びdoubtnut

CHEMISTRY

BOOKS - P BAHADUR CHEMISTRY (HINGLISH)

IONIC EQUILIBRIUM

Exercise1

1. (a) Suggest a solvent in which aniline acts as strong base.
(b) Write equation for the auto-ionisation of (i) HCOOH , (ii) NH_{3}.
(c) $\left.[\mathrm{A}]\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is acid or base and write its conjugate paranter and reaction.
(d) Write the order of acidic nature of $\mathrm{HCI}, \mathrm{HCOOH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$ in (i) $\mathrm{H}_{2} \mathrm{O}$, (ii) liq. NH_{3}.
2. The ionization constant of propionic acid is 1.32×10^{-5}. Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH . What will be its degree of ionization in the solution of 0.01 NHCI ?

(D) Watch Video Solution

3. The ionisation constant of dimethylamine is 5.4×10^{-4}. Calculate its degree of ionization in its $0.02 M$ solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH ?

- Watch Video Solution

4. Calculate the degree of ionisation of $0.05 M$ acetic acid if its $p K_{a}$ value is 4.74 . How is the degree of dissociation affected when its
solution also contains
a. 0.01 M , b. 0.1 M in HCl ?

- Watch Video Solution

5. Write equilibrium constant expressions for the following reactions. Show how they are related?
(a) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCI} \Leftrightarrow \mathrm{NaHCO}_{3}+\mathrm{NaCI}$
(b) $2 \mathrm{Na}^{+}+\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+}+\mathrm{CI}^{-} \Leftrightarrow 2 \mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}+\mathrm{CI}^{-}$
(c) $\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} \Leftrightarrow \mathrm{HCO}_{3}^{-}$

- Watch Video Solution

6. The first ionization constant of $\mathrm{H}_{2} \mathrm{~S}$ is 9.1×10^{-8}. Calculate the concentration of $H S^{\Theta}$ ion in its $0.1 M$ solution. How will this concentration be affected if the solution is 0.1 M in HCl also? If the
second dissociation constant if $\mathrm{H}_{2} \mathrm{~S}$ is 1.2×10^{-13}, calculate the concentration of S^{2-} under both conditions.

D Watch Video Solution

7. Calculate $\left[\mathrm{OH}^{-}\right]$in 0.20 M solution of NH_{3}, if K_{b} for NH_{3} is 1.8×10^{-5}.

(Watch Video Solution

8. 0.00135 mole of NH_{3} dissociates in 1.0 litre solution of 0.10 M .

Calculate the dissociation constant of NH_{3}.

- Watch Video Solution

9. What concentration of dichloroacetic acid gives $\left[H^{+}\right]=8.5 \times 10^{-3} M$?
$\left(\right.$ Given : K_{a} of acid $\left.=5.0 \times 10^{-2}\right)$.

D Watch Video Solution

10. Calculate K for the reaction, $\mathrm{A}^{-}+\mathrm{H}_{3}^{+} \mathrm{O} \Leftrightarrow \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$
if K_{a} value for the acid HA is 1.0×10^{-6}.

- Watch Video Solution

11. Consider a solution of monoprotic weak acid having dissociation constant K_{a}. What is the minimum concentration C in terms of K_{a}, such that the concentration of the undissociated acid that the concentration of the undissociated acid can be equated to C within a 10% limit of error ? Assume that activity coefficient correction are negligible.
12. Ionic product of water at 310 K is 2.7×10^{-14}. What is the pH of netural water at this temperature?

D Watch Video Solution

13. The K_{w} for $2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{-} \mathrm{OH}^{-}$changes from 10^{-14} at $25^{\circ} \mathrm{C}$ to 9.62×10^{-14} at $60^{\circ} \mathrm{C}$. What is pH of water at $60^{\circ} \mathrm{C}$? What happens to its neutrality?

- Watch Video Solution

14. The ionization constant of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively. Calculate the ionization constant of the corresponding conjugate base.
15. The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34 . Calculate the ionization constant of the acid and its degree of ionisation in the solution.

D Watch Video Solution

16. The pH of 0.005 M codenine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 . Calculate its ionisation constant and $p K_{b}$.

Watch Video Solution

17. Detremine degree of dissociation of $0.05 \mathrm{MNH}_{3}$ at $25^{\circ} \mathrm{C}$ in a solution of $p H=1$.
18. K_{1} and K_{2} for dissociation of $H_{2} A$ are 4×10^{-3} and 1×10^{-5}. Calculate concentration of A^{2-} ion in $0.1 M H_{2} A$ solution. Also report $\left[H^{+}\right]$and pH .

- Watch Video Solution

19. Calculate pH of:
(a) $10^{-3} \mathrm{NHNO}_{3}$, (b) $10^{-3} \mathrm{MH}_{2} \mathrm{SO}_{4}$,
(c) $10^{-3} \mathrm{NH}_{2} \mathrm{SO}_{4}$, (d) 0.01 NHCI ,
(e) $10^{-8} \mathrm{NHCI}$, (f) $10^{2} \mathrm{MHCI}$.

- Watch Video Solution

20. Calculate pH for:
(a) 0.001 NaOH , (b) $0.01 \mathrm{NCa}(\mathrm{OH})_{2}$,
(c) $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$, (d) $10^{-8} \mathrm{MNaOH}$,
(e) $10^{2} \mathrm{MNaOH}$, (f) $0.0008 \mathrm{MMg}(\mathrm{OH})_{2}$
Assume complete ionisation of each.

D Watch Video Solution

21. The $p H$ of $0.05 M$ aqueous solution of diethy1 amine is 12.0 .

Caluclate K_{b}.

D Watch Video Solution

22. Calculate the pH of the following solutions:
a. $2 g$ of $T l O H$ dissolved in water to give 2 litre of solution.
b. 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.
c. 0.3 g of NaOH dissolved in water to give 200 mL of solution.
d. 1 mL of 13.6 MHCl is duluted with water to give 1 litre of solution.
23. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:
a. Human muscle-fluid, 6.83
b. Human stomach fluid, 1.2
c. Human blood, 7.38
d. Human saliva, 6.4.

D Watch Video Solution

24. If 0.561 g of (KOH) is dissolved in water to give. 200 mL of solution at 298 K. Calculate the concentration of potassium, hydrogen and hydroxyl ions. What is its pH ?

D Watch Video Solution

25. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{gL} \mathrm{L}^{-1}$ of solution. Calculate the concentrations of strontium and hydroxyl ions and the $p H$ of the solution.

D Watch Video Solution

26. How many moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ must be dissolved to produce 250 mL of an aqueous solution of pH 10.65 , assuming completer dissociation?

(Watch Video Solution

27. The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in pure water is $9.57 \times 10^{-3} \mathrm{~g}$ litre $^{-1}$.

Calculate the pH of its saturated solution. (Assume 100% ionisation)
28. A trpical aspirin tablet constains 324 mg of aspirin (acetyl salicylic acid $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$) a monoprotic acid having $K_{a}=3.0 \times 10^{-4}$. What is the degree of dissociation of salt and pH of the solution, if two aspirin tables are dissolved to prepare 300 mL solution in water

- Watch Video Solution

29. The $\left[\mathrm{H}^{+}\right]$is $2.1 \times 10^{-3} \mathrm{M}$ in a 0.072 M solution of benzoic acid. Calculate K_{a} for benzoic acid.

- Watch Video Solution

30. Calculate the pH of a solution made by mixing 50 mL of $0.01 \mathrm{Mba}(\mathrm{OH})_{2}$ with 50 mL water. (Assume complete ionisation)
31. A solution of $H C I$ has $\mathrm{pH}=5$. If 1 mL of it is diluted to $1 L$ what will be the pH of resulting solution?

D Watch Video Solution

32. A solution of 0.01 M concentration of $\mathrm{NH}_{4} \mathrm{OH}$ is 2.6% dissociated. Calculate $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right],\left[\mathrm{NH}_{4}^{+}\right],\left[\mathrm{NH}_{4} \mathrm{OH}\right]$ and pH of solution.

Watch Video Solution

33. Calculate the pH of the mixture formed by the addition of $5,9,9.5,9.9,9.95,10,10.05$ and 10.1 mL of $0.5 M K O H$ solution to 100 mL of 0.05 HBr solution. What will be the most suitable indicator for this titration?

- Watch Video Solution

34. Calculate the pH of the resultant mixture:
a. 10 mL of $0.2 \mathrm{MCa}(\mathrm{OH})_{2}+25 \mathrm{~mL}$ of 0.1 MHCl
b. 10 mL of $0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$.
c. 10 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 MKOH .

- Watch Video Solution

35. A 60.0 mL solution of $0.10 \mathrm{MNaHCO}_{2(a q .)}$ is mixed with 4.0 mL of $0.070 \mathrm{MHCI}_{a q}$. Calculate the pH and the molarity of HCOOH in the mixed solution. $p K_{a}$ for $\mathrm{HCOOH}=3.75$

(D) Watch Video Solution

36. Calculate the pH of resulting solution, when 50 mL of 0.20 MHCI is mixed with 50 mL of $0.20 \mathrm{MCH}_{3} \mathrm{COOH}$.

D Watch Video Solution

37. Calculate the enthalpy of deprotonation of HCOOH . (Given that:
K_{a} value for HCOOH at $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ are 1.765×10^{-4} and 1.768×10^{-4} at $30^{\circ} \mathrm{C}$)

(D) Watch Video Solution

38. Calculate the pH of a given mixtures.
(a) $\left(4 g \mathrm{CH}_{3} \mathrm{COOH}+6 g \mathrm{CH}_{3} \mathrm{COONa}\right)$ in 100 mL of mixture, (K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$)
(b) 5 mL of $0.1 \mathrm{MBOH}+250 \mathrm{~mL}$ of 0.1 MBCI , (K_{a} for
$\left.M O H=1.8 \times 10^{-5}\right)$
(c) 0.25 mole of $\mathrm{CH}_{3} \mathrm{COOH}+0.35$ mole of $\mathrm{CH}_{3 \mathrm{COOH}=3.6 \times 10^{-4}}$

D Watch Video Solution

39. How many mole of $\mathrm{NH}_{4} \mathrm{CI}$ must be added to one liltre of $1.0 \mathrm{MNH}_{4} \mathrm{OH}$ to have a buffer of $\mathrm{pH}=9 ?\left(\mathrm{~K}_{\mathrm{NH}_{4} \mathrm{OH}}=1.8 \times 10^{-5}\right)$

D Watch Video Solution

40. The ionization constant of formic acid is 1.8×10^{-4}. Around what pH will its mixture with sodium formed give buffer solution of higher capacity. Calculate the ratio of sodium formate and formic acid in a buffer of pH 4.25 .

D Watch Video Solution

41. How much of $0.3 M$ ammonium hydroxide should be mixed with 30 mL of 0.2 M solution of ammonium chloride to give buffer solutions of $\mathrm{pH8} 8.65$ and 10 ? (Give: $\mathrm{pK}_{b} \mathrm{ofNH} \mathrm{H}_{4} \mathrm{OH}=4.75$)

- Watch Video Solution

42. How much volume of 0.1 MHac should be added to 50 mL of 0.2 MNaAc solution to have a pH 4.91 ?

D Watch Video Solution

43. The ionization constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also 0.01 M in sodium phenolate?
44. The ionization constant of chloroacetic acid is 1.35×10^{-3}. What will be the $p H$ of $0.1 M$ acid and its $0.1 M$ sodium salt solution?

- Watch Video Solution

45. What should be the concentration of NaA , if its 50 mL solution of $0.10 \mathrm{MNH}_{3}$ and $0.10 \mathrm{MNH}_{4} \mathrm{CI}$ without changing the pH by more than 1.0 unit ? Assume no change in volume. $\left(K_{a} f\right.$ or $\left.H A=1.0 \times 10^{-5}\right)$

- Watch Video Solution

46. How many moles of NaOH can be added to 1.0 L solution of $0.10 \mathrm{MNH}_{3}$ and $0.10 M N_{4} \mathrm{CI}$ without changing in volume. $\left(K_{b} f\right.$ or $\left.\mathrm{NH}_{3}=1.8 \times 10^{-5}\right)$
47. Is it possible for a weak acid, say acetic acid $\left(K_{a}=1.8 \times 10^{-5}\right)$ to have a $\mathrm{pH}=7$ by adding any other chemical and if so how much amount of it should be added ?

- Watch Video Solution

48. In an excess of $\mathrm{NH}_{3 \text { (aq.) }}, \mathrm{Cu}^{2+}$ ion form a deep blue complex ion $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ having formation constant $K_{f}=5.6 \times 10^{11}$. Calculate the concentration of Cu^{2+} in a solution prepared by adding 5.0×10^{-3} mole of CuSO_{4} to 0.50 litre of $0.40 \mathrm{MNH}_{3}$.

(D) Watch Video Solution

49. Determine the solubilities of silver chromate, barium chromate,
ferric hydroxide, lead chloride and mercurous iodide at 298 K form
their solubility product constants given below. Determine also the molarities of individual ions.
$K_{S P}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=1.1 \times 10^{-12}$,
$K_{S P}\left(\mathrm{BaCrO}_{4}\right)=1.2 \times 10^{-10}$,
$K_{S P}\left[\mathrm{Fe}(\mathrm{OH})_{3}\right]=1.0 \times 10^{-38}$,
$K_{S P\left(P b C I_{2}\right)}=1.6 \times 10^{-5}$,
$K_{S P}\left(\mathrm{Hg}_{2} I_{2}\right)=4.5 \times 10^{-29}$.

D Watch Video Solution

50. $K_{S P}$ of BaSO_{4} is 1.5×10^{-9}. Calculate is solubility in: (a) Pure water, , (b) $0.10 \mathrm{MBaCI}_{2}$.

D Watch Video Solution

51. What is the maximum concentration of equimolar solutions of
ferrous sulphate and sodium sulphide so that when mixed in equal
volumes, there is no precipitation of iron sulphide? (For iron sulphide, $\left.K_{s p}=6.3 \times 10^{-18}\right)$.

D Watch Video Solution

52. Equal volumes of 0.002 M solution of sodium iodate and cupric chlorate are mixed togather. Will it lead to precipitation of copper iodate?
(for cupric iodate $K=7.4 \times 10^{-8}$).

Watch Video Solution

53. What is the minimum volume of water required to dissolve 1.0 g of calcium sulphate at 298 K ?
(For calcium sulphate , $K_{s p} i s 9.1 \times 10^{-6}$).
54. 50 mL of a sample of clear saturated solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ requies 20 mL of a $\operatorname{XMPb}\left(\mathrm{NO}_{3}\right)_{2}$ for its titration. What is the value of $\mathrm{X} ?\left(K_{S P} f\right.$ or $\left.\mathrm{Ag}_{2} \mathrm{CrO}_{4}=1.6 \times 10^{-12}\right)$

D Watch Video Solution

55. $M(\mathrm{OH})_{X}$ has $K_{S P}=4 \times 10^{-12}$ and its solubility in water is $10^{-4} \mathrm{M}$. Calculate the value of x .

- Watch Video Solution

56. The fixing of photographic film involves film involves dissolving unexposed AgBr in a thiosulphate solultion.
$\mathrm{AgBr}(s)+2 \mathrm{~S}_{2} \mathrm{O}_{3(a .)}^{2-} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]_{(a q .)}^{3-}+\mathrm{Br}_{(a q .)}^{-}$
Calculate the equilibrium constant K for the dissociation reaction of
$\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$.
$K_{S P} o f A g B r=5.4 \times 10^{-13}$ and $K_{f} f$ or $\left.\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}=4.7 \times 10^{-13}\right)$

- Watch Video Solution

57. Determine whether Cd^{2+} can be seared form Zn^{2+} by bubbling $\mathrm{H}_{2} \mathrm{~S}$ through a 0.3 M HCl solution that contains $0.005 \mathrm{MCd}^{2+}$ and $0.005 \mathrm{MZn}^{2+} \cdot\left(K_{S P}\right.$ for CdS and ZnS are 8×10^{-7} and $\left.3 \times 10^{-2}\right)$ respectively)

D Watch Video Solution

58. Calculate pH of a saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$.
$\left(K_{S P} f\right.$ or $\left.\mathrm{Mg}(\mathrm{OH})_{2}=8.9 \times 10^{-12}\right)$

D Watch Video Solution

59. A saturated solution of a salt MX exhibits an osmotic pressure of 74.4 mm Hg at $25^{\circ} \mathrm{C}$. Assuming 100% ionisation of MX , calculate $K_{S P}$ of $M X$.

- Watch Video Solution

60. The ionization constant of ammonium hydroxide is 1.77×10^{-5}
at 298 K . Calculate the hydrolysis ammonium chloride and pH of 0.04 M ammonium chloride solution.

D Watch Video Solution

61. Calculate the pH of 0.05 M sodium acetate solution, if the $p K_{a}$ of acetic acid is 4.74 .
62. The $p K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ and $p K_{a}$ of $n \mathrm{H}_{4} \mathrm{OH}$ is 4.76 and 4.75 , respectively. Calculate the hydrolysis constant of ammonium acetate $\left(\mathrm{CH}_{3} \mathrm{COONH}_{4}\right)$ at 298 K and also the drgree of hydrolysis and pH of its (a) 0.01 M and (b) 0.04 M solutions.

- Watch Video Solution

63. The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate the $p H$ of $0.04 M$ sodium nitrite solution and also its degree of hydrolysis.

D Watch Video Solution

64. A $0.02 M$ solution of pyridinium hydrochloride has $p H=3.44$.

Calculate the ionization constant of pyridine.
65. Phenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, \mathrm{K}_{a}=1.3 \times 10^{-10}\right)$ is a weak acid used in mouth washes and pyridine $\left(C_{5} H_{5} N, K_{b}=1.8 \times 10^{-9}\right)$ is a weak base used as a solvent. Calculate the value of K_{n} for neutralization of phenol by pyridine. Does the neutralization reaction proceed very far towards completion?

- Watch Video Solution

Exercise2

1. 0.16 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ are dissolved in water and the total volume made upto 500 mL . Calculate the percentage of $\mathrm{N}_{2} \mathrm{H}_{4}$ that has reacted with water in this solution. $\left(K_{b} f\right.$ or $\left.N_{2} H_{4}=4.0 \times 10^{-6}<\right)$
2. An aqueous solution contains 10% ammonia by mass and has a density of $0.09 \mathrm{gcm}^{-3}$. Calculate hydroxyl and hydrogen ion concentration in this solution. $\left(K_{a} f\right.$ or $\left.\mathrm{NH}_{4}^{+}=5.0 \times 10^{-10} \mathrm{M}\right)$

- Watch Video Solution

3. Nicotinic acid $\left(K_{a}=1.4 \times 10^{-5}\right)$ is repersented by the formula HNiC. Calculate its per cent dissociation in a solution, which contains 0.10 mole of nicotinic acid per 2.0 litre of solution.

- Watch Video Solution

\oplus
4. The ionization constant of NH_{4} ion in water is 5.6×10^{-10} at $\oplus \quad \ominus$ $25^{\circ} \mathrm{C}$. The rate constant the reaction of NH_{4} and OH ion to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is $3.4 \times 10^{10} \mathrm{Lmol}^{-1} \mathrm{~S}^{-1}$. Calculate the rate constant for proton transfer form water to NH_{3}.

- Watch Video Solution

5. K_{1} and K_{2} for dissociation of $H_{2} S$ are 1.0×10^{-7} and 1×10^{-14}. Calculate $\left[\mathrm{H}^{+}\right],\left[\mathrm{HS}^{-}\right],\left[\mathrm{S}^{2-}\right]$ and $\left[\mathrm{H}_{2} \mathrm{~S}\right]$ in $0.1 \mathrm{MH}_{2} \mathrm{~S}$ solution. Also report $\left[\mathrm{H}^{+}\right]$and pH and K_{a} for $H_{2} \mathrm{~S} \Leftrightarrow 2 \mathrm{H}^{+}+\mathrm{S}^{2-}$. .

(Watch Video Solution

6. Calculate pH for:
(a) $0.01 \mathrm{NCa}(\mathrm{OH})_{2}$
(b) $0.01 \mathrm{MCa}(\mathrm{OH})_{2}$
(c) $0.0008 \mathrm{MMg}(\mathrm{OH})_{2}$
Assume complete ionisation of each.
7. Will the pH of water be same at $4^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$? Explain.

(D) Watch Video Solution

8. The $p H$ of $0.05 M$ aqueous solution of diethy1 amine is 12.0 . Caluclate K_{b}.

- Watch Video Solution

9. The average concentration of SO_{2} in the atmosphere over a city on a cetrain day is 10 ppm , when the average temperature is 298 K . Given that the solubility of SO_{2} in water at 298 K is 1.3653 mol litre ${ }^{-1}$ and the $p K_{a}$ of $\mathrm{H}_{2} \mathrm{SO}_{3}$ is 1.92 , estimate the pH of rain on that day.
10. What is the pH of 1 M solution of acetic acid? To what volume one litre of this solution be diluted so that pH of the resulting solution will be twice of the original value ? $\left(K_{a}=1.8 \times 10^{-5}\right)$

- Watch Video Solution

11. What will be the resultant pH , when 200 mL of an aqueous solution of $\operatorname{HCI}(p H=2.0)$ is mixed with 300 mL of an aqueous solution of $\mathrm{NaOH}(\mathrm{pH}=12.0)$?

D Watch Video Solution

12. A solution contains $0.1 \mathrm{MH}_{2} \mathrm{~S}$ and 0.3 MHCI . Calculate the conc.of S^{2-} and $H S^{-}$ions in solution. Given $K_{a_{1}}$ and $K_{a_{2}}$ for $H_{2} S$ are 10^{-7} and 1.3×10^{-7} respectively.
13. Saccharin $\left(K_{a}=2 \times 10^{-12}\right)$ is a weak acid represented by formula HSaC. A 4×10^{-4} mole amount of saccharin is dissolved in $200 \mathrm{~cm}^{3}$ water of pH 3 . Assuming no change in volume. Calculate the soncentration of SaC^{-}ions in the resulting solution at equilibrium.

(Watch Video Solution

14. 500 mL of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 HCI at $25^{\circ} \mathrm{C}$.
a. Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the folution.
b. If 6 g of NaOH is added to the above solution determine the final pH. $\left[\mathrm{K}_{a}\right.$ of $\mathrm{CH}_{3} \mathrm{COOH}=2 \times 10^{-5}$.

- Watch Video Solution

15. 0.15 mole of pyridinium chloride has been added into $500 \mathrm{~cm}^{3}$ of $0.2 M$ pyridine solution. Calculate pH and hydroxyl ion contration in the resulting solution, assuming no change in volume. $\left(K_{b}\right.$ for pyridine $\left.=1.5 \times 10^{-9} \mathrm{M}\right)$

Watch Video Solution

16. Calculate the change in pH of 1 litre buffer solution containing
0.1 mole each of NH_{3} and $\mathrm{NH}_{4} \mathrm{CI}$ upon addition of:
(i) 0.02 mole of dissolved gasous HCl .
(ii) 0.02 mole of dissolved of NaOH .

Assume no change in volume. $K_{N H_{3}}=1.8 \times 10^{-5}$

D Watch Video Solution

17. What volume (inml) of 0.10 M sodium formate solution should be added to 50 ml of 0.05 M formic acid to produce a buffer solution of $p H 4$. $\left[p K_{a}\right.$ for formic acid is 3.7]

D Watch Video Solution

18. How many mole of HCl will be required to prepare one litre of buffer solution (containing $\mathrm{NaCN}+\mathrm{HCI}$) of pH8.5 using 0.01 g formula weight of $\mathrm{NaCN} ? K_{H C N}=4.1 \times 10^{-10}$)

D Watch Video Solution

19. The $\left[\mathrm{H}^{+}\right]$in 0.2 M solution of formic acid is $6.4 \times 10^{-3} \mathrm{~mol}$ litre ${ }^{-1}$.

To this solution formate is added so as to adjusrt the conc.of sodium formate to one mol per litre. What will be pH of this
solution ? $\left(K_{a} f\right.$ or $\left.\mathrm{HCOOH}=2.4 \times 10^{-4}\right)$ and degree of dissociation of $\mathrm{HCOONa}=0.75$)

(D) Watch Video Solution

20. A 40 mL solution of weak base BOH is tritrated with 0.1 NHCI solution. The pH of solution is found to be 10.04 and 9.14 after the addition of 5.0 mL and 20.0 mL of acid respecctively. Find out K_{b} for weak base.

D Watch Video Solution

21. Calculate the amount of NH_{3} and $\mathrm{NH}_{4} \mathrm{CI}$ required to prepare a buffer solution of pH 9.0 when total concentration of buffering reagents is $0.6 \mathrm{molL}^{-1} .\left(p K_{b} f\right.$ or $\left.\mathrm{NH}_{3}=4.7, \log 2=0.30\right)$
22. A cetrain buffer solution contains equal concentration of X^{-}and

HX . Calculate pH of buffer. $\left(K_{b} f\right.$ or X^{-}is $\left.10^{-10}\right)$

D Watch Video Solution

23. Two buffer, (X) and (Y) of pH 4.0 and 6.0 respectively are prepared from acid HA and the salt NaA. Both the buffers are 0.50 M in HA. What would be the pH of the solution obtained by mixing equal volumes of the two buffers ? $\left(K_{H A}=1.0 \times 10^{-5}\right)$

- Watch Video Solution

24. A certain weak acid has a dissociation constant 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is :
25. The pH of blood stream is maintained by a proper balance of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} concentrations. What volume of 5 M NaHCO 3 solution, shnould be mixed with 10 mL sample of blood, which is 2 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in order to maintain a pH of $7.4\left(K_{a} f\right.$ or $\mathrm{H}_{2} \mathrm{CO}_{3}$ in blood $=$ 7.8×10^{-7})

- Watch Video Solution

26. The solubility product of AgCl in water is 1.5×10^{-10}. Calculate its solubility in 0.01 MNaCI .

D Watch Video Solution

27. The solubility product of SrF_{2} in water is 8×10^{-10}. Calculate its solubility in 0.1 M NaF aqueous solution.
28. What $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$must be maintained in a saturated $\mathrm{H}_{2} \mathrm{~S}$ solution to precipitate Pb^{2+}, but not Zn^{2+} from a solution in which each ion is present at a concetration of $0.01 M$? $\left(K_{S P}\right.$ for $H_{2} S=1.1 \times 10^{-22}, K_{S P}$ for $\left.Z n S=1.0 \times 10^{-21}\right)$

- Watch Video Solution

29. The solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $6.7 \times 10^{-6} \mathrm{M}$. Calculate the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in a buffer solution of $\mathrm{pH}=8$.

- Watch Video Solution

30. A sample of AgCl was treated with 5.00 mL of $1.5 \mathrm{M} \mathrm{Na}{ }_{2} \mathrm{CO}_{3}$ solubility to give $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. The remaining solution contained
$0.0026 \mathrm{gofCI}^{-}$per litre. Calculate the solubility product of AgCl .

$$
\left(K_{S P} f \text { or } \mathrm{Ag}_{2} \mathrm{CO}_{3}=8.2 \times 10^{-12}\right)
$$

D Watch Video Solution

31. A solution contains a mixture of $\mathrm{Ag}^{+}(0.10 M)$ and $\mathrm{Hg}_{2}^{2+}(0.10 M)$ which are to be separated by selective precipitation. Calculate the miximum concentreation of iodide ion at which one of them gets precipitated almost completely. What \% of that metal ion is precipitated ? $\quad\left(K_{S P} O f A g I=8.5 \times 10^{-17} \quad\right.$ and $\quad K_{S P} \quad$ of $\mathrm{Hg}_{2} \mathrm{I}_{2}=2.5 \times 10^{-26}$)

D Watch Video Solution

32. 0.01 mole of AgNO_{3} is added to 1 litre of a solution which is 0.1 M in $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ and 0.005 M in NaIO_{3}. Calculate the mole of precipitate formed at equilibrium and the concentrations of $\mathrm{Ag}^{+}, \mathrm{IO}_{3}^{-}$and
$\mathrm{CrO}_{4}^{2-} \cdot\left(\mathrm{K}_{s P}\right.$ values of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgIO_{3} are 10^{-8} and 10^{-13} erspectively)

D Watch Video Solution

33. The $K_{S P} \mathrm{OfCa}(\mathrm{OH})_{2}$ is 4.42×10^{-5} at $25^{\circ} \mathrm{C}$. A 500 mL of saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is mixed with equal volume of 0.4 MNaOH . How much $\mathrm{Ca}(\mathrm{OH})_{2}$ in mg is preciptated ?

- Watch Video Solution

34. A sample of hard water contasins 0.005 mole of CaCI_{2} per liter. What is the minimum concentration of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ which must be added for removing Ca^{2+} ions from this water sample ? $\left(K_{S P} f\right.$ or $\left.\mathrm{CaSO}_{4}=2.4 \times 10^{-5} a t 25^{\circ} \mathrm{C}\right)$
35. Determine the concentration of NH_{3} solution whose one litre can dissolve 0.10 mole $\mathrm{AgCl} . K_{S P}$ of AgCl and K_{f} of $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}$are $1.0 \times 10^{-10} M^{2}$ and $1.6 \times 10^{7} M^{-2}$ respectively.

- Watch Video Solution

36. An aqueous solution of a metal bromide $\operatorname{MBr}_{2}(0.05 M)$ is saturated with $\mathrm{H}_{2} \mathrm{~S}$. What is the minimum pH at which MS will precipitate $? K_{S P}$ for $M S=6.0 \times 10^{-21}$. Concentration of saturqated $H_{2} S=0.1 M, K_{1}=10^{-7}$ and $K_{2}=1.3 \times 10^{-13}$ for $H_{2} S$.

D Watch Video Solution

37. Calculate pH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ begins to precipitate from a solution containing $0.10 \mathrm{MMg}^{2+}$ ions. $\left(K_{S P} \mathrm{Of} \mathrm{Mg}(\mathrm{OH})_{2}=1 \times 10^{-11}\right)$
38. Freshly precipiteated Al and Mg hydroxides are stirred vigorously in a buffer solution containing 0.25 M of $\mathrm{NH}_{4} \mathrm{CI}$ and 0.05 M of $\mathrm{NH}_{4} \mathrm{OH}$. Calculate $\left[\mathrm{Al}^{3+}\right]$ and $\left[\mathrm{Mg}^{2+}\right]$ in solution. K_{b} for $\mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5} \mathrm{~K}_{S P} \quad$ of $\mathrm{Al}(\mathrm{OH})_{3}=6 \times 10^{-32} \quad$ and $\quad K_{S P} \quad$ of $\mathrm{Mg}(\mathrm{OH})_{2}=8.9 \times 10^{-12}$.

D Watch Video Solution

39. A solution has $0.05 \mathrm{MMg}^{2+}$ and $0.05 \mathrm{MNH}_{3}$. Calculate the concentration of $\mathrm{NH}_{4} \mathrm{CI}$ required to prevent the formation of $\mathrm{Mg}(\mathrm{Oh})_{2}$ in solution. K_{SP} for $\mathrm{Mg}(\mathrm{OH})_{2}=9.0 \times 10^{-12}$ and ionisation constant of NH_{3} is 1.8×10^{-5}.

- Watch Video Solution

40. The solubility of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ at $25^{\circ} \mathrm{C}$ is 1.20×10^{-11}. A solution of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ containing 0.15 mol in 500 mL water is mixed with excess of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ till the following equilibrium is established:
$\mathrm{Ag}_{2} \mathrm{CO}_{3}+\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow \mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{K}_{2} \mathrm{CO}_{3}$
At equilibrium, the solution constains 0.03 mol of $\mathrm{K}_{2} \mathrm{CO}_{3}$. Assuming that the degree of dissociation of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to be equal, calculate the solubility product of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. [Take 100% ionisation of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$]

D Watch Video Solution

41. Given: $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} \Leftrightarrow \mathrm{Ag}^{+} 2 \mathrm{NH}_{3}, K_{C}=6.2 \times 10^{-8}$ and $K_{S P}$ of $A g C I=1.8 \times 10^{-10}$ at 298 K . Calculate the concentration of the complex in 1.0 M aqueous ammonia.

D Watch Video Solution

42. Determine the number of mole of AgI which may be dissolved in 1.0 litre of $M C N^{-}$solution. $K_{S P}$ for Agl and K_{C} for $\mathrm{Ag}(C N)_{2}^{-}$are $1.2 \times 10^{-17} M^{2}$ and $7.1 \times 10^{19} M^{-2}$ respectively.

D Watch Video Solution

43. What is the pH of a 0.50 M aqueous NaCN solution ? $\left(p K_{b} o f C N^{-}=4.70\right)$

- Watch Video Solution

44. Calculate the percentage hydrolysis in 0.003 M aqueous solution
of $\mathrm{NaOCN} .\left(K_{a} f\right.$ or $\left.\mathrm{HOCN}=3.33 \times 10^{-4}\right)$

- Watch Video Solution

45. K_{a} for butyric acid is 2.0×10^{-5}. Calculate pH and hydroxyl ion concentration in 0.2 M aqueous solution of sodium butyate.

D Watch Video Solution

46. K_{a} for ascorbic acid (Hasc)is5 $\times 10^{-5}$. Calculate the hydrogen in an aqueous solution in which the concentration of Asc^{-}ions in 0.02M.

- Watch Video Solution

47. Calcualte the pH at the equivalence point when a solution of $0.1 M$ acetic is titrated with a solution of $0.1 \mathrm{MNaOH} .\left(K_{a} f\right.$ or acid $\left.=1.9 \times 10^{-5}\right)$.
48. Calcium lactate is a salt of weak acid and represented as $\mathrm{Ca}(\mathrm{LaC})_{2}$. A saturated solution of $\mathrm{Ca}(\mathrm{LaC})_{2}$ contains 0.13 mole of salt in 0.50 litre solution. The pOH of this is 5.60 . Assuming complete dissociation os salt, calculate K_{a} of lactic acid.

D Watch Video Solution

49. What will be the pH of an aqueous solution of 1.0 M ammonium formate?

Given : $p K_{a}=3.8$ and $p K_{b}=4.8$

D Watch Video Solution

50. An aqueous solution of aniline of concentration 0.24 M is prepared. What concentration of sodium hydroxide is needed in this
solution so that anilinium ion concentration remains at $1 \times 10^{-8} M$?

$$
\left(K_{a} f \text { or } C_{6} H_{5} \mathrm{NH}_{3}^{+}=2.4 \times 10^{-5} \mathrm{M}\right)
$$

- Watch Video Solution

51. An acid type indicator, H In differs in colour from its conjugate base $\left(I n^{-}\right)$. The human eye is sensitive to colour differences only when the ratio $\left[\mathrm{In}^{-}\right] /[\mathrm{HIn}]$ is greater than 10 or smaller than 0.1. What should to observe a complete colour change ?

$$
\left(K_{a}=1.0 \times 10^{-5}\right)
$$

D Watch Video Solution

52. 0.1 MNaOH is titrated with 0.1 MHA till the end point. K_{a} of HA is 5.6×10^{-6} and degree of hydrolysis is less compared to 1 . Calculate pH of the resulting solution at the end point ?

Exercise3A

1. The two equilibrium $A B \Leftrightarrow A^{+}+B^{+}$and $A B+B^{-} \Leftrightarrow A B_{2}^{-}$are simultaneously maintained in a solution with equilibrium, constant K_{1} and K_{2} respectively, The ratio of A^{+}to $A B_{2}^{-}$in the solution is:
A. directly prooprtional to theconcentration of B^{-}
B. inversely proportional to the concentration of B^{-}
C. directly proportional to the square of the concentration of B^{-}
D. inversely proprtional to the square of the concentration of B^{-}

Answer: D

D Watch Video Solution

2. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is insoluble in in water. On adding a few drops of HCl to solid $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in contant with water, the solid dissolves. The reason is:
A. the solvent becomes more polar on adding HCl
B. $\mathrm{Ca}\left(\mathrm{PO}_{4}\right)_{2}$ combines with HCl to form soluble CaCI_{2}
C. $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ is formed, which dissolves
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$, a weak acid is formed and the solubility product of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ decrease

Answer: B

D Watch Video Solution

3. Which of the following is not correct ?
A. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{K_{w}}$ for a neutral solution at temperatures
B. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7}$ for a neutral solution at all temperatures
C. $\left[\mathrm{H}^{+}\right]<\sqrt{K_{w}}$ and $\left[\mathrm{OH}^{-}\right]>\sqrt{K_{w}}$ for an acidic solution
D. $\left[\mathrm{H}^{+}\right]>\sqrt{K_{w}}$ and $\left[\mathrm{OH}^{-}\right]<\sqrt{K_{w}}$ for an alkaline solution

Answer: B

(D) Watch Video Solution

4. A solution is a mixture of 0.05 M NaCl and 0.05 M Agl . The concentration of iodide in the solution when AgCl just starts precipitating is equal to:

$$
\left(K_{s p} A g C l=1 \times 10^{-10} M^{2}, K_{s p} A g I=4 \times 10^{-16} M^{2}\right)
$$

A. $4 \times 10^{-6} M$
B. $2 \times 10^{-8} \mathrm{M}$
C. $2 \times 10^{-7} \mathrm{M}$
D. $8 \times 10^{-15} \mathrm{M}$

Answer: C

- Watch Video Solution

5. Which of the following correctly explains the nature of boric acid in aqueous medium :

$$
\mathrm{H}_{2} \mathrm{O}
$$

A. $\mathrm{H}_{3} \mathrm{BO}_{3} \rightarrow \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$

$$
2 \mathrm{H}_{2} \mathrm{O}
$$

B. $\mathrm{H}_{3} \mathrm{BO}_{3} \rightarrow 2 \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{HBO}_{3}^{2-}$
C. $\mathrm{H}_{3} \mathrm{BO}_{2} \xrightarrow{3 \mathrm{H}_{2} \mathrm{O}} 3 \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{BO}_{2}^{3-}$
D. $\mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}$

Answer: D

6. For a weak electrolyte (HA) dissociation $\lim c \rightarrow 0$, then:
A. electrolyte is assumed to be 100% ionised
B. its dissociation constant remains same
C. the interionic attraction diminishes to zero
D. all of these

Answer: D

- Watch Video Solution

7. According to Bronsted Lowry concept, the correct order of strength of bases follows the order:
A. $\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{OH}^{-}>\mathrm{CI}^{-}$
B. $\mathrm{OH}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{CI}^{-}$
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{CI}^{-}>\mathrm{OH}^{-}$
D. $\mathrm{OH}^{-}>\mathrm{CI}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}$

Answer: B

- Watch Video Solution

8. Which one is more acidic in aqueous solution ?
A. NiCI_{2}
B. FeCI_{3}
C. AICI_{3}
D. BeCI_{2}

Answer: C

9. an acid with molecular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$ forms three types of sodium salt i.e., $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{Na}, \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3} \mathrm{Na}_{2}$ and $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{Na}_{3}$. The basicity of the acid:
A. one
B. two
C. three
D. four

Answer: C

D Watch Video Solution

10. The correct order of acid strength is
A. $\mathrm{CI}_{2} \mathrm{O}_{7}>\mathrm{SO}_{2}>\mathrm{P}_{4} \mathrm{O}_{10}$
B. $\mathrm{CO}_{2}>\mathrm{N}_{2} \mathrm{O}_{5}>\mathrm{SO}_{3}$
C. $\mathrm{Na}_{2} \mathrm{O}>\mathrm{MgO}>\mathrm{AI}_{2} \mathrm{O}_{3}$
D. $\mathrm{K}_{2} \mathrm{O}>\mathrm{CaO}>\mathrm{MgO}$

Answer: A

- Watch Video Solution

11. Which compound will not liberate CO_{2} from aqueous NaHCO_{3} ?
A. $\mathrm{RNH}_{3}^{+} \mathrm{CI}^{-}$
B. $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+} \mathrm{OH}^{-}$
C. RCOOH
D. $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+} \mathrm{CI}^{-}$

Answer: B

12. A buffer solution contains 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and 1 mole of $\mathrm{NH}_{4} \mathrm{OH}\left(K_{b}=10^{-5}\right)$. The pH of solution will be:
A. 5
B. 9
C. 5.3010
D. 8.6990

Answer: D

D Watch Video Solution

13. The increasing order of basic strength of $\mathrm{CI}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{OH}^{-}$and F^{-}is:
A. $\mathrm{CI}^{-}<\mathrm{F}^{-}<\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{CO}_{3}^{2-}<\mathrm{OH}^{-}$
B. $\mathrm{CI}^{-}<\mathrm{F}^{-}<\mathrm{CO}_{3}^{2-}<\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{OH}^{-}$
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{CI}^{-}<\mathrm{F}^{-}<\mathrm{CO}_{3}^{2-}<\mathrm{OH}^{-}$
D. none of these

Answer: A

D Watch Video Solution

14. In water, the acid $\mathrm{HCIO}_{4}, \mathrm{HCI}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3} exhibit the same strength as they are completely ionised in water (a base). This is called of the solvent water.
A. strength
B. capacity
C. buffer effect
D. levelling effect

Answer: D
15. Which one is hard base?
A. Ag^{+}
B. Cr^{3+}
C. I_{2}
D. F^{-}

Answer: D

- Watch Video Solution

16. Arrange $\mathrm{NH}_{4}^{+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{HF}$ and OH^{-}in increasing order of acidic nature:
A. $\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{4}^{+}<\mathrm{HF}<\mathrm{H}_{3} \mathrm{O}^{+}$
B. $\mathrm{H}_{3} \mathrm{O}^{+}<\mathrm{HF}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{4}^{+}<\mathrm{OH}^{-}$
C. $\mathrm{NH}_{4}^{+}<\mathrm{HF}<\mathrm{H}_{3} \mathrm{O}^{+}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OH}^{-}$
D. $\mathrm{H}_{3} \mathrm{O}^{+}<\mathrm{NH}_{4}^{+}<\mathrm{HF}<\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

17. The strongest Bronsted base in the following anion is
A. CIO^{-}
B. CIO_{2}^{-}
C. CIO_{3}^{-}
D. CIO_{4}^{-}

Answer: A

18. In
the following
reaction
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)+\mathrm{PO}_{4}^{3-}(a q) \Leftrightarrow \mathrm{HPO}_{4}^{-2}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)$, which are the two Bronsted bases?
A. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and PO_{4}^{3-}
B. HPO_{4}^{2-} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
C. PO_{4}^{3-} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
D. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and HPO_{4}^{2-}

Answer: C

(D) Watch Video Solution

19. The conjugate base of $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]$ is:
A. $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{2}\right]+$
B. $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{2} \mathrm{O}\right]$ -
C. $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]-$
D. $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]$ -

Answer: D

D Watch Video Solution

20. The total number of different kind of buffers obtained during the titration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with NaOH are:
A. 3
B. 1
C. 2
D. zero
21. Basic lead carbonate is:
A. PbS
B. PbCO_{3}
C. PbSO_{4}
D. $2 \mathrm{PbCO}_{3} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}$

Answer: D

- Watch Video Solution

22. The anhydride of acid $\mathrm{H}_{3} \mathrm{PO}_{4}$ and HPO_{3} are:
A. $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{P}_{2} \mathrm{O}_{3}$
B. $\mathrm{P}_{2} \mathrm{O}_{5}$
C. $\mathrm{P}_{2} \mathrm{O}_{3}$
D. none of these

Answer: B

D Watch Video Solution

23. The decreasing trend of acidic nature of trihalides of boron is:
A. $B F_{3}>B C I_{3}>B B r_{3}>B I_{3}$
B. $B I_{3}>B B r_{3}>B C I_{3}>B F_{3}$
C. $\mathrm{BBr}_{3}>\mathrm{BCI}_{3}>\mathrm{BF}_{3}>\mathrm{BI}_{3}$
D. $\mathrm{BCI}_{3}>\mathrm{BI}_{3}>\mathrm{BF}_{3}>\mathrm{BBr}_{3}$
24. The mixed salt among the following is:
A. $\mathrm{CHOHCOOK} \mid$ CHOHCOONa
B. NaKSO_{4}
C. CaOCI_{2}
D. all of these

Answer: D

- Watch Video Solution

25. pH of water is 7.0 at $25^{\circ} \mathrm{C}$. If water is heated to $70^{\circ} \mathrm{C}$, the:
A. pH will decrease and solution becomes acidic
B. pH will increase
C. pH will remain constant as 7
D. pH will decrease but solution will be neutral

Answer: D

D Watch Video Solution

26. When HCl gas is passed through a saturated solution of common salt, pure NaCl is Precipitated because:
A. the impurities dissolve in HCl
B. HCl is highly soluble in $\mathrm{H}_{2} \mathrm{O}$
C. the product of $\left[\mathrm{Na}^{+}\right]$and $\left[\mathrm{CI}^{-}\right]$exceeds the solubiluity product of NaCl
D. the solulbility product of NaCl is lowest by the chloride in

D Watch Video Solution

27. The inerferring radicals interfere in the test of usal inorganic analysis after II group analysis due to:
A. their solubility in acid medium
B. their solubilty in alkaline medium
C. their insoluble nature in alkaline madium
D. none of these

Answer: C

(D) Watch Video Solution

28. Given, $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$

$$
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{K_{b}} \mathrm{HF}+\mathrm{OH}^{-}
$$

Which relation is correct ?
A. $K_{b}=K_{w}$
B. $K_{b}=1 / K_{w}$
C. $K_{a} \times K_{b}=K_{w}$
D. $K_{a} / K_{b}=K_{w}$

Answer: C

- Watch Video Solution

29. Isoelectric point is defined as the pH at which:
A. an amino acid becomes acidic
B. an amino acid becomes basic
C. zwitterio has positive charge
D. zwitterion has zero charge

Answer: D

- Watch Video Solution

30. Which may be added to one litre of water to act a buffer?
A. One mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and one mole of HCl
B. One mole of $\mathrm{NH}_{4} \mathrm{OH}$ and one mole of NaOH
C. One mole of $\mathrm{NH}_{4} \mathrm{CI}$ and mole of HCl
D. One mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and 0.5 mole of NaOH

Answer: D

31. The pH of an acidic buffer mixture is:
A. >7
B. <7
C. $=7$
D. depends upon K_{a} of acid

Answer: D

D Watch Video Solution
32. The principal buffer present in human blood is
A. HCI and CI^{-}
B. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and HCO_{3}^{-}
C. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and CI^{-}
D. HCI and HCO_{3}^{-}

Answer: B

- Watch Video Solution

33. The ratio of dissociation constant of two weak acids HA and HB is
34. At what molar concentration ratio, the two acids will have same pH ?
A. 2
B. 0.5
C. 4
D. 0.25

Answer: D
34. The $p K_{a}$ of acteylsalicylic acid (aspirin) is 3.5 . The pH of gastric juice in human stomach is about 2-3 and the pH in the small intestine is about 8 . Aspirin will be:
A. unionised in the small intestine and in the stomach
B. completely ionised in the small intestine and in the stomach
C. ionised in the stomach and almost uniunised in the small intestine
D. ionised in the small intestine and almost unionised in the stomach

Answer: D

35. The reverse procees of neutralisation is:
A. hydrolysis
B. decomposition
C. dehydration
D. synthesis

Answer: A

D Watch Video Solution

36. When different types of salts have nearly same solubility product constant $K_{S P}$ but less than one the most soluble salt is that:
A. which produces maximum number of ions
B. which produces minimum number of ions
C. which produces more charge on ion
D. none of these

Answer: A

- Watch Video Solution

37. The solubility of Agl in Nal is lowest than that in pure water, because:
A. Agl forms complex with NaI
B. effect of common ion increases ionic concentration of I^{-}
C. solubiltiy product of Agl is less than that of Nal
D. the temperature of the solution decreases

Answer: B

D Watch Video Solution

38. Which of the following is most soluble in water?
A. $\operatorname{MnS}\left(K_{S P}=8 \times 10^{-37}\right)$
B. $\operatorname{ZnS}\left(K_{S P}=7 \times 10^{-16}\right)$
C. $B i_{2} S_{3}\left(K_{S P}=1 \times 10^{-70}\right)$
D. $A g_{2} S\left(K_{S P}=6 \times 10^{-51}\right)$

Answer: B

D Watch Video Solution

39. The decreasing order of strength of the bases, $\mathrm{OH}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}$and $\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$:
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}$
B. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{OH}^{-}$
C. $\mathrm{OH}^{-}>\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$
D. $\mathrm{NH}_{2}^{-}>\mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}>\mathrm{CH}_{3}-\mathrm{CH}_{2}^{-}$

Answer: A

- Watch Video Solution

40. The best explanation for the solubility of MnS in dil. HCl is that:
A. solubility product of MnCI_{2} is less than that of MnS
B. concentration of Mn^{2+} is lowered by the formation of complex ions with chloride ions
C. concentration of sulphide ions is lowered by oxidation to free sulphur
D. concentration of sulphide ions is lowered by formation of the weak acid $\mathrm{H}_{2} \mathrm{~S}$

- Watch Video Solution

41. pH for the solution of salt undergoing anionic hydrolysis (say $\mathrm{CH}_{3} \mathrm{COONa}$) is given by:
A. $p H=1 / 2\left[p K_{w}+p K_{a}+\log C\right]$
B. $p H=1 / 2\left[p K_{w}+p K_{a}-\log C\right]$
C. $p H=1 / 2\left[p K_{w}+p K_{b}-\log C\right]$
D. none of these

Answer: A

- Watch Video Solution

42. Solubility of BaF_{2} in a solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$, will be represented by the concentration term:
A. $\left[B a^{2+}\right]$
B. $\left[F^{-}\right]$
C. $1 / 2\left[F^{-}\right]$
D. $2\left[\mathrm{NO}_{3}^{-}\right]$

Answer: C

D Watch Video Solution

43. Which statement is correct ?
A. All Bronested bases are also Lewis bases
B. All Bronsted acids are not Lewis acids
C. All cations are acids and anions are bases
D. all of these
44. Fear or exitement, generally cause one to breathe rapidaly and it results in the decrease of concentration of CO_{2} in blood. In what way it will change pH of blood ?
A. pH will increse
B. pH will decrease
C. No change
D. pH will be 7

Answer: C
45. For neutralisation of $\mathrm{HF}+\mathrm{NaOH} \rightarrow \mathrm{NaF}+\mathrm{H}_{2} \mathrm{O}$, heat released during neutralisation is:
A. > 13.7 kcal
B. $<13.7 \mathrm{kcal}$
C. $=13.7 \mathrm{kcal}$
D. none of these

Answer: A

- Watch Video Solution

46. The pH of 0.1 M solution of the following salts increases in the order
A. $\mathrm{NaCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCN}<\mathrm{HCI}$
B. $\mathrm{HCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{NaCN}$
C. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{HCI}$
D. $\mathrm{HCI}<\mathrm{NaCI}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}$

Answer: B

- Watch Video Solution

47. The pH of the solution obtained by mixing 10 mL of $10^{-1} \mathrm{NHCI}$ and 10 mL of $10^{-1} \mathrm{NNaOH}$ is:
A. 8
B. 2
C. 7
D. none of these

Answer: C

48. A cetrain buffer solution contains equal concentration of X^{-}and HX . Calculate pH of buffer. $\left(K_{b} f\right.$ or X^{-}is $\left.10^{-10}\right)$
A. 4
B. 7
C. 10
D. 14

Answer: A

- Watch Video Solution

49. $10^{-6} \mathrm{MHCl}$ is diluted to 100 times. Its pH is:
A. 6.0
B. 8.0
C. 6.95
D. 9.5

Answer: C

D Watch Video Solution

50. 50 mL of 2 N acetic acid mixed with 10 mL of 1 N sodium acetate solution will have an approximate pH of $\left(K_{a}=10^{-5}\right)$:
A. 4
B. 5
C. 6
D. 7

Answer: A
51. One litre of water contains 10^{-7} mole H^{+}ions. Degree of ionisation of water is:
A. $1.8 \times 10^{-7} \%$
B. $1.8 \times 10^{-9} \%$
C. $3.6 \times 10^{-7} \%$
D. $3.6 \times 10^{-9} \%$

Answer: A

- Watch Video Solution

52. Which solutionwill have pH closer to 1.0 ?
A. 100 mL of $(\mathrm{M} / 10) \mathrm{HCI}+100$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
B. 55 mL of $(\mathrm{M} / 10) \mathrm{HCI}+45 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
C. 10 mL of $(\mathrm{M} / 10) \mathrm{HCI}+90 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
D. 75 mL of $(\mathrm{M} / 5) \mathrm{HCI}+25 \mathrm{~mL}$ of $(\mathrm{M} / 5) \mathrm{NaOH}$

Answer: D

- Watch Video Solution

53. A certain weak acid has a dissociation constant 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is :
A. 1.0×10^{-4}
B. 1.0×10^{-10}
C. 1×10^{10}
D. 1.0×10^{-14}

Answer: C

54. At $30^{\circ} \mathrm{C}$ the solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}\left(K_{S P}=8 \times 10^{-12}\right)$ would be gretest in one litre of:
A. $0.05 \mathrm{MNa}_{2} \mathrm{CO}_{3}$
B. $0.05 \mathrm{MAgNO}_{3}$
C. pure water
D. $0.05 \mathrm{MK}_{2} \mathrm{CO}_{3}$

Answer: C

- Watch Video Solution

55. The solubility products of $\mathrm{AI}(\mathrm{OH})_{3}$ and $\mathrm{Zn}(\mathrm{OH})_{2}$ are 8.5×10^{-23} and 1.8×10^{-14} respectively. If $\mathrm{NH}_{4} \mathrm{OH}$ is added to a solution containing AI^{3+} and Zn^{2+} ions, then substance precipitated first is:
A. $\mathrm{AI}(\mathrm{OH})_{3}$
B. $\mathrm{Zn}(\mathrm{OH})_{2}$
C. both together
D. none at all

Answer: A

D Watch Video Solution

56. The solubilituy of PbCI_{2} in water is $0.01 \mathrm{M} 25^{\circ} \mathrm{C}$. Its maximum concentration in 0.1 MNaCI will be:
A. $2 \times 10^{-3} \mathrm{M}$
B. $1 \times 10^{-4} M$
C. $1.6 \times 10^{-2} \mathrm{M}$
D. $4 \times 10^{-4} M$

(D) Watch Video Solution

57. In an experiment to determine the enthalpy of neutralisation of sodium hydroxide with sulphuric acid, $50 \mathrm{~cm}^{3}$ of $0.4 M$ sodium hydroxide were titreated thermometrically with $0.25 M$ sulphuric acid. Which of the following plots gives the correct representation ?
(a) $\stackrel{\stackrel{\varepsilon}{@}}{\curvearrowleft}$

A.

B. 1
(c) $\stackrel{\stackrel{\text { E }}{\circledR}}{\square}$

C.
(d)

D.

Answer: B

D Watch Video Solution

58. Calculate K for the reaction, $\mathrm{A}^{-}+\mathrm{H}_{3}^{+} \mathrm{O} \Leftrightarrow \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$
if K_{a} value for the acid HA is 1.0×10^{-6}.
A. 1×10^{-6}
B. 1×10^{12}
C. 1×10^{-12}
D. 1×10^{6}

Answer: D

- Watch Video Solution

59. The degree of hydrrolysis of a salt of weak acid and weak base in its 0.1 M solultion is found to be 50%. If the molarity of the solution is $0.2 M$, the percentage hydrolysis of the salt should be:
A. 100%
B. 50 \%
C. 25 \%
D. none of these

Answer: B

60. The volume of the water needed to dissolve $1 g$ of $\mathrm{BaSO}_{4}\left(K_{S P}=1.1 \times 10^{-10}\right)$ at $25^{\circ} \mathrm{C}$ is:
A. 820 litre
B. 410 litre
C. 205 litre
D. none of these

Answer: B

- Watch Video Solution

61. Let the solubilities of AgCI in $\mathrm{H}_{2} \mathrm{O}$, and in $0.01 \mathrm{MCaCI}_{2}, 0.01 \mathrm{MNaCI}$, and $0.05 \mathrm{MAgNO}_{3}$ be $S_{1}, S_{2}, S_{3}, S_{4}$, respectively. What is the correct relationship between these quantites.
A. $S_{1}>S_{2}>S_{3}>S_{4}$
B. $S_{1}>S_{2}=S_{3}>S_{4}$
C. $S_{1}>S_{3}>S_{2}>S_{4}$
D. $S_{4}>S_{2}>S_{3}>S_{1}$

Answer: C

D Watch Video Solution

62. From separate solutions of sodium salts, $\mathrm{NaW}, \mathrm{NaX}, \mathrm{NaY}$ and NaZ have $p H 7.0,9.0,10.0$ and 11.0 respectively. When each solution was
$0.1 M$, the strongest acid is:
A. HW
B. HX
C. HY
D. HZ

Answer: A

- Watch Video Solution

63. A cetrain ion B^{-}has an Arrhenius constant for basic character (eq. constnat 2.8×10^{-7}). The equilibrium constant for LowryBronsed basic character is:
A. 2.8×10^{-7}
B. 3.57×10^{-8}
C. 3.57×10^{8}
D. 2.8×10^{7}

Answer: D

64. Acetic acid and propionic acid have K_{a} values 1.75×10^{-5} and 1.3×10^{-5} respectively at a cetrain temperature. An equimolar solution of a mixture, of the two acids is partially neutralised by NaOH . How is the ratio of the contents of acetate and propionate ions related to the K_{a} values and the molarity ?
A. $\left(\frac{\alpha}{1-\alpha}\right)=\frac{1.75}{1.3} \times\left(\frac{\beta}{1-\beta}\right)$, where α and β are ionised fractions of these acids
B. The ratio is unrelated to the K_{a} values
C. The ratio is unrelated to the molarity
D. The ratio is unrelated to the pH of the solution

Answer: A

- Watch Video Solution

65. The ionization constant of NH_{4} ion in water is 5.6×10^{-10} at $25^{\circ} \mathrm{C}$. The rate constant the reaction of $\stackrel{\oplus}{N} \mathrm{H}_{4}$ and $\stackrel{\ominus}{\mathrm{O}}$ ion to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is $3.4 \times 10^{10} \mathrm{Lmol}^{-1} \mathrm{~S}^{-1}$. Calculate the rate constant for proton transfer form water to NH_{3}.
A. $6.07 \times 10^{5} S^{-1}$
B. $6.07 \times 10^{-10} s^{-1}$
C. $6.07 \times 10^{-5} S^{-1}$
D. $6.07 \times 10^{10} S^{-1}$

Answer: A

- Watch Video Solution

66. A solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added drop by drop to litre of a solution containing 10^{-4} mole of Ba^{2+} and 10^{-5} mole of Ag , if $K_{S P}$ for BaCO_{3}
is 8.1×10^{-9} and $K_{S P}$ for $\mathrm{Ag}_{2} \mathrm{CO}_{3} i s 6.9 \times 10^{-12}$, then which is not true?
A. No precipitate of BaCO_{3} will appear untill $\left[\mathrm{CO}_{3}^{2-}\right]$ reaches 8.1×10^{-5} mole per litre
B. A precipitate of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ will appear when $\left[\mathrm{CO}_{3}^{2-}\right]$ reaches $6.9 \times 10^{-5} \mathrm{~mol}$ litre ${ }^{-1}$
C. No precipitate of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ will appear until $\left[\mathrm{CO}_{3}^{2-}\right]$ reaches $6.9 \times 10^{-2} \mathrm{~mol}$ per litre
D. BaCO_{3} will be precipitated first

Answer: B

D Watch Video Solution

67. To separate and identify the ionis in a mixutre that may contain $\mathrm{Pb}^{2+}, \mathrm{Cu}^{2+}$ and Mg^{2+} use the reagents $\mathrm{H}_{2} \mathrm{~S}, \mathrm{HCI}$ and NaOH . They
should be added in the order:
A. $\mathrm{HCI}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NaOH}$
B. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{HCI}, \mathrm{NaOH}$
C. $\mathrm{HCI}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCI}$

Answer: A

- Watch Video Solution

68. pH of a mixture containing $0.10 \mathrm{MX}^{-}$and 0.20 MHX is: $\left[p K_{b}\left(X^{-}\right)=4\right]$
A. $4+\log 20$
B. $4-\log 2$
C. $10+\log 2$
D. $10-\log 2$

Answer: D

- Watch Video Solution

69. To prepare a buffer of pH 8.26 , amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ to be added into 500 mL of $0.01 \mathrm{MNH}_{4} \mathrm{OH}$ solution $\left[p K_{a}\left(\mathrm{NH}_{4}^{+}\right)=9.26\right]$ is:
A. 0.05 mole
B. 0.025 mole
C. 0.10mole
D. 0.005 mole

Answer: B

70. Percentange ionisation of weak acid can be calculated using the formula:
A. $100 \sqrt{\frac{K_{a}}{C}}$
B.

$$
1+10\left(p K_{a}-p H\right)
$$

C. both (a) and (b)
D. none of these

Answer: C

(D) Watch Video Solution

71. $p H$ of a mixture of $1 M$ benzoic acid $\left(p K_{a}=4.20\right)$ and $1 \mathrm{MC}_{6} \mathrm{H}_{5} \mathrm{COONa}$ is 4.5 . In 300 ml buffer, benzoic acid is [log2 $=0.3$]
A. 200 mL
B. 150 mL
C. 100 mL
D. 50 mL

Answer: C

- Watch Video Solution

72. If the equilibrium constant for the reaction of weak acid HA with strong base is 10^{9}, then pH of 0.1 M Na A is:
A. 5
B. 9
C. 7
D. 8
73. For, $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{K}_{a_{1}}$
$\mathrm{H}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}^{2-}, \mathrm{K}_{a_{2}}$
$\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}^{3-}, \mathrm{K}_{a_{3}}$
The correct order of K_{a} values is:
A. $K_{a_{1}}>K_{a_{2}}<K_{a_{3}}$
B. $K_{a_{1}}<K_{a_{2}}<K_{a_{3}}$
C. $K_{a_{1}}>K_{a_{2}}>K_{a_{3}}$
D. $K_{a_{1}}<K_{a_{2}}>K_{a_{3}}$

Answer: C

74. pH of $0.01 \mathrm{MHS}^{-}$will be:
A. $p H=7+\frac{p K_{a}}{2}+\frac{\log C}{2}$
B. $p H=7-\frac{p K_{a}}{2}+\frac{\log C}{2}$
C. $p H=7+\frac{p K_{1}+p K_{2}}{2}$
D. $p H=7+\left(\frac{p K_{a}-p K_{b}}{2}\right)$

Answer: A

- Watch Video Solution

75. Solution of aniline hydrochloride is X due to hydrolysis of $Y . X$ and Y are:
A. basic, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$
B. acidic, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$
C. basic, CI^{-}
D. acidic, CI^{-}

Answer: B

D Watch Video Solution

76. Slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$ is used extensively in sewage treatment.

What is themaximum pH that can be estabilished in $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$?
$\mathrm{Ca}(\mathrm{OH})_{2(s)} \Leftrightarrow \mathrm{Ca}_{(a q .)}+2 \mathrm{OH}_{(\text {aq. })}^{-},\left(K_{S P}=5.5 \times 10^{-6}\right)$
A. 1.66
B. 12.3471
C. 7.0
D. 14.0

Watch Video Solution

77. 10 mL of $10^{-6} \mathrm{MHCl}$ solution is mixed with $90 \mathrm{mLH}_{2} \mathrm{O}$. pH will change approximately:
A. by one unit
B. by 0.3 unit
C. by 0.7 unit
D. by 0.1 unit

Answer: C

D Watch Video Solution

78. $M(\mathrm{OH})_{X}$ has $K_{S P} 4 \times 10^{-12}$ and solubility $10^{-4} M$. The value of x is:
B. 2
C. 3
D. 4

Answer: B

(D) Watch Video Solution

79. The solubility products of $M A, M B, M C$ and $M D$ are $1.8 \times 10^{-10}, 4 \times 10^{-3}, 4 \times 10^{-8}$ and 6×10^{-5} respectively. If a $0.01 M$ solution of MX is added dropwise to a mixture containing A^{-}, B^{-}, C^{-}and D^{-}ions, then the one to be precipitated first will be:
A. MA
B. $M B$
C. MC
D. MD

D Watch Video Solution

80. Which of the following statements is correct for a solution saturated with AgCl and AgBr if their solubilities in moles per litre in separate solutions are x and y respectively?
A. $\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Br}^{-}\right] \times\left[\mathrm{CI}^{-}\right]$
B. $\left[\mathrm{CI}^{-}\right]>\left[\mathrm{Br}^{-}\right]$
C. $\left[\mathrm{Br}^{-}\right]>y$
D. $\left[A g^{+}\right]=x+y$

Answer: D

81. If NaOH is titrated HCl , variation of conductance (y-axis) with addition of HCl (x-axis) will be:
(a)

(b)

B.

Answer: B
82. Which of the following will not produce a precipitate with dilute silver nitrate solution?
A. $\mathrm{CO}_{3(a q \text {. })}^{2-}$
B. $\mathrm{CrO}_{4(\text { aq. })}^{2-}$
C. $I_{\text {(aq. })}^{-}$
D. $F_{(a q .)}^{-}$

Answer: D

(D) Watch Video Solution

83. 10 mL of a strong acid solution of $p H=2.000$ are mixed with 990 mL of another strong acid solution of $\mathrm{pH}=4.000$. The pH of the resulting solution will be:
A. 4.002
B. 4.000
C. 4.200
D. 3.72

Answer: D

- Watch Video Solution

84. Sulphanilic acid is a/an:
A. Arrhenius acid
B. Lewis base
C. neither (a) nor (b)
D. either (a) or (b)

Answer: D

85. The pH of 10 M HCl solution is:
A. less than zero
B. zero
C. 2
D. 1

Answer: B

- Watch Video Solution

86. At infinite dilution, the percentage dissociation of both weak acid and weak base is:
A. 1%
B. 20%
C. 50 \%
D. 100%

Answer: D

D Watch Video Solution

87. Strong acids are generally used as standard solution in acid-base titrations because:
A. the pH at equivalence point will be 7
B. they titrate both strong and weak base
C. they form more stable solutions than weak acids
D. the salts of strong do not hydrolyse

Answer: B

88. An acid solution with $\mathrm{pH}=6 \mathrm{at} 25^{\circ} \mathrm{C}$ is diluted by 10^{2} times. The pH of solution will:
A. decrease by 2
B. increase by 2
C. decrease by 0.95 approximately
D. increase by 0.95 appromately

Answer: D

- Watch Video Solution

89. Approximate pH of 0.01 M aqueous $\mathrm{H}_{2} \mathrm{~S}$ solution, when K_{1} and K_{2} for $\mathrm{H}_{2} \mathrm{~S}$ at $25^{\circ} \mathrm{C}$ are 1×10^{-7} and 1.3×10^{-13} respectively:
A. 4
B. 5
C. 6
D. 8

Answer: A

- Watch Video Solution

90. A student wants to prepared a saturated solution of Ag^{+}ion. He has got only three samples $\operatorname{AgCI}\left(K_{S P}=1.8 \times 10^{-10}\right)$. Which compound he should use to have maximum $\left[\mathrm{Ag}^{+}\right]$?
A. AgCl
B. AgBr
C. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
D. Either of them

- View Text Solution

91. Which of the following species is more soluble in water?
A. $M(O H)_{3},\left(K_{S P}=1 \times 10^{-35}\right)$
B. $\mathrm{M}(\mathrm{OH})_{2},\left(K_{S P}=1 \times 10^{-30}\right)$
C. $\mathrm{MOH},\left(K_{S P}=1 \times 10^{-28}\right)$
D. $\mathrm{MOH},\left(K_{S P}=1 \times 10^{-26}\right)$

Answer: A

- Watch Video Solution

92. Number of H^{+}ions present in 10 mL of solution of $\mathrm{pH}=3$ are:
A. 10^{13}
B. 6.02×10^{18}
C. 6.02×10^{13}
D. 6.002×10^{10}

Answer: B

D Watch Video Solution

93. For pure water:
A. pH increase and pOH decreases with rise in temperature
B. pH decrease and pOH increases with rise in temperature
C. both pH and pOH increase with rise in temperature
D. both pH and pOH decrease with rise in temperature

- Watch Video Solution

94. If $\Delta H_{\text {ionisation }}^{\circ}$ for HCN and $\mathrm{CH}_{3} \mathrm{COOH}$ are 45.2 and $2.1 \mathrm{KJmol}^{-1}$, which one of the following is correct ?
A. $p K_{a(\mathrm{HCN})}<p K_{a\left(\mathrm{CH}_{3} \mathrm{COOH}\right)}$
B. $p K_{a(\mathrm{HCN})}>p K_{a\left(\mathrm{CH}_{3} \mathrm{COOH}\right)}$
C. $p K_{a(\mathrm{HCN})}=p K_{a\left(\mathrm{CH}_{3} \mathrm{COOH}\right)}$
D. None of these

Answer: B

D Watch Video Solution

95. The self ionisation constant for pure
$\mathrm{HCOOH}, \mathrm{K}=\left[\mathrm{HCOO}_{2}{ }_{2}\right]\left[\mathrm{HCOO}^{\Theta}\right]$ is 10^{-6} at room temperature.

What percentage of HCOOH molecules are converted to HCOO^{Θ} ions. The density of HCOOH iws $1.22 \mathrm{gcm}^{-3}$.
A. 0.002 \%
B. 0.004 \%
C. 0.006 \%
D. 0.008 \%

Answer: B

D Watch Video Solution

96. Liquid NH_{3} ionises to a slight extent. At $-50^{\circ} \mathrm{C}$, its ionic product
$K_{N H_{3}}=\left[\begin{array}{l}\Theta \\ N h_{4}\end{array}\right]\left[\begin{array}{l}\Theta^{\Theta} H_{2}\end{array}\right]$ is 10^{-30}. How many amide ions, $\stackrel{\oplus}{N H_{2}}$ are
present per mm^{3} of pure liquid NH_{3} ?
A. 6×10^{6} ions
B. 6×10^{5} ions
C. 6×10^{-5} ions
D. 6×10^{-6} ions

Answer: B

- Watch Video Solution

97. The concentration of fluroacetic acid (K_{a} ofacid $=2.6 \times 10^{-3}$), which is required to get $\left[H^{+}\right]=1.50 \times 10^{-3} M$ is:
A. $0.865 M$
B. $2.37 \times 10^{-3} \mathrm{M}$
C. $2.37 \times 10^{-4} \mathrm{M}$
D. $2.37 \times 10^{-2} \mathrm{M}$
98. The $p H$ of pure water at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ are 7 and 6 , respectively. Calculate the heat of formation of water from H^{\oplus} and Θ
OH.
A. $84.55 \mathrm{kcalmol}^{-}$
B. $-84.55 \mathrm{kcalmol}^{-1}$
C. $74.55 \mathrm{kcalmol}^{-1}$
D. $-74.55 \mathrm{kcalmol}^{-1}$

Answer: B

- Watch Video Solution

99. The pH of a solution obtained by mixing 10 mL of 0.1 MHCI and 40 mL of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is:
A. 1.4865
B. 0.4865
C. 0.4685
D. 3

Answer: C

Watch Video Solution

100. The pH of a solution obtained by mixing 100 mL of 0.1 MHCI and 9.9 mL of 0.1 M NaOH ' is:
A. 3.0409
B. 3.4049
C. 2.0409
D. None of these

Answer: A

D Watch Video Solution

101. What will be the resultant pH , when 200 mL of an aqueous solution of $\operatorname{HCI}(p H=2.0)$ is mixed with 300 mL of an aqueous solution of $\mathrm{NaOH}(\mathrm{pH}=12.0)$?
A. 11.0310
B. 11.3010
C. 10.000
D. None of these

Answer: B
102. K_{a} for formic acid and acetic acid are 2.1×10^{-4} and 1.1×10^{-5} respectively. The relative strength of acids is:
A. 2:1
B. 2.3:1
C. 1:2.1
D. $4.36: 1$

Answer: D

- Watch Video Solution

103. What volume of 0.1 M sodium formate solution should be added to 50 mL of 0.05 M formic acid to produce a buffer solution of $p H=4.0 ?\left(p K_{a}\right.$ of fomic acid $\left.=3.80\right)$
A. 39.0 mL
B. $39.62 m L$
C. 40 mL
D. 40.62 mL

Answer: B

- Watch Video Solution

104. How many mole of HCl will be required to prepare one litre of buffer solution (containing $\mathrm{NaCN}+\mathrm{HCI}$) of pH8.5 using 0.01 g formula weight of $\mathrm{NaCN} ? K_{H C N}=4.1 \times 10^{-10}$)
A. 8.85×10^{-3}
B. 8.75×10^{-2}
C. 8.85×10^{-4}
D. 8.85×10^{-2}

Answer: A

D Watch Video Solution

105. The composition of an acidic buffer mixture made up of HA and NaA of total molarity 0.29 having $p H=4.4$ and $K_{a}=1.8 \times 10^{-5}$ in terms of concentration of salt and acid respectively is:
A. 0.09 M and 0.20 M
B. 0.20 M and 0.09 M
C. $0.1 M$ and $0.19 M$
D. 0.19 M and 0.10 M

Answer: A

106. A weak acid HA after teratment with 12 mL of 0.1 M strong base BOH has a pH of 5 . At the end point, the volume of same base required is $26.6 m L . K_{a}$ of acid is:
A. 1.8×10^{-5}
B. 8.2×10^{-6}
C. 1.8×10^{-6}
D. 8.2×10^{-5}

Answer: B

D Watch Video Solution

107. Zn salt is mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ of molarity 0.021 M . The amount of Zn^{2+} reaming unprecipitated in 12 mL of this solution :
$\left(K_{S P} f\right.$ or $\left.Z n S=4.51 \times 10^{-24}\right)$
A. $1.677 \times 10^{-22} g$
B. $1.767 \times 10^{-22} g$
C. $2.01 \times 10^{-23} g$
D. none of these

Answer: A

D Watch Video Solution

108. Calculate pH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ begins to precipitate from a solution containing $0.10 \mathrm{MMg}^{2+}$ ions. $\left(\mathrm{K}_{\mathrm{SP}} \mathrm{OfMg}(\mathrm{OH})_{2}=1 \times 10^{-11}\right)$
A. 5
B. 9
C. 4
D. 10

- Watch Video Solution

109. The concentration of hydroxyl ion in a solution left after mixing 100 mL of $0.1 \mathrm{MMgCl}_{2}$ and 100 mL of 0.2 MNaOH is: $\left(K_{S P} O f M g(O H)_{2}=1.2 \times 10^{-11}\right)$
A. 2.8×10^{-3}
B. 2.8×10^{-2}
C. 2.8×10^{-4}
D. 2.8×10^{-5}

Answer: C

- Watch Video Solution

110. 0.1 millimole of CdSO_{4} are present in 10 mL acid solution of 0.08 NHCI . Now $\mathrm{H}_{2} \mathrm{~S}$ is passed to precipitate all the Cd^{2+} ions. The pH of the solution after filtering off precipitate, boiling of $\mathrm{H}_{2} \mathrm{~S}$ and making the solution 100 mL by adding $\mathrm{H}_{2} \mathrm{O}$, is:
A. 2
B. 4
C. 6
D. 8

Answer: A

- Watch Video Solution

111. An acid type indicator, H In differs in colour from its conjugate base $\left(I n^{-}\right)$. The human eye is sensitive to colour differences only
when the ratio $\left[\mathrm{In}^{-}\right] /[\mathrm{HIn}]$ is greater than 10 or smaller than 0.1 . What should to observe a complete colour change ? $\left(K_{a}=1.0 \times 10^{-5}\right)$
A. 4
B. 2
C. 6
D. 1

Answer: B

- Watch Video Solution

112. Calculate the percent error in the $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ made by neglecting the ionisation of water in $10^{-6} \mathrm{MNaOH}$ solution.
A. 1%
B. 2%
C. 3%
D. 4%

Answer: A

(D) Watch Video Solution

113. The solubility of AgCl in conc. HCl is......... than in water.
A. more
B. less
C. same
D. either of these

Answer: A
114. Which pair represents the strongest acid and strongest base that can coexist in water ?
A. NH_{4}^{+}and NH_{2}^{-}
B. CIO_{4}^{-}and $\mathrm{H}_{2} \mathrm{~F}^{-}$
C. NO_{3}^{-}and $\mathrm{CH} \equiv \mathrm{C}^{-}$
D. $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}

Answer: D

- Watch Video Solution

115. The correct order of increasing acidic strength is:
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: A

D Watch Video Solution

116. Which of the following solution can be titrated with HCl as well as NaOH using suitable acid base indicator ?
A. Glycine
B. Pyruvic acid
C. Triethylamine
D. Amine
117. The $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1 \times 10^{-12} \cdot 0.01 \mathrm{MMg}^{2+}$ will precipitate at the limiting pH of
A. 3
B. 9
C. 12
D. 8

Answer: B

Watch Video Solution
118. $\mathrm{H}_{2} \mathrm{~S}$ is passed through $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Zn}$ and ZnCI_{2} solutions separately. White ppt. will be noticed in :
A. $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Zn}$ solution
B. ZnCI_{2} solution
C. both (a) and (b)
D. none of these

Answer: A

D Watch Video Solution

119. Select the incorrect statement about,

R- $\mathrm{CH} \mid \mathrm{NH}_{2}-\mathrm{COOH}$
if the following equilibrium exists :

Conjugate base of zwitterion
A. $\left[H^{+}\right]=\sqrt{K_{a_{1}} \times K_{a_{2}}}$
B. $p H=\frac{p K_{a_{1}}+p K_{a_{2}}}{2}$
C. the concentration of $\left[\mathrm{H}^{+}\right]$for zwitter ion can be calculated for any amphoteric such as HCO_{3}^{-}
D. the pH of aqueous solution depends upon concentration of

R-CH| $\mathrm{NH}_{2}-\mathrm{COOH}$

Answer: D

120. At what pH will a $1 \times 10^{-4} \mathrm{M}$ solution of an acid base indicator H In will change its colour ?
$\left(K_{b}\right.$ forIn $\left.^{-}=10^{11}\right)$
A. 7.0
B. 3.0
C. 5.5
D. 9.0

Answer: B

- Watch Video Solution

121. The correct relationship between the pH of isolomar solution of $\mathrm{Na}_{2} \mathrm{O}\left(\mathrm{pH}_{1}\right), \mathrm{Na}_{2} \mathrm{~S}\left(\mathrm{pH}_{2}\right), \mathrm{Na}_{2} \mathrm{Se}\left(\mathrm{pH}_{3}\right)$ and $\mathrm{Na}_{2} \mathrm{Te}\left(\mathrm{pH}_{4}\right)$ is:
A. $p H_{1}>p H_{2}>p H_{3}>p H_{4}$
B. $p H_{1}<p H_{2}<p H_{3}<p H_{4}$
C. $p H_{1}<p H_{2}<p H_{3}=p H_{4}$
D. $p H_{1}>p H_{2}=p H_{3}>p H_{4}$

Answer: A

- Watch Video Solution

122. At $25^{\circ} \mathrm{CK}$ b for $\mathrm{BOH}=1.0 \times 10^{-12} \cdot 0.01 \mathrm{M}$ solution of BOH has $\left[\mathrm{OH}^{-}\right]:$
A. $1.0 \times 10^{-6} M$
B. $1.0 \times 10^{-7} \mathrm{M}$
C. $1.0 \times 10^{-5} \mathrm{M}$
D. $2.0 \times 10^{-6} \mathrm{M}$

Answer: B

- Watch Video Solution

123. Silver nitrate solution is gradually added to an aqueous conjuaining 0.01 M each of chloride, bromide and iodide ions. The correct sequence in whuich the halides will be precipitated is:
A. bromide, chloride, iodide
B. iodide, chloride, bromide
C. iodide, bromide, chloride
D. bromide, iodide, chloride

Answer: C

124. Three sparingly soluble salts $M_{2} X, M X$ and $M X_{3}$ have the same solubility product. Their solubilities will be in the order
A. $3>2>1$
B. $3>1>2$
C. $2>3>1$
D. $2>1>3$

Answer: D

- Watch Video Solution

125. In which of the following combinations, is buffer action expected ?
126. $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{CI}$, 2. $\mathrm{HCI}+\mathrm{NaCI}$
127. $\mathrm{NH}_{3}+$ HCIis2: 1 mole ration

Select the correct answer using the code given below:
A. 1 and 2
B. 1 and 3
C. 2 and 3
D. 1,2 and 3

Answer: B

D Watch Video Solution

126. Which of the following pairs consitutes buffer?
A. $\mathrm{HNO}_{3}+\mathrm{NH}_{4} \mathrm{NO}_{3}$
B. $\mathrm{HCI}+\mathrm{KCI}$
C. $\mathrm{HNO}_{2}+\mathrm{NaNO}_{2}$
D. $\mathrm{NaOH}+\mathrm{NaCI}$
127. The hydrogen ion concentration of a $10^{-8} \mathrm{MHCl}$ aqueous soultion at $298 \mathrm{~K}\left(K_{w}=10^{-14}\right)$ is
A. $9.525 \times 10^{-8} M$
B. $1.0 \times 10^{-8} \mathrm{M}$
C. $1.0 \times 10^{-6} \mathrm{M}$
D. $1.0525 \times 10^{-7} \mathrm{M}$

Answer: D

(D) Watch Video Solution

128. The hydrolysis constant for the reaction, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \Leftrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-}$is 1.4×10^{-12}. The ionisation
constant for $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$is:
A. 7.14×10^{-3}
B. 1.4×10^{-12}
C. 1.4×10^{-13}
D. 7.14×10^{-12}

Answer: A

(D) Watch Video Solution

129. pH of $0.1 \mathrm{MNa}_{2} \mathrm{HPO}_{4}$ and $0.2 \mathrm{MNaH}_{2} \mathrm{PO}_{4}$ are respectively:
($p K_{a}$ for $H_{3} \mathrm{PO}_{4}$ are 2.12, 7.21 and 12.0 for respective dissociation to $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{2-}$ and PO_{4}^{3-}):
A. $4.665,9.605$
B. $9.605,4.665$
C. $4.665,5.605$
D. $5.605,4.665$

Answer: A

- Watch Video Solution

130. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$ acts as In $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
A. stronge acid
B. weak acid
C. strong base
D. weak base

Answer: C

131. The degree of dissociation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is influenced by:
A. $\mathrm{NH}_{4} \mathrm{OH}$
B. NaOH
C. HCI
D. either of these

Answer: D

D Watch Video Solution

132. The pH of which compound in aqueous solution depends on its concentration in solution?
A. $\mathrm{RCH} \mid \mathrm{NH}_{2} . \mathrm{COOH}$
B. NaHS

C. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$

D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Answer: B

D Watch Video Solution

133. The pH of the mixture when 50 mL each of $0.4 M$ and $0.1 M$ of HCl and NaCN each are mixed not necessarily in respective order are: $\left(p K_{b}\right.$ ofCN $N^{-}=4.6128$ and $\log 1.5=0.1761$ and $\left.\log 3=0.4771\right)$
A. $9.8239,0.8643$
B. $0.5228,0.8643$
C. $0.8643,0.5228$
D. $0.8239,9.8643$

Answer: D

134. n moles of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~s})}$ at pressure P° at 300 K are taken in a closed container of fixed volume $\mathrm{V} . \mathrm{N}_{2} \mathrm{O}_{5}$ undergoes gas-phase decomposition at 400 K to $\mathrm{NO}_{2(\mathrm{~g})}$ and $\mathrm{O}_{2(\mathrm{~g})}$. The pressure of mixture (Pat 400 K) when $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ has degree of decomposition ' α^{\prime} can be given by :
A. $P=P^{\circ}\left(1+\frac{3}{2} \alpha\right)$
B. $P=\frac{4}{3} P^{\circ}\left(1+\frac{\alpha}{2}\right)$
C. $P=n(1-\alpha)$
D. $P=n\left(1+\frac{3}{2} \alpha\right)$

Answer: B

- Watch Video Solution

1. The pH of which salt is independent of its concentration ?
A. $\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
B. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
C. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
D. $\mathrm{NH}_{4} \mathrm{CN}$

Answer: A::B::C::D

- Watch Video Solution

2. Which set is not correct for the solubility product $\left(K_{S P}\right)$, solubility ($\mathrm{Sg} / \mathrm{litre}$) of sparingly soluble salt $A_{3} B_{2}(\mathrm{~mol}$. wt $=M)$ in watrer ?
A. $K_{S P}=108 S^{5}$
B. $\left.K_{S P}=\left[\frac{3 S}{M}\right]^{2} \frac{2 S}{M}\right]^{2}$
C. $K_{S P}=\left[3 a^{2+}\right]^{3}\left[2 B^{3-}\right]^{2}$
D. $\left[B^{3-}\right]=\frac{2 S}{M}$

Answer: A::C

D Watch Video Solution

3. Select the correct statements:
A. pH of NaHCO_{3} solution can be given by $\mathrm{pK}_{\mathrm{H}_{2} \mathrm{CO}_{3}}+\mathrm{pK}_{\mathrm{HCO}_{3}^{-}} / 2$
B. $A I^{3+}$ ion is amphoteric
C. $K_{S P}$ values of metal nitrates are very-very high
D. Liquid SO_{2} is aprotic solvent
$\mathrm{Na}_{(a q .)}^{+}$is conjugate base of $\mathrm{NaOH}_{(a q .)}$

D Watch Video Solution

4. $\mathrm{H}_{2} \mathrm{O}$ acts as Bronsted acid in the following :
A. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
B. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
C. $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
D. $\mathrm{Cu}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}$

Answer: A: B

- Watch Video Solution

5. Which of the following is/are correct for the saturated solution of
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ salt if its $K_{S P}$ is $2.05 \times 10^{-33} ?$
A. Solubility of $\mathrm{Ca}_{3} \mathrm{PO}_{4}$ is $1.63 \times 10^{-6} \mathrm{M}$
B. $\left[\mathrm{PO}_{4}^{3-}\right]_{\text {eq. }}=3.26 \times 10^{-6} \mathrm{M}$
C. $\left[\mathrm{Ca}^{2+}\right]_{\text {eq. }}=4.89 \times 10^{-6} \mathrm{M}$
D. $\left[\mathrm{Ca}_{3} \mathrm{PO}_{4}\right]_{\text {eq. }}=1$

Answer: A::B::C

(D) Watch Video Solution

6. Which of the following statement is (are) not correct ?
A. Weak electrolytes are 100 \% dissociated at infinite dilution
B. $\mathrm{C}_{2} \mathrm{H}_{5}^{-}$is conjugate base of $\mathrm{C}_{2} \mathrm{H}_{6}$
C. Boric acid although an acid but it does not donate a proton in water
D. Hydration energy is maximum for H^{+}ions

- View Text Solution

7. The pH of a buffer solution containing equimolar concentrations of solution acetate and acetric acid is equal to:
A. $\mathrm{K}_{a} \mathrm{ofCH}_{3} \mathrm{COOH}$
B. pK_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$
C. 14
D. $\log \left(\frac{1}{K_{a}}\right)$ of $\mathrm{CH}_{3} \mathrm{COOH}$

Answer: B::D

- Watch Video Solution

8. 10 mL of $\mathrm{N} / 20 \mathrm{NaOH}$ solution is mixed with 20 mL of $\mathrm{N} / 20 \mathrm{HCI}$ solution. The resulting solution will :
A. turn phenolphthalein solution pink
B. turn blue litmus red
C. turn methyl orange red
D. $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$

Answer: B::C::D

- Watch Video Solution

9. A buffer solution can be prepared by mixing solution of:
A. sodium chloride and sodium hydroxide
B. ammonium hydroxide and ammonium chloride
C. formic acid and sodium formate
D. boric acid and borax

Answer: B::C::D

D Watch Video Solution

10. Which of the following statement(s) is (are) correct in the contex of buffer mixtures?
A. It contains a weak acid and its conjugate base
B. It contains a weak base and its conjugate acid
C. The pH of the buffer solution does not change much on the addition of a small amount acid or base
D. The pH of acidic buffer mixture is less than 7
11. CHCl_{3} does not give white ppt. with AgNO_{3} because it:
A. is a covalent compound
B. does not give CI^{-}ions in solution
C. is not dissociated in water
D. None of these

Answer: A::B::C

- Watch Video Solution

12. A strong electrolyte in aqueous solution exhibits:
A. almost completely dissociated
B. hydration
C. partial dissociation
D. None of these

Answer: A::B

D Watch Video Solution

13. Which of the following is/are buffer solution(s) ?
A. $10 \mathrm{~mL} 0.1 \mathrm{MHCI}+20 \mathrm{~mL} 0.1 \mathrm{MNaCN}$
B. $10 \mathrm{~mL} 0.1 \mathrm{MNaOH}+20 \mathrm{mLO} 0.1 \mathrm{MNH}_{4} \mathrm{CN}$
C. $10 \mathrm{mLO} .1 \mathrm{MNH}_{4} \mathrm{OH}+20 \mathrm{mLO} .1 \mathrm{MCH}_{3} \mathrm{COONH}_{4}$
D. $10 \mathrm{mLO} .1 \mathrm{MCH}_{3} \mathrm{CH}_{3} \mathrm{COOH}+20 \mathrm{mLO} .1 \mathrm{MCH}_{3} \mathrm{COONH}_{4}$

Answer: A::B::C::D

14. When equal volumes of following solution are mixed, precipitation of AgCl ?
$\left(K_{s p}=1.8 \times 10^{-10}\right)$ will occur only with
A. $10^{-4} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-4} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
B. $10^{-5} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-5} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
C. $10^{-6} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-6} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
D. $10^{-10} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-10} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$

Answer: A::B

D Watch Video Solution

15. Which of the following statement is (are) correct ?
A. A buffer solution contains a weak and its conjugate base
B. A buffer solution shows little change in pH on the addition of a small amount of acid or base
C. A buffer solution can be prepared by mixing a solution of ammonium acetate and acetic acid
D. The addition of solid potassium cyanide to water increases the pH of water

Answer: A::B::C::D

(Watch Video Solution

16. Which of the following statement(s) is (are) correct ?
A. The solubility product is the product of concentration of ions of an electrolyte each raised to the power of its coefficient in
B. The solubility product of an electrolyte is a function of temperature
C. Cations of group III are precipitated as their hydroxides by $\mathrm{NH}_{4} \mathrm{OH}$ in the presence of $\mathrm{NH}_{4} \mathrm{CI}$ because the solubility products of these hydroxides are low
D. The ionic product with the concentration of an electrolyte

Answer: A::B::C

- Watch Video Solution

17. Which of the following is/are correct order(s) in terms of increaseing pH ?
A. $\mathrm{NaOH}>\mathrm{CH}_{3} \mathrm{COONa}>\mathrm{NaCl}>\mathrm{NH}_{4} \mathrm{Cl}$
B. $\mathrm{NH}_{4} \mathrm{Cl}>\mathrm{NaCl}>\mathrm{CH}_{3} \mathrm{COONa}>\mathrm{NaOH}$
C. $\mathrm{NaOH}>\mathrm{NaHCO}_{3}>\mathrm{KCl}>\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COONa}>\mathrm{NH}_{4} \mathrm{Cl}$

Answer: A::C

(D) Watch Video Solution

18. Which of the following statement(s) si (are) correct ?
A. The pH of $1.0 \times 10^{-8} \mathrm{M}$ solution of HCl is 8
B. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
C. Autoprotolysis constant of water incerses with temperature
D. When a solution of aweak monoprotic acid is titrated against
a strong base, at half-neutralization point $p H=(1 / 2) p K_{a}$

Answer: B::C

19. The phenomenon of interaction of anions and cations furnished by a electrolyte with the H^{+}and OH^{-}ions of water to produce acidity or alkalinity is known as hydrolysis. In hydrolysis:
A. the pH may either increases or decrease
B. all the salts (except those made up with strong anion and cation) undergo hydrolysis
C. the variation of pH depends upon the nature of salt as well on the temperarature
D. none of these

Answer: A::B::C

- Watch Video Solution

20. If a salt of weak acid or base is added to a solution of its acid or base respectively, then:
A. dissociation of acid or base is diminished
B. pH of the solution in case of acid increase and in case of case decreases
C. mixing of two leads for common ion effect
D. none of these

Answer: A::B::C

D Watch Video Solution

21. Which of the following is (are) the example(s) of autoprotolysis ?
A. $\mathrm{NH}_{3}+\mathrm{NH}_{3} \Leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-}$
B. $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{2}^{+}+\mathrm{CH}_{3} \mathrm{O}^{-}$
c. $\mathrm{HCOOH}+\mathrm{HCOOH} \Leftrightarrow \mathrm{HCOOH}_{2}^{+}+\mathrm{HCOO}^{-}$
D. $\mathrm{HCI}+\mathrm{HF} \Leftrightarrow \mathrm{H}_{2} \mathrm{C}^{-}+F^{-}$

Answer: A::B::C

D Watch Video Solution

22. For 0.01 N solution of sodium acetate $\left(K_{a}=1.9 \times 10^{-5}\right)$. Select the correct statements.
A. Hydrolysis constant is 5.26×10^{-10}
B. Degree of hydrolysis is 2.29×10^{-4}
C. pH of solution is 8.36
D. pH of solution is 7.46
23. Which of the following is (are) correct order(s) for basic strength ?
A. $\mathrm{NaOH}>\mathrm{NH}_{4} \mathrm{OH}>\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{NH}_{3}>\mathrm{N}_{2} \mathrm{H}_{4}>\mathrm{NH}_{2} \mathrm{OH}$
C. $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}$
D. $\mathrm{OH}^{-}<\mathrm{C}_{2} \mathrm{H}^{-}<\mathrm{NH}_{2}^{-}<\mathrm{C}_{2} \mathrm{H}_{3}^{-}<\mathrm{C}_{2} \mathrm{H}_{5}^{-}$

Answer: A::B::C::D

- View Text Solution

24. The pH of solution(s) is (are) defined as the:
A. negative logarithm of the hydrogen ion concentration
B. logarithm of reciprocal of hydrogen ion concentration
C. negative power raised on 10 in order to express $\left[H^{+}\right]$ion conncentration
D. none of these

Answer: A::B::C

D Watch Video Solution

25. Which of the following statement(s) is (are) correct regarding Lewis acids?
A. Molecules having a central atom with an incomplete octet in it can as Lewis acids
B. Molecules in which atoms of dissimilar electronegativity are joined by multiple bonds can acts as Lewis acids
C. $\mathrm{SiF}_{4}, \mathrm{PF}_{5}$ and FeCl_{3} are Lewis acids
D. Neutral species having at least one pair of electrons can as

Lewis acids

Answer: A::B::C

- Watch Video Solution

26. In $0.1 M$ solution, K_{a} for dissociation of $H_{2} S$ is 4.0×10^{-3}. Select the correct statements.
A. Concentration of H^{+}is 0.018 M
B. The degree of dissociation of $\mathrm{H}_{2} \mathrm{~S}$ is 18%
C. pH of solution is 1.7447
D. Concentration of $\left[H^{+}\right]$is $0.18 M$
27. Which of the following indicatet proton transfer equilibrium in the glycine molecule shown below?

A. (i)
B. (ii)
C. (iii)
D. (iv)

Answer: A::B::C::D

28. In a solution containing $1.0 \times 10^{-3} \mathrm{M}$ acetic acid at $25^{\circ} \mathrm{C} . \mathrm{K}_{a}$ of acetic acid is 1.80×10^{-5}. Select the correct statements.
A. $\left[H^{+}\right]=1.34 \times 10^{-4}$
B. $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=1.34 \times 10^{-4}$
C. $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=8.66 \times 10^{-4}$
D. $\left[H^{+}\right]=1.35 \times 10^{-6}$

Answer: A: B

- Watch Video Solution

29. Which of the following mixture/solution will show pH approximately equal to 9 ?
A. 100 mL of $3 \times 10^{-3} \mathrm{MHCI}+100 \mathrm{~mL}$ of $4.24 \times 10^{-3} \mathrm{MNaCN}$
B. 100 mL of $0.01 \mathrm{MNH}_{4} \mathrm{OH}+100 \mathrm{~mL}$ of $2 \times 10^{-3} \mathrm{MNaOH}$
C. $0.2 M$ sodium butyrate, K_{a} for butyric acid is 2.0×10^{-5}
D. $5 \times 10^{-6} \mathrm{MCa}(\mathrm{OH})_{2}$ solution

Answer: A::C::D

D Watch Video Solution

30. Which solution will not show change in pH of dilution ?
A. $0.1 \mathrm{MNaH}_{2} \mathrm{PO}_{4}$
B. $0.1 \mathrm{MCH}_{3} \mathrm{COONH}_{4}$
C. $0.1 \mathrm{MCH}_{3} \mathrm{COONH}_{4}$
D. $0.1 \mathrm{MNH}_{4} \mathrm{OH}+0.01 \mathrm{MNH}_{4} \mathrm{Cl}$

Answer: A::B:C:D

1. Equal volumes of 1 MHCI and $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are neutralised by 1 MNaOH solution and x and $y k J /$ equivalent of heat are liberated, respectively. Which of the following relations is correct?
A. not a buffer solution and with $\mathrm{pH}<7$
B. not a buffer solution with $\mathrm{pH}>7$
C. a buffer solution with $\mathrm{pH}<7$
D. a buffer solution with $\mathrm{pH}>7$

Answer: A

- Watch Video Solution

2. Species acting as both Bronsted acid and base is:
A. HSO_{4}^{-}
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. NH_{3}
D. OH^{-}

Answer: A

- Watch Video Solution

3. If the solubility of an aqueoues solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ be X mole
litre, then $K_{S P}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is:
A. $4 X^{3}$
B. $108 X^{5}$
C. $27 X^{4}$
D. $9 X$

- Watch Video Solution

4. The solubility of a springly soluble salt $A B_{2}$ in water is
$1.0 \times 10^{-5} \mathrm{molL}^{-1}$. Its solubility product is:
A. 10^{-15}
B. 10^{-10}
C. 4×10^{-15}
D. 4×10^{-10}

Answer: C

- Watch Video Solution

5. Which of the following has highest proton affinity?
A. NH_{3}
B. PH_{3}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{~S}$

Answer: A

D Watch Video Solution

6. Which statement is not true?
A. pH of $1 \times 10^{8} \mathrm{MHCl}$ is 8
B. 96500 coulomb deposits 1 g equivalent of copper
C. Conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
D. $p H+p O H=14$ for all aqueous solution
7. When rain is accompained by a thunderstorm, the collected rain water will have a pH :
A. influenced by occurrence of thunderstorm
B. depends upon the amount of dust in water
C. slightly lower than that of rainwater without thunderstorm
D. slightly higher than that when thunderstorm is not there

Answer: C

D Watch Video Solution

8. Which one is amphoteric oxide ?
A. SO_{2}
B. $B_{2} O_{3}$
C. ZnO
D. $\mathrm{Na}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

9. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is :
A. HPO_{4}^{2-}
B. $P_{2} \mathrm{O}_{5}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. PO_{4}^{3-}

Answer: A
10. $K_{S P}$ of $M X_{4}$ and solubility of $M X_{4}$ is $\mathrm{Smol} / \mathrm{L}$ is related by:
A. $S=\left[K_{S P} / 256\right]^{1 / 5}$
B. $S=\left[128 K_{S P}\right]^{1 / 4}$
C. $S=\left[256 K_{S P}\right]^{1 / 5}$
D. $S=\left[K_{S P} / 128\right]^{1 / 4}$

Answer: A

- Watch Video Solution

11. The solubility product of a salt having general formula $M X_{2}$ in water is 4×10^{-12}. The concentration of M^{2+} ions in the aqueous solution of the salt is:
A. $2 \times 10^{-6} M$
B. $1 \times 10^{-4} \mathrm{M}$
C. $1.6 \times 10^{-4} \mathrm{M}$
D. $4.0 \times 10^{-6} M$

Answer: B

- Watch Video Solution

12. Hydrogen ion concentration in $\mathrm{mol} / \mathrm{L}$ in a solution of $\mathrm{pH}=5.4$ will be:
A. 3.98×10^{8}
B. 3.88×10^{6}
C. 3.68×10^{8}
D. 3.98×10^{-6}
13. The conjugate base of OH^{-}is :
A. O_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. O^{-}
D. O^{2-}

Answer: D

- Watch Video Solution

14. The $p K_{a}$ of a weak acid $(H A)$ is 4.5 . The $p O H$ of an aqueous buffered solution of $H A$ in which 50% of the acid is ionized is:
A. 4.5
B. 2.5
C. 9.5
D. 7.0

Answer: C

- Watch Video Solution

15. The first and second dissociation constant of an acid $\mathrm{H}_{2} \mathrm{~A}$ are 1.0×10^{-5} and 5.0×10^{-10} repectively. The overall dissociation constant of the acid will be
A. 5.0×10^{-5}
B. 5.0×10^{15}
C. 5.0×10^{-15}
D. 0.2×10^{5}

- Watch Video Solution

16. Four species are listed below:
(i) HCO_{3}^{-}
(ii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(iii) HSO_{4}^{-}
(iv) $\mathrm{HSO}_{3} \mathrm{~F}$

Which one of the following is the correct sequence of their acid strength?
A. $i v<i i<i i i<i$
B. $i i<i i i<i<i v$
C. $i<i i i<i i<i v$
D. iii $<i<i v<i i$

(D) Watch Video Solution

17. The $p K_{a}$ of a weak acid, $H A$, is 4.80 . The $p K_{b}$ of a weak base, $B O H$, is 4.78 . The $p H$ of an aqueous solution of the corresponding salt, $B A$, will be:
A. 8.58
B. 4.79
C. 7.01
D. 9.22

Answer: C

18. Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_{2} \mathrm{CO}_{3}$ solution. At what concentrations of Ba^{2+}, will a precipitate begin to form?
$\left(K_{S P}\right.$ for $\left.\mathrm{BaCO}_{3}=5.1 \times 10^{-9}\right)$
A. $4.1 \times 10^{-5} \mathrm{M}$
B. $5.1 \times 10^{-5} \mathrm{M}$
C. $8.1 \times 10^{-8} M$
D. $8.1 \times 10^{-7} M$

Answer: B

- Watch Video Solution

19. Three reactions involving $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are given below
I. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
II. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
III. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{O}^{2+}$

In which of the above does $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$act as an acid?
A. (ii) only
B. (i) and (ii)
C. (iii) only
D. (i) only

Answer: A

- Watch Video Solution

20. In aqueous solution the ionization constants for carbonic acid are:
$K_{1}=4.2 \times 10^{-7}$ and $K_{2}=4.8 \times 10^{-11}$
Select the correct statement for a saturated $0.034 M$ solution of the carbonic acid.
A. The concentration of CO_{3}^{2-} is 0.034 M
B. The concentration of CO_{3}^{2-} si greater than that of HCO_{3}^{-}
C. The concentration of H^{+}and HCO_{3}^{-}are approximately equal
D. The concentratation of H^{+}is double that of CO_{3}^{2-}

Answer: C

(D) Watch Video Solution

21. At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.0×10^{-11}. At which pH , will Mg^{2+} ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution of $0.001 \mathrm{MMg}^{2+}$ ions ?
A. 9
B. 10
C. 11
D. 8

Answer: B

- Watch Video Solution

22. Solubility product of silver bromide is 5.0×10^{-13}. The quantity of potassium bromide (molar mass taken as $120 \mathrm{gmol}^{-1}$) to be added to $1 L$ of $0.05 M$ solution of silver nitrate to start the precipitation of AgBr is
A. $1.2 \times 10^{-10} g$
B. $1.2 \times 10^{-9} g$
C. $6.2 \times 10^{-5} g$
D. $5.0 \times 10^{-8} g$

Answer: B

23. The $p H$ of a 0.1 molar solution of the acid $H Q$ is 3 . The value of the ionisation constant, K_{a} of the acid is
A. 1×10^{-3}
B. 1×10^{-5}
C. 1×10^{-7}
D. 3×10^{-1}

Answer: B

- Watch Video Solution

24. The correct order of acid strength is
A. $\mathrm{HClO}<\mathrm{HCIO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
B. $\mathrm{HClO}_{4}<\mathrm{HClO}_{3}<\mathrm{HClO}_{2}<\mathrm{HClO}$
C. $\mathrm{HClO}<\mathrm{HClO}_{4}<\mathrm{HClO}_{3}<\mathrm{HClO}_{2}$
D. $\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}$

Answer: A

- Watch Video Solution

25. For a sparingly soluble salt $A_{p} B_{q}$, the relationship of its solubility product $\left(L_{s}\right)$ with its solubility (S) is
A. $L_{S}=S^{p+q} \cdot p^{p} \cdot q^{q}$
B. $L_{S}=S^{p+q} \cdot p^{q} \cdot q^{p}$
C. $L_{S}=S^{p q} \cdot p^{p} \cdot q^{q}$
D. $L_{S}=S^{p q} .(p q)^{p+q}$
26. Identify the correct order of acidic strength of $\mathrm{CO}_{2}, \mathrm{CuO}, \mathrm{CaO}$ and $\mathrm{H}_{2} \mathrm{O}$.
A. $\mathrm{CaO}<\mathrm{CuO}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{CuO}<\mathrm{CaO}<\mathrm{CO}_{2}$
C. $\mathrm{CaO}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CuO}<\mathrm{CO}_{2}$
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}<\mathrm{CaO}<\mathrm{CuO}$

Answer: A

- Watch Video Solution

27. $H_{3} B_{3}$ is.
A. monobasic and weak Lewis acid
B. monobasic and weak Bronsted acid
C. monobasic and strong Lewis acid
D. tribasic and weak Bronsted acid

Answer: A

(D) Watch Video Solution

28. $H X$ is a weak acid $\left(K_{a}=10^{-5}\right)$. If forms a salt $\operatorname{NaX}(0.1 \mathrm{M})$ on reacting with caustic soda. The degree of hydrlysis of NaX is
A. 0.0001%
B. 0.01 \%
C. 0.1%
D. 0.15%
29. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl and diluted to one litre. The $\left[\mathrm{H}^{+}\right]$in solution is
A. $8 \times 10^{-2} M$
B. $8 \times 10^{-11} M$
C. $1.6 \times 10^{-11} M$
D. $8 \times 10^{-5} M$

Answer: B

Watch Video Solution

30. The species present in solution when $C O-2$ is dissolved in water are :
A. $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{3}^{2-}$
C. $\mathrm{CO}_{3}^{2-}, \mathrm{HCO}_{3}^{-}$
D. $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{CO}_{3}$

Answer: A

- Watch Video Solution

31. The solubility product constant $\left(K_{s p}\right)$ of salts of types $M X, M X_{2}$, and $M_{3} X$ at temperature T are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$, and 2.7×10^{-15}, respectively. The solubilities of the salts at temperature T are in the order
A. $M X>M X_{2}>M_{3} X$
B. $M_{3} X>M X_{2}>M X$
C. $M X_{2}>M_{3} X>M X$
D. $M X>M_{3} X>M X_{2}$

Answer: D

D Watch Video Solution

32. When 2.5 mL of $2 / 5 M$ weak monoacidic base $\left(K_{b}=1 \times 10^{-12} a t 25^{\circ} \mathrm{C}\right)$ is titrated with $2 / 15 M H C I$ in water at $25^{\circ} \mathrm{C}$ the concentration of H^{\oplus} at equivalence point is $\left(K_{w}=1 \times 10^{-14} a t 25^{\circ} \mathrm{C}\right)$
A. $3.7 \times 10^{-13} M$
B. $3.2 \times 10^{-7} \mathrm{M}$
C. $3.2 \times 10^{-2} M$
D. $2.7 \times 10^{-2} \mathrm{M}$

Exercise6

1. The dissociation constant of a substitude benzoic acid at $25^{\circ} \mathrm{C}$ is 1.0×10^{-4}. The pH of a 0.01 M solution of its sodium salt is

D Watch Video Solution

2. Calculate the pH of $10^{-2} \mathrm{NH}_{2} \mathrm{SO}_{4}$.

(D) Watch Video Solution

3. A certain buffer solution contains equal contration of X^{-}and $H X$.

The K_{b} for X^{-}is 10^{-10}. The pH of the buffer is:
4. In a solution containing $0.02 \mathrm{MCH}_{3} \mathrm{COOH}$ and $0.01 \mathrm{MC}_{6} \mathrm{H}_{5} \mathrm{COOH}$. If $K_{\mathrm{CH}_{3} \mathrm{COOH}}$ and $K_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}}$ are 1.8×10^{-5} and 6.4×10^{-5} respectively, then calculate the pH of solution.

- Watch Video Solution

5. K_{a} for HCN is 5.0×10^{-10} at $25^{\circ} \mathrm{C}$. For maintaining a constant pH of 9 . Calculate the volume of $5.0 M K C N$ solution required to be added to 10 mL of 2.0MHCN solution.

D Watch Video Solution

6. A solution containing 75 mL of 0.2 M HCl and 25 mL of 0.2 M NaOH .

Calculate the pH of solution.
7. Calculate the change in pH of water when 0.01 mole of NaOH are added in 10 litre water.

(D) Watch Video Solution

8. Calculate the $p H$ at which an acid indicator with $K_{a}=1.0 \times 10^{-5}$ changes colour when the indicator is $1.00 \times 10^{-3} \mathrm{M}$.

D Watch Video Solution

9. $K_{S P}$ of $M(\mathrm{OH})_{X}$ is 27×10^{-12} and its solubility in water is $10^{-3} \mathrm{~mol}$ litre $^{-1}$. Find the value of X .
10. If the equilibrium constant for the reaction of weak acid HA with strong base is 10^{9}, then pH of 0.1 M Na A is:

D Watch Video Solution

11. Calculate the pH of 0.01 M solution of $\mathrm{AICI}_{3},\left(K_{a}\right.$ of $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is $\left.1.4 \times 10^{-5}\right)$

- Watch Video Solution

12. Calculate the pH of 0.2 M sodium butyrate, $\left(K_{a}\right.$ for butyric acid is 2.0×10^{-5})
13. If $p K_{a}$ of acetic acid and $p K_{b}$ of ammonium hydroxide are 4.76 each. Find the pH of ammonium acetate.

D Watch Video Solution

14. A solution with pH 2.699 is diluted two time 3 s, then calculate the pH of the resulting sdolution. [Given antilog of $0.3010=2$]

D Watch Video Solution

15. The solubility product of a sparingly soluble metal hydroxide $\left[\mathrm{M}(\mathrm{OH})_{2}\right]$ is $5 \times 10^{-16} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$ at 298 K . Find the pH of its saturated aqueous solution.
16. Determine degree of dissociation of $0.05 \mathrm{MNH}_{3}$ at $25^{\circ} \mathrm{C}$ in a solution of $\mathrm{pH}=11$.

- Watch Video Solution

17. If $2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}, K_{1}=2.0 \times 10^{-13}$
$2 \mathrm{CO}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}, K_{2}=7.2 \times 10^{-12}$
Find the equilibrium constant for the reaction
$\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

D Watch Video Solution

18. For the given reaction,
$\mathrm{RNH}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{RNH}_{3}^{+}+\mathrm{OH}^{-}$. Find the pOH value for $10^{-2} \mathrm{NRNH}_{2}$ solution.
19. Ionisation constant for acids HA and BH + are 10^{-7} and 10^{-3} respectively. Find the $p K_{e q}$. for the reaction, $H A+B \Leftrightarrow B H^{+}+A^{-}$.

D Watch Video Solution

20. Find the relative strength of two weak acids HA
$\left(K_{a}=8.0 \times 10^{-5}\right)$ and $H B\left(K_{b}=2.0 \times 10^{-5}\right)$.

- Watch Video Solution

21. Find the pH at which an acid indicator having concentration $1.0 \times 10^{-4} M$, having dissociation of 1% shows a colour change.
22. Amonst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is:
$\mathrm{KCN} \quad \mathrm{K}_{2} \mathrm{SO}_{4} \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad \mathrm{NaCI}$
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{FeCl}_{3} \quad \mathrm{~K}_{2} \mathrm{CO}_{3} \quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
LiCN

(D) Watch Video Solution

23. Find the total number of diprotic acids among the following:
$\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{2} \mathrm{CrO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}$

D Watch Video Solution

24. \quad In	1L	saturated	solution
$A g C I\left[K_{\text {sp }}(A g C I)=\right.$	of		
$\left.1.6 \times 10^{-10}\right], 0.1 \mathrm{~mol}$		of	

$C u C I\left[K_{\text {sp }}(C u C I)=1.0 \times 10^{-6}\right]$ is added. The resultant concentration of Ag^{+}in the solution is 1.6×10^{-x}. The value of " x " is.

D Watch Video Solution

Exercise7

1. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} a t 25^{\circ} \mathrm{C}$. The numerical value of
K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are
the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.
SO_{2} contents in the atmosphere is 10 ppm and the solubility of SO_{2} in water is 1.36 mol litre ${ }^{-1}$. If $p K_{a}$ of $\mathrm{H}_{2} \mathrm{SO}_{3}$ is 1.92 , the pH of rainwater is:
A. 0.49
B. 0.39
C. 0.29
D. 0.19

Answer: A

D Watch Video Solution

2. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance
which furnishes a proton or accepts an electron pair, where a base is proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} a t 25^{\circ} \mathrm{C}$. The numerical value of
K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.

Which of the following statements are correct ?
(1) pH of $10^{-10} \mathrm{M} \mathrm{NaOH}$ is nearly 7 .
(2) The degree of dissociation of a weak acid is given by 1

$$
1+10\left(p K_{a q}-p H\right)
$$

(3) For weak electrolytes of polyprotic acid nature having no other electrotrolype, the anion concentration produced in II step of dissociation is always equal to K_{2} at reasonable concentration of
acid.
(4) The concentration of amide ions produced during self ionisation of NH_{3} is equal concentration of ammonium ions.
(5) Ostwald's dilution law is valid for strong electrolytes.
A. $1,2,3,5$
B. 1, 2, 3, 4
C. $1,3,4,5$
D. $2,3,4,5$

Answer: B

- Watch Video Solution

3. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is
proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} \mathrm{at} 25^{\circ} \mathrm{C}$. The numerical value of K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.

Which of the following statements are wrong ?
(1) Increase in temperature has no effect on neutral nature of water.
(2) Increase in temperature of pure water decreases its pH .
(3) Increase in temperature of pure water decreases its autoprolysis.
(4) Increase in temperature of pure increase its ionic product.
(5) Increase in temperature of pure water decreaseas degree of dissociation of water.
A. 3,5
B. 1, 2, 4
C. 1, 5
D. 4,5

Answer: A

D Watch Video Solution

4. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} a t 25^{\circ} \mathrm{C}$. The numerical value of K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is
expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.

Which of the following statements are true ?
(1) CIO_{4}^{-}is weak base than CIO_{3}^{-}
(2) The degree of dissociation of weak is 1.8×10^{-9}
(3) The equilibrium constant for dissociation of $\mathrm{H}_{2} \mathrm{O}$ is 1.78×10^{-16}
(4) PO_{4}^{3-} is conjugate acid of HPO_{4}^{2-}
A. $1,2,3$
B. 2, 3, 4
C. 1, 2, 4
D. 1,2

Answer: A

5. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} a t 25^{\circ} \mathrm{C}$. The numerical value of
K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.

Which of the following solution is most important buffer for human living ?
A. HCO_{3}^{-}and CO_{3}^{2-}
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\mathrm{CH}_{3} \mathrm{COOH}$
C. NH_{4}^{+}and $\mathrm{NH}_{4} \mathrm{OH}$
D. None of these

Answer: A

D Watch Video Solution

6. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} a t 25^{\circ} \mathrm{C}$. The numerical value of
K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are
the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.

The removal of PO_{4}^{3-} in qualitative analysis of basic radicals after II gp. is made by using a buffer solution of:
A. HCO_{3}^{-}and CO_{3}^{2-}
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\mathrm{CH}_{3} \mathrm{COOH}$
C. NH_{4}^{+}and $\mathrm{NH}_{4} \mathrm{OH}$
D. None of these

Answer: B

D Watch Video Solution

7. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is
proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} \mathrm{at} 25^{\circ} \mathrm{C}$. The numerical value of K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[O H^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.

The pH of II gp. filtrate during III gp. basic radicals precipitation in qualitative anlysis is maintained by using a buffer solution of:
A. HCO_{3}^{-}and CO_{3}^{2-}
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\mathrm{CH}_{3} \mathrm{COOH}$
C. NH_{4}^{+}and $\mathrm{NH}_{4} \mathrm{OH}$
D. None of these

Answer: C

- Watch Video Solution

8. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} a t 25^{\circ} \mathrm{C}$. The numerical value of K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.

The $p K_{a}$ value of NH_{4}^{+}is 9 . The $p K_{b}$ value of $\mathrm{NH}_{4} \mathrm{OH}$ would be:
B. 5
C. 7
D. 8

Answer: B

D Watch Video Solution

9. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} a t 25^{\circ} \mathrm{C}$. The numerical value of K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is
expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.
$0.16 \mathrm{gofN}_{2} \mathrm{H}_{4}\left(K_{b}=4 \times 10^{-6}\right)$ are dissolved in water and the total volume of solution is made upto 500 mL . The percentage of $\mathrm{N}_{2} \mathrm{H}_{4}$ that reacts with water is:
A. 2%
B. 3 \%
C. 1%
D. 4%

Answer: A

- Watch Video Solution

10. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} a t 25^{\circ} \mathrm{C}$. The numerical value of K_{w} however increase with temperature. In a solution of an acid or base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.

The protonation constant for NH_{3} from water is 6×10^{5}. The deprotonation from NH_{4}^{+}to $\mathrm{H}_{2} \mathrm{O}$ has rate constant 5.6×10^{-10}. The rate constant for NH_{4}^{+}and OH^{-}reaction to give NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ would be:
A. 6×10^{5}
B. 5.6×10^{-10}
C. 3.4×10^{10}
D. 6×10^{-5}

Answer: C

D Watch Video Solution

11. The dissociation of weak electrolyte (a weak base or weak acid) is expressed in terms of Ostwald's dilution law. An acid is substance which furnishes a proton or accepts an electron pair, where a base is proton acceptor or electron pair donor. Stronger is acid, weaker is its conjugate base. The dissociation constants of an acid $\left(K_{a}\right)$ and its conjugate base $\left(K_{b}\right)$ are related by $K_{w}=K_{a} \times K_{b}$, where K_{w} is ionic product of water equal to $10^{-14} \mathrm{at} 25^{\circ} \mathrm{C}$. The numerical value of K_{w} however increase with temperature. In a solution of an acid or
base $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$. Thus the $\left[\mathrm{H}^{+}\right]$in a solution is expressed as: $\left[H^{+}\right]=10^{-p H}$ and $p H+p O H=14$. Buffer solution are the solutions which do not show appreciable change in the pH on addition of small amount of acid or base.

At $50^{\circ} \mathrm{C}$, liq. NH_{3} undergoes autoprotlysis to give ammonium and azide ions having dissociation constant equal to 10^{-30}. The number of azide ions present $1 \mathrm{~cm}^{3}$ of liq. NH_{3} is:
A. 6×10^{5}
B. 6×10^{15}
C. 6×10^{8}
D. 6×10^{12}

Answer: A

12. During neutralisation of an acid by a base, the end point refers for the completion of reaction. The detection of end point in acid base neutralisation is usually made by an acid-base indicator. An acid-base indicator is itself a weak acid (Phenolphthlein) or a weak base (Mrthyl orange). At about 50% ionisation which depends on the medium, the anion furnished by an indicator (acid) or cation furnished by indicator (basic) imparts its characteristic colour to solution at point. For example phenolphthalein, the dissociation is

HIn $\Leftrightarrow H^{+}$Colourless + In $^{-}$Pink, $K_{\text {HIn }}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
favoured in presence of alkali and pink colour of phenolphalein ion
is noticed as soon as the medium changes to alkaline nature. The end point of acid-base neutralisation not necessarily coincides with equivalent point but it is closer and closer to equivalence point. Also at equivalence point of acid-base neutralisation pH is not necessarliy equal to 7 .

Which among the following statements are correct ?
(1) At equivalence point of NaOH and $\mathrm{HCl}, \mathrm{pH}=7$
(2) At equivalence point to of NaOH and $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{pH}>7$
(3) At equivalence point of $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{HCI}, \mathrm{pH}<7$
(4) an indicator shoes best results, if equivalence point is within the pH range $p K_{a}$ of $\operatorname{In}+1$
(5) At equivalence point of $\mathrm{NH}_{4} \mathrm{OH}$ and formic acid, $\mathrm{pH}<7$
A. 1, 2, 3, 4
B. 1, 3, 4, 5
C. $1,4,5$
D. 1, 2, 3, 5

Answer: A

13. During neutralisation of an acid by a base, the end point refers for the completion of reaction. The detection of end point in acid base neutralisation is usually made by an acid-base indicator. An acid-base indicator is itself a weak acid (Phenolphthlein) or a weak base (Mrthyl orange). At about 50% ionisation which depends on the medium, the anion furnished by an indicator (acid) or cation furnished by indicator (basic) imparts its characteristic colour to solution at point. For example phenolphthalein, the dissociation is

HIn $\Leftrightarrow H^{+}$Colourless + In $^{-}$Pink, $K_{\text {HIn }}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
favoured in presence of alkali and pink colour of phenolphalein ion is noticed as soon as the medium changes to alkaline nature. The end point of acid-base neutralisation not necessarily coincides with equivalent point but it is closer and closer to equivalence point. Also at equivalence point of acid-base neutralisation pH is not necessarliy equal to 7 .

The dissociation constant of an acid-base indicator which furnishes
coloured cation is 1×10^{-5}. The pH of solution at which indicator will furnish its colour is :
A. 5
B. 9
C. 6
D. 10

Answer: B

- Watch Video Solution

14. During neutralisation of an acid by a base, the end point refers for the completion of reaction. The detection of end point in acid base neutralisation is usually made by an acid-base indicator. An acid-base indicator is itself a weak acid (Phenolphthlein) or a weak base (Mrthyl orange). At about 50% ionisation which depends on
the medium, the anion furnished by an indicator (acid) or cation furnished by indicator (basic) imparts its characteristic colour to solution at point. For example phenolphthalein, the dissociation is
$H I n \Leftrightarrow H^{+}$Colourless + In $^{-}$Pink, $K_{\text {HIn }}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
favoured in presence of alkali and pink colour of phenolphalein ion is noticed as soon as the medium changes to alkaline nature. The end point of acid-base neutralisation not necessarily coincides with equivalent point but it is closer and closer to equivalence point. Also at equivalence point of acid-base neutralisation pH is not necessarliy equal to 7 .

The dissociation constant of an acid-base indicator which furnished coloured anion is 1×10^{-5}. The pH of solution at which indicator is 80% in dissociated form is:
A. 5.2310
B. 5.6020
C. 8.3980

Answer: B

- Watch Video Solution

15. During neutralisation of an acid by a base, the end point refers for the completion of reaction. The detection of end point in acid base neutralisation is usually made by an acid-base indicator. An acid-base indicator is itself a weak acid (Phenolphthlein) or a weak base (Mrthyl orange). At about 50% ionisation which depends on the medium, the anion furnished by an indicator (acid) or cation furnished by indicator (basic) imparts its characteristic colour to solution at point. For example phenolphthalein, the dissociation is

$$
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}
$$

favoured in presence of alkali and pink colour of phenolphalein ion is noticed as soon as the medium changes to alkaline nature. The
end point of acid-base neutralisation not necessarily coincides with equivalent point but it is closer and closer to equivalence point. Also at equivalence point of acid-base neutralisation pH is not necessarliy equal to 7 .

Bromophenol blue is an acid indicator having dissociation constant 5.84×10^{-5}. The percentage of coloured ion furnished at a pH of 4.84 is:
A. 80%
B. 40%
C. 20 \%
D. 90 \%

Answer: A
16. During neutralisation of an acid by a base, the end point refers for the completion of reaction. The detection of end point in acid base neutralisation is usually made by an acid-base indicator. An acid-base indicator is itself a weak acid (Phenolphthlein) or a weak base (Mrthyl orange). At about 50% ionisation which depends on the medium, the anion furnished by an indicator (acid) or cation furnished by indicator (basic) imparts its characteristic colour to solution at point. For example phenolphthalein, the dissociation is

HIn $\Leftrightarrow H^{+}$Colourless + In $^{-}$Pink, $K_{\text {HIn }}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
favoured in presence of alkali and pink colour of phenolphalein ion
is noticed as soon as the medium changes to alkaline nature. The end point of acid-base neutralisation not necessarily coincides with equivalent point but it is closer and closer to equivalence point. Also at equivalence point of acid-base neutralisation pH is not necessarliy equal to 7 .

The indicator phenolphalein is a tautomeric mixture of two forms as
given below:

।

II

Which of the following statements are correct ?
(1) The form I is referred as quinonoid form and is deeper in colour
(2) The form I is referred as quinonoid form and is lighter in colour
(3) The form II is more stable in alkaline solution
(4) The change in pH form acidic to alkaline solution brings in the more and more conversion of I form to II form
(5) The form I is more stable in acidic medium
A. $1,2,3,4$
B. 1, 3, 4, 5
C. $3,4,5$
D. $2,3,4,5$

Answer: B

- View Text Solution

17. During neutralisation of an acid by a base, the end point refers for the completion of reaction. The detection of end point in acid base neutralisation is usually made by an acid-base indicator. An acid-base indicator is itself a weak acid (Phenolphthlein) or a weak base (Mrthyl orange). At about 50% ionisation which depends on the medium, the anion furnished by an indicator (acid) or cation furnished by indicator (basic) imparts its characteristic colour to solution at point. For example phenolphthalein, the dissociation is

$$
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}
$$

favoured in presence of alkali and pink colour of phenolphalein ion is noticed as soon as the medium changes to alkaline nature. The
end point of acid-base neutralisation not necessarily coincides with equivalent point but it is closer and closer to equivalence point. Also at equivalence point of acid-base neutralisation pH is not necessarliy equal to 7 .

Which of the following statements are correct?
(1) Phenolphthalein is not a good indicator for weak alkali titrations
(2) Phenolphthalein does not give pink colour with weak alkalies as
$\mathrm{NH}_{4} \mathrm{OH}$
(3) Phenolphthalein is an acid indicator and imparts colour in basic medium
(4) Phenolphthalein is a basic indicator and imparts colour in basic medium
(5) Phenolphthalein furnishes coloured cation
A. $1,2,4,5$
B. 1, 2, 3, 4
C. 1, 3
D. 2, 4

Answer: C

- View Text Solution

18. The pH of basic buffer mixtures is given by :
$p H=p K_{a}+\log \left(\frac{[\text { Base }]}{[\text { Salt }]}\right)$, whereas pH of acidic buffer mixtures is given by: $p H=p K_{a}+\log \left(\frac{\text { [Salt] }}{\text { [Acid] }}\right)$. Addition of little acid or base although shows no appreciable change for all practical purpose, but since the ratio $\frac{[\text { Base }]}{[\text { Salt }]}$ or $\frac{[\text { Salt }]}{[\text { Acid }]}$ change, a slight decrease or increase in pH results in.

The amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ to be added to 500 mL of $0.01 \mathrm{MNH}_{4} \mathrm{OH}$ solution $\left(p K_{a} f\right.$ or NH_{4}^{+}is9.26) prepare a buffer of $\mathrm{pH8} 8.26$ is:
A. 0.05 mole
B. 0.025 mole
C. 0.10 mole
D. 0.005 mole

Answer: B

- Watch Video Solution

19. The pH of basic buffer mixtures is given by : $p H=p K_{a}+\log \left(\frac{\text { [Base }]}{[\text { Salt }]}\right)$, whereas pH of acidic buffer mixtures is given by: $p H=p K_{a}+\log \left(\frac{[\text { Salt }]}{[\text { Acid }]}\right)$. Addition of little acid or base although shows no appreciable change for all practical purpose, but since the ratio $\frac{[\text { Base }]}{[\text { Salt }]}$ or $\frac{[\text { Salt }]}{[\text { Acid }]}$ change, a slight decrease or increase in pH results in.

A solution containing 0.2 mole of dichloroacetic acid $\left(K_{a}=5 \times 10^{-2}\right)$ and 0.1 mole sodium dichloroacetate in one litre solution has $\left[H^{+}\right]$:
B. 0.025 M
C. 0.10 M
D. 0.005 M

Answer: A

D Watch Video Solution

20. The pH of basic buffer mixtures is given by :
$p H=p K_{a}+\log \left(\frac{\text { [Base }]}{[\text { Salt }]}\right)$, whereas pH of acidic buffer mixtures is given by: $p H=p K_{a}+\log \left(\frac{\text { [Salt] }}{[\text { Acid] }}\right)$. Addition of little acid or base although shows no appreciable change for all practical purpose, but since the ratio $\frac{[\mathrm{Base}]}{[\mathrm{Salt}]}$ or $\frac{[\mathrm{Salt}]}{[\mathrm{Acid}]}$ change, a slight decrease or increase in pH results in.

The volume of 0.2 MNaOH needed to prepare a buffer of pH 4.74 with 50 mL of 0.2 M acetic acid is: $\left(p \mathrm{~K}_{a} \mathrm{ofCH}_{3} \mathrm{COO}^{-}=9.26\right)$
A. 50 mL
B. $25 m L$
C. 20 mL
D. 10 mL

Answer: B

D Watch Video Solution

21. The ratio of pH of solution (1) containing 1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ and 1 mole of HCl and solution (II) containing 1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ and 1 mole of acetic acid in one litre is :
A. 1:2
B. 2:1
C. 1:3
D. $3: 1$

Answer: A

D Watch Video Solution

22. The pH of basic buffer mixtures is given by : $p H=p K_{a}+\log \left(\frac{\text { [Base }]}{[\text { Salt }]}\right)$, whereas pH of acidic buffer mixtures is given by: $p H=p K_{a}+\log \left(\frac{[\text { Salt }]}{[\text { Acid }]}\right)$. Addition of little acid or base although shows no appreciable change for all practical purpose, but since the ratio $\frac{[\text { Base }]}{[\text { Salt }]}$ or $\frac{[\text { Salt }]}{[\text { Acid }]}$ change, a slight decrease or increase in pH results in.

Mole of HCl required to prepare a buffer solution of $\mathrm{pH}=8.5$ with
0.1 mole of NaCN in one litre solution is: $\left(p K_{a} f\right.$ or $\left.C N^{-}=4.61\right)$
A. 8.85×10^{-2}
B. 7.85×10^{-2}
C. 9.85×10^{-2}
D. 6.85×10^{-2}

Answer: A

D Watch Video Solution

23. The pH of basic buffer mixtures is given by :
$p H=p K_{a}+\log \left(\frac{[\text { Base }]}{[\text { Salt }]}\right)$, whereas pH of acidic buffer mixtures is given by: $p H=p K_{a}+\log \left(\frac{[\text { Salt }]}{[\text { Acid }]}\right)$. Addition of little acid or base although shows no appreciable change for all practical purpose, but since the ratio $\frac{[\text { Base }]}{[\text { Salt }]}$ or $\frac{[\text { Salt }]}{[\text { Acid }]}$ change, a slight decrease or increase in pH results in.

A weak acid HA after treatment with $12 m L o f 0.1 \mathrm{M}$ strong base BOH has a $p H=5$. At end point, the volume of same base required is $26.6 m L K_{a}$ of acid is:
A. 8.2×10^{-6}
B. 8.2×10^{-5}
C. 8.2×10^{-4}
D. 8.2×10^{-7}

Answer: A

D Watch Video Solution

24. The solubility product of a soluble salt $A_{x} B_{y}$ is given by: $K_{S P}=\left[A^{y+}\right]^{x}\left[B^{x-}\right]^{y}$. As soon as the product of concentration of A^{y+} and B^{x-} increases than its $K_{S P}$, the salt start precipitation. It may practically be noticed that AgCl is more soluble in water and its solublity decreases dramatically in 0.1 MNaCI or $0.1 \mathrm{MAgNO}_{3}$ solution. It may therefore be conncluded that in presence of a common ion, the solubiolity of salt decreases.

The salting out action of RCOONa in presence of NaCl is based on:
A. common ion effect
B. hydrolysis of salt
C. solubility product
D. complex formation

Answer: C

(D) Watch Video Solution

25. The solubility product of SrF_{2} in water is 8×10^{-10}. Calculate its solubility in 0.1 M NaF aqueous solution.
A. 8×10^{-10}
B. 2×10^{-3}
C. 2.71×10^{-10}
D. 8×10^{-8}

Answer: D

D Watch Video Solution

26. The solubility product of a soluble salt $A_{x} B_{y}$ is given by: $K_{S P}=\left[A^{y+}\right]^{x}\left[B^{x-}\right]^{y}$. As soon as the product of concentration of A^{y+} and B^{x-} increases than its $K_{S P}$, the salt start precipitation. It may practically be noticed that AgCl is more soluble in water and its solublity decreases dramatically in 0.1 MNaCI or $0.1 \mathrm{MAgNO}_{3}$ solution. It may therefore be conncluded that in presence of a common ion, the solubiolity of salt decreases.

Equal volumes of two solutions are mixed. The one in which $\mathrm{CaSO}_{4}\left(K_{S P}=2.4 \times 10^{-5}\right)$ is precipitated, is :
A. $0.02 \mathrm{MCaCI}_{2}+0.0004 \mathrm{MNa}_{2} \mathrm{SO}_{4}$
B. $0.01 \mathrm{MCaCI}_{2}+0.0004 \mathrm{MNa}_{2} \mathrm{SO}_{4}$
C. $0.02 \mathrm{MCaCI}_{2}+0.0002 \mathrm{MNa}_{2} \mathrm{SO}_{4}$
D. $0.03 \mathrm{MCaCI}_{2}+0.004 \mathrm{MNa}_{2} \mathrm{SO}_{4}$

Answer: D

- Watch Video Solution

27. The solubility product of a soluble salt $A_{x} B_{y}$ is given by: $K_{S P}=\left[A^{y+}\right]^{x}\left[B^{x-}\right]^{y}$. As soon as the product of concentration of A^{y+} and B^{x-} increases than its $K_{S P}$, the salt start precipitation. It may practically be noticed that AgCl is more soluble in water and its solubility decreases dramatically in 0.1 MNaCI or $0.1 \mathrm{MAgNO}_{3}$ solution. It may therefore be conncluded that in presence of a common ion, the solubiolity of salt decreases.

The pH of a saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ is:

$$
\left(K_{S P} O f M g(O H)_{2}=1 \times 10^{-11}\right)
$$

A. 9
B. 3.87
C. 10.43
D. 5

Answer: C

D Watch Video Solution

28. The solubility product of a soluble salt $A_{x} B_{y}$ is given by: $K_{S P}=\left[A^{y+}\right]^{x}\left[B^{x-}\right]^{y}$. As soon as the product of concentration of A^{y+} and B^{x-} increases than its $K_{S P}$, the salt start precipitation. It may practically be noticed that AgCl is more soluble in water and its solublity decreases dramatically in 0.1 MNaCI or $0.1 \mathrm{MAgNO}_{3}$ solution. It may therefore be conncluded that in presence of a common ion, the solubiolity of salt decreases.

Which of the following statement is wrong ?
(1) $K_{S P}$ of a salt depends upon temperature
(2) $K_{S P}$ of a salt has no units
(3) The $K_{S P}$ of salt $A_{x} B_{y}$ can be given as: $x^{x} \cdot y^{y}(S)^{x+y}$
(4) Solubility of BaF_{2} in a solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ can be given by $\frac{1}{2}\left[F^{-}\right]$
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

29. The solubility product of a soluble salt $A_{x} B_{y}$ is given by: $K_{S P}=\left[A^{y+}\right]^{x}\left[B^{x-}\right]^{y}$. As soon as the product of concentration of A^{y+} and B^{x-} increases than its $K_{S P}$, the salt start precipitation. It may practically be noticed that AgCl is more soluble in water and its
solublity decreases dramatically in 0.1 MNaCI or $0.1 \mathrm{MAgNO}_{3}$ solution. It may therefore be conncluded that in presence of a common ion, the solubiolity of salt decreases.

The volume of water neede to dissolve $1 \mathrm{~g} \mathrm{BaSO}_{4}\left(K_{S P}=1 \times 10^{-10}\right)$ is:
A. 230 litre
B. 429 litre
C. 500 litre
D. 320 litre

Answer: B

D Watch Video Solution

30. A solubility contains one mole each of HA and HB (both are weak acids) in one litre solution. Now 1 mole of NaOH is added to this
solution so that both the acids are partly neutralised. Heat of neutralisation for HA and HB are- 11.8 and- 12.4 kcal respectively and the heat produced during partial neutralisation of $H A$ and $H B$ is12.25 kcal.

Mole ratio of neutralisation of HA and HB is:
A. $1: 4$
B. 1:2
C. 1:3
D. 1:5

Answer: C

D Watch Video Solution

31. A solubility contains one mole each of HA and HB (both are weak acids) in one litre solution. Now 1 mole of NaOH is added to this
solution so that both the acids are partly neutralised. Heat of neutralisation for HA and HB are- 11.8 and- 12.4 kcal respectively and the heat produced during partial neutralisation of $H A$ and $H B$ is12.25 kcal.

The ratio of dissociation constant of two acids are:
A. 1:9
B. 1:6
C. 1:3
D. 1:1

Answer: A

D Watch Video Solution

32. A solubility contains one mole each of HA and HB (both are weak acids) in one litre solution. Now 1 mole of NaOH is added to this
solution so that both the acids are partly neutralised. Heat of neutralisation for HA and HB are- 11.8 and- 12.4 kcal respectively and the heat produced during partial neutralisation of $H A$ and $H B$ is12.25 kcal.

The ratio of NaA and NaB in solution left after reaction is:
A. 1:9
B. 1:3
C. 1:6
D. 1:4

Answer: B

- Watch Video Solution

33. A solubility contains one mole each of HA and HB (both are weak acids) in one litre solution. Now 1 mole of NaOH is added to this
solution so that both the acids are partly neutralised. Heat of neutralisation for HA and HB are- 11.8 and- 12.4 kcal respectively and the heat produced during partial neutralisation of HA and HB is12.25 kcal.
pH of solution, if hydrolysis constant for A^{-}is 10^{-9} :
A. 4.5228
B. 5.5228
C. 3.4696
D. 7.9215

Answer: A

D Watch Video Solution

Exercise

1. Statement : The dissociation constants of polyrotic acid are in the order $K_{1}>K_{2}>K_{3}$.

Explanation : The $\left[\mathrm{H}^{+}\right]$furnished in first step of dissociation exerts common ion effect to reduce the secend dissociation so on.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: C

D Watch Video Solution

2. Statement: All strong acids in water show almost almost same acidic nature.

Explanation: This is due to levelling effect of water on account of its high dielectric constant and strong proton accepting tendency.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: C

D Watch Video Solution

3. Statement: $\mathbb{C I}_{4}, \mathrm{C}_{6} \mathrm{H}_{6}$ and liquid SO_{2} are aprotic solvents.

Explanation: Aprotic solvents does not influence the aicdic or basic nature of solute.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: C

D Watch Video Solution

4. Statement: The acidic nature of some cations is: $\mathrm{B}^{3+}>\mathrm{Be}^{2+}>\mathrm{Na}^{+}>\mathrm{K}^{+}$

Explanation: More is the effective nuclear charge on cation more is its acidic nature.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: C

D Watch Video Solution

5. Statement: Acidic nature of boron trihalides is in the order
$B F_{3}<B C I_{3}<B B r_{3}<B I_{3}$.
Explanation: Basic nature of nitrogen trihalides is in the order
$\mathrm{NF}_{3}>\mathrm{NCI}_{3}>\mathrm{NBr}_{3}>\mathrm{NI}_{3}$.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: A

6. Statement: $\mathrm{CO}+\mathrm{NaOH} \rightarrow$ HighTHCOONa

Explanation: CO although being neutral can acts as acid in the given reaction.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is correct explanation of S.

Answer: C

D Watch Video Solution

7. Statement: The dissociation constant of water at $60^{\circ} \mathrm{Cis} 10^{-13}$.

Explanation: The pH of water is 6.5 and that it behaves as acid at $60^{\circ} \mathrm{C}$.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: A

D Watch Video Solution

8. Assertion : Salting out action of sodium soap in presence of NaCl is based on common ion effect.

Reason : Salting out action of soap is based on the fact that as the concentration of Na^{+}increases, the RCOONa shows precipitation because $\left[\mathrm{RCOO}^{-}\right]\left[\mathrm{Na}^{+}\right]>K_{s p}$.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: B

D Watch Video Solution

9. Statement: Hydrolysis of salt is an exothermic phenomenon.

Explanation: It involves breaking up of water molecule to produce acids and base respectively.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: B

10. Statement: The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate.

Explanation: The ionisation of acetic acid is suppressed by the addition of sodium acetate.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: C

Watch Video Solution

11. Statement: In acidic medium, Zn^{2+} is not precipitated by $\mathrm{H}_{2} \mathrm{~S}$.

Explanation: Common ion effect reduces the concentration of S^{2-} to a minimum level.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: C

(D) Watch Video Solution

12. Statement: Sodium carbonate can be titrated against sulphuric acid by using methyl orange as indicator.

Explanation: The volume of sulphuric acid required to produce colour change for the two indicators (acid or basic) is different.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: A

D Watch Video Solution

13. Statement: In an acid-basic titration involving a strong base and a weak acid, methyl orange can be used as an indicator.

Explanation: Methyl orange changes its colour in the pH range 3 to
5.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: B

- Watch Video Solution

14. Assertion (A): Equivalent conductance increase with dilution for an electrolyte solution.

Reason (R): The number of ions per litre of electrolyte increases with dilution.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: A

15. Statement: A micture of the solution of a weak acid and its conjugates base acts as a good buffer.

Explanation: The ratio of the conjugates base acid in the mixture does not change substantially when small amount of acids or alkalines are added to the buffer.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: D

16. Statement: For a weak electrolyte, the plot of molar conductivity $\left(\Lambda_{m}\right)$ against $\sqrt{C}\left(C\right.$ is concentration in mol litre $\left.{ }^{-1}\right)$ is nearly linear. Explanation: The molar conductivity at infinite dilution $\left(\Lambda_{m}\right)$ for an electrolyte can be considered equal to the sum of the limiting molar conductivities of the individual ions.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: B

D Watch Video Solution

17. Statement: The addition of a small amount of a 'neutral' electrolyte (one that does not share a common ion) such as NaCl to a dilute solution of acetic acid, will cause an increase in the degree of dissociation of the acid.

Explanation: Due to the increased ionic strength, the mean ionic activity coefficient of $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{CH}_{3} \mathrm{COO}^{-}$will increase.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: C

D Watch Video Solution

18. Statement: In water, orthoboric acid behaves as a weak monobasic acid.

Explanation: In water, orthoboric acid as a proton donor.
A. S is correct but E is wrong.
B. S is wrong but E is correc.
C. Both S and E are correct and E is correct explanation of S .
D. Both S and E are correct but E is correct explanation of S .

Answer: A

D Watch Video Solution

19. Prove that degree of dissocation of a weak acid is given by:

$$
\alpha=\frac{1}{1+10\left(p K_{a}-p H\right)}
$$

where K_{a}) si its dissociation constant.
20. The concentration of fluroacetic acid $\left(K_{a}\right.$ ofacid $\left.=2.6 \times 10^{-3}\right)$, which is required to get $\left[\mathrm{H}^{+}\right]=1.50 \times 10^{-3} \mathrm{M}$ is:

(D) Watch Video Solution

21. Diborane, $B_{2} H_{6}$, reacts with water to from boric acid and hydrogen, What is the pH of the solution which results when 1.104 g of $B_{2} H_{6}$ reacts with 100 mL water ? Assume the final volume to be 100 mL .

Given : K_{a} of $H_{3} B O_{3}=8 \times 10^{-10} p K_{a}$, Atomic weight of $B=10,8 \mathrm{~g}, \mathrm{MW}$ of $B_{2} H_{6}=27.6 \mathrm{gmol}^{-1}$.

- Watch Video Solution

22. Liquid ammonia ionises to a slight extent. At $-50^{\circ} \mathrm{C}$, its self ionisation constant, $K_{N H_{3}}=\left[N H_{4}^{+}\right]\left[N H_{2}^{-}\right]=10^{-30}$. How many amide ions are present per cm^{3} of pure liquid ammonia ? $\left(\right.$ Assume $\left.N=6.0 \times 10^{23}\right)$

(D) Watch Video Solution

23. The self ionisation constant for pure
$\mathrm{HCOOH}, \mathrm{K}=\left[\mathrm{HCOO}^{\oplus}{ }_{2}\right]\left[\mathrm{HCOO}^{\Theta}\right]$ is 10^{-6} at room temperature.
What percentage of HCOOH molecules are converted to HCOO^{Θ} ions. The density of HCOOH iws $1.22 \mathrm{gcm}^{-3}$.

- Watch Video Solution

24. Calculate the dissociation constant of $\mathrm{NH}_{4} \mathrm{OH}$ at $25^{\circ} \mathrm{C}$. If ΔH° and ΔS° for the given changes are as follows:
$\mathrm{NH}_{3}+\mathrm{H}^{+} \Leftrightarrow \mathrm{NH}_{4}^{+},, \Delta H^{\circ}=-52.2 \mathrm{kJmol}^{-1}$,
$\Delta S^{\circ}=+1.67 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}, \Delta H^{\circ}=56.6 \mathrm{kJmol}^{-1}$,
$\Delta S^{\circ}=-78.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

25. Calculate the concentration of all species of significant concentrations presents in $0.1 \mathrm{MH}_{3} \mathrm{PO}_{4}$ solution. If $K_{1}=7.5 \times 10^{-3}, K_{2}=6.2 \times 10^{-8}, K_{3}=3.6 \times 10^{-13}$

- Watch Video Solution

26. If $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{K}_{a}=10^{-5}\right)$ reacts with NaOH at 298 K , then find out the value of the maximum rate constant of the reverse reaction at 298 K at the end point of the reaction. Given that the rate constant of the forward reaction is $10^{-11} \mathrm{~mol}^{-1} \mathrm{Lsec}^{-1}$ at 298 K . Also calculate Arrhenius parameter for backward reaction if $\Delta H_{298 K}=44 \mathrm{kcal}$ and $E_{a(f)}=94 \mathrm{kcal}$.

- View Text Solution

27. The K_{w} of water at two temperature $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ are $1.08 \times 10^{-14}, 5.474 \times 10^{-14}$ respectively. Assuming ΔH of any reaction is neutralisation of a strong acid with strong base.

- View Text Solution

28. The $p H$ of pure water at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ are 7 and 6 , respectively. Calculate the heat of formation of water from H^{\oplus} and Θ OH .

D Watch Video Solution

29. For an organic monoprotic acid solution of concentration Co mole litre $^{-1}$, if K_{a} has a value comparable to K_{w}, show that the hydronium ion concentration is given by :
$\left[H^{+}\right]=\left[\frac{K_{w}}{H(+)}+\frac{K_{a} . C o}{\left[K_{a}+H^{+}\right]}\right]$
If $\left[\mathrm{H}^{+}\right]=10^{-3} \mathrm{M}$ and $C o=10^{-1} \mathrm{M}$ in a solution of some organic monoprotic acid, what according to the above equation must be the order of magnitude of K_{a} ?
30. The K_{w} for $2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+} \mathrm{OH}^{-}$changes from 10^{-14} at $25^{\circ} \mathrm{C}$ to 9.62×10^{-14} at $60^{\circ} \mathrm{C}$. What is pH of water at $60^{\circ} \mathrm{C}$? What happens to its neutrality?

- Watch Video Solution

31. For the indicator thymol blue, pH is 2.0 when half of the indicator is in unionised form. Find the $\%$ of indicator in unionised form in a solution with $\left[\mathrm{H}^{+}\right]=4 \times 10^{-3} \mathrm{M}$.

D Watch Video Solution

32. Calculate the percent error in the $\left[\mathrm{H}_{3} \mathrm{O}^{\oplus}\right]$ made by neglecting the ionisation of water in $10^{-6} \mathrm{MNaOH}$ solution.
33. Calculate the pH of solution obtained by mixing 10 ml of 0.1 MHCl and 40 ml of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$

D Watch Video Solution

34. What should be the pH at the equivalence point for the titration of $0.10 \mathrm{MKH}_{2} \mathrm{BO}_{3}$ with $0.01 \mathrm{MHCI} ?\left(K_{a} o f H_{3} \mathrm{BO}_{3}=7.2 \times 10^{-10}\right)$

- View Text Solution

35. Calculate the pH of a solution which contains 100 mL of 0.1 MHCI and 9.9 mL of 1.0 MNaOH .
36. Calculate $\left[H^{\oplus}\right]$ in a soluton that is 0.1 MHCOOH and $0.1 \mathrm{MHOCN} . K_{a}(\mathrm{HCOOH})=1.8 \times 10^{-4}, K_{a}(\mathrm{HoCN})=3.3 \times 10^{-4}$.

- Watch Video Solution

37. Calculate the pH in a solution that is 0.1 M in acetic acid and 0.1 M in benozic acid. $\mathrm{K}_{a} f$ or $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOHare} 1.8 \times 10^{-5}$ and 6.5×10^{-5} respectively.

D Watch Video Solution

38. What are $\left[H^{\oplus}\right],\left[A^{\Theta}\right.$, and $\left[B^{\Theta}\right]$ in a solution that is $0.3 M H A$ and $0.1 M H B ? K_{a}$ for $H A$ and $H B$ are 1.38×10^{-4} and 1.05×10^{-10}, respectively.

- Watch Video Solution

39. Calculate $\left[H^{\oplus}\right]$ and $\left[\mathrm{CHC1}_{2} \mathrm{COO}^{\Theta}\right]$ in a solution that is $0.01 \mathrm{MHC1}$ and $0.01 \mathrm{MCHC1} 1_{2} \mathrm{COOH} . \mathrm{K}_{a}$ for $\mathrm{CHC1}_{2} \mathrm{COOH}$ is 5×10^{-3}.

D Watch Video Solution

40. Calculate $\left[\mathrm{H}^{+}\right],\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$and $\left[\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}^{-}\right]$in a solution that is 0.02 M in acetic acid and 0.01 M in benzoic acid. $\left(K_{a_{A A}}=1.8 \times 10^{-5}, K_{a_{B A}}=6.4 \times 10^{-5}\right)$

- Watch Video Solution

41. A solution contains $0.09 \mathrm{HC}, 0.09 \mathrm{MCHC1}{ }_{2} \mathrm{COOH}$, and $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$. The pH of this solution is one. Calculate K_{a} for $\mathrm{CHC1}{ }_{2} \mathrm{COOH}$. (Given $\mathrm{K}_{a} \mathrm{CH}_{3} \mathrm{COOH}=10^{-5}$)
42. 100 mL of HCl gas at $25^{\circ} \mathrm{C}$ and 740 mm pressure were dissolveed in one litre of water. Caculate the pH of a solution. Given, V.P. of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is 23.7 mm .

- View Text Solution

43. Calculate the pH of a buffer solution prepared by dissolving 30 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 500 mL of an aqueous solution contaning 150 mL of 1 M HCl. $\left(K_{a} f\right.$ or $\left.\mathrm{HCO}_{3}^{-}=5.63 \times 10^{-11}\right)$

D Watch Video Solution

44. The ratio of pH of solution (1) containing 1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ and 1 mole of HCl and solution (II) containing 1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ and 1 mole of acetic acid in one litre is :
45. a. Calculate the ratio of pH of a solution continaing 1 mol . Of $\mathrm{CH}_{3} \mathrm{COONa}+1 \mathrm{~mol}$ of $\mathrm{HC1}$ per litre and of other solution containing 1 mol of $\mathrm{CH}_{3} \mathrm{COONa}+1 \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ per litre.
b. A 0.1 Msolution of weak acid HA is 1% dissociated at $298 k$. what is its K_{a} ? what will be the new degree of dissociation of $H A$ and $p H$ when 0.2 M of $N a A$ is added to it.

D Watch Video Solution

46. Calculate the weight of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ which must be added to 500 mL of $0.2 \mathrm{MNH}_{3}$ to yield a solution of $\mathrm{pH}=9.35 . \mathrm{K}_{a}$ for $N H_{3}=1.78 \times 10^{-5}$.
47. 0.00050 mole of NaHCO_{3} is added to a large volume of a solution buffer at $p H=8.00$. How much material will exist in each of the three forms, $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}$and CO_{3}^{2-} ? K_{1} and K_{2} for $\mathrm{H}_{2} \mathrm{CO}_{3}$ are 4.5×10^{-7} and 4.5×10^{-11} respectively.

- View Text Solution

48. $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$ solution is titrated against 0.05 MNaOH solution. Calculate pH at $1 / 4$ th and $3 / 4$ th stages of neutralization of acid. The pH for $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$ is 3 .

(D) View Text Solution

49. A solution of weak acid was titrated with base NaOH . The equivalence point was reached when 36.12 mL of 0.1 M NaOH have
been added. Now 18.06 mL 0.1 M HCI were added to titrated solution, the pH was found to be 4.92 . What is K_{a} of acid ?

- View Text Solution

50. A weak acid HA after teratment with 12 mL of 0.1 M strong base BOH has a pH of 5 . At the end point, the volume of same base required is $26.6 m L . K_{a}$ of acid is:

D Watch Video Solution

51. To a solution of acetic acid, solid sodium acetate is added greadually. When x mole of salt is added, the pH has a certain value. If y mole of salt is added, the pH is this time changes by 0.6 units to previous pH . What is the ratio of x and y ? If the solution is diluted after addition of y mole salt, what will be the change in pH ? Given that $y>x$.
52. When 40 mL of a 0.1 M weak monoacid base is titrated with $0.16 M H C I$, the pH of solution at the end point is 5.23 . Calculate K_{b}. What will be the pH if 15 mL of 0.12 M NaOH is added to the resulting solution?

- View Text Solution

53. The $\left[\mathrm{Ag}^{+}\right]$ion in a saturated solution of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ at $25^{\circ} \mathrm{Cis} 1.5 \times 10^{-4} \mathrm{M}$. Determine $\mathrm{K}_{S P}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ at $25^{\circ} \mathrm{C}$.

D Watch Video Solution

54. $K_{s p}$ of PbBr_{2} is 8×10^{-5}. If the salt is 80% dissociated in solution, calculat the solubility of salt in $g L^{-1}$.
55. $K_{s p}$ of $P b C 1_{2}$ is 10^{-13}. What will be $\left[\mathrm{Pb}^{2+}\right]$ in a of solution prepared by mixing 100 mL of $0.1 \mathrm{MPb}\left(\mathrm{NO}_{3}\right)_{2}$ of solution 1.0mL1MHCI ?

Watch Video Solution

56. Calculate simultaneous solubility of AgCNS and AgBr in a solution of water.
$\left(K_{S P} o f A g B r=5 \times 10^{-13}\right.$ and $\left.K_{S P} O f A g C N S=1 \times 10^{-12}\right)$

D Watch Video Solution

57. BaSO_{4} and BaCrO_{4} have solubility product values in the ratio
$1: 2.5 a t 25^{\circ} \mathrm{C}$. When pure water is saturated with both solids
simultaneously, the total concentration of Ba^{2+} ion in the solution is $1.4 \times 10^{-5} \mathrm{M}$. Calculate the solubility product of BaCrO_{4}. Calculate also the solubility of BaSO_{4} in $0.01 \mathrm{MNa}_{2} \mathrm{SO}_{4}$ solution.

D Watch Video Solution

58. A mixture of water and AgCl is shaken until a saturated solution is obtained. Now the solution is filtered and 100 mL of clear solution of filtrate is mixed with 100 mL of 0.03 MNaBr . Should a precipitate from ? $K_{S P}$ of AgCl and AgBr are 1×10^{-10} and 5×10^{-13}.

- View Text Solution

59. Zn salt is mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ of molarity 0.021 M . What amount of Zn^{2+} will remain unprecipitated in 12 mL of the solution ?
$\left(K_{S P}\right.$ of $\left.\mathrm{ZxnS}=4.51 \times 10^{-24}\right)$
60. A particular water sample has $131 \mathrm{ppm} \mathrm{CaSO}_{4}$. What fraction of the water must be evaporated in a container before solid CaSO_{4} begins to deposit ? $\left(K_{S P}\right.$ ofCaSO $\left._{4}=9.0 \times 10^{-6}\right)$

- View Text Solution

61. To a solution of $0.1 \mathrm{MMg}^{2+}$ and $0.8 \mathrm{MNH}_{4} C I$, and equal volume of NH_{3} is added which just gives precipitates. Calculate $\left[\mathrm{NH}_{3}\right]$ in solution.
$K_{s p} o f M g(O H)_{2}=1.4 \times 10^{-11}$ and $K_{b} o f \mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5}$.

D Watch Video Solution

62. What is the molar solubility of $\mathrm{AgCI}_{(\mathrm{g})}$ in $0.100 \mathrm{MNH}_{3(a q .)}$?

Given $K_{S P}$ of $\mathrm{AgCI}=1.8 \times 10^{-10}, \mathrm{~K}_{f}$ of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}=1.6 \times 10^{7}$.

- View Text Solution

63. 10 mL of $0.3 \mathrm{MNa}_{2} \mathrm{SO}_{4}$ are mixed with 20 mL solution having initially $0.1 \mathrm{MCa}^{2+}$ and $0.1 \mathrm{MSr}^{2+}$ in it. Calculate the final $\left[\mathrm{Ca}^{2+}\right],\left[\mathrm{Sr}^{2+}\right]$ and $\left[\mathrm{SO}_{4}^{2-}\right] \quad$ in solution? Given $K_{s p} \mathrm{SrSO}_{4}=7.6 \times 10^{-7}$ and $K_{s p} \mathrm{CaSO}_{4}=2.4 \times 10^{-5}$.

D Watch Video Solution

64. The solubility of CaCO_{3} is $7 \mathrm{mg} / \mathrm{L}$. Calculate the $K_{s p}$ of BaCO_{3} whne $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added slowely a solution containing equimolar concentration of Ca^{2+} and Ba^{2+} and no precipitate is formed until 90% of Ba^{2+} has beem precipitated as BaCO_{3}.

(D) Watch Video Solution

65. Calculate the solubility of AgCN in a buffer solution of $p H=3$, Given $K_{s p} o f A G C N=1.2 \times 10^{-16}$ and K_{a} for $H C N=4.8 \times 10^{-10}$.

(Watch Video Solution

66. 2 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is boiled in a closed container with excess of CaF_{2}. Very small amount of CaCO_{3} and NaF are formed. If $K_{s p}$ of CaCO_{3} is x and molar solubility of CaF_{2} is y, find the molar after cocentration of F^{Θ} in the resulting solution after equilibrium is attained.

D Watch Video Solution

67. 100.0 mL of a saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is added to 250.0 mL of saturated solution of PbCrO_{4}. Will may precipitate form and if so
what? Given $K_{s p}$ for $\mathrm{Ag}_{2} \mathrm{SO}_{4}, \mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{PbCrO}_{4}$, and PbSO_{4} are $1.4 \times 10^{-5}, 2.4 \times 10^{-12}, 2.8 \times 10^{-13}$, and 1.6×10^{-8}, respectively.

D Watch Video Solution

68. 25.0 mL clear saturated solution of $\mathrm{PbI}_{2(a q \text {.) }}$ requires $13.3 m L o f \mathrm{AgNO}_{3(\text { aq. })}$ solution for complete precipitation. What is molarity of AgNO_{3} solution ? $\left(K_{S P}\right.$ of PbI_{2} is $\left.7.1 \times 10^{-9}\right)$

D Watch Video Solution

69. $K_{s p}$ of $\mathrm{SrF}_{2}=2.8 \times 10^{-9}$ at $25^{\circ} \mathrm{C}$. How much NaF should be added to 100 mL of solution having 0.016 M in Sr^{2+} ions to reduce its concentration to $2.5 \times 10^{-3} \mathrm{M}$?
70. $\mathrm{H}_{2} \mathrm{~S}$ is bubbled into a 0.2 MNaCN solution which is 0.02 M each in $A g(C N)_{2}^{\Theta}$ and $\left(C d(C N)_{4}^{2-}\right.$. If $K_{s p}$ of $A g_{2} S$ and $C d S$ are 10^{-50} and 7.1×10^{-28} and K instability for $\left[A g(C N)_{2}^{\Theta}\right]$ and $\left[C d(C N)^{2-1} 4\right]$ are 1.0×10^{-20} and 7.8×10^{-18}, which sulphide will precipitate first?

D Watch Video Solution

71. What are the concentration of $\mathrm{Ag}^{+},\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}$and $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$in a solution prepared by adding 0.10 mole of AgNO_{3} to 1.0 litre of $3.0 \mathrm{MNH}_{3}$? Given :

$$
\begin{align*}
& \mathrm{Ag}_{(a q .)}^{+}+\mathrm{NH}_{3(a q .)} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]_{(a q .)}^{+}, \\
& K_{1}=2.1 \times 10^{3} \ldots .(1) \tag{1}\\
& {\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]_{(a q .)}^{+}+\mathrm{NH}_{3(a q .)} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]_{(a q .)}^{+},} \\
& K_{2}=8.1 \times 10^{3} \ldots . .(2)
\end{align*}
$$

$\mathrm{Ag}_{(a q .)}^{+}+2 \mathrm{NH}_{3(a q .)} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]_{(a q .)}^{+}$,
$K_{3}=1.7 \times 10^{7}$

- View Text Solution

72. 338 mL clear saturated solution of AgBrO_{3} requires just $30.4 \mathrm{mLofH}_{2} \mathrm{~S}_{(\mathrm{g})}$ at $23^{\circ} \mathrm{C}$ and 748 mm Hg to precipitate all the Ag^{+} ions $\mathrm{Ag}_{2} \mathrm{~S}$. What will be $\mathrm{K}_{S P} \mathrm{ofAgBrO} 3$?

- View Text Solution

73. 0.10 moole of $\mathrm{AgCI}_{(s)}$ is added to 1 litre of $\mathrm{H}_{2} \mathrm{O}$. Next crystal of NaBr are added until 75% of the AgCl is concerted to $\mathrm{AgBr}_{(s)}$, the less soluble silver halide. What is Br^{-}at this point ? $K_{S P}$ of AgCl is 1.78×10^{-10} and $K_{S P}$ of AgBr is 5.25×10^{-13}.
74. Calculate the $p H$ of the following mixtures given $\left(p K_{a}=p K_{b}=4.7447\right):$
a. $50 \mathrm{mLL} .1 \mathrm{MNaOH}+50 \mathrm{mLO} .1 \mathrm{MCH}_{3} \mathrm{COOH}$
b. $50 \mathrm{~mL} 0.1 \mathrm{mNaOH}+50 \mathrm{~mL} 0.05 \mathrm{MCH}_{3} \mathrm{COOH}$
c. $50 \mathrm{~mL} 0.05 \mathrm{MNaOH}+50 \mathrm{mLO} 0.1 \mathrm{MCH}_{3} \mathrm{COOH}$
d. $50 \mathrm{mLO} .1 \mathrm{MNH}_{4} \mathrm{OH}+50 \mathrm{~mL} 0.05 \mathrm{MHCI}$
e. $50 \mathrm{mLO} 0.05 \mathrm{MNH}_{4} \mathrm{OH}+50 \mathrm{~mL} 0.1 \mathrm{MHCI}$
f. $50 \mathrm{mLO} 05 \mathrm{MNH}_{4} \mathrm{OH}+50 \mathrm{mL0.05MCH} 3 \mathrm{COOH}^{2}$

D Watch Video Solution

75. A solution containing 0.2 mole of dicholoracetice acid $\left(K_{a}=5 \times 10^{-2}\right)$ and 0.1 mole sodium dicholoroacetate in one litre solution has $\left[H^{+}\right]$:

D Watch Video Solution

76. 10 g of $\mathrm{NH}_{4} \mathrm{CI}(\mathrm{mol}$. wt. 53.5) when dissolved in 1000 g water lowered the freezing point by $0.637^{\circ} \mathrm{C}$. Calculate the degree of hydrolysis of the salt if its degree of dissociation is 0.75 . The molal depression constant of water is 1.86 Kmolality $^{-1}$.

- View Text Solution

77. At $18^{\circ} \mathrm{C}$ aniline and acetic acid have dissociation constants 5×10^{-10} and 1.8×10^{-5} respectively. An aqueous solution of anilium acetate is hydrolysed to the extent of $x \%$ under equilibrium, what is pH of the solution ? $\left(K_{w}=10^{-14}\right)$

- View Text Solution

78. Calculate the extent of hydrolysis of $0.005 \mathrm{MK}_{2} \mathrm{CrO}_{4} \mathrm{~K}_{2}=3.1 \times 10^{7} f$ or $\mathrm{H}_{2} \mathrm{CrO}_{4} \cdot\left(\mathrm{H}_{2} \mathrm{CrO}_{4}\right.$ is strong for first ionisation and $K_{1}=1.6$).

- View Text Solution

79. A solution was made up by $0.01 \mathrm{MCo}\left(\mathrm{NO}_{3}\right)_{2}$ and $.02 \mathrm{MN}_{2} \mathrm{H}_{4}$ and was found to have at equilibrium $\left[\mathrm{Co}^{2+}\right]=0.0062 M$. Calculate K_{1} for the complex formation of $\mathrm{Co}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)^{2+}$.

(D) Watch Video Solution

80. The vapour pressur of 0.01 molal solution of weak base BOH in water at $20^{\circ} \mathrm{C}$ is 17.536 mm . Calculate K_{b} for base. Aqueous tension at $20^{\circ} \mathrm{C}$ is 17.540 mm . Assume molatilly and molarity same.

- Watch Video Solution

81. A 0.01 M aqueous solution of weak acid $H A$ has an osotic pressure 0.293 atm at $25^{\circ} \mathrm{C}$. Another 0.01 M aqueous solution of
other weak acid $H B$ has an osmotic pressure of 0.345 atm under the same conditions. Calculate equilibrium constants of two acids for their dissociation.

D Watch Video Solution

82. The freezing point of $3.75 \times 10^{-2} M$ aqueous solution of weak acid HA is 272.9 K . The molality of the solution was found to be 0.0384 molal. Find the $\left[\mathrm{H}^{+}\right]$of the solution on adding 3.75×10^{-2} moles of NaA to one litre of the above solution. $\left(K_{f}\right.$ of water $\left.=1.86 \mathrm{molal}^{-1}\right)$

View Text Solution

83. Calculate the pH at which an acid indicator with $K_{a}=1 \times 10^{-5}$ change colour when the indicator cincentration is $1 \times 10^{-3} \mathrm{M}$. Also report the pH at which coloured ion is 80% present.
84. A solution of $H C I$ has $\mathrm{pH}=5$. If 1 mL of it is diluted to 1 L what will be the pH of resulting solution?

Watch Video Solution

85. Calculate the pH of $0.010 \mathrm{MNaHCO}_{3}$ solution.
$K_{1}=4.5 \times 10^{-7}, K_{2}=4.7 \times 10^{-11}$ for carbonic acid.

- Watch Video Solution

