, S F_{6}$ etc, have expanded octet. This classical conept also failed in predicting the
geometry of molecules .Modern concept of
covalence was propsed in terms of valence bond theory proposed by Heitler and London and later on modified by Pauling nad Slater. Hybridisation concept alongwith valence bond theory although successfully explained the geometry of various molecules but failed in many molecules . the geometry of such molecules was explained by

VSEPR concept . Finally molecular orbital theory
was porosed by Hund -Mulliken to explain many other anomalies ..

Which statements are correct ?
(1) Bond angle of $P F_{3}>P C l_{3}$.
(2) Bond angle of $\mathrm{PCl}_{3}<\mathrm{PBr}_{3}$
(3) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ is pyramidal whereas $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}$ is planar but both shows $s p^{3}$-hybridisation.
(4) Multiple bonds also influence the geometry of molecule and thus $C_{2} H_{2}$ has $\angle H C H=160^{\circ}$ and $\angle H C O=122^{\circ}$
(5) $P C l_{5}$ is super-octet molecule
A. $1,3,4,5$
B. $1,2,34$
C. $2,3,4,5$
D. 2,5
11. Lewis concept of covalency of an element involved octet rule .Later on it was found that many elements in their compoinds
e. $g, B e F_{2}, B F_{3}$ etc . Have incomplete octet
whereas $\mathrm{PCl}_{5}, S F_{6}$ etc, have expanded octet.
This classical conept also failed in predicting the geometry of molecules .Modern concept of covalence was propsed in terms of valence bond theory proposed by Heitler and London and later on modified by Pauling nad Slater. Hybridisation concept alongwith valence bond theory although
successfully explained the geometry of various molecules but failed in many molecules . the geometry of such molecules was explained by

VSEPR concept . Finally molecular orbital theory
was porosed by Hund -Mulliken to explain many other anomalies.

Which statements are correct for CO^{+}and N_{2}^{+} according to molecular orbital theory?
(1) Both have same configuration
(2) Bond order for $\mathrm{CO} \wedge(+)$ and N_{2}^{+}are 3.5 and 2.5
(3) Bond order for CO^{+}and N_{2}^{+}form N_{2}, the bond length increase
(5) During the formation of CO^{+}from CO the bond length decrease.
A. $2,4,5$
B. $1,3,4,5$
C. 1,3
D. $1,2,3$

Answer: A
12. Lewis concept of covalency of an element involved octet rule .Later on it was found that many elements in their compoinds
e. $g, B e F_{2}, B F_{3}$ etc . Have incomplete octet whereas $\mathrm{PCl}_{5}, S F_{6}$ etc, have expanded octet .

This classical conept also failed in predicting the geometry of molecules .Modern concept of covalence was propsed in terms of valence bond
theory proposed by Heitler and London and later
on modified by Pauling nad Slater. Hybridisation concept alongwith valence bond theory although successfully explained the geometry of various molecules but failed in many molecules . the
geometry of such molecules was explained by
VSEPR concept . Finally molecular orbital theory
was porosed by Hund -Mulliken to explain many other anomalies.

Which of the following statements are true ?
(1) $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}$and O_{2}^{-}are paramangetic species
(2) Correct bond order is: $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}$
(3) Bond lenght is shortest for O_{2}^{+}among the species $O_{2}, O_{2}^{-}, O_{2}^{2-}, O_{2}^{+}$and O_{2}^{2+}
(4) Bond length is maximum for O_{2}^{2-} among the
species $O_{2}, O_{2}^{-}, O_{2}^{2-}, O_{2}^{+}$and O_{2}^{2+}
(5) B_{2} has two unpaired electron and thus parmagnetic.
A. $1,2,3,5$
B. $1,3,4,5$
C. $1,2,5$
D. $1,4,5$

Answer: D

- Watch Video Solution

13. Lewis concept of covalency of an element involved octet rule .Later on it was found that many elements in their compoinds
e. $g, B e F_{2}, B F_{3}$ etc. Have incomplete octet whereas $\mathrm{PCl}_{5}, S F_{6}$ etc , have expanded octet .

This classical conept also failed in predicting the geometry of molecules .Modern concept of covalence was propsed in terms of valence bond theory proposed by Heitler and London and later on modified by Pauling nad Slater. Hybridisation concept alongwith valence bond theory although successfully explained the geometry of various molecules but failed in many molecules . the geometry of such molecules was explained by

VSEPR concept . Finally molecular orbital theory
was porosed by Hund -Mulliken to explain many other anomalies.

Selcet the cirrect statements .
(1) Bond order for N_{2}^{+}and N_{2}^{-}are same
(2) Bond energy of $N_{2}^{+}<N_{2}^{-}$
(3) Bond lenght of $N_{2}^{+}<N_{2}^{-}$
(4) $C_{3} F_{4}$ is a non -palar molecular
(5) $X e F_{2}$ hat two (F) atoms in axial position whereas XeF_{4} has four (F) atoms in equatiorial position.
A. $2,3,4,5$
B. $1,4,5$
C. 1,5
D. $1,2,4,5$

Answer: D

D Watch Video Solution

14. Lewis concept of covalency of an element involved octet rule .Later on it was found that many elements in their compoinds
e. $g, B e F_{2}, B F_{3}$ etc . Have incomplete octet
whereas $\mathrm{PCl}_{5}, S F_{6}$ etc , have expanded octet .
This classical conept also failed in predicting the geometry of molecules .Modern concept of
covalence was propsed in terms of valence bond theory proposed by Heitler and London and later
on modified by Pauling nad Slater. Hybridisation concept alongwith valence bond theory although
successfully explained the geometry of various molecules but failed in many molecules . the geometry of such molecules was explained by

VSEPR concept . Finally molecular orbital theory
was porosed by Hund -Mulliken to explain many other anomalies .

Which statements are correct ?
(1) $C(C N)_{4}$ and $C_{2}(C N)_{4}$ have ratio of σ and π bonds same
(2) Propanal and propanone have same ratio of σ and π bonds
(3) CO_{2} and BeF_{2} both are linear and possess
sp-hybridisation
(4) $X e F_{4}$ and $S F_{4}$ both are square planar and possess $s p^{3} d$-hybridisation
(5) $C l-C l$ bond is stronger than $B r-B r$
A. $1,3,5$
B. $1,2,4,5$
C. $1,2,3,5$
D. $1,4,5$

Answer: C

15. To explain the abnormality in some molecules,
the conecpt of H -bonding was introduced , Hydrogen bonding is defined as the phenomenon in which H -bonding beteen two molecules is called intermolecular H -bonding between two molecules is called intermolecular H -bonding .Hbonding within a molecule is called intramolecular H -bonding or within a molecule is called intramolecular H -bonding or chelation .Intermolecular H -bonding favoure for cluster formation whereas intramolecular H -bnding prevents the cluster formation

Which of the following statement is wrong ?
A. H-bonding never involves more than two atoms
B. The H -bond order is :
$H-F \ldots H>H-O \ldots H>H-N \ldots H$
C. All the three atoms $\mathrm{F}-{ }^{\mathrm{H} \ldots . \mathrm{F}-\mathrm{H})}$ involved
in H -bonding lie in one plane
D. Bond energy of H -bonding is about $1 / 2$ of covalent bond

Answer: D
16. To explain the abnormality in some molecules,
the conecpt of H -bonding was introduced ,
Hydrogen bonding is defined as the phenomenon
in which H -bonding beteen two molecules is
called intermolecular H -bonding between two molecules is called intermolecular H -bonding
.Hbonding within a molecule is called intramolecular H -bonding or within a molecule is
called intramolecular H -bonding or chelation .Intermolecular H-bonding favoure for cluster formation whereas intramolecular H-bnding prevents the cluster formation
$H F_{2}^{-}$exists in solid state and in liquid $H F$ but bot in aqueous solution because :

> A. $\mathrm{HF}_{2}^{-+} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{~F}^{-}$
> B. $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}-2 \mathrm{~F}^{+}+\mathrm{OH}^{-}$
> C. $\mathrm{HF}_{2}^{-+} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{~F}_{2}+\mathrm{OH}^{-}$
D. none of these

Answer: A
17. To explain the abnormality in some molecules,
the conecpt of H -bonding was introduced , Hydrogen bonding is defined as the phenomenon in which H -bonding beteen two molecules is called intermolecular H -bonding between two molecules is called intermolecular H -bonding .Hbonding within a molecule is called intramolecular H -bonding or within a molecule is
called intramolecular H -bonding or chelation .Intermolecular H-bonding favoure for cluster formation whereas intramolecular H -bnding prevents the cluster formation

The correct repesentation of H -bonding beteen NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ is :
A. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{H} \ldots \mathrm{O} \mathrm{OH}_{2}$
B. $H_{3} N \ldots H-O H$
C. $H_{2} N-H . . . H-O H$
D. $H_{2} \mathrm{~N} \ldots \mathrm{ON}_{2}$

Answer: B
18. To explain the abnormality in some molecules,
the conecpt of H -bonding was introduced , Hydrogen bonding is defined as the phenomenon in which H -bonding beteen two molecules is called intermolecular H -bonding between two molecules is called intermolecular H -bonding .Hbonding within a molecule is called intramolecular H -bonding or within a molecule is
called intramolecular H -bonding or chelation .Intermolecular H-bonding favoure for cluster formation whereas intramolecular H -bnding prevents the cluster formation

Which molecule does not show intramolecular H^{-} bonding ?
A. Salicylakdehyde
B. Chloralhydrate
C. Ethanol
D. Nickel dimethyl glyoximate

Answer: C

- Watch Video Solution

19. To explain the abnormality in some molecules,
the conecpt of H -bonding was introduced , Hydrogen bonding is defined as the phenomenon in which H -bonding beteen two molecules is called intermolecular H -bonding between two molecules is called intermolecular H -bonding .Hbonding within a molecule is called intramolecular H -bonding or within a molecule is
called intramolecular H -bonding or chelation
.Intermolecular H -bonding favoure for cluster formation whereas intramolecular H-bnding prevents the cluster formation

Which statement is wrong ?
A. Helical structure of proteins is stabilized due to H -bonding
B. Ethyl acetroacetate gives blue colour with aq. FeCl_{3} due to the presence of enolic gp. Inspite of Intramolecualar H-bonding
C. Alcohols having carbon atoms >3 are insoluble in water because of hydrophobic
chain prodominates of H -bonding
D. Glycerol is more viscous than diols and
alochols because of more bindig sites available for H -bonding

Answer: C

(D) Watch Video Solution

Exercise 7

1. Statement : $I E_{1}$ for is maximum and $E A_{1}$ for
$C l$ is more than $E A_{1}$ of (F).

Explanation : He possess paired electrons in $1 s$ subshell, clsest to nucleus, wherease electron density in F is maximum which exers more electron -electron repulsion.
A. S is correct by E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct explanation os S.
D. Both S and E are conrrect and E is correct explanation os S.

Answer: C
(D) Watch Video Solution
2. Statement : If difference of electronegtivity
beteen two atoms is zero, the resultant molecule will be non-plar covalent .

Explanation : The shared pair of electron lies just in the middled of two atoms .
A. S is correct but E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct
explanation os S.
D. Both S and E are conrrect and E is correct explanation os S.

Answer: C

- Watch Video Solution

3. Statement : p-dimethoxy benzene is polar molecule.

Explanation : The two methoxy gps . At para psositions are located as

A. S is correct by E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct explanation os S.
D. Both S and E are conrrect and E is correct explanation os S.

Answer: A
4. Statement : The lattice energy of silver halids is
$A g F>A g C l>A g B r>A g I$.
Explanation : $A g F$ is water soluble .
A. S is correct by E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct and E is not correct explanation of S.
5. Statement: The molecule cis-1-chloropropene is nore polar than trans-1-chooropropene.

Explanation : The magnitude of resultant vector in chloropropene is non-zero.
A. S is correct by E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct explanation os S.

D. Both S and E are conrrect and E is correct

 explanation os S.
Answer: B

- Watch Video Solution

6. Statemet : $I F_{7}$ is super-ociet molecule .

Explanation : central atom of I in $I F_{7}$ has 14 electrons .
A. S is correct by E is wrong .
B. S is wrong but E is correct .
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct and E is not correct explanation of S.

Answer: C

- Watch Video Solution

7. Statement : FeCl_{2} is more covalent than
FeCl_{3}

Explanation : Higher is the charge on cation more
is deformation of anion , more is covalent character .
A. S is correct by E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct explanation os S.
D. Both S and E are conrrect and E is correct explanation os S.

Answer: B
8. Statement : MO configuration of $C O$ is :
$\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma 2 p_{x}^{2}, \pi 2 p_{y}^{2}, \pi 2 p_{z}^{2}, \sigma^{*} 2 s^{2}$
Explanation : the energy level $\sigma^{*} 2 s^{2}$ possesses
higher energy because then only higher bond length in CO that CO^{+}can be explained.
A. S is correct by E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct explanation os S.
D. Both S and E are conrrect and E is correct explanation os S.

Answer: C

(D) Watch Video Solution

9. Statement : The dipole moment of NH_{3} is less
than $N F_{3}$.

Explanation : The lone pair preesent on N shows additive nature to $N-H$ vector whereas it is subtractive to $N-F$ vectro .
A. S is correct by E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct explanation os S.
D. Both S and E are conrrect and E is correct explanation os S.

Answer: B
(D) Watch Video Solution
10. Statement : The bond energy of $P-C l$ bond in $P C l_{3}$ and $P C l_{5}$ different .

Explanation : In $P C l_{3} s p^{3}-p$ overlapping whereas in $P C l_{5} s p^{3} d-p$ overlapping in noticed.
A. S is correct by E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct explanation os S.
D. Both S and E are conrrect and E is correct explanation os S.

Answer: C
11. Statement : $S F_{4}$ has lone pair of electron at
equatorial position in preference to axial position in the overall trigonal bipyramidal geometry.

Explanation : If lone pair is at equatorial position , then only repulsion is minimum .
A. S is correct by E is wrong .
B. S is wrong but E is wrong .
C. Both S and E are correct and E is correct
explanation os S.
D. Both S and E are conrrect and E is correct explanation os S.

Answer: C

- Watch Video Solution

