©゙ doubtnut

CHEMISTRY

BOOKS - P BAHADUR CHEMISTRY (HINGLISH)

CHEMICAL EQUILIBRIUM

Exercise

1. Write equilibrium constant for the each :
(a) $\mathrm{N}_{2} \mathrm{O}_{4(g)} \Leftrightarrow 2 \mathrm{NO}_{2(g)}$
(b) $\mathrm{KClO}_{3(g)} \Leftrightarrow K C l_{s}+(3 / 2) O_{2(g)}$
(c) $\mathrm{CaC}_{2(\mathrm{~s})}+5 \mathrm{O}_{2(g)} \Leftrightarrow 2 \mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{CO}_{2(\mathrm{~s})}$
(d) $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}$
(e) $F e_{a q}^{3+}+S C N_{a q}^{-} \Leftrightarrow F e(S C N)_{a q}^{2+}$
(f) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}_{(s)} \Leftrightarrow \mathrm{CuSO}_{4(s)}+5 \mathrm{H}_{2} \mathrm{O}_{(v)}$
2. The equilibrium constant expression for a gas reaction is :
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
Write the balanced chemical equation corresponding to this expression.

- Watch Video Solution

3. The equilibrium constant of the reaction,
$S O_{3(g)} \Leftrightarrow S O_{2(g)}+\frac{1}{2} O_{2(g)}$,
is $0.20 \mathrm{~mole}^{1 / 2}$ litre ${ }^{-1 / 2}$ at 1000 K . Calculate equilibrium constant for
$2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(g)}$

- Watch Video Solution

4. Calculate the equilibrium constant for the reaction,

$$
\mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{(g)} \text { at } 1395 \mathrm{~K} \text {, if the }
$$ equilibrium constants at $1395 K$ for the following are:

$2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow 2 \mathrm{H}_{2}+O_{2(g)}\left(K_{1}=2.1 \times 10^{-13}\right)$
$2 \mathrm{CO}_{2(g)} \Leftrightarrow 2 \mathrm{CO}_{(g)}+O_{2(g)}\left(K_{2}=1.4 \times 10^{-12}\right)$

- Watch Video Solution

5. For the reactions, $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$. At 400 K , $K_{p}=41 \mathrm{~atm}^{-2}$. Find the value of K_{p} for each of the following reactions at the same temperature:
(i) $2 \mathrm{NH}_{3(g)} \Leftrightarrow N_{2(g)}+3 H_{2(g)}$,
(ii) $\frac{1}{2} N_{2(g)}+\frac{3}{2} H_{2(g)} \Leftrightarrow N H_{3(g)}$,
(iii) $2 \mathrm{~N}_{2(g)}+6 \mathrm{H}_{2(g)} \Leftrightarrow 4 \mathrm{NH}_{3(g)}$

- Watch Video Solution

6. Find out the value of K_{c} for each of the following equilibrium from the value of K_{p} :
(a) $2 \mathrm{NOCl}_{(g)} \Leftrightarrow 2 N O_{(g)}+\mathrm{Cl}_{2(g)}$,
($K_{p}=1.8 \times 10^{-2} \mathrm{~atm}$ at 500 K)
(b) $\mathrm{CaCO}_{3(s)} \Leftrightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}$,
($K_{p}=167 a t m$ at $1073 K$)

- Watch Video Solution

7. The rate of reversible reaction (change in concentration per second):
$\mathrm{PrCl}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}^{-}+\mathrm{Cl}^{-}$,
was observed at 0.3 ionic strength at $25^{\circ} \mathrm{C}$ and noticed that
$\frac{\Delta\left[\mathrm{PtCl}_{4}^{2-}\right]}{\Delta t}=3.9 \times 10^{-5}\left[\mathrm{PtCl}_{4}^{2-}\right]-2.1 \times 10^{-3}\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}^{-}\right]\left[\mathrm{Cl}^{-}\right]$
Calculate: (a) Rate constant for forward and backward reaction.
(b) The equilibrium constant for the complexation of fourth Cl^{-}at 0.3 ionic strength.

- Watch Video Solution

8. Write a stoichiometric equation for the reaction between A_{2} and C whose mechanism is given below. Determine the value of equilibrium constant for the first step. Write a rate law equation for the over all
reaction in terms of its initial reactants.
(i) $A_{2} \underset{K_{2}}{\stackrel{K_{1}}{\rightleftarrows}} 2 A$
$K_{1}=10^{10} s^{-1}$ and $K_{2}=10^{10} M^{-1} s^{-1}$
(ii) $A+C \rightarrow A C$
$K=10^{-4} M^{-1} S^{-1}$

- Watch Video Solution

9. In which case does the reaction go farthest to completion: $K=1 K$, $K=10^{10}, K=10^{-10}$ and why?

- Watch Video Solution

10. The equilibrium constant K_{c} for $A_{(g)} \Leftrightarrow B_{(g)}$ is 1.1. Which gas has a molar concentration greater than 1 ?

- Watch Video Solution

11. Calculate the value of equilibrium constant K_{p} for the reaction:
$O_{2(g)}+O_{(g)} \Leftrightarrow O_{3(g)} \ldots(i)$
if $N O_{2(g)} \Leftrightarrow N O_{(g)}+O_{(g)}$,
$K_{P_{1}}=6.8 \times 10^{-49} \ldots(i i)$
and $O_{3(g)}+N O_{(g)} \Leftrightarrow N O_{2(g)}+O_{2(g)}$,
$K_{P_{2}}=5.8 \times 10^{-34} \ldots(i i i)$
If initial pressure of an equimolar mixture of the reactants in change (i) is 4.0^{-}, what are the equilibrium parital pressure of the reactants and products?

- Watch Video Solution

12. Equilibrium constant, K_{c} for the reaction,
$N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$,
at 500 K is $0.061 l i$ tre $^{2} \mathrm{~mole}^{-2}$. At a particular time, the analysis shows that composition of the reaction mixture is 3.00 mollitre $^{-1} N_{2}$, 2.00 mollitre ${ }^{-1} \mathrm{H}_{2}$, and 0.500 mollitre ${ }^{-1} \mathrm{NH}_{3}$. Is the reaction at
equilibrium? If not, in which direction does the reaction tend to proceed to reach equilibrium?

- Watch Video Solution

13. The ester, ethyl acetate is formed by the reaction of ethanol and acetic acid and the equilibrium is represented as :

$$
\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)
$$

(i) Write the concentration ratio (concentration quotient) Q for this reaction. Note that water is not in excess and is not a solvent in this reaction.
(ii) At 293 K , if one starts with 1.000 mol of acetic acid 0.180 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture . Calculate the equilibrium constant.
(iii) Starting with 0.50 mol of ethanol and 1.000 mol of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after some time. Has equilibrium been reached?
14. Consider the following equations for cell reaction:
$A+B \Leftrightarrow C+D$
and $2 A+B \Leftrightarrow 2 C+2 D$
How are $E_{\text {cell }}^{\circ}$ for equations (1) and (2) are related? What is relation between two equilibrium constants?

- Watch Video Solution

15. For the gasesous reaction, $2 \mathrm{NO}_{2} \Leftrightarrow N_{2} O_{4}$, calculate ΔG° and K_{p} for the reaction at $25^{\circ} \mathrm{C}$. Given $G_{f N_{2} O_{4}}^{\circ}$ and $G_{f N O_{2}}^{\circ}$ are 97.82 and 51.30 kJ respectively. Also calculate ΔG^{0} and K_{p} for reverse reaction.

- Watch Video Solution

16. ΔG° for $\frac{1}{2} N_{2}+\frac{3}{2} H_{2} \Leftrightarrow N H_{3}$ is $-16.5 \mathrm{kJmol}^{-1}$ at $25^{\circ} \mathrm{C}$. Find out K_{p} for the reaction. Also report K_{p} and ΔG° for:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at $25^{\circ} \mathrm{C}$
17. Calculate the values of ΔE° and ΔH° for the reaction:
$2 A_{(g)}+B_{(g)} \Leftrightarrow A_{2} B_{(g)}$
for which $K_{p}=1.0 \times 10^{-10} \mathrm{~atm}^{-2}$ and $\Delta S=5 J \mathrm{~K}^{-1}$ and $T=300 \mathrm{~K}$.

- Watch Video Solution

18. For the reaction at 298 K :
$A_{(g)}+B_{(g)} \Leftrightarrow D_{(g)}+C_{(g)}$
$\Delta H^{\circ}=29.8 \mathrm{kcal}$ and $\Delta S^{\circ}=100 \mathrm{calK}{ }^{-1}$. Calculate the value of equilibrium constant.

- Watch Video Solution

19. Calculate the value of equilibrium constant for the reaction:
$A_{(g)}+B_{(g)} \Leftrightarrow C_{(g)}+D_{(g)}+E_{(g)}$ at $300 K$ and constant pressure.

All the reactants and products obey ideal gas nature. Given $\Delta U^{\circ}=-90.0 \mathrm{kcal}, \Delta S^{\circ}=100 \mathrm{calK}^{-1}$.

- Watch Video Solution

20. Calculate the pressure for CO_{2} at equilibrium if $\Delta G^{\circ}=31.1 \mathrm{kcal}$ at $300 K$ for

$$
\mathrm{CaCO}_{3(s)} \Leftrightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}
$$

- Watch Video Solution

21. If a mixture of 3 moles of H_{2} and one mole of N_{2} is completely converted into NH_{3}. What would be the ratio of the initial and final volume at same temperature and pressure ?

- Watch Video Solution

22. Nitric oxide reacts with bromine and gives nitrosyl-bromide as per reaction given below:
$2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(g)} \Leftrightarrow 2 \mathrm{NOBr}_{(g)}$.
When 0.087 mole of $N O$ and 0.0437 mole of $B r_{2}$ are mixed in a closed container at constant temperature, 0.0518 mole of NOBr is obtained at equilibrium. Calculate equilibrium amount of nitric oxide and bromine.

- Watch Video Solution

23. At 700 K equilibrium constant for the reaction,

$$
H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}
$$

is 54.8 . If 0.5 mollitre ${ }^{-1}$ of $H I_{(g)}$ is present at equilibrium at 700 K , what are the concentrations of $H_{2(g)}$ and $I_{2(g)}$, assuming that we initially started with $H I_{(g)}$ and allowed it to reach equilibrium at 700 K .

- Watch Video Solution

24. Bromine monochloride, (BrCl) decomposes into bromine and chlorine and reaches the equilibrium.
$2 B r C l_{(g)} \Leftrightarrow B r_{2(g)}+C l_{2(g)}$
For which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of 3.30×10^{-3} mollitre $^{-1}$, what is its molar concentration in the mixture at equilibrium?

- Watch Video Solution

25. 60 mL of H_{2} and 42 mL of I_{2} are heated in a closed vessel. At equilibrium, the vessel contains $28 m L H I$. Calculate degree of dissociation of $H I$.

- Watch Video Solution

26. For a reaction $2 H I \Leftrightarrow H_{2}+I_{2}$, at equilibrium $7.8 g, 203.2 g$, and
$1638.4 g$ of H_{2}, I_{2}, and HI , respectively were found. Calculate K_{c}.
27. In the dissociation of $\mathrm{HI}, 20 \%$ of HI is dissociated at equilibrium.

Calculate K_{p} for
$H I(g) \Leftrightarrow 1 / 2 H_{2}(g)+1 / 2 I_{2}(g)$

- Watch Video Solution

28. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of Iatoms, Calculate K_{p} for the equilibrium.

$$
I_{2(g)} \Leftrightarrow 2 I_{(g)}
$$

- Watch Video Solution

29. Reaction between nitrogen and oxygen takes place as following:
$2 N_{2(g)}+O_{2} \Leftrightarrow 2 N_{2} O_{(g)}$
If a mixture of $0.482 \mathrm{~mole} N_{2}$ and 0.933 mole of O_{2} is placed in a reaction vessel of volume 10litre and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for
which $K_{c}=2.0 \times 10^{-37}$ litremol ${ }^{-1}$. Determine the composition of equilibrium mixture.

- Watch Video Solution

30. One mole of H_{2} and one mole of CO are taken in a 10litre vessel and heated to 725 K . At equilibrium, 40 percent of water (by mass) reacts with carbon monoxide according to the equation,

$$
\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{(g)} \Leftrightarrow \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)}
$$

Calculate the equilibrium constant for the reaction.

- Watch Video Solution

31. A sample of pure $P C l_{5}$ was introduced into an evacuted vessel at 473 K . After equilibrium was attained,concentration of $P C l_{5}$ was found to be 0.5×10^{-1} mollitre ${ }^{-1}$. If value of K_{c} is 8.3×10^{-3} mollitre $^{-1}$. What are the concentrations of PCl_{3} and Cl_{2} at equilibrium ?
32. The equilibrium constant for the following reactions is 1.6×10^{5} at $1024 K$,

$$
H_{2(g)}+B r_{2(g)} \Leftrightarrow 2 H B r_{(g)}
$$

Find the equilibrium pressure of all gases, if 10.0^{-}of HBr is introduced into a sealed container at $1024 K$.

- Watch Video Solution

33. For the reaction is equilibrium :
$2 \mathrm{NOBr}_{(g)} \Leftrightarrow 2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(g)}$
If $P_{B r_{2}}$ is $\frac{P}{9}$ at equilibrium and P is total pressure, prove that $\frac{K_{p}}{P}$ is equal to $\frac{1}{81}$.

- Watch Video Solution

34. K_{c} for $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$ at $986^{\circ} \mathrm{C}$ is 0.63 . A mixture of $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $3 \mathrm{~mol} \mathrm{CO}_{2}(\mathrm{~g})$ is allowed to react to come
to an equilibrium. The equilibrium pressure is 2.0 atm .
a. Hoe many moles of H_{2} are present at equilibrium ?
b. Calculate partial pressure of each gas at equilibrium.

- Watch Video Solution

35. When $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$ are mixed in equivalent proportion, equilibrium is reached when $2 / 3$ of acid and alcohol are used. How much ester will be present when $2 g$ "mole"cule of acid were to react with $2 g$ "mole"cule of alcohol.

- Watch Video Solution

36. When $\alpha-D$ glucose is dissolved in water, it undergoes a partial converion to $\beta-D$ glucose to exhibit mutarotation. This conversion stops when 63.6% of glucose is in β form. Assuming that equilibrium has been attained, calculate K_{c} for mutarotation.
37. At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has $90.55 \% C O$ by mass:

$$
C_{(s)}+C O_{2(s)} \Leftrightarrow 2 C O_{(g)}
$$

Calculate K_{c} for the reaction at the above temperature.

- Watch Video Solution

38. What concentration of CO_{2} be in equilibrium with $2.5 \times 10^{-2} \mathrm{molL}^{-1}$ of CO at $100^{\circ} \mathrm{C}$ for the reaction:
$\mathrm{FeO}(s)+\mathrm{CO}(g) \Leftrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g), K_{c}=5.0$

- Watch Video Solution

39. Calculate the value of K_{p} and K_{c} at $25^{\circ} \mathrm{C}$ for $\mathrm{H}_{2} \mathrm{O}_{(l)} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(v)}$.

Given that aqueous tension of water at $25^{\circ} \mathrm{C}$ is 0.0313 atm .
40. 100 g of NaCl is stirred in 100 mL of water at $20^{\circ} \mathrm{C}$ till the equilibrium is attained:
(a) How much NaCl goes into the solution and how much of it is left undissolved at equilibrium? The solubility of NaCl at $20^{\circ} \mathrm{C}$ is $6.15 \mathrm{~mol} /$ litre.
(b) What will be the amount of NaCl left undissolved, if the solution is diluted to 200 mL ?

- Watch Video Solution

41. The vapour density of $\mathrm{N}_{2} \mathrm{O}_{4}$ at a certain temperature is 30 . Calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ this temperature.

- Watch Video Solution

42. Which of the following reaction will get affected by increase of pressure? Also mention, whether change will cause the reaction to go into the right or left direction?
(i) $C H_{4(g)}+2 S_{2(g)} \Leftrightarrow C S_{2(g)}+2 H_{2} S_{(g)}$
(ii) $\mathrm{CO}_{2(g)}+C_{(s)} \Leftrightarrow 2 C O_{(g)}$
(iii) $4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} \Leftrightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$
(iv) $C_{2} H_{4(g)}+H_{2(g)} \Leftrightarrow C_{2} H_{6(g)}$

- Watch Video Solution

43. Derive the best conditions for the formation of NH_{3}. Given,
$2 \mathrm{NH}_{3} \Leftrightarrow N_{2}+3 H_{2},(\Delta H=+91.94 k J)$

- Watch Video Solution

44. Derive the best conditions for the formation of NH_{3}. Given,
$2 \mathrm{NH}_{3} \Leftrightarrow N_{2}+3 H_{2},(\Delta H=+91.94 k J)$

- Watch Video Solution

45. K_{c} for the reaction, $A+B \Leftrightarrow P+Q$ is 2.0×10^{-2} at $25^{\circ} C$ and it is 2.0×10^{-1} at $50^{\circ} \mathrm{C}$. Predict whether the forward reaction is exothermic or endothermic.

- Watch Video Solution

46. In a gases reaction, $A_{(g)}+B_{(g)} \Leftrightarrow C_{(g)}$, predict the effect of addition of inert gas, if addition is made at : (a) constant volume, (b) constant pressure.

- Watch Video Solution

47. In a gaseous reaction, $A_{(g)}+B_{(g)} \Leftrightarrow C_{(g)}+D_{(g)}$, the increase in temperature causes the change in the concentrations of A, B, C and D. The concentrations of C and D also change on addition of some amount of A. Does the value of K change in either of the two situations?
48. At temperature T , a compound $A B_{2}(g)$ dissociates according to the reaction
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
with degree of dissociation α, which is small compared with unity. The expression for K_{p} in terms of α and the total pressure P_{T} is

- Watch Video Solution

49. The K_{c} for $A_{2(g)}+B_{2(g)} \Leftrightarrow 2 A B_{(g)}$ at $100^{\circ} C$ is 50 . If one litre flasks containing one mole of A_{2} is connected with a two litre flask containing 2 mole of B_{2}, how many mole of $A B$ will be formed at $100^{\circ} \mathrm{C}$?

- Watch Video Solution

50. The K_{p} values for the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I$, at $460^{\circ} C$ is 49 . If the initial pressure of H_{2} and I_{2} is 0.5 atm respectively, determine the partial pressure of each gas at equilibrium.
51. One mole of H_{2} two moles of I_{2} and three moles of $H I$ are injected in one litre flask. What will be the concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at equilibrium at $500^{\circ} \mathrm{C} . \mathrm{K}_{c}$ for reaction $H_{2}+I_{2} \Leftrightarrow 2 H I$ is 45.9 .

- Watch Video Solution

52. 0.5 mol of H_{2} and 0.5 mol of I_{2} react in 10 L flask at $448^{\circ} \mathrm{C}$. The equilibrium constant $\left(K_{c}\right)$ is 50 for
$H_{2}+I_{2} \Leftrightarrow 2 H I$
a. What is the value of K_{p} ?
b. Calculate the moles of I_{2} at equilibrium.

- Watch Video Solution

53. K_{c} for $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$ at $986^{\circ} \mathrm{C}$ is 0.63 . A mixture of $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $3 \mathrm{~mol} \mathrm{CO}_{2}(\mathrm{~g})$ is allowed to react to come
to an equilibrium. The equilibrium pressure is 2.0 atm .
a. Hoe many moles of H_{2} are present at equilibrium ?
b. Calculate partial pressure of each gas at equilibrium.

- Watch Video Solution

54. A sample of air consisting of N_{2} and O_{2} was heated to 2500 K until the equilibrium
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
was established with an equlibrium constant, $K_{c}=2.1 \times 10^{-3}$. At equilibrium, the mole\% of $N O$ was 1.8. Eatimate the initial composition of air in mole fraction of N_{2} and O_{2}.

- Watch Video Solution

55. At $700 \mathrm{~K}, \mathrm{CO}_{2}$ and H_{2} react to form CO and $\mathrm{H}_{2} \mathrm{O}$. For this purpose, K_{c} is 0.11 . If a mixture of 0.45 mol of CO_{2} and 0.45 mol of H_{2} is heated to 700 K .
(a) Find out amount of each gas at equilibrium.
(b) When equilibrium has been reached, another 0.34 mol of CO_{2} and 0.34 mol of H_{2} are added to the reaction mixture. Find the composition of of mixture at new equilibrium.

- Watch Video Solution

56. A mixture of $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and O_{2} gases is maintained in a 10 L flask at a temperature at which the equilibrium constant for the reaction is 100 :
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
a. If the number of moles of SO_{2} and SO_{3} in the flask are equal. How many moles of O_{2} are present?
b. If the number of moles of SO_{3} in flask is twice the number of moles of SO_{2}, how many moles of oxygen are present?

- Watch Video Solution

57. The K_{p} for the reaction $N_{2} O_{4} \Leftrightarrow 2 N O_{2}$ is 640 mm at 775 K . Calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium pressure of 160 mm .

At what pressure, the dissociation will be 50% ?

- Watch Video Solution

58. An equilibrium mixture at 300 K contains $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 0.28 and 1.1atm, respectively. If the volume of container is doubles, calculate the new equilibrium pressure of two gases.

- Watch Video Solution

59. At $540 \mathrm{~K}, 0.10 \mathrm{~mol}$ of PCl_{5} is heated in a 8 L flask. The pressure of equilibrium mixture is found to be 1.0 atm . Calculate K_{p} and K_{c} for the reaction.

- Watch Video Solution

60. At some temperature and under a pressure of $4 \mathrm{~atm}, P C l_{5}$ is 10% dissociated. Calculated the pressure at which PCl_{5} will be 20% dissociated temperature remaining same.
61. The degree of dissociation is 0.4 at 400 K and 1.0 atm for the gaseous reaction
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
assuming ideal behaviour of all gases, calculate the density of equilibrium mixture at 400 K and 1.0 atm (relative atomic mass of P is 31.0 and of Cl is 35.5).

- Watch Video Solution

62. NH_{3} is heated at 15 at, from $25^{\circ} \mathrm{C}$ to $347^{\circ} \mathrm{C}$ assuming volume constant. The new pressure becomes 50 atm at equilibrium of the reaction $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$. Calculate $\%$ moles of NH_{3} actually decomposed.
63. Calculate the value of $\log K_{p}$ for the reaction, $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ at $25^{\circ} \mathrm{C}$. The standard enthalpy of formation of $\mathrm{NH}_{3(\mathrm{~g})}$ is -46 kJ and standard entropies of $\mathrm{N}_{2(\mathrm{~g})}, \mathrm{H}_{2(\mathrm{~g})}$ and $\mathrm{NH}_{3(\mathrm{~g})}$ are 191, 130, $192 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. respectively. ($R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)

- Watch Video Solution

64. Calculate the percent dissociation of $H_{2} S(g)$ if 0.1 mol of $\mathrm{H}_{2} \mathrm{~S}$ is kept in $0.4 L$ vessel at $1000 K$. For the reaction:
$2 H_{2} S(g) \Leftrightarrow 2 H_{2}(g)+S_{2}(g)$
The value of K_{c} is 1.0×10^{-6}

- Watch Video Solution

65. When S in the form of S_{8} is heated at $900 K$, the initial pressure of 1 atm falls by 29% at equilibrium. This is because of conversion of some S_{8} to S_{2}. Find the K_{p} for reaction.

- Watch Video Solution

66. When 3.06 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into a two-litre evacuated flask at $27^{\circ} \mathrm{C}, 30 \%$ of the solid decomposes into gaseous ammonia and hydrogen sulphide. (i) Calculate K_{c} and K_{p} for the reaction at $27^{\circ} C$. (ii) What would happen to the equilibrium when more solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into the flask?

- Watch Video Solution

67. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm . Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is $0.8 a t m$.

- Watch Video Solution

68. At $817^{\circ} \mathrm{C}, K_{p}$ for the reaction between $\mathrm{CO}_{2(g)}$ and excess hot graphite (s) is 10 atm .
(a) What are the equilibrium concentration of the gases at $817^{\circ} \mathrm{C}$ and a total pressure of 5 atm ?
(b) At what total pressure, the gas contains $5 \% \mathrm{CO}_{2}$ by volume?

- Watch Video Solution

69. The equilibrium constant K_{p} of the reaction: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is $900 \mathrm{~atm}^{-1}$ at 800 K . A mixture constaining SO_{3} and O_{2} having initial pressure of 1 atm and 2 atm respectively, is heated at constant volume to equilibriate. Calculate the partial pressure of each gas at 800 K at equilibrium.

- Watch Video Solution

70. For the reaction
$\mathrm{CO}(g)+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$

Hydrogen gas is introduced into a five-litre flask at $327^{\circ} \mathrm{C}$, containing 0.2 mol of $C O(g)$ and a catalyst, untill the pressure is 4.92atm. At this point, 0.1 mol of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ is formed. Calculate the equilibrium constants K_{p} and K_{c}.

- Watch Video Solution

71. When 0.15 mol of CO taken in a 2.5 L flask is maintained at 750 K along with a catalyst, the following reaction takes place
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Hydrogen is introduced until the total pressure of the system is 8.5 atm at equilibrium and 0.08 mol of methanol is formed.

Calculate

a. K_{p} and K_{c}
b. The final pressure, if the same amount of CO and H_{2} as before are used, but with no catalyst so that the reaction does not take place.

- Watch Video Solution

72. For the reaction
$A g(C N)_{2}^{\ominus} \Leftrightarrow A g^{\oplus}+2 C N^{\ominus}$, the K_{c} at $25^{\circ} C$ is 4×10^{-19} Calculate $\left[A g^{\oplus}\right]$ in solution which was originally $0.1 M$ in $K C N$ and $0.03 M$ in AgNO_{3}.

- Watch Video Solution

73. The value of K_{p} is $1 \times 10^{-3} \mathrm{~atm}^{-1}$ at $25^{\circ} \mathrm{C}$ for the reaction: $2 N O+C l_{2} \Leftrightarrow 2 N O C l$. A flask contains $N O$ at $0.02 a t m$ and at $25^{\circ} \mathrm{C}$. Calculate the mole of $C l_{2}$ that must be added if 1% of the $N O$ is to be converted to NOCl at equilibrium. The volume of the flask is such that 0.2 mole of gas produce 1 atm pressure at $25^{\circ} \mathrm{C}$. (Ignore probable association of NO to $\mathrm{N}_{2} \mathrm{O}_{2}$.)

- Watch Video Solution

74. When 1pentyne (A) is treated with 4 N alcoholic KOH at $175^{\circ} \mathrm{C}$, it is slowly converted into an equilibrium mixture of 1.3% of 1pentyne $(A), 95.2 \%$ 2-pentyne (B) and 3.5% of 1,2 -pentandiene (C). The
equilibrium was maintained at $175^{\circ} \mathrm{C}$. calculate ΔG^{Θ} for the following equilibria:
$B \Leftrightarrow A, \Delta G^{\Theta}={ }_{1} ?$
$B \Leftrightarrow C, \Delta G^{\Theta}=$?
From the calculated value of $\Delta G^{\Theta}{ }_{1}$ and $\Delta G^{\Theta}{ }_{2}$, indicate the order of stability of A, B and C.

- Watch Video Solution

75. At 700 K , hydrogen and bromine react to form hydrogen bromine. The value of equilibrium constant for this reaction is 5×10^{8}. Calculate the amount of the $\mathrm{H}_{2}, \mathrm{Br}_{2}$ and HBr at equilibrium if a mixture of 0.6 mol of H_{2} and 0.2 mol of Br_{2} is heated to 700 K .

- Watch Video Solution

76. For the equilibrium, $N_{2} O_{4} \Leftrightarrow 2 N O_{2},\left(G_{N_{2} O_{4}}^{\circ}\right)_{298}=100 \mathrm{~kJ} / \mathrm{mol}$ and $\left(G_{\mathrm{NO}_{2}}^{\circ}\right)_{298}=50 \mathrm{~kJ} / \mathrm{mol}$.
(a) When $5 m o \frac{l}{l}$ itre of each is taken, calculate the value of ΔG for the reaction at 298 K .
(b) Find the direction of reaction.

- Watch Video Solution

77. Calculate the equilibrium constant for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ at 1395 K
If the equilibrium constants at 1395 K for the following are:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=2.1 \times 10^{-13}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.4 \times 10^{-12}$

- Watch Video Solution

78. The equilibrium constant K_{c} for $A(g) \Leftrightarrow B(g)$ is 1.1. Which gas has a molar concentration greater than 1.

- Watch Video Solution

79. For the reaction $A+B \Leftrightarrow 3$. C at $25^{\circ} C$, a $3 L$ vessel contains 1,2 , and

4 moles of A, B and C respectively. Predict the direction of reaction if:
a. K_{c} for the reaction is 10 .
b. K_{c} for the reaction is 15 .
c. K_{c} for the reaction is 10.66

- Watch Video Solution

80. The activation energy of
$H_{2}+I_{2} \Leftrightarrow 2 H I(g)$ in equilibrium for the forward reaction is $167 \mathrm{kJmol}^{-1}$ whereas for the reverse reaction is $180 \mathrm{kJmol}^{-1}$. The presence of catalyst lowers the activation energy by $80 \mathrm{kJmol}^{-1}$. Assuming that the reactions are made at $27^{\circ} \mathrm{C}$ and the frequency factor for forwatd and backward reactions are 4×10^{-4} and 2×10^{-3} respectively, calculate K_{c}.
81.

$A+2 B \Leftrightarrow A B_{2}, K_{c}=0.3475 L^{2} \mathrm{~mole}^{-2}$ at $200^{\circ} C$. When 2 moles of B are mixed with one "mole" of A , what total pressure is required to convert 60% of A in $A B_{2}$?

- Watch Video Solution

82. 0.96 g of $H I$ were heated to attain equilibrium $2 H I \Leftrightarrow H_{2}+I_{2}$. The reaction mixture on titration requires $15.7 m L$ of $N / 10$ hypo solution.

Calculate degree of dissociation of $H I$.

- Watch Video Solution

83. The degree of dissociation of $H I$ at a particualr temperature is 0.8 .

Calculate the volume of $2 \mathrm{MNa} \mathrm{S}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution required to neutralise the iodine present in an equilibrium mixture of a reaction when 2 mol each of H_{2} and I_{2} are heated in a closed vessel of $2 L$ capacity and the equilibrium mixture is freezed.

(D) Watch Video Solution

84. At 340 K and 1 atm pressure, $\mathrm{N}_{2} \mathrm{O}_{4}$ is 66% into NO_{2}. What volume of $10 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$ ocuupy under these conditions?

- Watch Video Solution

85. $\mathrm{N}_{2} \mathrm{O}_{4}$ dissociates as $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$. At $55^{\circ} \mathrm{C}$ and one atmospehere, \% decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 50.3%. At what P and same temperature, the equilibrium mixture will have the ratio of $\mathrm{N}_{2} \mathrm{O}_{4}: \mathrm{NO}_{2}$ as $1: 8$?

- Watch Video Solution

86. At 273 K and 1 atm ,a moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ decomposes to NO_{2} according to equation $N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$. To what extent has the decomposition proceeded when the original volume is 25% less than that of exisiting volume?
87. A mixture of one mole of CO_{2} and "mole" of H_{2} attains equilibrium at a temperature of $250^{\circ} \mathrm{C}$ and a total pressure of 0.1 atm for the change $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. Calculate K_{p} if the analysis of final reaction mixture shows 0.16 volume percent of CO .

- Watch Video Solution

88. For the equilibrium:
$\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}$ the standard enthalpy and entropy changes at 300 K and 1200 K for the forward reaction are as follows:

$$
\left(\Delta H_{300 K}^{\circ}=-41.16 \mathrm{kJmol}^{-1},\right),\left(\Delta S_{300 K}^{\circ}=-0.0424 \mathrm{kJmol}^{-1}\right),\left(\Delta H_{120}^{\circ}\right.
$$

In which direction will the reaction be spontaneous?
(a) At 300 K ,
(b) At 1200 K , when at equilibrium $P_{C O}=P_{\mathrm{CO}_{2}}=P_{\mathrm{H}_{2}}=P_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{~atm}$

Also calculate K_{p} for the reaction at each temperature.
89. The equilibrium mixture for
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
present in $1 L$ vessel at $600^{\circ} C$ contains $0.50,0.12$, and 5.0 moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$, and SO_{3} respectively.
a. Calculate K_{c} for the given change at $600^{\circ} \mathrm{C}$.
b. Also calculate K_{p}.
c. How many moles of O_{2} must be forced into the equilibrium vessel at $600^{\circ} \mathrm{C}$ in order to increase the concentration of SO_{3} to 5.2 mol ?

- Watch Video Solution

90. At $627^{\circ} \mathrm{C}$ and $1 \mathrm{~atm} \mathrm{SO}_{3}$ is partially dissociated into SO_{2} and O_{2} by the reaction

$$
S O_{3}(g) \Leftrightarrow S O_{2}(g)+1 / 2 O_{2}(g)
$$

The density of the equilibrium mixture is $0.925 g L^{-1}$. What is the degree of dissociation?
91. $\mathrm{N}_{2} \mathrm{O}_{4}$ is 25% dissociated at $37^{\circ} \mathrm{C}$ and 1 atm pressure. Calculate a. K_{p}
b. The percentage dissociation at 0.1 atm and $37^{\circ} \mathrm{C}$.

- Watch Video Solution

92. In a mixture of N_{2} and H_{2} in the ratio 1:3 at 30 atm and $300^{\circ} \mathrm{C}$, the $\%$ of NH_{3} at equilibrium is 17.8. Calculate K_{p} for $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$.

- Watch Video Solution

93. The equilibrium concentraion of the reactants and products for the given equilibrium in a two litre container are shown below:

$$
P C l_{3(g)}+\underset{1 M}{C l_{2(g)}} \Leftrightarrow \underset{4 M}{P C l_{5(g)}}
$$

(i) If 2 mole of $C l_{2}$ are added in the container, find the new equilibrium concentration of each.
(ii) If the equilibrium mixture reported initially is transferred into 4litre vessel, what would be the new concentration at equilibrium?

- Watch Video Solution

94. 1 mol of $C l_{2}$ and 3 mol of $P C l_{5}$ are placed in a 100 L vessel heated to $227^{\circ} \mathrm{C}$. The equilibrium pressure is 2.05 atm . Assuming ideal behaviour, calculate the degree of dissociation for $P C l_{5}$ and K_{p} for the reaction.

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

- Watch Video Solution

95. A mixture of 2 moles of CH_{4} and $34 g$ of $\mathrm{H}_{2} S$ was placed in an evacuated chamber, which was then heated to an maintained at $727^{\circ} \mathrm{C}$. When equilibrium was established in the gaseous phase reaction: $C H_{4}+2 \mathrm{H}_{2} S \Leftrightarrow C S_{2}+4 \mathrm{H}_{2}$, the total pressure in the container was 0.92 atm and the partial pressure of hydrogen was 0.2 atm . Calculate the volume of container.
96. A graph plotted between $\log _{10} K_{c}$ and $1 / T$ is straight line with intercept 10 and slpoe equal to 0.5 . Calculate :
(i) pre -exponential factor A.
(ii) heat of reaction at 298 K .
(iii) equilibrium constant at 298 K .
(iv) equilibrium constant in at $800 k$ assuming ΔH remains constant in between 298 K and 800 K .

- Watch Video Solution

97. K_{p} for the reaction, $N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is $1.6 \times 10^{-4} \mathrm{~atm}^{-2}$ at $400^{\circ} \mathrm{C}$. What will be K_{p} at $500^{\circ} \mathrm{C}$? Heat of reaction in this temperature range is $-25.14 k$ cal.
98. ΔG° for $\frac{1}{2} N_{2}+\frac{3}{2} H_{2} \Leftrightarrow N H_{3}$ is $-16.5 \mathrm{kJmol}^{-1}$. Find out K_{p} for the reaction. Also report K_{p} and ΔG° for : $N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}$ at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

99. For gasesous reaction $A+B \Leftrightarrow C$, the equilibrium concentration of A and B at a temperature are 15 mollitre ${ }^{-1}$. When volume is doubled the reaction has equilibrium concentration of A as 10 mollitre $^{-1}$. Calculate:
(i) K_{c}
(ii) Concentration of C in originl equilibrium.

- Watch Video Solution

100. K_{p} for the reaction $N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}$ at $400^{\circ} C$ is 1.64×10^{-4}. Find K_{c}. Also find ΔG^{\ominus} using K_{p} and K_{c} values and interpret the difference.
101. Equilibrium constant $\left(K_{p}\right)$ for $2 H_{2} S_{(g)} \Leftrightarrow 2 H_{2(g)}+S_{2(g)}$ is 0.0118 atm at $1065^{\circ} \mathrm{C}$ and heat of dissociation is 42.4 kcal . Find equilibrium constant at $1132^{\circ} \mathrm{C}$.

- Watch Video Solution

102. H_{2} and I_{2} are mixed at $400^{\circ} \mathrm{C}$ in a 1.0 L container, and when equilibrium is established, the following concentrations are present: $[H I]=0.8 M,\left[H_{2}\right]=0.08 M$, and $\left[I_{2}\right]=0.08 M$. If now an additional 0.4 mol of HI is added, what are the new equilibrium concentrations, when the new equilibrium $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ is re-established?

- Watch Video Solution

103. 0.0755 g of selenium vapours occupying a volume of 114.2 mL at $700^{\circ} \mathrm{C}$ and 185 mm of Hg . The vapours are in equilibrium as:
$S e_{6(g)} \Leftrightarrow 3 S e_{2(g)}$
Calculate:
(i) Degree of dissociation of $S e$,
(ii) K_{p},
(iii) K_{c}.

Atomic weight of $S e$ is 79 .

- View Text Solution

104. $\mathrm{COG}_{2(g)}$ in presence of catalyst at $1000^{\circ} \mathrm{C}$ shows the equilibrium:
$2 \mathrm{COF}_{2(g)} \Leftrightarrow C O_{2(g)}+C F_{4(g)}$
At equilibrium 500 mL of the equilibrium mixture at $S T P$ contains 300 mL of $\left(\mathrm{COF}_{2}\right.$ and $\left.\mathrm{CO}_{2}\right)$ at $S T P$. If total pressure is 10 atm , calculate K_{p}.

- Watch Video Solution

105. For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(g)+\mathrm{H}_{2} S(g)$, the observed, pressure for reaction mixture in equilibrium is 1.12 atm at $106^{\circ} \mathrm{C}$. What is the value of
K_{p} for the reaction?

- Watch Video Solution

106. When 20 g of CaCO_{3} were put into 10litre flask and heated to $800^{\circ} \mathrm{C}, 35 \%$ of CaCO_{3} remained unreacted at equilibrium. K_{p} for decomposition of CaCO_{3} is :

- Watch Video Solution

107. Some acid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in flask containing 0.5 atm of NH_{3}. What would be pressures of NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ when equilibrium is reached?
$N H_{4} H S_{(s)} \Leftrightarrow N H_{3(g)}+H_{2} S_{(g)}, K_{p}=0.11$

- Watch Video Solution

108. To the system,
$\mathrm{LaCl}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \operatorname{LaClO}(s)+2 \mathrm{HCL}(g)-$ Heat already at
equilibrium, more water vapour is added without altering temperature or volume of the system. When equilibrium is re-established, the pressure of water vapour is doubled. The pressure of HCl present in the system increases by a factor of

- Watch Video Solution

109. At a certain temperature, K_{p} for dissociation of solid CaCO_{3} is $4 \times 10^{-2} \mathrm{~atm}$ and for the reaction, $C(s)+C O_{2} \Leftrightarrow 2 C O$ is 2.0 atm, respectively. Calculate the pressure of CO at this temperature when solid $\mathrm{C}, \mathrm{CaO}, \mathrm{CaCO}_{3}$ are mixed and allowed to attain equilibrium.

- Watch Video Solution

110. Solid Ammonium carbamate dissociates as:
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$.
In a closed vessel, solid ammonium carbonate is in equilibrium with its dissociation products. At equilibrium, ammonia is added such that the partial pressure of NH_{3} at new equilibrium now equals the original total
pressure. Calculate the ratio of total pressure at new equilibrium to that of original total pressure. Also find the partial pressure of ammonia gas added.

- Watch Video Solution

111. In the preparation of CaO from CaCO_{3} using the equilibrium,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
K_{p} is expressed as
$\log K_{p}=7.282-\frac{8500}{T}$
For complete decomposition of CaCO_{3}, the temperature in celsius to be used is:

- Watch Video Solution

112. A vessel of 2.50 litre was filled with 0.01 mole of $S b_{2} S_{3}$ and 0.01 mole of H_{2} to attain the equilibrium at $440^{\circ} \mathrm{C}$ as:
$S b_{2} S_{3(s)}+3 H_{2(g)} \Leftrightarrow 2 S b_{(s)}+3 H_{2} S_{(g)}$
After equilibrium the $H_{2} S$ formed was analysed by dissolving it in water
and treating with excess of $P b^{2+}$ to give $1.029 g$ of $P b S$ as precipitate. What is value of K_{c} of the reaction at $440^{\circ} C$? (At weight of $P b=206$)

- Watch Video Solution

113. Sulphide ions in alkaline solution react with solid sulphur to form polyvalent sulphide ions. The equilibrium constant for the formation of S_{2}^{2-} and S_{3}^{2-} from S and S^{2-} ions is 1.7 and 5.3 respectively. Calculate equilibrium constant for the formation of S_{3}^{2-} from S_{2}^{2-} and S.

- Watch Video Solution

114. Calculate K_{c} for the reaction $K I+I_{2} \Leftrightarrow K I_{3}$. Given that initial weight of $K I$ is 1.326 g weight of $K I_{3}$ is 0.105 g and number of moles of free I_{2} is 0.0025 at equilibrium the volume of solution is $1-L$.

- Watch Video Solution

115. To 500 mL of $0.150 \mathrm{MAgNO}_{3}$ solution were added 500 mL of $1.09 \mathrm{MFe}^{2+}$ solution and the reaction is allowed to reach an equilibrium at $25^{\circ} \mathrm{C}$
$A g^{\oplus}(a q)+F e^{2+}(a q) \Leftrightarrow F e^{3+}(a q)+A g(s)$
For 25 mL of the solution, 30 mL of $0.0832 \mathrm{MKMnO}_{4}$ was required for oxidation. Calculate the equilibrium constant for the the reaction $25^{\circ} \mathrm{C}$.

- Watch Video Solution

116. A saturated solution of iodine in water contain $0.330 g I_{2}$ perlitre.

More than this I_{2} can be dissolved in $K I$ solution because of the following equilibrium.

$$
I_{2(g)}+I^{-} \Leftrightarrow I_{3}^{-}
$$

A $0.100 M K I$ solution actually dissolves 12.5 giodine per litre, most of which is converted to I_{3}^{-}. Assuming that the concentration of I_{2} in all saturated solution is the same, calculate the equilibrium constant for the above reaction. What is the effect of adding water to a clear saturated solution of I_{2} in the $K I$ solution?

- View Text Solution

117. For the equilibrium:
$L i C l .3 \mathrm{NH}_{3(s)} \Leftrightarrow \mathrm{LiCl} . \mathrm{NH}_{3(s)}+2 \mathrm{NH}_{3}, K_{p}=9 \mathrm{~atm}^{2}$
at $40^{\circ} \mathrm{C}$. A $5 l i t r e$ vessel contains 0.1 mole of LiCl . NH_{3}. How many mole of NH_{3} should be added to the flask at this temperture to derive the backward reaction for completion?

- Watch Video Solution

118. Consider the sublimation of mothballs at $27^{\circ} \mathrm{C}$ in a vessel having dimensions $10 \times 10 \times 10 \mathrm{~m}^{3}$. Assume that the mothballs are pure solid naphthalene (density $1.16 \mathrm{~g} / \mathrm{cm}^{3}$) and that they are spheres with a diameter 12.0 mm . The equilibrium constant $\left(K_{c}\right)$ for the sublimation of napthalene $C_{10} H_{8(s)} \Leftrightarrow C_{10} H_{8(v)}$ is 5.40×10^{-6} at $27^{\circ} \mathrm{C}$.
(a) When excess mothballs are present, how many gaseous naphthalene molecules are in the room at equilibrium
(b) How many mothballs are required to saturate the room with gaseous naphthalene?

- Watch Video Solution

119. Would $1 \% \mathrm{CO}_{2}$ in air be sufficient to prevent any loss in weight when $\mathrm{M}_{2} \mathrm{CO}_{3}$ is heated at $120^{\circ} \mathrm{C}$?
$\mathrm{M}_{2} \mathrm{CO}_{3}(s) \Leftrightarrow \mathrm{M}_{2} \mathrm{O}(s)+\mathrm{CO}_{2}(g)$
$K_{p}=0.0095$ atm at $120^{\circ} \mathrm{C}$. How long would the partial pressure of CO_{2} have to be to promote this reaction at $120^{\circ} \mathrm{C}$?

- Watch Video Solution

120. Under what pressure conditions $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ be efforescent at $25^{\circ} \mathrm{C}$. How good a drying agent is $\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ at the same temperature? Given
$\mathrm{CuSO} 4_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(s)+2 \mathrm{H}_{2} \mathrm{O}(v)$
$K_{p}=1.086 \times 10^{-4} \mathrm{~atm}^{2}$ at $25^{\circ} \mathrm{C}$. Vapour pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 mm of Hg .

(D) Watch Video Solution

121. For the reaction,
$2 F e_{(a q .)}^{3+}+H g_{(a q .)}^{2+} \Leftrightarrow 2 F e_{(a q .)}^{2+}+2 H g_{(a q .)}^{2+}$
$K_{c}=9.14 \times 10^{-6}$ at $25^{\circ} C$. If the initial concentration of the ions are $F e^{3+}=0.5 M,\left(H g_{2}\right)^{2+}=0.5 M, F e^{2+}=0.03 M$ and $H g^{2+}=0.03 M$.

What will be the concentrations of ions at equilibrium?

- Watch Video Solution

122. When NO and NO_{2} are mixed, the following equilibria are readily obtained,
$2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}, K_{p}=6.8 \mathrm{~atm}^{-1}$
$\mathrm{NO}+\mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{3}$
In an experiment when NO and NO_{2} are mixed in the ratio of $1: 2$, the final total pressure was 5.05 atm and the partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ was 1.7 atm. Calculate
a. the equilibrium partial pressure of $N O$.
b. K_{p} for $\mathrm{NO}+\mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{3}$.

- Watch Video Solution

123. Two solid compounds A and B dissociate into gaseous products at $20^{\circ} \mathrm{C}$ as
a. $A(s) \Leftrightarrow A^{\prime}(s)+H_{2} S(g)$
b. $B(s) \Leftrightarrow B^{\prime}(g)+H_{2} S(g)$

At $20^{\circ} \mathrm{C}$ pressure over excess solid A is 50 mm and that over excess solid B is 68 mm . Find:
a. The dissociation constant of A and B
b. Relative number of moles of A^{\prime} and B^{\prime} in the vapour phase over a mixture of the solids A and B.
c. Show that the total pressure of gas over the solid mixture would be 84.4 mm .
124. Solid $\mathrm{NH}_{4} \mathrm{I}$ on rapid heating in a closed vessel at $357^{\circ} \mathrm{C}$ dvelops a constant pressure of 275 mmHg owing to partial decomposition of $\mathrm{NH}_{4} \mathrm{I}$ into NH_{3} and HI but the pressure gradually increases further (when the excess solid residue remains in the vessel) owing to the dissociation of $H I$. Calculate the final pressure developed at equilibrium. K_{p} for $H I$ dissociation is 0.015 at $357^{\circ} \mathrm{C}$.

- View Text Solution

125. In a reaction at equilibrium, ' x ' mole of reactant A decompose to give 1 molar of C and D. It has been found that the fraction of A decomposed at equilibrium is independent of initial concentration of A.

Calculate x.

- Watch Video Solution

126. For a reaction, $a A+b B \Leftrightarrow c C+d D$, the reaction quotient $Q=\frac{[C]_{0}^{c}[D]_{0}^{d}}{[A]_{0}^{a}[B]_{0}^{b}}$, where $[A]_{0},[B]_{0},[C]_{0},[D]_{0}$ are initial concentrations.

Also $\quad K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ where $[A], \quad[B], \quad[C], \quad[D]$ are equilibrium concentrations. The reaction proceeds in forward direction if $Q<K_{c}$ and in backward direction if $Q>K_{c}$. The variation of K_{c} with temperature is given by: $2303 \frac{\log \left(K_{C_{2}}\right)}{K_{C_{1}}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$.
For gaseous phase reactions $K_{p}=K_{c}(R T)^{\Delta n}$ where $\Delta n=$ moles of gaseous products - moles of gaseous reactants. Also $-\Delta G^{\circ}=2.303 R T \log _{10} K_{c}$.

The heat or reaction for an endothermic reaction, in equilibrium is 1200 cal , at constant volume is more than at constant pressure at 300 K . The ratio of K_{p} / K_{c} is:

- Watch Video Solution

127. N_{2} and O_{2} combine at a given temperature to produce $N O$. At equilibrium the yield of $N O$ is ' x ' precent by volume. If $x=\sqrt{K a . b}-\frac{K(a+b)}{4}$, where K is the equilibrium constant of the given reaction at the given temperature and a and b are the volume
percentage of N_{2} and O_{2}, respectively, in the initial state. Report. Report the maximum value of K at which X is maximum

- Watch Video Solution

128. The moisture content of a gas is often expressed in terms of the dew point. The point is the temperature to which the gas must be cooled before the gas becomes saturated with water vapour. At this temperture, water or ice (depending on the temperature) will be deposited on a solid surface. Dew point of $\mathrm{H}_{2} \mathrm{O}$ is $-43^{\circ} \mathrm{C}$ at which vapour pressure of ice formed is 0.07 mm . Assuming that the CaCl_{2} owes its desicationg properties to the formation of $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, calculate :
(i) K_{p} at that temperature of the reaction,
(ii) ΔG°
$\mathrm{CaCl}_{2(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$.

- Watch Video Solution

129. Consider the equilibrium : $P_{(g)}+2 Q_{(g)} \Leftrightarrow R_{(g)}$. When the reaction is carried out at a certain temperature, the equilibrium concentration of P and Q are $3 M$ and $4 M$ respectively. When the volume of the vessel is doubled and the equilibrium is allowed to be reestablished, the concentration of Q is found to be $3 M$. Find:
(a) K_{c}
(b) Concentration of R at two equilibrium stages.

- Watch Video Solution

130. (i) The equilibrium $\mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{2(g)}+\mathrm{CO}_{(g)}$ is established in an evacuated vessel at 723 K starting with 0.1 mol of H_{2} and 0.2 mole of CO_{2}. If the equilibrium mixture contains 10 mole per cent of water vapour, calculate K_{p}, given that the equilibrium pressure is 0.5 atm . Calculate the partial pressures of the component species and the volume of the container.
(ii) If now, into the flask, solid CoO and solid Co are introduced two new equilibrium are established.
$\mathrm{CoO}_{(s)}+\mathrm{H}_{2(g)} \Leftrightarrow \mathrm{Co}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(g)}$,
$\mathrm{CoO}_{(s)}+\mathrm{CO}_{(g)} \Leftrightarrow \mathrm{Co}_{(g)}+\mathrm{CO}_{2(g)}$
The new equilibrium mixture contains 30 mole per cent of water vapour.
Calculate the equilibrium constants for the new equilibria.

- Watch Video Solution

131. The equilibrium
$p-$ xyloquinone + methylene white $=p-$ xylohydroquinone + methylen
, may be studied convinently by observing the difference in colour methylene white and methylene blue. One milli- mole of methylene blue was added to 1 litre of solution that was $0.24 M$ in p - xylohdroquinone and $0.012 M$ in p-xythloquinone. It was then found that 4% of the added methylene blue was reduced to methylene white. What is the equilibrium constant of the above reaction? The equation is balanced with one mole each of 4 substances.

- Watch Video Solution

132. A certain gas A polymerizes to a small extent at a given temperature and pressure, $n A \Leftrightarrow A_{n}$. Show that the gas obeys the approx. equation $\frac{P V}{R T}=\left[1-\frac{(n-1) K_{c}}{V^{n-1}}\right]$, where $K_{c}=\frac{\left[A_{n}\right]}{[A]^{n}}$ and V is the volume of the container. Assume that initially one mole of A was taken in the container.

- Watch Video Solution

133. A100dm ${ }^{3}$ flask contains 10 mole each of N_{2} and H_{2} at 777 K . After equilibrium was reached, parital pressure of H_{2} was 1 atm . At this point 5litre of $\mathrm{H}_{2} \mathrm{O}_{(l)}$ was injected and gas mixture was cooled to 298 K . Find out the pressure of gaseous mixture left.

- Watch Video Solution

134. Calculate ΔG for the reaction at $25^{\circ} C$ when partial pressure of reactants $\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and CO are $10,20,0.02$ and 0.01 atm respectively.
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(g)} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{(g)}$
Given G_{f}° for $H_{2(g)}, \mathrm{CO}_{2(g)}, \mathrm{H}_{2} \mathrm{O}_{(g)}$ and $\mathrm{CO}_{(g)}$ are $0,-394.37$, $-228.58,-137.15 K J$ respectively.

- Watch Video Solution

Objective problems

1. The equilibrium constant for a reacton
$N_{2}(g)+O_{2}(g)=2 N O(g)$ is 4×10^{-4} at 2000 K . In the presence of catalyst, the equilibrium constant is attained 10 times faster. The equilibrium constant in the presence of catalyst, at 2000 K is
A. 4×10^{-3}
B. 4×10^{-4}
C. 4×10^{-5}
D. none of these
2. For the decomposition reaction:
$\mathrm{NH}_{2} \mathrm{COONH}_{4(s)} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$.
$\left(K_{p}=2.9 \times 10^{-5} \mathrm{~atm}^{2}\right)$
The total pressure of gases at equilibrium when 1 mole of $\mathrm{NH}_{2} \mathrm{COONH}_{4(s)}$ was taken to start with would be:
A. 0.0194 atm
B. 0.0388 atm
C. 0.0582 atm
D. 0.0766 atm

- Watch Video Solution

3. The partial pressure of $\mathrm{CH}_{3} \mathrm{OH}_{(g)}, \mathrm{CO}_{(g)}$ and $\mathrm{H}_{2(g)}$ in equilibrium mixture for the reaction, $\mathrm{CO}_{(g)}+2 \mathrm{H}_{2(g)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(g)}$ are 2.0, 1.0
and 0.1 atm respectively at $427^{\circ} \mathrm{C}$. The value of K_{P} for deomposition of $\mathrm{CH}_{3} \mathrm{OH}$ to CO and H_{2} is:
A. $10^{2} \mathrm{~atm}$
B. $2 \times 10^{2} \mathrm{~atm}^{-1}$
C. $50^{2} \mathrm{~atm}^{2}$
D. $5 \times 10^{-3} \mathrm{~atm}^{2}$

- Watch Video Solution

4. The equilibrium constant $\left(K_{p}\right)$ at $27^{\circ} C$ for a homegenous gasesous reaction is 10^{-8}. The standard free energy change ΔG° for the reaction is: (Use $R=2 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$)
A. 11.05 kcal
B. -1.8 kcal
C. -4.1454 kcal
D. +4.1454 kcal

- Watch Video Solution

5. The equilibrium constant K for the reaction $2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$ at room temperature is 2.85 and that at 698 K is 1.4×10^{-2}. This implies
A. $H I$ is exothermic compound
B. $H I$ is very stabel at room temperature
C. HI is realtively less stable than H_{2} and I_{2}
D. $H I$ is resonance stabilised

- Watch Video Solution

6. Consider the reaction
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$

Which occurs in one step. The specific rate constant are 0.25 and 5000 for the forward and reverse reaction, respectively. The equilibrium constant is
A. 2.0×10^{-4}
B. 4.0×10^{2}
C. 5.0×10^{-5}
D. 2.5×10^{-6}

- Watch Video Solution

7. $X Y_{2}$ dissociates $X Y_{2}(g) \Leftrightarrow X Y(g)+Y(g)$. When the initial pressure of $X Y_{2}$ is 600 mm Hg , the total equilibrium pressure is 800 mm Hg .

Calculate K for the reaction Assuming that the volume of the system remains unchanged.
A. 50
B. 100
C. 166.6
D. 400

- Watch Video Solution

8. The equilibrium constant for a reaction $A+B \Leftrightarrow C+D$ is 1×10^{-2} at 298 K and is 2 at 273 K . The chemical process resulting in the formation of C and D is
A. exothermic
B. endothermic
C. unpredictable
D. there is no relationship between K and ΔH
9. In the dissociation of PCl_{5} as
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
If the degree of dissociation is α at equilibrium pressure P , then the equilibrium constant for the reaction is
A. $K_{p}=\frac{\alpha^{2}}{1+\alpha^{2} P}$
B. $K_{p}=\frac{\alpha^{2} P^{2}}{1-\alpha^{2}}$
C. $K_{p}=\frac{\alpha P^{2}}{1-\alpha^{2}}$
D. $K_{p}=\frac{a^{2} P}{1-\alpha^{2}}$

Answer: D

- Watch Video Solution

10. When pressure is applied to the equilibrium system, Ice \Leftrightarrow Water.

Which of the following phenomenon will happen?
A. More ice will be formed
B. Water will evaporate
C. More water will be formed
D. Equilibrium will not be formed

- Watch Video Solution

11. According to le-Chatelier's principle, adding heat to a solid and liquid in equilibrium will cause the
A. amount of solid to decrease
B. amount of liquid to decrease
C. temperature to rise
D. temperature to fall
12. The standard state Gibbs's energy change for the isomerisation reaction \quad cis $-2-$ pentence \Leftrightarrow trans - $2-$ pentence is $-3.67 \mathrm{kJmol}^{-1}$ at 400 K . If more trans $-2-$ pentence is added to the reaction vessel, then:
A. more cis $-2-$ pentence is formed
B. equilibrium shifts in the forward direction
C. equilibrium remains unlatered
D. more trans - $2-$ pentence is produced

- Watch Video Solution

13. The equilibrium constant $\left(K_{p}\right)$ for the reaction, $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$ is 16 . If the volume of the container is reduced to half of its original volume, the value of K_{p} for the reaction at the same temperature will be:
A. 32
B. 64
C. 16
D. 4
14. A gas bulb is filled with NO_{2} gas and immersed in an ice bath at $0^{\circ} \mathrm{C}$, which becomes colourless after sometime. This colourless gas will be:
A. NO_{2}
B. $\mathrm{N}_{2} \mathrm{O}$
C. $\mathrm{N}_{2} \mathrm{O}_{4}$
D. $\mathrm{N}_{2} \mathrm{O}_{5}$
15. At equilibrium $K_{p}=1$, then :
A. $\Delta G^{\circ}=0$
B. $\Delta G^{\circ}=+v e$
C. $\Delta G^{\circ}=-v e$
D. none of these

D Watch Video Solution

16. In which of the following case does the reaction go farthest to completion?
A. $K=10^{3}$
B. $K=10^{2}$
C. $K=10$
D. $K=1$

- Watch Video Solution

17. If 1.0 mole of I_{2} is introduced in a 1.0litre flask at $1000 \mathrm{~K}\left(K_{c}=10^{-6}\right)$, which one is correct?
A. $\left[I_{2(g)}\right]>\left[I_{(g)}^{-}\right]$
B. $\left[I_{2(g)}\right]<\left[I_{(g)}^{-}\right]$
C. $\left[I_{2(g)}\right]=\left[I_{(g)}^{-}\right]$
D. $\left[I_{2(g)}\right]=1 / 2\left[I_{(g)}^{-}\right]$

- Watch Video Solution

18. Which one is reversible process?
A. Melting of ice at $10^{\circ} \mathrm{C}$
B. Mixing of two gases
C. Evaporation of water at $100^{\circ} \mathrm{C}$ and 1 atm pressure
D. none of these

- Watch Video Solution

19. For the reaction, $N_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$, in a vessel equal moles of N_{2} and H_{2} are mixed to attain equilibrium. At equilibrium:
A. $\left[N_{2}\right]=\left[H_{2}\right]$
B. $\left[N_{2}\right]>\left[H_{2}\right]$
C. $\left[N_{2}\right]<\left[H_{2}\right]$
D. $\left[\mathrm{H}_{2}\right]>\left[\mathrm{NH}_{3}\right]$
20. K_{c} for $A+B \Leftrightarrow C+D$ is 10 at $25^{\circ} C$. If a container contains $1,2,3$, $4 \mathrm{~mol} /$ litre of A, B, C and D respectively at $25^{\circ} C$, the reaction shell proceed:
A. from left to right
B. from right to left
C. equilibrium
D. either of these

- Watch Video Solution

21. If the pressure of N_{2} / H_{2} mixture in a closed vessel is 100 atmospheres and 20% of the mixture then reacts the pressure at the same temperature would be .
A. 100
B. 90
C. 85
D. 80
22. If 340 g of a mixture of N_{2} and H_{2} in the correct ratio gas a 20% yield of NH_{3}. The mass produced would be:
A. $16 g$
B. $17 g$
C. $20 g$
D. $68 g$
23. Hot copper turnings can be used as oxygen getter for inert gas supplies by slowly passing the gas over the turnings at 600 K .
$2 \mathrm{Cu} u_{(s)}+1 / 2 O_{2(g)} \Leftrightarrow C u_{2} O_{(s)}$,
$\left(K_{p}=7.5 \times 10^{10} \mathrm{~atm}^{-\frac{1}{2}}\right)$. The number of molecules per litre left after equilibrium has reached are:
A. 2.17
B. 2.17×10^{23}
C. 3.61×10^{24}
D. 1.78×10^{22}

(Watch Video Solution

24. The equilibrium constant K_{c} for $A(g) \Leftrightarrow B(g)$ is 1.1. Which gas has a molar concentration greater than 1 .
A. $[A]=0.91$
B. $[A]>0.91$
C. $[A]>1$
D. all of these

Watch Video Solution

25. Amount of PCl_{5} (in moles) need to be added to one litre vessel at $250^{\circ} \mathrm{C}$ in order to obtain a concentration of 0.1 mole of Cl_{2} for the given change is:
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}, K_{c}=0.0414$ mollitre e^{-1}
A. 0.3415
B. 0.0341
C. 3.415
D. 0.3145
26. For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(g)+\mathrm{H}_{2} S(g)$, the observed, pressure for reaction mixture in equilibrium is 1.12 atm at $106^{\circ} \mathrm{C}$. What is the value of K_{p} for the reaction?
A. $3.316 \mathrm{~atm}^{2}$
B. $0.3136 \mathrm{~atm}^{2}$
C. $31.36 \mathrm{~atm}^{2}$
D. $6.98 \mathrm{~atm}^{2}$

- Watch Video Solution

27. In the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$, the equilibrium pressure is 12 atm . If 50% of CO_{2} reacts, calculate K_{p}.
A. 12 atm
B. 16 atm
C. 20 atm
D. 6 atm

- Watch Video Solution

28. Sulphide ions in alkaline solution react with solid sulphur to form polyvalent sulphide ions. The equilibrium constant for the formation of S_{2}^{2-} and S_{3}^{2-} from S and S^{2-} ions is 1.7 and 5.3 respectively. Calculate equilibrium constant for the formation of S_{3}^{2-} from S_{2}^{2-} and S.
A. 1.33
B. 3.11
C. 4.21
D. 1.63
29.

$3 \mathrm{H}_{2} \mathrm{O}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \mathrm{K}_{p}=1.086 \times 10^{-4} \mathrm{~atm}{ }^{2}$ at $25^{\circ} \mathrm{C}$. The efflorescent nature of $\mathrm{CuSO} \mathrm{S}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ can be noticed when vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ in atmosphere is
A. $>7.92 \mathrm{~mm}$
B. $<7.92 \mathrm{~mm}$
C. $<7.92 \mathrm{~mm}$
D. none of these

- Watch Video Solution

30. For the reaction at $25^{\circ} \mathrm{C}, \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$, if ΔG_{f}° for $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} are 23.49 and 12.39 kcal respectively, then K_{p} for the reaction is:
A. 113332
B. 11.33
C. 1.133
D. 0.113

- Watch Video Solution

31. The reaction $A_{(s)} \Leftrightarrow B_{(s)}+C_{(g)}$ attains equilibrium in a close container in such a way that vapour pressure of $C_{(g)}$ is equal to 1 atm . The incorrect realtionship at equilibrium is:
A. $\Delta G=0$
B. $K_{p}=1$
C. $\Delta G^{\circ}=0$
D. $\Delta H^{\circ}=0$
32. In the system $A B_{(s)} \Leftrightarrow A_{(g)}+B_{(g)}$ doubling the quantity of $A B_{(s)}$ would:
A. increase the amount of A to double its value
B. increase the amount of B to double its value
C. increase the amounts of both A and B to double their values
D. cause no change in the amounts of A and B

- Watch Video Solution

33. In the system $A_{(s)} \Leftrightarrow 2 B_{(g)}+3 C_{(g)}$, if the concentration of C at equilibrium is increased by a factor of 2 , it will cause the equilibrium concentration of B to change to:
A. two times the original value
B. one half of its original value
C. $2 \sqrt{2} \times$ its original value
D. $\frac{1}{2 \sqrt{2}} \times$ its original value

Watch Video Solution

34. The reaction quotient (Q) predicts:
A. the direction of equilibrium to be attained
B. the ratio of activities at equilibrium i.e., K_{c}
C. the ratio of activities at any-time
D. all of these

Answer: D

35. Given a system in equilibrium, an increase in concentration of the products is always produced by arise in temperature, when the reaction is:
A. gas phase
B. spontaneous
C. exothermic
D. endothermic

- Watch Video Solution

36. For the reaction is equilibrium :
$2 \mathrm{NOBr}_{(g)} \Leftrightarrow 2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(g)}$
If $P_{B r_{2}}$ is $\frac{P}{9}$ at equilibrium and P is total pressure, prove that $\frac{K_{p}}{P}$ is equal to $\frac{1}{81}$.
A. $1 / 9$
B. $1 / 81$
C. $1 / 27$
D. $1 / 3$
37. $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated to 33% and 40% at total pressure P_{1} and P_{2} atm respectively. Then the ratio P_{1} / P_{2} is
A. $7 / 4$
B. $7 / 3$
C. $8 / 3$
D. $8 / 5$
38. Assertion: A dynamic equilibrium means a balance between the tendency towards minimum and maximum enthalpy .

Reason: The reaction having $\Delta H=-v e$ occurs form high enthalpy side to low enthalpy side and the reaction $\Delta H=+v e$ occurs form low enthalpy side to high enthalpy side.
A. a tendency towards minimum enthalpy
B. a tendency towards maximum enthalpy
C. a balance between the tendencies towards minimum and maximum enthalpies
D. none of these

- Watch Video Solution

39. Which of the following graphs are correct for the given reaction?

$$
H_{2(g)}+C O_{2(g)} \Leftrightarrow H_{2} O_{(g)}+C O_{(g)}
$$

Assume initially only H_{2} and CO_{2} are present:
(i) 仓ั

A.
(b)

(c)

(d)

D.

- Watch Video Solution

40. If the equilibrium constant for the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$ is $K=\left[N O_{2}\right]^{2} /\left[N_{2} O_{4}\right]$, then which of the graphs are correct at constant temperature?
A.
(b)

c)

C.
(d)

D.
A. $\Delta G=0$
B. $\Delta G^{\circ}=0$
C. $\Delta S^{\circ}=0$
D. $\Delta G=\Delta G^{\circ}$

- Watch Video Solution

42. Which statement about the given reaction is incorrect?
$N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}, \Delta H=-v e$
A. At $200^{\circ} \mathrm{C}$, the yield of NH_{3} is 15%
B. At $500^{\circ} \mathrm{C}$, the yield of NH_{3} is 15%
C. At $1000^{\circ} \mathrm{C}$, the yield of NH_{3} is 1%
D. The reaction occurs at faster rate to attain equilibrium earlier at $500^{\circ} C$
43. Which oxide of nitrogen is the most stabel?
A. $2 \mathrm{NO}_{2(g)} \Leftrightarrow N_{2(g)}+2 \mathrm{O}_{2(g)}, K=6.7 \times 10^{16}$ mollitre $^{-1}$
B. $2 N O_{(g)} \Leftrightarrow N_{2(g)}+O_{2(g)}, K=2.2 \times 10^{30}$ mollitre $^{-1}$
C. $2 \mathrm{~N}_{2} \mathrm{O}_{5(g)} \Leftrightarrow 2 \mathrm{~N}_{2(g)}+5 \mathrm{O}_{2(g)}, K=1.2 \times 10^{34}$ mol 5 litre $^{-5}$
D. $2 N_{2} O_{(g)} \Leftrightarrow 2 N_{2(g)}+O_{2(g)}, K=3.5 \times 10^{33}$ mollitre $^{-1}$

- Watch Video Solution

44. Pure ammonia is placed in a vessel at a temperature where its dissociation constant (α) is appreciable. At equilibrium,
A. K_{p} does not change with pressure
B. α does not change with pressure
C. $\left[\mathrm{NH}_{3}\right]$ does not change with pressure
D. $\left[H_{2}\right]<\left[N_{2}\right]$

- Watch Video Solution

45. Indicate the correct answer out of the following for the reaction:
$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$
A. the reaction is retarded by the addition of KOH
B. the reaction is favoured by the addition of $\mathrm{NH}_{4} \mathrm{OH}$
C. the reaction is retarded by the addition of hydrogen ion
D. none of these
46. Hydrogen and oxygen were heated together in a closed vessel. The equilibrium constant is found to decrease after $2000^{\circ} \mathrm{C}$. Which is responsible for this?
A. Backward reaction predominates
B. Forward reaction predominates
C. Both forward and backward reaction have same rate
D. It is a property of the system, hence no reason for lower value

- Watch Video Solution

47. In line kilns, the following reaction,

$$
\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

proceeds to completion because of
A. of high temperature
B. CO_{2} escapes out
C. $C a O$ is removed
D. of low temperature

- Watch Video Solution

48. A change in the free energy of a system at constant temperature and pressure will be:
$\Delta_{\text {sys }} G=\Delta_{\text {sys }} H-T \Delta_{\text {sys }} S$
At constant temperature and pressure
$\Delta_{\text {sys }} G<0$ (spontaneous)
$\Delta_{\text {sys }} G=0$ (equilibrium)
$\Delta_{\text {sys }} G>0$ (non-spontaneous)
For a system in equilibrium, $\Delta G=0$, under conditions of constant
A. temperature and pressure
B. temperature and volume
C. energy and volume
D. pressure and volume

- Watch Video Solution

49. In $K_{p}=K_{c}(R T)^{\Delta n}, \Delta n$ may have:
A. $+v e$ values
B. $-v e$ values
C. integer or fractional values either of these
D. either of these

D Watch Video Solution

50. When a bottle of cold drink is opened, the gas comes out with a fizzle due to:
A. decrease in pressure suddenly which results in a decrease in solubility of CO_{2} gas in water.
B. decrease in temperature
C. increase in pressure
D. none of these

- Watch Video Solution

51. Densities of diamond and graphite are 3.5 and $2.3 g m L^{-1}$, respectively. The increase of pressure on the equilibrium $C_{\text {diamond }} \Leftrightarrow C_{\text {graphite }}$
A. favours backward reaction
B. favours forward reaction
C. have no effect
D. nothing can be predicted

- Watch Video Solution

52. The reaction which proceeds in the forward direction is
A. $\mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2} \Leftrightarrow \mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2}$
B. $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}+\mathrm{NaCl}$
C. $\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2} \Leftrightarrow \mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{Cl}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}+3 \mathrm{I}^{-} \Leftrightarrow 2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2}$

- Watch Video Solution

53. For the reactions,
$A \Leftrightarrow B \quad K_{c}=2$
$B \Leftrightarrow C \quad K_{c}=4$
$C \Leftrightarrow D \quad K_{c}=6$
K_{c} for the reaction, $A \Leftrightarrow D$ is:
A. $(2+4+6)$
B. $(2 \times 4) / 6$
C. $(4 \times 6) / 2$
D. $2 \times 4 \times 6$

Watch Video Solution

54. If pressure is applied to the equilibrium of solid-liquid. The melting point of the solid:
A. will not change
B. may increase or decrease depending upon nature of solid species
C. will always increase
D. will always decrease
55. Solubility of a gas in liquid increases on:
A. addition of a catalyst
B. increasing the pressure
C. decreasing the pressure
D. increasing temperature

- Watch Video Solution

56. 2mole of $P C l_{5}$ were heated in a closed vessel of $2 l i t r e$ capacity. At equilibrium 40% of $P C l_{5}$ dissociated into $P C l_{3}$ and $C l_{2}$. The value of the equilibrium constant is:
A. 0.267
B. 0.53
C. 2.63

D. 5.3

- Watch Video Solution

57. If in reaction, $N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2}, \alpha$ is degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$, then the number of molecules at equilibrium will be:
A. 3
B. $(1-\alpha)$
C. $(1-\alpha)^{2}$
D. $(1+\alpha)$

- Watch Video Solution

58. For the reaction $\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{l}$:
$\left(\Delta H=-170.8 \mathrm{kJmol}^{-1}\right)$. Which of the following statement is not

true?

A. Addition of $C H_{4(g)}$ or $O_{2(g)}$ at equilibrium will cause a shift to right
B. The reaction is exothermic
C. At equilibrium, the concentration of $\mathrm{CO}_{2(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{l}$ are not equal
D. The equilibrium constant for the reaction is given by

$$
K_{p}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}}
$$

- Watch Video Solution

59. A reaction $\mathrm{CaF}_{2} \Leftrightarrow \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}$is at equilibrium. If the concentration of $C a^{2+}$ is increased four times, what will be the change in F^{-}concentration as compared to the initial concentration of F^{-}?
A. $1 / 4$ of the initial value
B. $1 / 2$ of the initial value
C. 2 times of the initial value
D. none of these

- Watch Video Solution

60. 28 g of N_{2} and 6 g of H_{2} were mixed. At equilibrium 17 g NH was produced. The weight of N_{2} and H_{2} at equilibrium are respectively
A. $11 g$, zero
B. $1 g, 3$
C. $14 g, 3 g$
D. $11 g, 3 g$
61. If ΔG° for the reaction given below is 1.7 kJ , the equilibrium constant of the reaction,
$2 H I_{(g)} \Leftrightarrow H_{2(g)}+I_{2(g)}$ at $25^{\circ} C$ is:
A. 24.0
B. 3.9
C. 2.0
D. 0.5

- Watch Video Solution

62. The equilibrium constant of a reaction is 1×10^{20} at 300 K . The standard free energy change for this reaction is :
A. $-115 k J$
B. +115 kJ
C. $+166 k J$
D. -166 kJ

- Watch Video Solution

63. The equilibrium constant of a reaction is 20.0 . At equilibrium, the reate constant of forward reaction is 10.0 . The rate constant for backward reaction is :
A. 0.5
B. 2.0
C. 10.0
D. 200.0
64. At temperature T , a compound $A B_{2}(g)$ dissociates according to the reaction
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
with degree of dissociation α, which is small compared with unity. The expression for K_{p} in terms of α and the total pressure P_{T} is
A. $\frac{P x^{3}}{2}$
B. $\frac{P x^{2}}{3}$
C. $\frac{P x^{3}}{3}$
D. $\frac{P x^{2}}{2}$

- Watch Video Solution

65. For the reaction
$A g(C N)_{2}^{\ominus} \Leftrightarrow A g^{\oplus}+2 C N^{\ominus}$, the K_{c} at $25^{\circ} C$ is 4×10^{-19} Calculate
$\left[A g^{\oplus}\right]$ in solution which was originally $0.1 M$ in $K C N$ and $0.03 M$ in
AgNO_{3}.
A. 7.5×10^{18}
B. 7.5×10^{-18}
C. 7.5×10^{19}
D. 7.5×10^{-19}
66. When 20 g of CaCO_{3} were put into 10 litre flask and heated to $800^{\circ} \mathrm{C}$, 35% of CaCO_{3} remained unreacted at equilibrium. K_{p} for decomposition of CaCO_{3} is :
A. 1.145 atm
B. 0.145 atm
C. 2.146 atm
D. 3.145 atm
67. $2 \mathrm{~mole} \mathrm{~N}_{2}$ and $3 \mathrm{moleH}_{2}$ gas are allowed to react in a 20 L flask at 400 K and after complete conversion of H_{2} into $\mathrm{NH}_{3} .10 \mathrm{LH}_{2} \mathrm{O}$ was added and temperature reduced to 300 K . Pressure of the gas after reaction is :
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
A. $3 R \times 300 / 20$
B. $3 R \times 300 / 10$
C. $R \times 300 / 20$
D. $R \times 300 / 10$

- Watch Video Solution

68. At 298 K , the equilibrium between $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} is represented as :
$\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$. If the total pressure of the equilibrium mixture is
P and the degree of dissociation of $N_{2} O_{4(g)}$ at $298 K$ is x, the partial pressure of $\mathrm{NO}_{2(\mathrm{~g})}$ under these conditions is:
A. $\left(\frac{2 x}{1+x}\right) P$
B. $2 x P$
C. $\left(\frac{2 x}{1-x}\right) P$
D. $\frac{2}{3} x P$

- Watch Video Solution

69. The equilibrium constant (K_{p}) for the reaction, $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ at 1000 K is 3.5 . The partial pressure of oxygen gas to give equal mole of $S O_{2}$ and $S O_{3}$ is :
A. 0.29 atm
B. 35 atm
C. 0.53 atm
D. 1.87 atm

- Watch Video Solution

70. A mixture of nitrogen and hydrogen in the ratio of $1: 3$ reach equilibrium with ammonia, when 50% of the mixture has reacted. If the total pressure is P, the partial pressure of ammonia in the equilibrium mixture was :
A. $P / 2$
B. $P / 3$
C. $P / 4$
D. $P / 6$
71. For the reversible system : $X_{(g)} \Leftrightarrow Y_{(g)}+Z_{(g)}$, a quantity of X was heated at constant pressure P at a certain temperature. The equilibrium partial pressure of X was found to be $P / 7$. What is the value of K_{p} at given temperature?
A. $6 P / 7$
B. $9 P / 7$
C. $36 P / 7$
D. $6 P$

- Watch Video Solution

72. What weight of solid ammonium carbamate $\left(\mathrm{NH}_{2} \mathrm{COONH}_{4}\right)$, when vaporised at $200^{\circ} \mathrm{C}$ will have a volume of 8.96 litre at 1.0 atm pressure.

Assume that the solid completely decomposes into CO_{2} and NH_{3} at $200^{\circ} \mathrm{C}$ and 1.0atm :
A. $4 g$
B. $6 g$
C. $5 g$
D. $10 g$
73. Some gaseous equilibrium are given below:
$\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}$
$2 \mathrm{CO}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{CO}_{2}$
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
find out the realation between equilibrium constants:
A. $K=K_{1} K_{2}$
B. $K=\left(K_{1} K_{2}\right)^{2}$
C. $K=\left(K_{1} / K_{2}\right)^{1 / 2}$
D. $K=K_{1} / K_{2}$

- Watch Video Solution

74. 8 mol of gas $A B_{3}$ are introduced into a $1.0 \mathrm{dm}^{3}$ vessel. It dissociates as $2 A B_{3}(g) \Leftrightarrow A_{2}(g)+3 B_{2}(g)$

At equilibrium, 2 mol of A_{2} is found to be present. The equilibrium constant for the reaction is
A. $72 m o l^{2} L^{-2}$
B. $36 m o l^{2} L^{-2}$
C. $3 \mathrm{~mol}^{2} L^{-2}$
D. $27 m o l^{2} L^{-2}$

Answer: D

75. If S° for $N_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{NO}_{2}, \mathrm{NO}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ are 45.7, 49.0, 48.2, 57.24
and cal 72.77 respectively and

$$
\mathrm{N}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O} \quad \Delta H^{\circ}=19.49 \mathrm{kcalat} 27^{\circ} \mathrm{C}
$$

$$
\frac{1}{2} N_{2}+\frac{1}{2} O_{2} \Leftrightarrow N O \quad \Delta H^{\circ}=21.60 \mathrm{kcalat} 27^{\circ} \mathrm{C}
$$

$$
\frac{1}{2} N_{2}+O_{2} \Leftrightarrow N O_{2} \quad \Delta H^{\circ}=8.09 k \text { calat } 27^{\circ} \mathrm{C}
$$

$$
N_{2}+2 O_{2} \Leftrightarrow N_{2} O_{4} \quad \Delta H^{\circ}=2.19 \mathrm{kcalat} 27^{\circ} \mathrm{C}
$$

For which ΔG° is more $+v e$?
A. $N O$
B. $\mathrm{N}_{2} \mathrm{O}$
C. NO_{2}
D. $\mathrm{N}_{2} \mathrm{O}_{4}$

- Watch Video Solution

76. The degree of dissociation of $\mathrm{PCl}_{5}(\alpha)$ obeying the equilibrium, $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$ is related to the pressure at equilibrium by :

$$
\text { A. } a \propto P
$$

B. $a \propto \frac{1}{\sqrt{P}}$
C. $a \propto \frac{1}{P^{2}}$
D. $a \propto \frac{1}{P^{4}}$
77. The plots of $\log _{10} K v s .1 / T$ leads toa straight line having intercept equal to:
A. ΔG°
B. $\frac{\Delta G^{\circ}}{2.303 R}$
C. $\frac{\Delta S^{\circ}}{2.303 R}$
D. $\frac{\Delta H^{\circ}}{2.303 R}$
78. For an equilibrium reaction involving gases, the forward reaction is first order while the reverse reaction is second order. The unit of K_{p} for forward equilibrium is
A. atm
B. atm^{2}
C. atm^{-1}
D. $a t m^{-2}$

- Watch Video Solution

79. For the reaction, $A+B \Leftrightarrow 3 C$, at $25^{\circ} C$, a 3 litre vessel contains 1,2 , 4moles of A, B and C respectively. If K_{c} for the reaction is 10 , the reaction will proceed in :
A. forward direction
B. backward direction
C. in either direction
D. in equilibrium

- Watch Video Solution

80. The brown gas prepared by the action of concentrated nitric acid on copper is an equilibrium mixture of dinitrogen tetraoxide and nitrogen dioxide : $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \stackrel{\text { Enhermic }}{\Longleftrightarrow} 2 \mathrm{NO}_{2(\mathrm{~g})}$

Which one of the following changes would result in a darkening of the colour?
A. Increase in pressure
B. Increase in temperature
C. Addition of a catalyst
D. Removal of dinitrogen tetraoxide by liquefaction
81. The dissociation equilibrium pressure of $\mathrm{NH}_{4} \mathrm{H} S_{(s)}$ is 60 cm at $27^{\circ} \mathrm{C}$. The total pressure at equilibrium, when the $\mathrm{NH}_{4} \mathrm{HS}$ is dissociated in pressence of 45 cm of NH_{3} is :
A. 100 cm
B. 105 cm
C. 75 cm
D. 65 cm

- Watch Video Solution

82. If little heat is added to Ice \Leftrightarrow Liquid equilibrium in a sealed container :
A. Pressure will rise
B. Pressure will fall
C. Temperature will fall
D. Temperature remains constant

- Watch Video Solution

83. 0.2 mole of $\mathrm{NH}_{4} \mathrm{Cl}$ are introduced into an empty container of 10litre
and heated to $327^{\circ} \mathrm{C}$ to attain equilibrium as :
$\mathrm{NH}_{4} \mathrm{Cl}_{(s)} \Leftrightarrow \mathrm{NH}_{3(g)}+H C l_{(g)},\left(K_{p}=0.36 a t m^{2}\right)$.
The quantity of solid $\mathrm{NH}_{4} \mathrm{Cl}$ left is :
A. 0.078 mole
B. 0.02 mole
C. 0.095 mole
D. 0.035 mole
84. The equilibrium : $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$ shows that $K_{p}(a t m)$ is double to the value of $K_{c}\left(\right.$ mollitre $\left.^{-1}\right)$ at a particular temperature T, then T is :
A. $2 K$
B. 12.18 K
C. 24.36 K
D. 27.3 K

- Watch Video Solution

85. The relation between K_{p} and K_{c} of a reversible reaction at constant temperature is $K_{p}=$.
A. $K_{c}=K_{p}(R T)^{\Delta n}$
B. $K_{p}=K_{c}(R T)^{-\Delta n}$
C. $K_{p}=K_{c}(R T)^{\Delta n}$
D. $K_{c}=K_{p}(R T)^{-\Delta n}$

- Watch Video Solution

86. For the gas phase reaction
$C_{2} H_{4}+H_{2} \Leftrightarrow C_{2} H_{6}(\Delta H=-32.7 \mathrm{kcal})$
carried out in a vessel, the equilibrium concentration of $C_{2} H_{4}$ can be increased by
A. increasing the temperature
B. decreasing the temperature
C. removing some H_{2}
D. adding some $C_{2} H_{6}$
87. Nitrogen combines with oxygen to form nitric oxide,

$$
N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)},\left(\Delta H=90 \mathrm{kJmol}^{-1}\right)
$$

The decomposition of $N O$ is favoured by:
A. decrease of temperature
B. increase of temperature
C. increase in the concentration of nitric oxide
D. decrease of pressure

- Watch Video Solution

88. A reaction $S_{8}(g) \Leftrightarrow 4 S_{2}(g)$ is carried out by taking 2 mol of $S_{8}(g)$ and 0.2 mol of $S_{2}(\mathrm{~g})$ is a reaction vessel of $1 L$. Which one is not correct if $K_{c}=6.30 \times 10^{-6}$
A. Reaction quotient is 8.0×10^{-4}
B. $K_{p}=2.55 a t \mathrm{am}^{3}$
C. Reaction proceeds in forward direction
D. Reaction proceeds in backward direction

(Watch Video Solution

89. Which is/are true for a reversible reaction?
A. The reaction is never completed
B. The reactants are present in the initial stage but after that reactants and products are always present in the reaction mixture
C. At equilibrium only products are present
D. When the gaseous phase reaction is carried out in closed space, it attains equilibrium state after suitable time

- Watch Video Solution

90. In a chemical reaction, equilibrium is said to have been established when the
A. the concentrations of the reactants and product are equal
B. the rate of the opposing reactions become equal
C. the temperature of the opposing reactions are equal
D. there is no change in the concentration of either the product or the rectant with time.

- Watch Video Solution

91. Which of the following equilibrium reactions would be affected by change in pressure?
A. $N_{2}+O_{2} \Leftrightarrow 2 N O$
B. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$
C. $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
D. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \Leftrightarrow 2 \mathrm{HCl}$

- Watch Video Solution

92. Which of the following is /are true?
A. $\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HS}^{-}, K_{c}$ acidity constant of $\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{AgCl}+2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}, \quad \mathrm{K}_{c}$ is stability constant for $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}$
C. $\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}, K_{c}$ is equilibrium constant for dissociation of water
D. $\mathrm{RNH}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{RNH}_{3}^{+}+\mathrm{OH}^{-}, K_{c}$ is basicity constant for $R \mathrm{NH}_{2}$

(D) Watch Video Solution

93. For the reaction,

$$
C O_{(g)}+H_{2} O_{(g)} \Leftrightarrow C O_{2(g)}+H_{2(g)}
$$

at a given temperature, the equilibrium amount of $\mathrm{CO}_{2(g)}$ can be increased by:
A. adding a suitable catalyst
B. adding an inert gas
C. decreasing the volume of the container
D. increasing the amount of $\mathrm{CO}_{(g)}$

- Watch Video Solution

94. For the reaction,
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$, the forward reaction at constant
temperature is favoured by:
A. introducing an inert gas at constant volume
B. introducing $P C l_{5}$ at constant volume
C. introducing an inert gas at constant pressure
D. increasing the volume of the container

- Watch Video Solution

95. The equilibrium $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is attained at $25^{\circ} \mathrm{C}$ in a closed container and an inert gas, helium, is introduced. Which of the following statement is / are correct?
A. concentrations of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ are changed
B. More $C l_{2}$ is formed
C. Concentration of SO_{2} is reduced
D. More $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is formed.

- Watch Video Solution

96. The pressure (P) and volume (V) of an ideal gas both increase in a process:
A. Such a process is not possible
B. The work done by the system is positive
C. The temperature of the system must increase
D. Heat supplied to gas is equal to the change in internal energy

- Watch Video Solution

97. For the reaction,
$2 H C l_{(g)} \Leftrightarrow H_{2(g)}+C l_{2(g)}$, the equilibrium constant is 1.0×10^{-5}.

What is the concentration of HCl if the equilibrium concentrations of H_{2} and $C l_{2}$ are $1.2 \times 10^{-8} M$ and $1.2 \times 10^{-9} M$ respectively?
A. $1.2 \times 10^{-3} M$
B. $1.2 \times 10^{-7} M$
C. $1.2 \times 10^{-4} M$
D. $1.2 \times 10^{-6} \mathrm{M}$

- Watch Video Solution

98. For which of the following reaction (s) is (are) $K_{p}=K_{c}$?
A. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
B. $2 \mathrm{~N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 4 \mathrm{NO}_{2(g)}$
C. $\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
D. $H_{2(g)}+C l_{2(g)} \Leftrightarrow 2 H C l(g)$
99. A chemical reaction, $A \rightarrow B$ is said to be in equilibrium when:
A. 50% of the conversion has taken place
B. only 10% conversion of A to B has taken place
C. the rate of transformation of A to B is just equal to the rate of transformation of B to A in the system
D. there is no change in the concentration of either A or B

- Watch Video Solution

100. Which of the following statement (s) is/are true about reaction quotient (Q) ?
A. $Q<K_{c}$
B. Q always increases if reaction proceeds in forward direction
C. $Q=K_{c}=1$, at equilibrium
D. $Q=K_{c}$, at equilibrium

- Watch Video Solution

101. Which of the following statement (s) is/are true about reaction quotient (Q) ?
A. At time proceeds, Q either decreases or increases
B. $Q<K_{p}$
C. $Q=1$ at equilibrium
D. $Q=K_{p}$ at equilibrium
102. For the reaction, $P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$, the position of equilibrium can be shifted to the right by:
A. increasing the temperature
B. Compressing the gaseous mixture
C. Increasing the volume of the gaseous mixture
D. Adding $C l_{2(g)}$ to the equilibrium mixture at a constant volume

- Watch Video Solution

103. When NaNO_{3} is heated in a closed vessel, oxygen is liberated and $\mathrm{NaNO} \mathrm{O}_{2}$ is left behind. At equilibrium,
A. addition of NaNO_{2} favours reverse reaction
B. addition of NaNO_{3} favours forward reaction
C. increasing temperature favours forward reaction
D. increasing pressure favours reverse reaction

- Watch Video Solution

104. The rate of effusion of an equilibrium mixture in 1litre vessel of, at $300 K, A_{2} \Leftrightarrow 2 A$ through a pinhole is 0.707 times of rate of diffusion on O_{2} under identical conditions of P and T. Which of the following is/are correct if at. Wt. of A is 46 ?
A. $K_{c}=25.16$ mollitre ${ }^{-1}$
B. mole ration of $\frac{A}{A_{2}}=0.643$
C. mol.wt. of mixture $=56$
D. $\Delta G^{\circ}=-8.01 \times 10^{3} \mathrm{~J}$

- Watch Video Solution

105. Reaction between barium chloride and sodium sulphate goes to completion because:
A. barium sulphate is almost insoluble
B. the reaction is reversible
C. the solubility of barium chloride decreases
D. the reaction is irreversible

- Watch Video Solution

106. The equilibrium constant of the reactions
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})$
and $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
are K_{1} and K_{2} respectively. The relationship between K_{1} and K_{2} is

$$
\text { A. } K_{1}=K_{2}
$$

B. $K_{2}=K_{1}$
C. $K_{1}=\sqrt{K_{2}}$
D. $K_{2}=\sqrt{K_{1}}$

- Watch Video Solution

107. Plots of $\log v s . \frac{1}{T}$ plots shows an intercept of 2 on y-axis with a slope of 45° for the studied reaction. Assuming that ΔH° and ΔS° as temperature independent, select the correct statement (s).
A. $\Delta G^{\circ}=-2.75 \mathrm{kcal}$
B. $\Delta S^{\circ}=4.606 \mathrm{kcal}$
C. $H^{\circ}=-4.606 \mathrm{cal}$
D. $K=100.8$
108. The decomposition of HNO_{3} represented below attains equilibrium at a given $P_{\text {eq }}$ and T. If we start: $4 \mathrm{HNO}_{3(g)} \Leftrightarrow 4 \mathrm{NO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{O}_{2(g)}$ with pure HNO_{3} having initial pressure P_{i}, then at equilibrium. Select the correct statement (s).
A. $K_{p}=\frac{1024\left(P_{O_{2}}\right)^{7}}{\left(P_{\text {eq. }}-7 P_{O_{2}}\right)^{4}}$
B. $K_{p}=\frac{1024\left(P_{O_{2}}\right)^{7}}{\left(P_{i}-4 P_{O_{2}}\right)^{4}}$
C. $K_{p}=\frac{1024\left(P_{O_{2}}\right)^{7}}{\left(P_{e q .}-7 P_{O_{2}}\right)^{4}} \times\left(\frac{1}{\left(p^{\circ}\right)^{3}}\right)$
D. none of these

- Watch Video Solution

109. In which of the following equilibrium, change in the volume of the system does not alter the number of moles?
A. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$
B. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
C. $\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
D. $S O_{2} \mathrm{Cl}_{2(g)} \Leftrightarrow S O_{2(g)}+C l_{2(g)}$

- Watch Video Solution

110. In which of the following reactions, increase in the pressure at temperature does not affect the moles at equilibrium:
A. $2 \mathrm{NH}_{3(g)} \Leftrightarrow N_{2(g)}+3 H_{2(g)}$
B. $C_{(g)}+1 / 2 O_{2(g)} \Leftrightarrow C O_{(g)}$
C. $H_{2(g)}+1 / 2 O_{2(g)} \Leftrightarrow H_{2} O_{(g)}$
D. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$

- Watch Video Solution

111. K_{p} / K_{c} for the reaction
$C O(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow \mathrm{CO}_{2}(g)$ is
A. $R T$
B. $(R T)^{-1}$
C. $(R T)^{-1 / 2}$
D. $(R T)^{1 / 2}$

- Watch Video Solution

112. For the reaction equilibrium, $N_{2} O_{4(g)} \Leftrightarrow 2 N O_{2(g)}$, the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium are 4.8×10^{-2} and $1.2 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ respectively. The value of K_{c} for the reaction is:

$$
\text { A. } 3 \times 10^{-3} M
$$

B. $3 \times 10^{3} \mathrm{M}$
C. $3.3 \times 10^{2} M$
D. $3 \times 10^{-1} M$

- Watch Video Solution

113. Consider the
reaction equilibrium,
$2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow, \Delta H^{\circ}=-198 k J$. On the basis of Le-Chatelier's principle, the condition favourable for the forward reaction is
A. low temperature, high pressure
B. any value of T and P
C. low temperature and low pressure
D. high temperature and high pressure
114. What is the equilibrium expression for the reaction $P_{4(s)}+5 O_{2(g)} \Leftrightarrow P_{4} O_{10(s)} ?$
A. $K_{c}=\frac{1}{\left[O_{2}\right]^{5}}$
B. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{5\left[P_{4}\right]\left[O_{2}\right]}$
C. $K_{c}=\left[O_{2}\right]^{5}$
D. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]^{5}}$

- Watch Video Solution

115. For the reaction $\mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \leftrightarrow \mathrm{COCl}_{2}(g), K_{p} / K_{c}$ is equal to:
A. 1.0
B. $R T$
C. $\sqrt{R T}$
D. $1 / R T$

Watch Video Solution

116. The equilibrium constant for the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
at temperature T is 4×10^{-4}.
The value of K_{c} for the reaction
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
at the same temperature is
A. 0.02
B. 50
C. 4×10^{-4}
D. 2.5×10^{-2}
117. The exothermic formation of ClF_{3} is represented by thr equation:

$$
C l_{2}(g)+3 F_{2}(g) \Leftrightarrow 2 C l F_{3}(g), \Delta H=-329 k J
$$

Which of the following will increase the quantity of ClF_{3} in an equilibrium mixture of $C l_{2}, F_{2}$, and $C l F_{3}$?
A. increasing the temperature
B. Removing Cl_{2}
C. Increasing the volume of container
D. Adding F_{2}

- Watch Video Solution

118. For the reaction, $2 \mathrm{NO}_{2(g)} \Leftrightarrow 2 N O_{(g)}+O_{2(g)} K_{c}=1.0 \times 10^{-6}$ at $184^{\circ} C$ and $R=0.083 j K^{-1} \mathrm{~mol}^{-1}$. When K_{p} and K_{c} are compared at $184^{\circ} \mathrm{C}$, it is found that:
A. $K_{p}>K_{c}$
B. $K_{p}<K_{c}$
C. $K_{p}=K_{c}$
D. $K_{p}>K_{c}$ depends upon pressures of gases
119. The graph relates. In $K_{\text {eq. }}$ vs. $\frac{1}{T}$ for a reaction. The reaction must be:

A. exothermic

B. endothermic
C. ΔH is negligible
D. high spontaneous at ordinary temperature

- Watch Video Solution

120. A definite amount of solid $N H_{4} H S$ is placed in a flask aleady containing ammoina gas at a certain temperature and 0.50 atm pressure.
$\mathrm{NH}_{4} \mathrm{HS}$ decomposes to give NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ and at equilibrium total pressure in flask is 0.84 atm. The equilibrium constant for the reaction is:
A. 0.30
B. 0.18
C. 0.17
D. 0.11
121. $P C l_{5}$ dissociation a closed container as :
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of $P l_{5}$ is α, the partial pressure of PCl_{3} will be:
A. $P \cdot\left[\frac{\alpha}{\alpha+1}\right]$
B. $P \cdot\left[\frac{2 \alpha}{1-\alpha}\right]$
C. P. $\left[\frac{\alpha}{\alpha-1}\right]$
D. P. $\left[\frac{\alpha}{1-\alpha}\right]$

- Watch Video Solution

122. The equilibrium constant for the given reaction:
$S O_{3(g)} \Leftrightarrow S O_{2(g)}+1 / 2 O_{2(g)},\left(K_{c}=4.9 \times 10^{-2}\right)$

The value of K_{c} for the reaction:
$2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 S_{3(g)}$, will be :
A. 416
B. 2.40×10^{-3}
C. 9.8×10^{-2}
D. 4.9×10^{-2}

- Watch Video Solution

123. The equilibrium constant $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions $X \Leftrightarrow 2 Y$ and $Z \Leftrightarrow P+Q$, respectively are in the ratio of $1: 9$. If the degree of dissociation of X and Z be equal, then the ratio of total pressure at these equilibrium is:
A. $1: 36$
B. 1:1
C. 1:3
D. 1:9

- Watch Video Solution

124. For the following three reaction 1,2 and 3 , equilibrium constants are
given:
(1) $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}, K_{1}$
(2) $\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)}, \mathrm{K}_{2}$
(3) $\mathrm{CH}_{4(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2(g)}, \mathrm{K}_{3}$

Which of the following relations is correct ?
A. $K_{1} \sqrt{K_{2}}=K_{3}$
B. $K_{2} K_{3}=K_{1}$
C. $K_{3}=K_{1} K_{2}$
D. $K_{3} K_{2}^{3} K_{1}^{2}$

- Watch Video Solution

125. For the reversible reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5} when the partial pressure is measured in atmosphere. The corresponding value of K_{c} with concentration in $\mathrm{mol} L^{-1}$ is
A. $1.44 \times 10^{-5} /(0.082 \times 500)^{2}$
B. $1.44 \times 10^{-5} /(8.314 \times 773)^{2}$
C. $1.44 \times 10^{-5} /(0.082 \times 500)^{-2}$
D. $1.44 \times 10^{-5} /(0.082 \times 773)^{-2}$

- Watch Video Solution

126. When two reactants A and B are mixed to give products C and D, the reaction quotient (Q) at the initial stages of the reaction
A. is zero
B. decrease with time
C. independent of time
D. increase with time

- Watch Video Solution

127. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomopsition reaction $N_{2} O_{4} \Leftrightarrow 2 N O_{2}$ is expressed by $K_{p}=\frac{\left(4 x^{2} P\right)}{\left(1-x^{2}\right)}$, where $P=$ pressure, $x=$ extent of decomposition. Which one of the following statement is true?
A. K_{p} increases with increases of P
B. K_{p} increases with increase of x
C. K_{p} increases with decreases of x
D. K_{p} remains constant with change in P or x

- Watch Video Solution

128. Consider the following equilibrium in a closed container:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
At a fixed temperature, the volume of the reaction container is halved. For this change which of the following statements holds true regarding the equilibrium constant $\left(K_{p}\right)$ and degree of dissociation (α) ?
A. Neither K_{p} nor α changes
B. Both K_{p} and α changes
C. K_{p} changes, but α does not change
D. K_{p} does not change, but α changes

- Watch Video Solution

129. If $\mathrm{Ag}^{+}+N H_{3} \Leftrightarrow\left[\mathrm{Ag}\left(N H_{3}\right)\right]^{+}, \quad K_{1}=3.5 \times 10^{-3} \quad$ and $\left[\mathrm{Ag}\left(N H_{3}\right)\right]^{+}+N H_{3} \Leftrightarrow\left[\mathrm{Ag}\left(N H_{3}\right)_{2}\right]^{+}, \quad K_{2}=1.74 \times 10^{-3}$. The formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is :
A. 6.08×10^{-6}
B. 6.8×10^{-6}
C. 1.6×10^{3}
D. 1.088×10^{7}

- Watch Video Solution

130. For the reaction : $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}, \Delta H=-v e$, the correct statement is :
A. addition of catalyst does not change K_{p} but changes ΔH
B. at equilibrium, $2 G_{N H_{3}}=G_{N_{2}}+3 H_{H_{2}}$ (G is Gibbs' energy)
C. at higher temperature, the rate of forward and backward reaction increases by a factor 2 .
D. at 400 K , addition of catalyst increases rate of forward reaction by
$2 \times$ and backward by $1.7 \times$.

(D) Watch Video Solution

131. The value of $\log _{10} K$ for a reaction $A \Leftrightarrow B$ is (Given:
$\Delta_{f} H_{298 K}^{\Theta}=-54.07 \mathrm{kJmol}^{-1}$,
$\Delta_{r} S_{298 K}^{\Theta}=10 \mathrm{JK}^{=1} \mathrm{~mol}^{-1}$, and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. 5
B. 10
C. 95
D. 100

(Watch Video Solution

132. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is 0.8 atm .
A. 1.8 atm
B. 3 atm
C. 0.3 atm
D. 0.18 atm
133. The equilibrium constant for the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
at temperature T is 4×10^{-4}.
The value of K_{c} for the reaction
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
at the same temperature is
A. 2.5×10^{2}
B. 4×10^{-4}
C. 50.0
D. 0.02

- Watch Video Solution

Integer

1. If a mixture of 3 mole of H_{2} and 1 mole of N_{2} is completely converted into NH_{3}, what would be the final volume at same P and T ?

- Watch Video Solution

2. For the reaction $C(s)+\mathrm{CO}_{2}(g) \Leftrightarrow 2 \mathrm{CO}(g)$, the partial pressure of CO_{2} and CO is 2.0 and 4.0 atm , respectively, at equilibrium. The K_{p} of the reaction is

- Watch Video Solution

3. In the reaction, $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$, the amounts of $P C l_{5}, P C l_{3}$ and $C l_{2}, 2 m o \leq s$ each at equilibrium and the total pressure is 3 atm . Find the equilibrium constant K_{p}.

- Watch Video Solution

4. For the equilibrium, $2 N O_{(g)}+O_{2(g)} \Leftrightarrow 2 N O_{2(g)}, K_{p}$ is 1.24×10^{-2} at $27^{\circ} \mathrm{C}$. Find the value of K_{c} at $727^{\circ} \mathrm{C}$.

Watch Video Solution

5. Equilibrium constant K_{p} for
$H_{2} S(g) \Leftrightarrow 2 H_{2}(g)+S_{2}(g)$
is 0.0118 atm at $1065^{\circ} \mathrm{C}$ and heat of dissociation is 42.4 Kcal . Find equilibrium constant at $1132^{\circ} \mathrm{C}$.

- Watch Video Solution

6. For the equilibrium, $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2},\left(G_{\mathrm{N}_{2} \mathrm{O}_{4}}^{\circ}\right)_{298}=100 \mathrm{~kJ} / \mathrm{mol}$ and $\left(G_{\mathrm{NO}_{2}}^{\circ}\right)_{298}=50 \mathrm{~kJ} / \mathrm{mol}$.
(a) When $5 m o \frac{l}{l}$ itre of each is taken, calculate the value of ΔG for the reaction at 298 K .
(b) Find the direction of reaction.
7. The molar concentration of A and B are $0.80 \mathrm{~mol} /$ litre each. On mixing them, the reaction starts to proceed as : $A+B \Leftrightarrow C+D$, and attain equilibrium. At equilibrium molar concentration of C is $0.60 \mathrm{~mol} /$ litre. Find the value of K_{c} of the reaction.

- Watch Video Solution

8. In a reaction at equilibrium, ' x ' mole of reactant A decompose to give 1molar of C and D. It has been found that the fraction of A decomposed at equilibrium is independent of initial concentration of A.

Find the value of x.

- Watch Video Solution

9. In the reaction $C_{(s)}+C O_{2(g)} \Leftrightarrow 2 C O_{(g)}$, the equilibrium pressure is 6.75 atm . If 50% of CO_{2} reacts, then find the value of K_{p}.
10. At 340 K and 1 atm pressure, $\mathrm{N}_{2} \mathrm{O}_{4}$ is 66% into NO_{2}. What volume of $10 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$ ocuupy under these conditions?

- Watch Video Solution

11. Ammonium carbamate when heated to 473 K gives a mixture of NH_{3} and CO_{2} vapour with a density of 13 . Find the degree of dissociation of ammonium carbamate.

- Watch Video Solution

12. In an experiment starting with $1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, 1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$, and 1 mol of water, the equilibrium mixture mixture of analysis showa that 54.3% of the acid is eaterified. Calculate K_{c}.
13. For a reaction, $a A+b B \Leftrightarrow c C+d D$, the reaction quotient $Q=\frac{[C]_{0}^{c}[D]_{0}^{d}}{[A]_{0}^{a}[B]_{0}^{b}}$, where $[A]_{0},[B]_{0},[C]_{0},[D]_{0}$ are initial concentrations.
Also $\quad K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ where $[A], \quad[B], \quad[C], \quad[D]$ are equilibrium concentrations. The reaction proceeds in forward direction if $Q<K_{c}$ and in backward direction if $Q>K_{c}$. The variation of K_{c} with temperature is given by: $2303 \frac{\log \left(K_{C_{2}}\right)}{K_{C_{1}}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$.
For gaseous phase reactions $K_{p}=K_{c}(R T)^{\Delta n}$ where $\Delta n=$ moles of gaseous products - moles of gaseous reactants. Also $-\Delta G^{\circ}=2.303 R T \log _{10} K_{c}$.
(A) A hydrated salt show efflorescent nature by lossing water molecule .

Under what pressure of moisture in atmosphere, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ will show efflorescence bature if
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}_{(s)} \Leftrightarrow \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}_{(v)}, \mathrm{K}_{p}=62.72 \mathrm{~mm}^{2} ?$
A. $P^{\prime}{ }_{H_{2} \mathrm{O}}>62.72 \mathrm{~mm}$
B. $P^{\prime}{ }_{H_{2} \mathrm{O}}<62.72 \mathrm{~mm}$
C. $P^{\prime}{ }_{H_{2} \mathrm{O}}<7.92 \mathrm{~mm}$
D. $P^{\prime}{ }_{H_{2} \mathrm{O}}>7.92 \mathrm{~mm}$

- Watch Video Solution

2. For a reaction, $a A+b B \Leftrightarrow c C+d D$, the reaction quotient $Q=\frac{[C]_{0}^{c}[D]_{0}^{d}}{[A]_{0}^{a}[B]_{0}^{b}}$, where $[A]_{0},[B]_{0},[C]_{0},[D]_{0}$ are initial concentrations.
Also $\quad K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ where $[A], \quad[B], \quad[C], \quad[D]$ are equilibrium concentrations. The reaction proceeds in forward direction if $Q<K_{c}$ and in backward direction if $Q>K_{c}$. The variation of K_{c} with temperature is given by: $2303 \frac{\log \left(K_{C_{2}}\right)}{K_{C_{1}}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$.
For gaseous phase reactions $K_{p}=K_{c}(R T)^{\Delta n}$ where $\Delta n=$ moles of gaseous products - moles of gaseous reactants. Also $-\Delta G^{\circ}=2.303 R T \log _{10} K_{c}$.
(B) The moisture content of a gas is often expressed as dew point, the temperature at which if gas is cooled becomes saturted with vapour
pressure of water at that temperture. Dew point of $\mathrm{H}_{2} \mathrm{O}$ is $43^{\circ} \mathrm{C}$ having vapour pressure 0.07 torr.

$$
\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \Leftrightarrow \mathrm{CaCl}_{2(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})},
$$

The equilibrium constant should not be more than..... $(\mathrm{atm})^{2}$ if CaCl_{2} is to be used as desiccant.
A. 8.5×10^{-9}
B. 8.5
C. 8.5×10^{-3}
D. 4.9×10^{-3}

- Watch Video Solution

3. For a reaction, $a A+b B \Leftrightarrow c C+d D$, the reaction quotient $Q=\frac{[C]_{0}^{c}[D]_{0}^{d}}{[A]_{0}^{a}[B]_{0}^{b}}$, where $[A]_{0},[B]_{0},[C]_{0},[D]_{0}$ are initial concentrations.
Also $\quad K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ where $[A], \quad[B], \quad[C], \quad[D]$ are equilibrium concentrations. The reaction proceeds in forward direction if $Q<K_{c}$
and in backward direction if $Q>K_{c}$. The variation of K_{c} with temperature is given by: $2303 \frac{\log \left(K_{C_{2}}\right)}{K_{C_{1}}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$.
For gaseous phase reactions $K_{p}=K_{c}(R T)^{\Delta n}$ where $\Delta n=$ moles of gaseous products - moles of gaseous reactants. Also $-\Delta G^{\circ}=2.303 R T \log _{10} K_{c}$.

The equilibrium constants for the reaction, $\mathrm{CaC}_{2(\mathrm{~s})}+5 \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{CO}_{2(\mathrm{~g})}$ is//are given by:
A. $K_{c}=\frac{\left[\mathrm{CO}_{2}\right]^{2}}{\left[\mathrm{O}_{2}\right]^{5}}$
B. $K_{p}=\frac{\left(n_{\mathrm{CO}_{2}}\right)^{2}}{\left(n_{O_{2}}\right)^{5}} \times\left[\frac{P}{\sum n}\right]^{-3}$
C. $K_{p}=\frac{\left(p_{\mathrm{CO}_{2}}\right)^{2}}{\left(P_{\mathrm{O}_{2}}\right)^{5}}$
D. either of these

- Watch Video Solution

4. The relation between K_{p} and K_{c} is $K_{p}=K_{c}(R T)^{\Delta n}$ unit of $K_{p}=(a t m)^{\Delta n}$, unit of $K_{c}=\left(m o l L^{-1}\right)^{\Delta n}$

The equilibrium constant of the following reactions at 400 K are given:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=3.0 \times 10^{-13}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=2 \times 10^{-12}$
Then, the equilibrium constant K for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
is
A. 2.58
B. 0.066
C. 15
D. 0.38

- Watch Video Solution

5. For a reaction, $a A+b B \Leftrightarrow c C+d D$, the reaction quotient $Q=\frac{[C]_{0}^{c}[D]_{0}^{d}}{[A]_{0}^{a}[B]_{0}^{b}}$, where $[A]_{0},[B]_{0},[C]_{0},[D]_{0}$ are initial concentrations.
Also $\quad K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ where $[A], \quad[B], \quad[C], \quad[D] \quad$ are equilibrium
concentrations. The reaction proceeds in forward direction if $Q<K_{c}$ and in backward direction if $Q>K_{c}$. The variation of K_{c} with temperature is given by: $2303 \frac{\log \left(K_{C_{2}}\right)}{K_{C_{1}}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$.
For gaseous phase reactions $K_{p}=K_{c}(R T)^{\Delta n}$ where $\Delta n=$ moles of gaseous products - moles of gaseous reactants. Also $-\Delta G^{\circ}=2.303 R T \log _{10} K_{c}$.

The equilibrium constant K_{c} for $A_{(g)} \Leftrightarrow B_{(g)}$ is 1.1. The gas having concentration ≥ 1 is:
A. $[B]$ if $[A]=0.91$
B. $[B]$ if $0.9<[A] \leq 1$
C. both $[A]$ and $[B]$ if $[A]>1$
D. all are correct

- Watch Video Solution

6. For a reaction, $a A+b B \Leftrightarrow c C+d D$, the reaction quotient $Q=\frac{[C]_{0}^{c}[D]_{0}^{d}}{[A]_{0}^{a}[B]_{0}^{b}}$, where $[A]_{0},[B]_{0},[C]_{0},[D]_{0}$ are initial concentrations.
Also $\quad K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ where $[A], \quad[B], \quad[C], \quad[D]$ are equilibrium concentrations. The reaction proceeds in forward direction if $Q<K_{c}$ and in backward direction if $Q>K_{c}$. The variation of K_{c} with temperature is given by: $2303 \frac{\log \left(K_{C_{2}}\right)}{K_{C_{1}}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$.
For gaseous phase reactions $K_{p}=K_{c}(R T)^{\Delta n}$ where $\Delta n=$ moles of gaseous products - moles of gaseous reactants. Also $-\Delta G^{\circ}=2.303 R T \log _{10} K_{c}$.

Which relation is correct?
A. $2.303 \log _{10} K=-\frac{\Delta H^{\circ}}{R T}+\frac{\Delta S^{\circ}}{R}$
B. $\Delta G=\Delta G^{\circ}+2.303 R T \log _{10} Q$
C. $K=A e^{-\Delta H^{\circ} / R T}$
D. all are correct
7. For a reaction, $a A+b B \Leftrightarrow c C+d D$, the reaction quotient $Q=\frac{[C]_{0}^{c}[D]_{0}^{d}}{[A]_{0}^{a}[B]_{0}^{b}}$, where $[A]_{0},[B]_{0},[C]_{0},[D]_{0}$ are initial concentrations. Also $\quad K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ where $[A], \quad[B], \quad[C], \quad[D]$ are equilibrium concentrations. The reaction proceeds in forward direction if $Q<K_{c}$ and in backward direction if $Q>K_{c}$. The variation of K_{c} with temperature is given by: $2303 \frac{\log \left(K_{C_{2}}\right)}{K_{C_{1}}}=\frac{\Delta H}{R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$.
For gaseous phase reactions $K_{p}=K_{c}(R T)^{\Delta n}$ where $\Delta n=$ moles of gaseous products - moles of gaseous reactants. Also $-\Delta G^{\circ}=2.303 R T \log _{10} K_{c}$.

The heat or reaction for an endothermic reaction, in equilibrium is 1200 cal , at constant volume is more than at constant pressure at 300 K . The ratio of K_{p} / K_{c} is:
A. 1.648×10^{-3}
B. 16.48×10^{-3}
C. 606.6

- Watch Video Solution

8. Influence of pressure, temperature, concentration and addition of inert gas on a reversible chemical reaction in equilibrium can be explained by formulating the expression for equilibrium constant K_{c} or K_{p} for the equilibrium. On the other hand Le Chatelier principle can be theoretically used to explain the effect of P, T or concentration on the physical or chemical equilibrium both.

For a reversible reaction:
$2 \mathrm{NO}_{(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{NO}_{2(g)}$
the rate expression is given as $\left(\frac{d x}{d t}\right)_{\text {net }}=2.6 \times 10^{3}[N O]^{2}\left[O_{2}\right]-4.1\left[N O_{2}\right]^{2}$. The equilibrium constant of reaction is:
A. 1.58×10^{-3}
B. 634.15
C. 10.66×10^{3}
D. 1.06×10^{3}

- Watch Video Solution

9. Influence of pressure, temperature, concentration and addition of inert gas on a reversible chemical reaction in equilibrium can be explained by formulating the expression for equilibrium constant K_{c} or K_{p} for the equilibrium. On the other hand Le Chatelier principle can be theoretically used to explain the effect of P, T or concentration on the physical or chemical equilibrium both.

For the reaction : $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$, increase of pressure shows.
A. An increase in degree of dissociation and a decrease in K_{c}
B. A decrease in degree of dissociation and a decrease in K_{c}
C. An increase in degree of dissociation but K_{c} remains constant
D. A decrease in degree of dissociation but K_{c} remains constant.

- Watch Video Solution

10. Influence of pressure, temperature, concentration and addition of inert gas on a reversible chemical reaction in equilibrium can be explained by formulating the expression for equilibrium constant K_{c} or K_{p} for the equilibrium. On the other hand Le Chatelier principle can be theoretically used to explain the effect of P, T or concentration on the physical or chemical equilibrium both.

For the reaction: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}, \Delta \mathrm{H}=-v e$.
An increase in temperature shows:
A. more dissociation of SO_{3} and a decrease in K_{c}
B. less dissociation of SO_{3} and an increase in K_{c}
C. more dissociation of SO_{3} and an increase in K_{c}
D. less dissociation of SO_{3} and a decrease in K_{c}
11. Influence of pressure, temperature, concentration and addition of inert gas on a reversible chemical reaction in equilibrium can be explained by formulating the expression for equilibrium constant K_{c} or K_{p} for the equilibrium. On the other hand Le Chatelier principle can be theoretically used to explain the effect of P, T or concentration on the physical or chemical equilibrium both.

For the reaction:

$$
\underset{(a q .)}{F e_{(a q l o w}^{3+}}+S C N_{(a q .)}^{-} \Leftrightarrow[F e(N C S)]_{(a q .)}^{2+}
$$

in equilibrium if little more aqueous solution in FeCl_{3} is added, then:
A. forward reaction becomes more and red colour is deepened
B. backward reaction becomes more and red colour faintens
C. solution becomes colourless
D. none of these
12. Influence of pressure, temperature, concentration and addition of inert gas on a reversible chemical reaction in equilibrium can be explained by formulating the expression for equilibrium constant K_{c} or K_{p} for the equilibrium. On the other hand Le Chatelier principle can be theoretically used to explain the effect of P, T or concentration on the physical or chemical equilibrium both.
n moles of a reactant A gives one mole of B and C. If degree of dissociation of A is independent of initial concentration of A, then n is:
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

13. Influence of pressure, temperature, concentration and addition of inert gas on a reversible chemical reaction in equilibrium can be explained by formulating the expression for equilibrium constant K_{c} or K_{p} for the equilibrium. On the other hand Le Chatelier principle can be theoretically used to explain the effect of P, T or concentration on the physical or chemical equilibrium both.
$\mathrm{N}_{2} \mathrm{O}_{4}$ is 66% dissociated into NO_{2} at 340 K and 1 atmospheric pressure.
The volume occupied by $10 g \mathrm{~N}_{2} \mathrm{O}_{4}$ under these conditions is:
A. 5.03litre
B. 10.04litre
C. 2.58litre
D. 3.24litre

- Watch Video Solution

14. A given sample of $\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel shows 20% dissociation in $N O_{2}$ at $27^{\circ} \mathrm{C}$ and 760 torr. The sample is now heated upto $127^{\circ} \mathrm{C}$ and the analysis of mixture shows 60% dissociation at $127^{\circ} \mathrm{C}$.

The total pressure of equilibrium mixture (in atm) at $127^{\circ} \mathrm{C}$ is :
A. 1.78atm
B. 2.01 atm
C. 3.18 atm
D. 1.33atm

- Watch Video Solution

15. A given sample of $\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel shows 20% dissociation in NO_{2} at $27^{\circ} \mathrm{C}$ and 760 torr. The sample is now heated upto $127^{\circ} \mathrm{C}$ and the analysis of mixture shows 60% dissociation at $127^{\circ} \mathrm{C}$.

The molecular weight of mixture at $27^{\circ} \mathrm{C}$ is :
A. 76.66
B. 78.69
C. 66.52
D. 80.24

- Watch Video Solution

16. A given sample of $\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel shows 20% dissociation in NO_{2} at $27^{\circ} \mathrm{C}$ and 760 torr. The sample is now heated upto $127^{\circ} \mathrm{C}$ and the analysis of mixture shows 60% dissociation at $127^{\circ} \mathrm{C}$.

The equilibrium constant (K_{p}) for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ at $27^{\circ} \mathrm{C}$ is
A. 0.165
B. 0.29
C. 0.523

- Watch Video Solution

17. A given sample of $\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel shows 20% dissociation in $N O_{2}$ at $27^{\circ} \mathrm{C}$ and 760 torr. The sample is now heated upto $127^{\circ} \mathrm{C}$ and the analysis of mixture shows 60% dissociation at $127^{\circ} \mathrm{C}$. The equilibrium constant (K_{c}) for decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ at $127^{\circ} \mathrm{C}$:
A. 0.30
B. 0.12
C. 0.40
D. 0.25
18. A given sample of $\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel shows 20% dissociation in $N O_{2}$ at $27^{\circ} \mathrm{C}$ and 760 torr. The sample is now heated upto $127^{\circ} \mathrm{C}$ and the analysis of mixture shows 60% dissociation at $127^{\circ} \mathrm{C}$.

The density of the equilibrium mixture (in $g /$ litre) at $27^{\circ} \mathrm{C}$ is :
A. 3.1
B. 4.2
C. 2.1
D. 3.7

- Watch Video Solution

19. A given sample of $\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel shows 20% dissociation in NO_{2} at $27^{\circ} \mathrm{C}$ and 760 torr. The sample is now heated upto $127^{\circ} \mathrm{C}$ and the analysis of mixture shows 60% dissociation at $127^{\circ} \mathrm{C}$.

The heat of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ (in $\mathrm{kcalmol}^{-1}$) in this temperature range is :
A. 9.77
B. 7.66
C. 10.80
D. 11.40

- Watch Video Solution

20. The $\mathrm{N}_{2} \mathrm{O}_{4} / \mathrm{NO}_{2(\mathrm{~g})}$ equilibrium is endothermic as shown below:
$\mathrm{N}_{2} \mathrm{O}_{4(g)} \Leftrightarrow 2 \mathrm{NO}_{2(g)},(\Delta H=+v e)$
Colourles Darkbrown
The equilibrium is attained in a container having movable piston by taking 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ at $50^{\circ} \mathrm{C}$ and 1 atm pressure. At equilibrium, relative molecular mass of the mixture is 65.7.

The degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium is:
A. 0.4
B. 0.04
C. 0.03
D. 0.2

Answer: A

- Watch Video Solution

21. The $\mathrm{N}_{2} \mathrm{O}_{4} / \mathrm{NO}_{2(\mathrm{~g})}$ equilibrium is endothermic as shown below:

$$
\underset{\text { Colourles }}{\mathrm{N}_{2} O_{4(g)}} \Leftrightarrow \underset{\text { Darkbrown }}{2 \mathrm{NO}_{2(g)}},(\Delta H=+v e)
$$

The equilibrium is attained in a container having movable piston by taking 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ at $50^{\circ} \mathrm{C}$ and 1 atm pressure. At equilibrium, relative molecular mass of the mixture is 65.7.

The equilibrium constant for the given reaction is:
A. $2.9 \mathrm{moldm}^{3}$
B. $0.29 \mathrm{moldm}^{3}$
C. $0.029 \mathrm{moldm}^{3}$
D. $0.0029 \mathrm{moldm}^{3}$
22. The $\mathrm{N}_{2} \mathrm{O}_{4} / \mathrm{NO}_{2(\mathrm{~g})}$ equilibrium is endothermic as shown below:
$\underset{\text { Colourles }}{\mathrm{N}_{2} \mathrm{O}_{4(g)}} \Leftrightarrow \underset{\text { Darkbrown }}{2 \mathrm{NO}_{2(g)}},(\Delta H=+$ ve)
The equilibrium is attained in a container having movable piston by taking 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ at $50^{\circ} \mathrm{C}$ and 1 atm pressure. At equilibrium, relative molecular mass of the mixture is 65.7.

If pressure on the mixture is increased, such that volume of mixture becomes half of I equilibrium, then:
A. $K_{c}=0.029$ and $\alpha=0.4$
B. $K_{c}=0.029$ and $\alpha=0.30$
C. $K_{c}=0.015$ and $\alpha=0.3$
D. $K_{c}=0.015$ and $\alpha=0.40$

- Watch Video Solution

1. Assertion: Water boils at higher temperature in pressure cooker.

Reason: Increase in pressure leads to an increase in boiling temperature.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

2. Assertion: Snow does not melt easily at mountains.

Reason: A decrease in pressure leads to an increase in freezing point.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

3. Assertion: The solubility of gases always increases with increase in pressure.

Reason: High pressure favours the change where volume decreases.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.
4. Assertion: The melting point of solid (except ice) increases with increase in pressure.

Reason: An increase in pressure favours the change where volume decreases.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

5. Assertion: Association of an inert gas at constant pressure to dissociation equilibrium of $P C 1_{5} \Leftrightarrow P C 1_{3}+C 1_{2}$ favours forward reaction.

Reason: $K_{c}=\frac{\alpha^{2}}{V(1-\alpha)}$ for the dissociation equilibrium of $P C 1_{5}$ where α is degree of dissociation of $\mathrm{PC1}_{5}$.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

6. Assertion: $\Delta G=\Delta G^{\circ}+2.303 \mathrm{RT} \log \mathrm{Q}$, where Q is reaction quotient. Reason: Q may be greater or lesser than K_{c} but equal to K_{c} if $\Delta G=0$.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.
7. Statement: The equilibrium constant K_{c} or K_{p} has the unit $\left(\text { molelitre }{ }^{-1}\right)^{\Delta n}$ or (atm) ${ }^{\Delta n}$ respectively.

Explanation: The numerical value of $K_{c}=K_{p}$ at $\Delta n=0$.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

8. Assertion (A) : A catalyst does not influences the values of equilibrium constant

Reason (R) : Catalyst influences the rate of both forward and backward reactions equally.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

9. High pressure and low temperature are favourable conditions for the synthesis of ammonia.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.
10. Assertion: The equilibrium constant may show higher or lower values with increase in temperature.

Reason: The change depends on the heat of reaction at equilibrium.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

11. Statement: The equilibrium constant for a reaction having positive
ΔH° increases with increase of temperature.

Explanation: The temperature dependence of the equilibrium constant is related to ΔH° and not ΔS° for the reaction.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

12. Statement: Concentration of the reactant and product does not change with time at equilibrium for a chemical reaction.

Explanation: The rate of a reaction is zero at equilibrium.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.
13. Statement: The reaction: $2 \mathrm{NO}_{(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{NO}_{2}$ is favoured in the forward direction with increase of pressure.

Explanation: The reaction is exothermic.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

