©゙ doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - P BAHADUR CHEMISTRY (HINGLISH)

MOLE AND EQUIVALENT CONCEPT

Exercise (Mole concept 1) Elementary numerical problem

1. 1.7 g of silver nitrate dissolved in 100 g of water is taken.
$0.585 g$ of sodium chloride dissolved in $100 g$ of water is added to it an chemical reaction occurs. $1.435 g$ of silver chloride and
$0.85 g$ of sodium nitrate are formed. Justify that the data obey law of conservation of mass.
2. a. When $4.2 g \mathrm{NaHCO}_{3}$ is added to a solution of $\mathrm{CH}_{3} \mathrm{COOH}$ is released into atomosphere. The residue is the found to weigh 12.0 g . Show that these observations are in agreement with the low of conservation of weigh.
b. If $6.3 g$ of NaHCO_{3} are added to $15.0 g \mathrm{CH}_{3} \mathrm{COOH}$ solution.

The residue is found to weigh 18.0 g what is the mass of CO_{2} released in this reaction?

- Watch Video Solution

3. 1.08 g of copper wire was allowed to react with nitric acid. The resulting solution was dried and ignited when $1.35 g$ of copper oxide was obtained. In another experiment $2.30 g$ of cpper oxide was heated in presence of hydrogen yielding $1.84 g$ of copper.

Show that the above data in accordance with law of constant proporation.

- Watch Video Solution

4. Carbon and oxygen are known to form two compounds. The carbon content in one of these is 42.9% while in the other it is 27.3%. Show that this data is in agreement with the law of multiple proportions.

- Watch Video Solution

5. The $\%$ composition of $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{N}_{2} \mathrm{O}_{3}$ is as given below:
$\mathrm{NH}_{3} \rightarrow 82.35 \% \mathrm{~N}$ and $17.65 \% H$
$\mathrm{H}_{2} \mathrm{O} \rightarrow 88.90 \%$ and $11.10 \% \mathrm{H}$
$\mathrm{N}_{2} \mathrm{O}_{3} \rightarrow 63.15 \% \mathrm{O}$ and $36.85 \% \mathrm{~N}$
On the basis of above data prove law of reciprocal proportions.

- Watch Video Solution

6. 8 litre of H_{2} and 6 litre of $C l_{2}$ are allowed to react to maximum possible extent. Find out the final volume of reaction mixture. Suppose P and T remains constant throughout the course of reaction.

D Watch Video Solution

7. How many molecule are present in one $m L$ of water vapour of $S T P$?
8. Naturally occurring chlorine is $75.53 \% C l^{35}$ which has an atomic mass of $34.969 a \mu$ and $24.47 \% C l^{37}, 24.47 \% C l^{37}$, which has a mass of 36.966 amu . Calculate the average atomic mass of chlorine.

- Watch Video Solution

9. Calculate the mass in g of
(a) $2 g$-atom of $M g$
(b) $3 N$ atoms of $M g$.

(D) Watch Video Solution

10. Calculate the mass in g of
(a) 2 mole of CO_{2}
(b) 2 Nmolecules of CO_{2}

- Watch Video Solution

11. How many molecule are in $5.23 g$ of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$? Also calculate the number of C, H and O atoms.

- Watch Video Solution

12. The specific heat of metal is $1 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$. If equivalent weight of metal is 9 , carbon atoms, 13 hydrogen atoms and $2.33 \times 10^{-23} g$ of other component?
13. What is the molecular weight of a substance, each molecule of which contains 9 carbon atoms, 13 hydrogen atoms and $2.33 \times 10^{-23} g$ of other component ?

- Watch Video Solution

14. What is the weight of 3.01×10^{23} molecules of ammonia?

- Watch Video Solution

15. How many years it would take to spend Avogadro's number of rupees at the rate of 1 million repees in one second?
16. How many of g of S are required to produce 10 moles and 10 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ respectively?

- Watch Video Solution

17. Calculate the number of Cl^{-}and Ca^{2+} ions in $333 g$ anhydrous CaCl_{2}.

- Watch Video Solution

18. (a) 2 Calculate the number of moles of water in $366 \mathrm{gBaCl} l_{2} .2 \mathrm{H}_{2} \mathrm{O}$.
(b) Calculate the value of X (in terms of mole) if $X=9.4 g$ Phenol $+6.02 \times 10^{22}$ molecules phenol +0.2 mole phenol.
19. Which of the following will weigh maximum amount?
(a). $20 g$ iron, (b) $1.2 g$ atom of N,
(c) 1×10^{23} atoms of carbon,
(d) 1.12litre of $O_{2} a t S T P$.

- Watch Video Solution

20. From 280 mg of $C O, 10^{21}$ molecules are removed. How many g and mole of $C O$ are left?

D Watch Video Solution

21. P and Q are two elements which from $P_{2} Q_{3}, P Q_{2}$ molecules. If 0.15 moles of $P_{2} Q_{3}$ and $P Q_{2}$ weighs $15.9 g$ and $9.3 g$, respectively, what are atomic weighs of P and Q ?

- Watch Video Solution

22. Sugar with oxygen as:
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$
How many g of CO_{2} is produced per g of sucrose (sugar) used?
How many mole of oxygen are neede to react with 1.0 g Sugar ?

D Watch Video Solution

23. The mass of one litre sample of ozonised oxygen at $N T P$ was found to be 1.5 g . When 100 mL of this mixture at $N T P$
were treated with terpentine oil, the volume was reduced to 90 mL . Hence calculate the molecular mass of ozone.
(Terpentine oil absorbs ozone)

- Watch Video Solution

24. $\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{3}$ is empirical formula of a crystalline compound to iron. It is used in water and sewage treatment to aid in the removal of suspended impurities. Calculate the mass percentage of iron, sulphur and oxygen in this compound.

- Watch Video Solution

25. 5.325 g sample of methyl benzoate, a compound used in the manufacture of perfumes is found to contain 3.758 g of carbon, $0.316 g$ of hydrogen and $1.251 g$ of oxygen. What is empirical
formula of compound. If mol. Weight of methyl benzoate is 136.0, calculate its molecular formula.

- Watch Video Solution

26. Ptassium chromate is isomorphous to potassium sulphate $\left(K_{2} S O_{4}\right)$ and it is found to have $26.78 \% \mathrm{Cr}$. Calculate the at. Wt. of $C r$ if at. W.t of potassium is 39.10 .

- Watch Video Solution

27. A hydrate of iron (III) thiocyanate $\mathrm{Fe}(\mathrm{SCN})_{3}$, was found to contain $19 \% \mathrm{H}_{2} \mathrm{O}$. What is the formula of the hydrate?

- Watch Video Solution

28. (i) Butyric acid contains only C, H and O. $A 4.24 m g$ sample of butyric acid is completely burned. It gives 8.45 mg of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and 3.46 mg of water. What is the mass percentage of each element in butyric acid?
(ii) If the elemental composition of butyric acid is found to be $54.2 \% C, 9.2 \% H$ and $36.6 \% O$, determine the empirical formula.
(iii) The molecular mass of butyric acid was determined of experiment to be 88 . What is the moleculare formula ?

- Watch Video Solution

29. Calculate the percentage composition in terms of mass of solution obtained by mixing 300 g of a 25% and 400 g of a 40% solution by mass.
30. How much $\mathrm{CaCl}_{2} .6 \mathrm{H}_{2}$ and water mustb be weighed to prepare 100 g of a solution that is $5.0 \% \mathrm{CaCl}_{2}$?

- Watch Video Solution

31. Calculate the concentration of a solution obtained by mixing 300 g of 25% by weight solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and 150 g of 40% by weight solution of $\mathrm{NH}_{4} \mathrm{Cl}$.

- Watch Video Solution

32. Calculate the mass of chloride ion in 1 litre of:
(a) 10% by weight of NaCl solution having density $1.07 \mathrm{~g} / \mathrm{mL}$, and
(b) 10% by weight of AlCl_{3} solution having density $1.10 \mathrm{~g} / \mathrm{mL}$

- Watch Video Solution

33. Persons are medically considered to have lead poisoning if they have a concentration greater than 10 micrograms of lead per decilitre of blood. What is the concentration in parts per billion?

- Watch Video Solution

34. What is the total molar concentration of ions in $0.350 M$ solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ assuming its complete isonisation?
35. How many moles of NaOH are contained in 27 mL of 0.15MNaOH?

- Watch Video Solution

36. A sample of NaNO_{3} weighing $0.38 g$ is placed in a 50.0 mL volumetric flask. The flask is then filled with water to the mark on the neck. What is the molarity of the solution?

- Watch Video Solution

37. In a reaction vessel $0.184 g$ of NaOH is required to be added for completing the reaction. How many millilitre of 0.150 MNaOH solution should be added for this requirements?
38. Commercially availiable concentrated hydrochloric acid contains $38 \% \mathrm{HCl}$ by mass. (a) What is the molarity of this solution? The density is $1.19 g m L^{-1}$?
(b) What volume of concentrated HCl is required to make 1.00litre of 0.10 MHCl ?

- Watch Video Solution

39. Concentrated nitric acid used for laboratory works is 68% nitric acid by mass in aqueous solution. What should be the molarity of such a sample of the acid if the density of solution is $1.504 \mathrm{gmL} L^{-1}$?
40. A solution of glucose in water is labelled as 10 percent w / w, what would be the molality and mole fraction of each component in the solution? If the density of the solution is
$1.2 g m L^{-1}$, then what shall be the molarity of the solution?

- Watch Video Solution

41. An antifreeze solution is prepared from $222.6 g$ of ethylene glycol $\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}\right]$ and 200 g of water. Calculate the molality of the solution. If the density of the solution is $1.072 \mathrm{gmL}^{-1}$ then what shall be the molarity of the solution?

- Watch Video Solution

42. Calculate the amount of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ required to obtain 250 m of deci-molar solution.

- Watch Video Solution

43. $4 g$ of NaOH are present in $0.1 d \mathrm{~m}^{3}$ solution have
(a) mole fraction of NaOH ,
(b) molality of NaOH solution,
(c) molarity of NaOH solution,
(d) normality of NaOH solution.

- Watch Video Solution

44. Find the molality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution whose specific gravity is $1.98 m L^{-1}$ and 90% by volume $\mathrm{H}_{2} \mathrm{SO}_{4}$
45. A sample of drinking water was found to be severely contaminated with chloroform, CHCl_{3}, supposed to be carcinogen. The level of contamination was 15 ppm (by mass).
(i) Express this in per cent by mass.
(ii) Determine the molality of chloroform in the water sample.

D Watch Video Solution

46. An aqueous solution of sodium chloride is marked $10 \%(w / w)$ on the bottle. The density of the solution is $1.071 \mathrm{gmL}^{-1}$. What is the molity and molarity? Also, what is the mole fraction of each components in the solution?

- Watch Video Solution

47. How many gram of $A l_{2}\left(S O_{4}\right)_{3}$ are present in 100 mL of $0.15 m$ solution of $A l_{2}\left(S O_{4}\right)_{3}$? The density of solution is $1.4 g / m L$.

- Watch Video Solution

48. How much 1.0 MHCl should be mixded with what volume of 0.250 MHCl in order to prepare 2.0 litre of 0.50 MHCl ?

- Watch Video Solution

49. What will be the final concentration of solution when 2.0litre of3.0M sugar solution and 3.0 lite of $2.5 M$ sugar solutions are mixed? If the solution is now diluted to 10litre what molarity will it have?
50. A sample of $H_{2} \mathrm{SO}_{4}$ (density1.787gmL ${ }^{-1}$) is labelleed as 80% by weight. What is molarity of acid? What volume of acid has to be used to make 1litre of0.2 $\mathrm{MH}_{2} \mathrm{SO}_{4}$?

D Watch Video Solution

51. What are the final concentrations of all the ions when following are mixed?
$50 \mathrm{mLof0.12MFe}\left(\mathrm{NO}_{3}\right)_{3}, 100 \mathrm{mLof0.10MFeCl} 3_{3}$ and $100 \mathrm{mLof0} 0.26 \mathrm{MMg}\left(\mathrm{NO}_{3}\right)_{2}$

- Watch Video Solution

52. Calculate the mass of BaCO_{3} produced when excess CO_{2} is bubbled through a solution containing 0.205 moles of $\mathrm{Ba}(\mathrm{OH})_{2}$.

- Watch Video Solution

53. The vapour density of a mixture containing NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at $27^{\circ} \mathrm{C}$. Calculate the mole of NO_{2} in 100 g mixture.

- Watch Video Solution

54. The vapour density of a mixture containing NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at $27^{\circ} \mathrm{C}$. Calculate the mole of NO_{2} in 100 mole mixture.

- Watch Video Solution

55. Calculate the moles of $\mathrm{H}_{2} \mathrm{O}$ vapours formed if 1.57 mole of O_{2} are used in presence of excess of H_{2} for the given change, $2 \mathrm{H}_{2}-\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

56. Potassium bromide $K B r$ contains 32.9% potassium by mass. If 6.40 g of bromine reacts with 3.60 g of potassium, calculate the number of moles of potassium which combine with bromide to form $K B r$.

- Watch Video Solution

$57.23 g$ sodium metal reacts with water. Calculate the:
(a) volume of H_{2} liberated at $N T P$
(b) moles of H_{2} liberated,
(c) weight of H_{2} liberated.

- Watch Video Solution

58. How many moles of potassium chlorate to be heated to produce 5.6 litre oxygen at $S T P$?

- Watch Video Solution

59. For the reaction,
$2 \mathrm{Na}_{2} \mathrm{PO}_{4(a q)}+3 \mathrm{Ba}\left(\mathrm{PO}_{3}\right)_{2(a q)} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2_{s}}+6 \mathrm{NaNO}_{3(a q)}$
Suppose that a solution contaning $32.8 \operatorname{gof~} \mathrm{Na}_{3} \mathrm{PO}_{4}$ and 26.1gofBa $\left(\mathrm{NO}_{3}\right)_{2}$ is mixed. How many g of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are formed?
60. Chlorine is prepared in the laboratory by treating manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ with aqueous hydrochloric acid according to the reaction,
$4 \mathrm{HCl}_{(a q)}+\mathrm{MnO}_{2(s)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{l}+\mathrm{MnCl}_{2(a q)}+\mathrm{Cl}_{2(g)}$
How many gram of HCl react with 5.0 g of manganese water to make 250.0 mL solution.

D Watch Video Solution

61. A 5.0 g quantity of white phosphorus was burned in an excess of oxygen and the product was dissolved in water to make 250.0 mL solution.
(a) Write balanced equations for the reaction.
(b) When the solution was treated with an excess of aqueous
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, a white precipitate was obtained. What was it and
how much it formed?
(c) The precipitate in part (b) was removed and the solution was treated with an excess of $Z n$, yielding a colourless gas collected at $20^{\circ} \mathrm{C}$ and 742 mmofHg . What was the gas and how much volume of it was formed?

- Watch Video Solution

62. The concentration of Fe^{2+} ion in aqueous solution can be determined by redox titration with bromate ion according to reaction:
$6 \mathrm{Fe}_{(a q)}^{2+}+\mathrm{BrO}_{3(a q)}^{-}+6 \mathrm{H}_{(a q)}^{+} \rightarrow 6 \mathrm{Fe}_{(a q)}^{3+}+\mathrm{Br}_{(a q)}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
What is the molar concentration of Fe^{2+} if 31.50 mL of
$0.105 \mathrm{MKBrO}_{3}$ is required for complete neutralisation of 10.0 mL of Fe^{2+} solution?
63. What volume of $3.0 \mathrm{MHNO}_{3}$ can reacat completely with 15.0 g brass ($90 \% \mathrm{Cu}$ and $10 \% \mathrm{Zn}$) according to equation:
$\mathrm{Cu}+4 \mathrm{H}_{(a q)}^{+}+2 \mathrm{NO}_{3(a q)}^{-} \rightarrow 2 \mathrm{NO}_{2(g)}+\mathrm{Cu}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{Zn}+10 \mathrm{H}_{(a q)}^{+}+\mathrm{NO}_{3(a q)}^{-} \rightarrow \mathrm{NH}_{4}^{+}+4 \mathrm{Zn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}$
Also report what volume of NO_{2} gas at $25^{\circ} \mathrm{C}$ and 1.0 atm will be prodeced?

- Watch Video Solution

64. Chemical absorbes can be used to remove exhaled CO_{2} of space travellers in short spce flight. $L i_{2} O$ is one of the most efficient in terms of absorbing capacity per unit weight. If the reaction is:
$\mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}$,

What is the absorption efficiency of pure $\mathrm{Li}_{2} \mathrm{O}$ in litre $\mathrm{CO}_{2}(S T P) p e r k g ?$

- Watch Video Solution

65. Zinc and hydrochloric acid react according to the reaction:
$Z n_{(s)}+2 \mathrm{HCl}_{(a q .)} \rightarrow \mathrm{ZnCl}_{2(a q .)}+\mathrm{H}_{2(g)}$
If 0.30 mole of $Z n$ are added to hydrochloric acid containing
0.52 mole HCl , how many moles of H_{2} are produced?

D Watch Video Solution

66. A mixture of 1.0 mole of Al and 3.0 mole of $C l_{2}$ are allowed to react as:
$2 A l_{(s)}+3 C l_{2} \rightarrow 2 A l C l_{3(S)}$
(a) Which is limiting reagent?
(b) How many moles of AlCl_{2} are formed?
(c) Moles of excess reagent left unreacted.

- Watch Video Solution

67. Calculate the weight of FeO produced from $2 g V O$ and
5.75 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. Also report the limiting reagent.

Given : $\mathrm{VO}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{FeO}+\mathrm{V}_{2} \mathrm{O}_{5}$

- Watch Video Solution

68. 4 g of an impure sample of CaCO_{3} on treatment with excess HCl produces $0.88 \mathrm{~g} \mathrm{CO}_{2}$. What is per cent purity of CaCO_{3} sample ?
69. Calulate the weight of lime (CaO) obtained by heating 300 kg of 90% pure limestone $\left(\mathrm{CaCO}_{3}\right)$.

- Watch Video Solution

70. A mixture of FeO and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ when heated in air to constant weights, gains 5% in its weight. Calculate the composition of the mixture.

- Watch Video Solution

71. 1.67 g mixture of Al and Zn was completely dissolved in acid and evolved 1.69 L of H_{2} at STP. Calculate the weight Al and Zn in the mixture.
72. Sulphur trioxide may be prepared by the following two reactions:
$S_{8}+8 O_{2(g)} \rightarrow 8$ OO $_{2(g)}$
$2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$
How many grams of SO_{3} will be produced from 1 mole of S_{8} ?

D Watch Video Solution

73. Potassium superoxide $K O_{2}$, is utillised in closed system breathing apparatus. Exhaled air contains CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, both of which are removed and the removal of water generates oxygen for breathing by the reaction
$4 \mathrm{KO}_{2(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 3 \mathrm{O}_{2(g)}+4 \mathrm{KOH}_{(s)}$
The potassium hydroxide removes CO_{2} from the apparatus by the reaction:
$\mathrm{KOH}_{(s)}+\mathrm{CO}_{2(g)} \rightarrow \mathrm{KHCO}_{3(s)}$
(a) What mass of $K O_{2}$ generates 20 gm of oxygen?
(b) What mass of CO_{2} can br removed from the apparatus by
CO_{2} can be removed from the apparatus by 100 gm of KO_{2} ?

D Watch Video Solution

74. Sodium chorate, NaClO_{3}, can be prepared by the following series of reactions:
$2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cl}_{2}$
$6 \mathrm{Cl}_{2}+6 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}+5 \mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{NaClO}_{3}$
What mass of NaClO_{3} can be prepared from 100 mL of concentarted HCl (density $1.18 \mathrm{gm} / \mathrm{mL}$ and 36% by mass)?

Assume all other substance are present in excess amounts.
75. How much $C O$ is produced by the reaction of 1.0 kg octane and 1.0 kg oxygen. Also report the limiting reagent for this reaction.

- Watch Video Solution

76. A $40 m L$ mixture of methane and ethylene when exploded with certain volume of oxygen which is just sufficient for combustion produced 60 mL of CO_{2} gas. Calculate the ratio between the volumes of CH_{4} and $\mathrm{C}_{2} H_{4}$ in the mixture. Wgat volume of oxygen is required if the ratio between the volumes of $C_{2} H_{4}$ and CH_{4} is first reversed and then doubled? What volume of CO_{2} is produced? Assume, all the volumes being measured under identical conditions.
77. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 litre (Measured at STP) of this welding gas is found weigh 11.6 g . Calculate
(i) empirical formula,
(ii) molar mass of the gas, and
(iii) molecular formula.

D Watch Video Solution

78. A gaseous alkane on complete combustion gives CO_{2} and
$\mathrm{H}_{2} \mathrm{O}$. If the ratio of moles O_{2} needed for compustion and moles of CO_{2} formed is $5: 3$ find out the formula of alkane.
79. Insulin contains 3.4% sulphur. Calculate minimum mol.wt. of insulin.

- Watch Video Solution

80. Haemoglobin contains 0.25% iron by weight. The molecular weight of haemoglobin is 896000 . Calculate the number of iron atom per molecule of haemoglobin.

- Watch Video Solution

81. Weight of 1 litre milk is 1.032 kg . It contains butter fat (density $865 \mathrm{kgm}^{-3}$) to the extent of 4.0% by wt/volume.

Calculate the density of the fat -free skimmed milk.

(D) Watch Video Solution

82. Chlorophyll, the green colouring matter of plants responsible for photosynthesis, contains 2.68% of magnesium by mass. Calculate the number of magnesium atoms in 2.00 g of chlorophyll.

D Watch Video Solution

83. A one litre solution $0.2 \mathrm{MMg}\left(\mathrm{NO}_{3}\right)_{2}, 0.2 \mathrm{MAl}\left(\mathrm{NO}_{3}\right)_{3}$ and $0.5 \mathrm{MTh}\left(\mathrm{NO}_{3}\right)_{4}$. What is the total ionic strength of solution?
84. $1 g$ of a metal (specific heat $=0.06 \mathrm{cal} / \mathrm{g}$), combines with oxygen to form $1.08 g$ of oxide. What is the atomic mass of metal? Also report its valency.

- Watch Video Solution

85. For the dissolution of 1.08 g of metal, 0.49 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was
required. If specific heat of metal is $0.06 \mathrm{cal} / \mathrm{g}$, what is its atomic mass?

- Watch Video Solution

86. Determine the equivalent weight of each given below, if
formula weight of these compounds are X, Y and Z respectively:
(i) $\mathrm{Na}_{2} \mathrm{SO}_{4}$, (ii) $\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

- Watch Video Solution

87. Calculate equivalent weight of Cu in CuO and $\mathrm{Cu}_{2} \mathrm{O}$. At.wt. of $C u=63.6$.

D Watch Video Solution

88. The vapour density of a metal chloride is 85 . If equivalent weight of metal is 7.01 . calculate the at.wt. of metal.
89. Water contaminated with $\mathrm{H}_{2} \mathrm{~S}$ can be freed from $\mathrm{H}_{2} \mathrm{~S}$ by passing Cl_{2} through it. If the $\mathrm{H}_{2} \mathrm{~S}$ content in contaminated water is 22 ppm by mass how much $C l_{2}$ is needed to remove all the $H_{2} S$ from 2×10^{2} gallons of water. (1gallon $=3.785$ litre $)$

- Watch Video Solution

90. Calculate the degree of hardeners of river water whose

100 mL solution required 1.68 mL of $0.1 \mathrm{NH}_{2} \mathrm{SO}_{4}$.

- Watch Video Solution

91. What weight of AgCl would be precipitated if 10 mLHCl
gas $12^{\circ} \mathrm{C}$ and 750 mm pressure were passed into excess of
silver nitrate?
92. When dissolved in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}, 0.275 \mathrm{~g}$ of metal evolved 119.7 mL of H_{2} at $20^{\circ} \mathrm{C}$ and 780.4 mm pressure. H_{2} was collected over water. Aqueous tension is 17.4 mm at $20^{\circ} \mathrm{C}$.

Calculate equivalent weight of metal.

- Watch Video Solution

93. Find the milli-equivalent of:
(a) $\mathrm{Ca}(\mathrm{OH})_{2}$ in 111 g ,
(b) NaOH in $30 g$,
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 4.9 g .
94. Find the weight of NaOH in its 60 milli-equivalents.

- Watch Video Solution

95. Find the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ having 50 milli-equivalents in 3litre.

D Watch Video Solution

96. Find the weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1200 mL of a solution of 0.4 N strength.

- Watch Video Solution

97. Calculate the normality of mixture obtained by mixing
a. $100 m L o f 0.1 \mathrm{NHCl}+50 \mathrm{mLof0} 25 \mathrm{NNaOH}$
b. $100 \mathrm{mLof0.2MH}_{2} \mathrm{SO}_{4}+200 \mathrm{mLof} 0.2 \mathrm{MHCl}, ~$
c. $100 \mathrm{mLof0} .2 \mathrm{MH}_{2} \mathrm{SO}_{4}+100 \mathrm{mLof0.2MNaOH}$
d. $1 g$ equivalent of $\mathrm{NaOH}+100 \mathrm{mLof} 0.1 \mathrm{NHCl}$

- Watch Video Solution

98. What volume of water is required to make 0.20 N solution from 1600 mL of 0.2050 N solution?

- Watch Video Solution

99. How would you prepare exactly 3 . 0 litre of 1.0 MNaOH by mixing proportions of stock solutions of 2.50 MNaOH and 0.40 MNaOH ? No water is to be used.
100. What weight of $\mathrm{Na}_{2} \mathrm{CO}_{3} o f 95 \%$ purity would be required to neutralize 45.6 mL of 0.235 N acid?

- Watch Video Solution

101. Calculate normality of $\mathrm{NH}_{4} \mathrm{OH}$ when $2 g$ is present in 800 mL solution. Also calculate its molarity.

D Watch Video Solution

102. What is the strength in g per litre of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}, 12 m L$ of which neutralized 15 mL of $\mathrm{N} / 10 \mathrm{NaOH}$ solution?

- Watch Video Solution

103. The acidic substance in vinegar is acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
. When 6.0 g of a certain vinegar was titrated with 0.1 MNaOH .
$40.11 m L$ of base had to be added to reach the equivalence point. What per cent by mass of this sample of vinegar is acetic acid?

- Watch Video Solution

104. What is the purity of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (density $1.8 \mathrm{~g} / \mathrm{mL}$) if $5 m L$ of it is neutralized completely with $84.6 m L$ of 2.0NNaOH?

- Watch Video Solution

105. Suppose $5 g$ of acetic acid are dissolved in one litre of ethanol. Assume no reaction in between them. Calculate
molality of resulting solution if density of ethanol is $0.789 / m L$.

- Watch Video Solution

106. Sea water $65 \times 10^{-3} g$ /litre of bromide ions. If all the bromide ions are converted to produce $B r_{2}$, how much sea water is needed to prepare $1 \mathrm{kgBr} r_{2}$?

D Watch Video Solution

107. $20 \mathrm{mLof0.2MAl} \mathrm{M}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ mixed with 20 mL of $0.6 \mathrm{MBaCl}_{2}$.

Calculate the concentration of each ion in solution.

- Watch Video Solution

108. $1.12 g$ impure sample of calcium oxide was dissolved in water and the solution was completely neutralised by $21 m L o f 0.8 N$ acid. What is purity of CaO ?

- Watch Video Solution

109. $25 m L$ of $0.2 M$ phosphorus acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ neutralises exact $80 m L$ of a solution containing $10 g N a O H(50 \%$ pure $) p e r d m^{3}$. Report basicity of acid and write balanced chemical equation for neutralisation.

D Watch Video Solution

110. A $100.0 m L$ solution containing $H C l$ and $H B r$ was titrated with $0.1235 M N a O H$. The volume of base required to
neutralise the acid was $47.14 m L$. Aqueous AgNO_{3} was then added to precipitate Cl^{-}and Br^{-}ions as AgCl and AgBr . The mass of silver halides obrained was $0.9974 g$. What were the molarities of HCl and HBr in solution?

- Watch Video Solution

111. 25.0 litre of natural gas measured at $25^{\circ} \mathrm{C}$ and 740 mm of $H g$ is bubbled through $\mathrm{Pb}_{(a q)}^{2+}$ to give $0.535 g$ of solid residue. If natural gas contains $\mathrm{H}_{2} \mathrm{~S}$, the only component responsible for the formation of solid residue, calculate the volume $\%$ of $\mathrm{H}_{2} S$, in natural gas.

- Watch Video Solution

112. 30 mL of $0.2 N B a C l_{2}$ is mixed with 40 mL of $0.3 \mathrm{NAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. How many g of BaSO_{4} are formed?

- Watch Video Solution

113. Calculate the volume of $1.00 \mathrm{~mol} L^{-1}$ aqueous sodium hydroxide that is neutralized by 200 mL of $2.00 \mathrm{molL}^{-1}$ aqueous hydrochloric acid and the mass of sodium chloride produced. Neutralization reaction is,

$$
\mathrm{NaOH}_{(a q .)}+\mathrm{HCl}_{(a q .)} \rightarrow \mathrm{NaCl}_{(a q .)}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

D Watch Video Solution

114. How many ml of 0.1 HCl is required to react completely with
1.0 g mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} containing equi-molar
amounts of both?

- Watch Video Solution

115. Calculate the percentage of BaO in 29.0 g mixture of BaO and $C a O$ which just reacts with 100.8 mL of 6.0 MHCl .

- Watch Video Solution

116. A mixture of $X e$ and F_{2} was heated and the white solid so formed reacted with H_{2} to give $81 m \operatorname{Lof} X e$ at $S T P$ and $H F$. The $H F$ formed required $68.43 m L$ of $0.3172 M N a O H$ for complete neutralisation. Determine empiriacal formula of white solid.
117. A sample of pure lead weighing $2.07 g$ is dissolved in nitric acid to give a solution of lead nitrate. This solution is treated with hydrochloric acid, chlorine gas and ammonium chloride. The result is a precipitate of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PbCl}_{6}$. What is the maximum weight of this product that could be obtained form the lead sample?

- Watch Video Solution

Exercise (2) prevous year numberical problems

1. A plant virus is found to consist of uniform cylindrical particle of $150 \AA$ in diameter $5000 \AA$ long. The specific volume of the virus is $0.75 m L g^{-1}$. If the virus is considered to be a single particle, find its molar mass.
2. Calculate the molarity of water if its density is $1000 \mathrm{kgm}^{-3}$

- Watch Video Solution

3. Around 20% surface sites have adsorbed N_{2}. On heating N_{2} gas evolved form sites and were collected at 0.001 atm and 298 K in a container of volume $2.46 \mathrm{~cm}^{3}$ the density of surface sites is $6.023 \times 10^{14} \mathrm{~cm}^{-2}$ and surface area is $1000 \mathrm{~cm}^{2}$ find out the number of surface sites occupied per molecule of N_{2}.

D Watch Video Solution

4. The reaction, $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$ is carried out by taking 24 g of carbon and $96 \mathrm{~g} O_{2}$, find out:
(a) Which reactant is left in excess?
(b) How much of it is left?
(c) How many mole of $C O$ are formed?
(d) How many g of other reactant should be taken so that nothing is left at the end of reaction?

- Watch Video Solution

5. A mixture of 20 mL of $\mathrm{CO}, \mathrm{CH}_{4}$ and N_{2} was burnt in excess of O_{2} resulting in reduction of $13 m L$ of volume. The residual gas was then treated with $K O H$ solution to show a contraction of $14 m L$ in volume. Calculate volume of $\mathrm{Co}, \mathrm{CH}_{4}$ and N_{2} in mixture. All measurements are made at constant pressure and temperature.
6. Calculate the molality of $1 L$ solution of $93 \% \mathrm{H}_{2} \mathrm{SO}_{4}$
(Weight/volume) The density of the solution is $1.84 g$.

- Watch Video Solution

7. A mixture of HCOOH and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is heated with conc.
$\mathrm{H}_{2} \mathrm{SO}_{4}$. The gas produced is collected and on treating with $K O H$ solution the volume of the gas decreases by $1 / 6 t h$. Calculate molar ratio of two acids in original mixure.

(D) Watch Video Solution

8. A sample of $M g$ was burnt in air to give a mixure of $M g O$ and
$M g_{3} N_{2}$. The ash was dissolved in 60 Meq . of HCl and the resulting solution was back titrated with NaOH . 12 Meq . Of

NaOH was then added and the solution distrilled. The
ammonia released was then trapped in 10 Meq . of second acid solution. Back titration of this solution required 6 Meq . of the base Calculate the percentage of $M g$ burnt to the nitride.

- Watch Video Solution

9. For the reaction, $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(g)}+0.50_{2(g)}$,

Calculate the mole fraction of $N_{2} O_{5(g)}$ decomposed at a constant volume and temperature, if the initial pressure is 600 mmHg and the pressure at any time is 960 mmHg . Assume ideal gas behaviour.

(D) Watch Video Solution

10. n-butane is produced by the monobromination of ethane
followed by Wurtz reaction. Calculate the volume of ethane at
$N T P$ to produce $55 g$ n-butane if the bromination takes place with 90% yield and the Wurtz reaction with 85% yield.

D Watch Video Solution

11. A mixture in which the mole ratio of H_{2} and O_{2} is $2: 1$ is used to prepare water by the reaction.
$2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
The total pressure in the container is 0.8 atm at $20^{\circ} \mathrm{C}$ before the reaction. Determine the final pressure at $120^{\circ} C$ after reaction assuming 80% yield of water.

- Watch Video Solution

12. $8.0575 \times 10^{-2} \mathrm{~kg}$ of Glauber's slat is dissolved in water to obtain $1 \mathrm{dm}^{3}$ of a solution of density $1077.2 \mathrm{kgm}^{-3}$. Calculate
the molarity, molality and mole fraction of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in solution.

- Watch Video Solution

13. A solid mixture $5 g$ consists of lead nitrate and sodium nitrate was heated below $600^{\circ} C$ until weight of residue was constant. If the loss in weight is 28% find the amount of lead nitrate and sodium nitrate in mixture.

- Watch Video Solution

14. A mixture of ethane $\left(C_{2} H_{6}\right)$ and ethene $\left(C_{2} H_{4}\right)$ occupies 40 L at 1.00 atm and at 400 K . The mixture reacts completely with 130 g of O_{2} to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Assuming ideal gas behaviour, calculate the mole fractions of $C_{2} H_{4}$ and $C_{2} H_{6}$ in the mixture.

(Watch Video Solution

15. A sample of hard water contains $96 p p m$. of $S O_{4}^{2-}$ and 183 ppmof HCO_{3}^{-}, with Ca^{2+} as the only cation. How many moles of CaO will be required to remove HCO_{3}^{-}from 1000 kg of this water? If 1000 kg of this water is treated with the amount of CaO calculated above, what will be the concentration (in ppm) of residual Ca^{2+} ions (Assume CaCO_{3} to be completely insoluble in water)? If the Ca^{2+} ions in one litre of the treated water are completely exchange with hydrogen ions, what will be its $p H$ (One ppm means one part of the substance in one million part of water, weight / weight)?

D Watch Video Solution

16. 1 g charcoal is placed in 100 mL of $0.5 \mathrm{MCH}_{3} \mathrm{COOH}$ to form an adsorbed mono-layer of acetic acid molecule and thereby the molarity of $\mathrm{CH}_{3} \mathrm{COOH}$ reduces to 0.49 . Calculate the surface area of charcoal adsorbed by each molecule of acetic acid. Surface are of charocal $=3.01 \times 10^{2} \mathrm{~m}^{2} / \mathrm{g}$.

- Watch Video Solution

17. Calculate the amount of calcium oxide required when it reacts with $852 g$ of $P_{4} O_{10}$.

- Watch Video Solution

18. Calculate the number of oxalic acid molecules in 100 mL of $0.02 N$ oxalic acid
19. Calculate the volume of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ required to dissolve 0.5 g of copper (II) carbonate $\left(\mathrm{CuCO}_{3}\right)$.

- Watch Video Solution

20. What is the strength in g per litre of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}, 12 \mathrm{~mL}$ of which neutralized 15 mL of $\mathrm{N} / 10 \mathrm{NaOH}$ solution?

- Watch Video Solution

21. The formula weight of an acid is $82.0 .100 \mathrm{~cm}^{3}$ of a solution of
this acid containing $39.0 g$ of the acid per litre were completely
neutralised by $95.0 \mathrm{~cm}^{3}$ of aqueous NaOH containing 40.0 g of NaOH per litre. What is the basicity of the acid?

- Watch Video Solution

22. Upon mixing 50.0 mL of $0.1 M$ lead nitrate solution with
50.0 mL of 0.05 M chromic sulphate solution, precipitation of
lead sulphate takes place. How many moles of lead sulphate are
formed? Also, calculate the molar concentration of the species
left behind in the final solution. Which is the limiting reagent?

- Watch Video Solution

23. 0.50 g of a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Li}_{2} \mathrm{CO}_{3}$ required 30 mL of 0.25 NHCl solution for neutralization. What is \% composition of mixure?

(Watch Video Solution

24. A mixture containing only $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ and weighing $1.22 g$ was dissolved in water to form $100 m L$ of solution: 20 mL of this solution required 40 mL of 0.1 NHCl for neutralisation.
a. Calculate the weight of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in the mixture.
b. If another 20 mL of the same solution is treated with excess of $B a C l_{2}$, what will be the weight of precipitate thus obtained?
(Molarcular of

$$
N a_{2} C O_{3}=106
$$

$\left.K_{2} \mathrm{CO}_{3}=138, \mathrm{BaCO}_{3}=197.4\right)$

- Watch Video Solution

25. 5 mL of $8 \mathrm{NHNO}_{3}, 4.8 \mathrm{~mL}$ of 5 NHCl and a certain volume of $17 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are mixed together and made upto 2 litre. 30 mL
of this acid mixture exactly neutralizes 42.9 mL of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution containing $1 g \mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{Oin} 100 \mathrm{~mL}$ of water.

Calculate the amount of sulphate ions in g present in solution.

- Watch Video Solution

Exercise (3A) Objective problems:

1. The solubility of $K_{2} S O_{4}$ in water is 16 g at $50^{\circ} \mathrm{C}$. The minimum amount of water required to dissolve $4 g K_{2} \mathrm{SO}_{4}$ is:
A. $10 g$
B. $25 g$
C. $50 g$
D. $75 g$

- Watch Video Solution

2. One litre of $N / 2 \mathrm{HCl}$ solution was heated in a beaker. When the volume was reduced to $600 \mathrm{~mL}, 9.125 g$ of HCl was lost out.

The new normality of solution is
a. ≈ 0.4
b. ≈ 0.8
c. $\approx 0.4 \mathrm{~d} . \approx 0.2$
A. 6.85
B. 0.685
C. 0.1043
D. 6.50

- Watch Video Solution

3. The molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 18 M . Its density is $1.8 \mathrm{gmL} L^{-1}$. hence it's molality is
A. 36
B. 200
C. 500
D. 18

Answer: C

4. Volume of 2 MHCl required to neutralise the solution containing 1 mole of $\mathrm{NH}_{4} \mathrm{Cl}$ and 1 mole of NaOH is:
A. 1litre
B. 2litre
C. 3litre
D. $1 / 2$ litre

Answer: D

- Watch Video Solution

5. 8 g of sulphur are burnt to form SO_{2}, which is oxidised by Cl_{2} water. The solution is treated with $B a C l_{2}$ solution. The amount of BaSO_{4} precipitated is:
A. 1.0mole
B. 0.5 mole
C. 0.75 mole
D. 0.25 mole

Answer: D

- Watch Video Solution

6. The density of $1 M$ solution of $N a C l$ is $1.0585 \mathrm{gmL}^{-1}$. The molality of the solution is
A. 1.0585
B. 1.0
C. 0.10
D. 0.0585

Answer: B

- Watch Video Solution

7. The percentage of sodium in a breakfast careal labelled as

110 mg of sodium per 100 g of cereal is:
A. 11%
B. 0.110%
C. 0.110%
D. 110%

Answer: C

8. Two element $A(a t . w t .75)$ and $B(a t . w t .16)$ combine to yield a compound. The $\%$ by weight of A in the compound was found to be 75.08. The formula of the compound is :
A. $A_{2} B$
B. $A_{2} B_{3}$
C. $A B$
D. $A B_{2}$

Answer: B

- Watch Video Solution

9. Calculate the number of oxalic acid molecules in 100 mL of
A. 6.023×10^{20}
B. 6.023×10^{21}
C. 6.023×10^{22}
D. 6.023×10^{23}

Answer: A

- Watch Video Solution

10. Which sample contains the largest number of atoms?
A. $1 m g o f C_{4} H_{10}$
B. $1 m g o f N_{2}$
C. $1 m g o f N a$
D. $1 m L$ of water

- Watch Video Solution

11. The total number of protons, electrons and neutrons in $12 g$ of ${ }_{6} C^{12}$ is:
A. 1.084×10^{25}
B. 6.022×10^{23}
C. 6.022×10^{22}
D. 18

Answer: A

12. $4.4 g o f \mathrm{CO}_{2}$ and 2.24 litreof H_{2} at $S T P$ are mixed in a container. The total number of molecules present in the container will be:
A. 6.022×10^{23}
B. 1.2044×10^{23}
C. 2mole
D. 6.023×10^{24}

Answer: B

- Watch Video Solution

13. The hydrated salt, $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ undergoes 55.9% loss
in weight on heating and becomes anhydrous. The value of n
will be:
A. 5
B. 3
C. 7
D. 10

Answer: D

- Watch Video Solution

14. In which mode of expression, the concentration of a solution remains independent of temperature?
A. Molarity
B. Molality
C. Formality
D. Normality

Answer: B

(D) Watch Video Solution

15. The haemoglobin from the red blood corpuscles of most mammals contains approximately 0.33% of iron by weight. The molecular weight of haemoglobin is 67,200 .

The number of iron atoms in each molecule of haemoglobin is (atomic weight of iron $=56$):
A. 2
B. 3
C. 4
D. 5

D Watch Video Solution

16. The pair of compounds which cannot exist in solution is:
A. NaHCO 3 and NaOH
B. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and NaHCO_{3}
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH
D. NaHCO 3 and NaCl

Answer: A

- Watch Video Solution

17. The mole of fraction of NaCl in a solution containing 1mole of NaClin 100 g of water is:
A. 0.0177
B. 0.001
C. 0.5
D. 0.244

Answer: A

D Watch Video Solution

18. 3.0 molal NaOH solution has a density of $1.110 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is:
B. 3.05
C. 3.64
D. 3.0504

Answer: A

- Watch Video Solution

19. How many atoms are contained in a mole of $\mathrm{Ca}(\mathrm{OH})_{2}$?
A. $30 \times 6.02 \times 10^{23}$ atoms $/ \mathrm{mol}$
B. $5 \times 6.02 \times 10^{23}$ atoms $/ \mathrm{mol}$
C. $6 \times 6.02 \times 10^{23}$ atoms $/ \mathrm{mol}$
D. none of these

(D) Watch Video Solution

20. Insulin contains 3.4% sulphur. Calculate minimum mol.wt. of insulin.
A. 941.176
B. 944
C. 945.27
D. none of these

Answer: A

21. One litre of CO_{2} is passed over hot coke. The volume becomes $1.4 L$. Find the composition of products, assuming measurement at $N T P$.
A. 0.6 litre $C O$
B. 0.8 litre CO_{2}
C. 0.6litre CO_{2}
D. none of these

Answer: C

- Watch Video Solution

22. Number of mole of $1 \mathrm{~m}^{3}$ gas at $N T P$ are:
A. 44.6
B. 40.6
C. 42.6
D. 48.6

Answer: A

D Watch Video Solution

23. Weight of oxygen in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and FeO is in the simple ratio of:
A. $3: 2$
B. 1:2
C. 2:1
D. $3: 1$

- Watch Video Solution

24. The weight of 350 mL of a diatomic gas at $0^{\circ} \mathrm{C}$ and 2 atm pressure is $1 g$. The weight in g of one atom at $N T P$ is:
A. $16 / N$
B. $32 / N$
C. 16 N
D. $32 N$

Answer: A

25. In a gaseous reaction of the type $a A+b B \rightarrow c C+d D$, which is wrong:
A. alitre of A combines with blitre of B to give C and D
B. a mole of A combines with b mole of B to give C and D
C. $a g$ of A combines with $b g o f B$ to give C and D
D. a molecules of A combines with b molecules of B to give C and D

Answer: C

- Watch Video Solution

26. When 2.76 g of silver carbonate is strongly heated, it yields a residue weighing
A. $2.16 g$
B. $2.48 g$
C. $2.32 g$
D. $2.64 g$

Answer: A

- Watch Video Solution

27. How many gof KCl would have to be dissolved in $60 \mathrm{gH} \mathrm{H}_{2} \mathrm{O}$ to give 20% by weight of solution?
A. $15 g$
B. $1.5 g$
C. 11.5 g
D. $31.5 g$

Answer: A

- Watch Video Solution

28. A partially dried clay mineral contains 8% d water. The original sample contained 12% water and 45% sillica.

The $\%$ if sillica in the partially dried sample is nearly:
A. 50%
B. 49%
C. 55%
D. 47%

Answer: D

29. The per cent of $\mathrm{Nin} 66 \%$ pure $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ sample is:
A. 32
B. 28
C. 14
D. none of these

Answer: C

- Watch Video Solution

30. When the same amount of zinc is treated separately with excess of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and excess of NaOH , the ratio of volumes of H_{2} evolved is:
A. $1: 1$
B. 1:2
C. 2:1
D. $9: 4$

Answer: A

- Watch Video Solution

31. If half mole of oxygen combine with Al to form $\mathrm{Al}_{2} \mathrm{O}_{3}$ the weight of $A l$ used in the reaction is:
A. $27 g$
B. 40.5 g
C. $54 g$
D. $18 g$

Answer: D

- Watch Video Solution

32. The specific heat of a metal is $0.836 \mathrm{~J} / \mathrm{g}$. The approximate at.wt.is:
A. 16
B. 64
C. 40
D. 32

Answer: D

33. One mole of potassium chlorate is thermally decomposed and excess of aluminium is burnt is the gaseous product. How many mole of aluminium oxide are formed?
A. 1
B. 1.5
C. 2
D. 3

Answer: A

D Watch Video Solution

34. A compound has the molecular formula $X_{4} O_{6}$. If $10 \mathrm{gof} X_{4} O_{6}$
has $5.72 g X$, atomic mass of X is:
A. 32 amu
B. 37 amu
C. 42 amu
D. 98 amu

Answer: A

- Watch Video Solution

35. On repeated sparking, $10 m L$ of a mixture of carbon monoxide and nitrogen required $7 m L$ of oxygen for combustion. What was the volume of nitrogen? (All volumes are measured under identical conditions).
A. $7 / 2 m L$
B. $4 m L$
C. $7 m L$
D. $17 / 2 m L$

Answer: B

D Watch Video Solution

36. Number of ions present in 2.0litre of a solution of $0.8 M K_{4} F e(C N)_{6}$ is:
A. 4.8×10^{22}
B. 4.8×10^{24}
C. 9.6×10^{24}
D. 9.6×10^{22}

Answer: B

(D) Watch Video Solution

37. The molality of $1 L$ solution with $x \mathrm{H}_{2} \mathrm{SO}_{4}$ is equal to 9 .

The weight of the solvent present in the solution is 910 g . The value of x is:
A. 90
B. 80.3
C. 40.13
D. 9

Answer: B

- Watch Video Solution

38. $R \mathrm{H}_{2}$ (ion exchange resin) can replace $\mathrm{Ca}^{2+} \mathrm{d}$ in hard water as.
$\mathrm{RH}_{2}+\mathrm{Ca}^{2+} \rightarrow \mathrm{RCa}+2 \mathrm{H}^{+}$
1litre of hard water passing through RH_{2} has pH 2 . Hence hardness in ppmof $C a^{2+}$ is:
A. 200
B. 100
C. 50
D. 125

Answer: A

- Watch Video Solution

39. The total ionic strength (toal molarity of all ions containing $0.1 \mathrm{MofCuSO}_{4}$ and $0.1 \mathrm{Mof}_{\mathrm{Al}}^{2}\left(\mathrm{SO}_{4}\right)_{3}$ is:
A. $0.2 M$
B. $0.7 M$
C. $0.8 M$
D. $1.2 M$

Answer: B

(D) Watch Video Solution

40. The pair of species having same percentage of carbon is:
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. HCOOCH_{3} and $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
D. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

Answer: A

- Watch Video Solution

41. The isotopic abundance of $C-12$ and $C-14 \mathrm{is} 98 \%$ and 2% respectively. What would be the number of $C-14$ isotope in $12 g$ carbon sample?
A. 1.032×10^{22}
B. 3.01×10^{23}
C. 5.88×10^{23}
D. 6.02×10^{23}

(D) Watch Video Solution

42. Amount of oxygen required for combustion of 1 kg of a mixture of butane and isobutane is:
A. 1.8 kg
B. 2.7 kg
C. 4.5 kg
D. 3.58 kg

Answer: D

43. Rakesh needs 1.71 g of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ to sweeten his tea. What would be the number of carbon atoms present in his tea?
A. 3.6×10^{22}
B. 7.2×10^{21}
C. 0.05×10^{23}
D. 6.6×10^{22}

Answer: A

- Watch Video Solution

44. The total number of $A l F_{3}$ molecule in a sample of $A l F_{3}$ containing 3.01×10^{23} ions of F^{-}is:
A. 9.0×10^{24}
B. 3.0×10^{24}
C. 7.5×10^{23}
D. 10^{23}

Answer: D

- Watch Video Solution

45. a. What is the volume of one molecule of water (density of
$\mathrm{H}_{2} \mathrm{O}=1 \mathrm{gcm}^{-3}$)
b. What is the radius of the water molecule assuming it to be spherical.
c. Calculate the radius of the oxygen atom, assuming the oxygen atom occupies half of the volume occupied by the water molecule.
A. $18 \mathrm{~cm}^{3}$
B. $22400 \mathrm{~cm}^{3}$
C. $6.023 \times 10^{-23} \mathrm{~cm}^{3}$
D. $3.0 \times 10^{-23} \mathrm{~cm}^{3}$

Answer: D

(D) Watch Video Solution

46. If 224 mL of triatomic gas has a mass of 1 g at 273 K and 1 atm. Pressure, then the mass of one atom is
A. $8.30 \times 10^{-23} g$
B. $2.08 \times 10^{-23} g$
C. $5.53 \times 10^{-23} g$
D. $6.24 \times 10^{-23} g$

Answer: C

- Watch Video Solution

47. The percentage of $P_{2} O_{5}$ in diammonium hydrogen phosphate is:
A. 77.58
B. 46.96
C. 53.78
D. 23.48

Answer: C

48. The dehydration yield of cyclohexanol to cyclohexene is
75%. What would be the yield if $100 g$ of cyclohexanol is dehydrated?
A. $61.7 g$
B. $16.5 g$
C. $6.15 g$
D. $615 g$

Answer: A

- Watch Video Solution

49. The volume equivalent of CO_{2} (at $S T P$) in the reaction,
$\mathrm{NaHCO} 3+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ is:
A. 22.4litre
B. 112litre
C. 11.2litre
D. 5.6litre

Answer: A

- Watch Video Solution

50. Potash alum and chrome alum are examples of:
A. Allotropy
B. Isomerism
C. Isomorphism
D. Tautomerism

Answer: C

- Watch Video Solution

51. Which of the following is not primary standard?
A. $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
B. Oxalic acid
C. $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
D. NaOH

Answer: D

- Watch Video Solution

52. The mole fraction of water in $20 \%(w t . / w t$.$) aqueous$ solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ is:
A. $\frac{77}{68}$
B. $\frac{68}{77}$
C. $\frac{20}{80}$
D. $\frac{80}{20}$

Answer: B

D Watch Video Solution

53. Which is heaviest?
A. 25 gof Hg
B. 2 moles of $\mathrm{H}_{2} \mathrm{O}$
C. 2 moles of CO_{2}
D. $4-g-$ atom of O

Answer: C

- Watch Video Solution

54. Total mass of neutrons in 7 mg of ${ }^{14} \mathrm{C}$ is:
A. $3 \times 10^{20} \mathrm{~kg}$
B. $4 \times 10^{-6} \mathrm{~kg}$
C. $5 \times 10^{-7} \mathrm{~kg}$
D. $4 \times 10^{-7} \mathrm{~kg}$

Answer: B

55. The number of atoms in $4.25 \mathrm{gNH}_{3}$ is approximately:
A. 1×10^{23}
B. 1.5×10^{23}
C. 2×10^{23}
D. 6×10^{23}

Answer: D

D Watch Video Solution

56. The number of atomic weight scale is based on:
A. C^{12}
B. O^{16}
C. H^{1}
D. C^{13}

Answer: A

D Watch Video Solution

57. Amount of oxygen in $32.2 g$ of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ is:
A. $20.8 g$
B. $26.71 g$
C. $2.24 g$
D. $2.08 g$

Answer: B

58. At $S T P 5.6$ litre of a gas weigh $60 g$. The vapour density of gas is:
A. 60
B. 120
C. 30
D. 240

Answer: B

(D) Watch Video Solution

59. 10 mole of kSO_{2} and 15 mole of O_{2} were passed over catalyst to produce 8mole of SO_{3}. The ratio of SO_{2} and SO_{3} moles in mixture is:
A. $5 / 4$
B. $1 / 4$
C. $1 / 2$
D. $3 / 4$

Answer: B

- Watch Video Solution

60. A gaseous alkane was exploded with oxygen. The volume of
O_{2} for complete combustion to CO_{2} formed was in the ratio of
7:4. The molecular formula of alkane is:
A. CH_{4}
B. $C_{2} H_{6}$
C. $C_{3} H_{6}$
D. $C_{4} H_{10}$

Answer: B

- Watch Video Solution

61. Mole fraction of I_{2} in $C_{6} H_{6}$ is 0.2 . Calculate molality of I_{2} in $C_{6} H_{6} .\left(M w o f C_{6} H_{6}=78 \mathrm{gmol}^{-1}\right)$
A. 3.2
B. 6.40
C. 1.6
D. 2.30

Answer: A

62. A solution is $0.5 M$ in $\mathrm{MgSO}_{4}, 0.1 M A C l_{3}$ and $0.2 M$ in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. The total ionic strength is:
A. 3.2
B. 2.4
C. 6.4
D. 4.3

Answer: A

- Watch Video Solution

63. Equal masses of $\mathrm{O}_{2}, \mathrm{H}_{2}$ and CH_{4} are taken in a container.

The respective mole ration of these gases in container is:
А. $1: 16: 2$
B. $16: 1: 2$
C. $1: 2: 16$
D. $16: 2: 1$

Answer: A

- Watch Video Solution

64. The mole fraction of the solute in one molal aqueous solution is:
A. 0.009
B. 0.0018
C. 0.027
D. 0.036

Answer: B

D Watch Video Solution

65. In the solubility of liquid solutions:
A. The solubility of a solute always increases with increasing tempearture
B. There is no noticeable temperature changes
C. A positive enthalpy of solutions is when the system gains
thermalenergy on becoming saturated at the fixed temperature
D. A positive heat of solution means heat is absorbed as the solute dissolve to form the saturated solution

Answer: C

- Watch Video Solution

66. After equal volume of 0.10 M solutions of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $B a(O H)_{2}$ have been mixed, which of the following species is present in greatest concentration in solution?
A. $\mathrm{NH}_{4(a q .)}^{+}$
B. $B a_{(a q .)}^{2+}$
C. $\mathrm{NH}_{3(\mathrm{aq} .)}$
D. $\mathrm{BaSO}_{4(a q .)}$

- Watch Video Solution

67. Chlorophyll, a green colouring matter contains $2.68 \% M g$.

The number of atoms of $M g$ present in $1 g$ chlorophyll are :
A. 6.72×10^{20}
B. 6.72×10^{21}
C. 6.72×10^{22}
D. 6.72×10^{23}

Answer: A

68. $16 g$ of $S O_{x}$ occupies 5.6litre at $S T P$. Assuming ideal gas nature, the volume of x is:
A. 1
B. 2
C. 3
D. None of these

Answer: B

D Watch Video Solution

69. The radius of a water molecule having density $1.0 \mathrm{gmL}^{-1}$ is :
A. $1.925 \AA$
B. $73.46 \AA \AA$
C. $19.25 \AA$
D. $7.346 \AA$

Answer: A

D Watch Video Solution

70. Number of positive ions in 1.45 mole of $\mathrm{K}_{2} \mathrm{SO}_{4}$ are:
A. 1.75×10^{24}
B. 8.73×10^{23}
C. 8.73×10^{24}
D. 1.75×10^{23}

Answer: A

71. Equal moles of $\mathrm{H}_{2} \mathrm{O}$ and NaCl are present in a solution. The molality of NaCl solution is:
A. 55.6
B. 5.56
C. 1
D. 0.5

Answer: A

- Watch Video Solution

72. The weight of 1×10^{22} molecules of $\mathrm{CuSO} .5 \mathrm{H}_{2} \mathrm{O}$ is
A. $4.144 g$
B. $5.144 g$
C. $6.144 g$
D. None of these

Answer: A

D Watch Video Solution

73. Weight of one atom an element is $6.44 \times 10^{-23} g$. Calculate g atom of elements in 40 kg .
A. 10^{2}
B. 10^{3}
C. 10^{4}
D. 10^{5}

- Watch Video Solution

74. A compound contains $10^{-2} \%$ of phosphorus. If atomic mass of phosphorus is 31 , the molar mass of the compound having one phosphorus atom per molecule is:
A. 31
B. 31×10^{2}
C. 31×10^{4}
D. 31×10^{3}

Answer: C

75. Total number of electrons present in 11.2litre of NH_{3} at $S T P$ are:
A. 6.02×10^{23}
B. 3.01×10^{23}
C. 3.01×10^{24}
D. 5.1×10^{24}

Answer: B

(D) Watch Video Solution

76. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} . \mathrm{XH}_{2} \mathrm{O}$ has 8.1% aluminium by mass. The value of X is:
A. 4
B. 10
C. 16
D. 18

Answer: D

- Watch Video Solution

77. One litre of N_{2} and $7 / 8$ litre of O_{2} under identical conditions of P and T are mixed. The amount of gases present in mixutre show:
A. $w_{N_{2}}=3 w_{O_{2}}$
B. $w_{N_{2}}=8 w_{O_{2}}$
C. $w_{N_{2}}=w_{O_{2}}$
D. $w_{N_{2}}=16 w_{O_{2}}$

Answer: C

- Watch Video Solution

78. Total number of atoms present in $1.0 \mathrm{~cm}^{3}$ of solid urea (density $0.3 \mathrm{~g} / \mathrm{cm}^{3}$) at $25^{\circ} \mathrm{C}$ are:
A. 3.01×10^{21}
B. 2.41×10^{22}
C. 3.01×10^{22}
D. 2.41×10^{23}

Answer: B

79. The density of liquid (mol.wt. $=70$) is $1.2 g m L^{-1}$. If $2 m L$ of liquid contains 35 drops, the number of molecules of liquid in one drop are:
A. $\frac{1.2}{35} \times N_{A}$
B. $\frac{1}{35} \times N_{A}$
C. $\frac{1.2}{35^{2}} \times N_{A}$
D. $1.2 N_{A}$

Answer: C

- Watch Video Solution

80. The atomic weight of a triatomic gas is a. The correct formula for the number of moles of gas in its $w g$ is:
A. $\frac{3 w}{a}$
B. $\frac{w}{3 a}$
C. $3 w a$
D. $\frac{a}{3 w}$

Answer: B

- Watch Video Solution

81. A solution required $\left[\mathrm{OH}^{-}\right]=2 M$. If degree of dissociation of $\mathrm{Mg}(\mathrm{OH})_{2}$ is α, what analytical molarity solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ is
A. α
B. 2α
C. $\frac{1}{2 \alpha}$
D. $\frac{1}{\alpha}$

Answer: D

- Watch Video Solution

82. In a compound $A_{x} B_{y}$:
A. Mole of $A=$ Mole of $B=$ Mole of $A_{x} B_{y}$
B. Eq. of $A=E q$. of $B=E q$. of $A_{x} B_{y}$
C.
$y \times$ mole of $A=y \times$ mole $\operatorname{of} B=(x+y) \times \operatorname{mole}$ of $A_{x} B_{y}$
D. $y \times$ mole of $A=y \times$ mole of B

Answer: B

83. 20 g of an acid furnishes 0.5 mole of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in its aqueous solution. The value of 1 equivalent of the acid will be:
A. $40 g$
B. $20 g$
C. $10 g$
D. $100 g$

Answer: A

- Watch Video Solution

84. Which is not a molecular formula?
A. $C_{6} H_{12} O_{6}$
B. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
C. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
D. $\mathrm{N}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

85. 1.0 g of pure calcium carbonate was found to require 50 mL of dilute HCl for complete reactions. The strength of the HCl solution is given by:
A. $4 N$
B. $2 N$
C. $0.4 N$
D. 0.2 N

- Watch Video Solution

86. 100 mL each of $0.5 \mathrm{NNaOH}, \mathrm{N} / 5 \mathrm{HCl}$ and $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$ are mixed together. The resulting solution will be:
A. Acidic
B. Neutral
C. Alkaline
D. none of these

Answer: C

87. Vapour density of a volatile substance is $4\left(C H_{4}=1\right)$. Its molecular weight would be:
A. 8
B. 2
C. 64
D. 128

Answer: C

D Watch Video Solution

88. The equivalent weight of iron in $\mathrm{Fe}_{2} \mathrm{O}$ would be:
A. 18.6
B. 26.66
C. 56
D. 112

Answer: A

D Watch Video Solution

89. 25 mLHNO . If the volumes are mixed with 75 mL of $4.0 \mathrm{MHNO}_{3}$. If the volumes are additive, the molarity of the final mixture would be:
A. $3.25 M$
B. 4.0 M
C. $3.75 M$
D. $3.59 M$

- Watch Video Solution

90. To what extent must a given solution containing $40 \mathrm{mgAgNO}{ }_{3}$ permL be diluted to yield a solution containing $6 m g A g N O_{3}$ permL :
A. Each $m L$ must be diluted to $2.5 m L$
B. To each $m L$ of solution $2.5 m L$ of water should be added
C. To $1.5 m L$ of solution $2 m L$ of water should be added
D. To $1.5 m L$ of solution $1.5 m L$ of water should be added

Answer: A

- Watch Video Solution

91. An oxide of metal have 20% oxygen. The eq.wt. of oxide is:
A. 32
B. 40
C. 48
D. 52

Answer: B

- Watch Video Solution

92. How much water is to be added to dilute 10 mL of 10 NHCl to make it decinormal?
A. $990 m L$
B. $1010 m L$
C. 100 mL
D. 1000 mL

Answer: A

D Watch Video Solution

93. If 250 mL of a solution contains $24.5 \mathrm{gH}_{2} \mathrm{SO}_{4}$ the molarity and normality respectively are:
A. $1 M, 2 N$
B. $1 M, 0.5 M$
C. $0.5 M, 1 N$
D. $2 M, 1 N$

(D) Watch Video Solution

94.0.5 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 0.2 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$. The maximum number of mole of CaSO_{4} formed is:
A. 0.2
B. 0.5
C. 0.4
D. 1.5

Answer: A

- Watch Video Solution

95. A metal oxide has 40% oxygen. The equivalent weight of the metal is:
A. 12
B. 16
C. 24
D. 48

Answer: A

- Watch Video Solution

96. A solution contains $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaHCO}_{3} .10 \mathrm{~mL}$ of the solution required $2.5 \mathrm{mLof} 0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ for neutralisation using phenolphthalein as indicator. Methyl orange is then added when a further $2.5 \mathrm{mLof} 0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ was required. The amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} in 1litre of the solution is:
A. $5.3 g$ and $4.2 g$
B. $3.3 g$ and $6.2 g$
C. $4.2 g$ and $5.3 g$
D. $6.2 g$ and $3.3 g$

Answer: A

- Watch Video Solution

97. $0.7 \mathrm{gof} \mathrm{Na}_{2} \mathrm{CO}_{3} . x \mathrm{H}_{2} \mathrm{O}$ were dissolved in water and the volume was made to $100 \mathrm{~mL}, 20 \mathrm{~mL}$ of this solution required $19.8 m L$ of $N / 10 H C l$ for complete neutralization. The value of x is:
A. 7
B. 3
C. 2
D. 5

Answer: C

- Watch Video Solution

98. A sample of peanut oil weighing $1.5763 g$ is added to $25 m L$ of0.4210MKOH. After saponification is complete 8.46mLof0.2732 $\mathrm{MH}_{2} \mathrm{SO}_{4}$ is needed to neutralize excess KOH
.The saponification number of peanut oil is:
A. 209.6
B. 108.9
C. 98.9
D. 218.9

- Watch Video Solution

99. Eq.wt. of an acid salt NaHSO_{4} is:
A. $M / 1$
B. $M / 2$
C. $M / 3$
D. none of these

Answer: A

- Watch Video Solution

100. When a metal is burnt, its weight is increased by 24%. The equivalent weight of the metal wil be:
A. 25
B. 24
C. 33.3
D. 76

Answer: C

- Watch Video Solution

101. 0.71 g of chlorine combines with certain weight of a metal giving $1.11 g$ of its chloride. The eq.wt. of the metal is:
A. 40
B. 20
C. 80
D. none of these

Answer: B

D Watch Video Solution

102. How many grams of phosphoric acid would be needed to neutralise $100 g$ of magnesium hydroxide? (The molecular weight are: $\mathrm{H}_{3} \mathrm{PO}_{4}=98$ and $\left.\mathrm{Mg}(\mathrm{OH})_{2}=58.3\right)$
A. $66.7 g$
B. $252 g$
C. $112 g$
D. $168 g$

D Watch Video Solution

103. 100 mL of mixture of NaOH and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is neutralised by

10 mL of $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$. Hence, NaOH in 100 mL solution is
A. $0.2 g$
B. $0.4 g$
C. $0.6 g$
D. none of these

Answer: B

104. 0.05 moles of NaHCO_{3} will react with how many equivalent of $\mathrm{Mg}(\mathrm{OH})_{2}$?
A. $0.2 E q$.
B. $0.05 E q$.
C. $0.02 E q$.
D. $0.01 E q$.

Answer: B

- Watch Video Solution

105. $0.078 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}$. is dehydrated to $\mathrm{Al}_{2} \mathrm{O}_{3}$. The $\mathrm{Al}_{2} \mathrm{O}_{3}$ so obtained reacted with 6 milli-equivalent of HCl . The equivalent of AlCl_{3} produced during the reaction are:
A. 10^{-3}
B. 3×10^{-3}
C. 4×10^{-3}
D. $\frac{10^{-3}}{2}$

Answer: B

- Watch Video Solution

106. Assuming 100% ionisation, the solution having highest normality is:
A. $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$
B. $1 \mathrm{MH}_{3} \mathrm{PO}_{3}$
C. $1 \mathrm{MH}_{3} \mathrm{PO}_{4}$
D. $1 \mathrm{MHNO}_{3}$

Answer: C

- Watch Video Solution

107. 100 mL of a sample of hard water requires 25.1 mL of $0.02 \mathrm{NH}_{2} \mathrm{SO}_{4}$ for complete reaction, The hardness of water (density $1 g / m L$) is:
A. 200 ppm
B. 250 ppm
C. 251 ppm
D. 258 ppm

Answer: C

108. The equivalent weight of potash alum
$\left(\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}\right)$ is
A. $M / 2$
B. $M / 3$
C. $M / 4$
D. $M / 8$

Answer: D

- Watch Video Solution

109. Vapour density of a metal chloride is 6.6 . Its oxide contains
53% metal. The atomic weight of metal is:
A. 21
B. 54
C. 26.72
D. 2.086

Answer: C

- Watch Video Solution

110. 100 mL of 0.1 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used to prepare 0.05 N solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$. What is the volume of water added to prepare the desired solution:
A. $300 m L$
B. 400 mL
C. $100 m L$
D. $200 m L$

Answer: A

- Watch Video Solution

111. Which does not change on dilution?

A. Molarity oof solution
B. Molality of solution
C. Milli-moles and milli-equivalent of solution
D. Mole fraction of solute

Answer: C

112. 20 mL of $0.1 \mathrm{MH}_{3} \mathrm{BO}_{3}$ solution on complete netralisation requires mL of 0.05 MNaOH solution:
A. $20 m L$
B. 40 mL
C. $120 m L$
D. 80 mL

Answer: B

- Watch Video Solution

113. Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ labelled is 10 vol . What is normality of $\mathrm{H}_{2} \mathrm{O}_{2}$?
B. 12.79
C. 0.79
D. 5.6

Answer: A

D Watch Video Solution

114. Find the weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1200 mL of a solution of 0.2 N strength.
A. $11.76 g$
B. 12.76 g
C. 13.76 g
D. $23,52 g$

(D) Watch Video Solution

115. Calculate the volume of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ required to dissolve 0.5 g of copper (II) carbonate $\left(\mathrm{CuCO}_{3}\right)$.
A. $8.10 m L$
B. 16.20 mL
C. 4.05 mL
D. 12.05 mL

Answer: A

116. $1 g$ of calcium was burnt in excess of O_{2} and the oxide was dissolved in water to make up $1 L$ solution. Calculate the normality of alkaline soluiton.
A. $0.05,0.025$
B. $0.1,0.05$
C. $0.1,0.2$
D. $0.01,0.02$

Answer: A

- Watch Video Solution

117. Number of H^{+}ions in 100 mL of $0.001 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is:
A. 6×10^{20}
B. 1.2×10^{18}
C. 12×10^{18}
D. 1.2×10^{20}

Answer: D

- Watch Video Solution

118. $3 g$ of an oxide of a metal is converted completely to $5 g$ chloride. Equivalent weight of metal is:
A. 33.25
B. 3.325
C. 12
D. 20

- Watch Video Solution

119. $V_{1} m L$ of NaOH of normality X and $V_{2} m L$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ of mormality Y are mixed together. The mixture is completely neutralised by 100 mL of 0.1 NHCl . If $V_{1} / V_{2}=\frac{1}{4}$ and $\frac{X}{Y}=4$, what fraction of the acid is neutralised by $\mathrm{Ba}(\mathrm{OH})_{2}$?
A. 0.5
B. 0.25
C. 0.33
D. 0.67

Answer: A
120. Weight of oxygen in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and FeO in the simple ratio for the same amount of iron is:
A. 1:2
B. $2: 1$
C. 3:2
D. ${ }^{1} 1: 3$

Answer: C

D Watch Video Solution

121. An aqueous solution of $6.3 g$ oxalic acid dihydrate is made up to 250 mL . The volume of $0.1 N \mathrm{NaOH}$ required to
completely neutralise 10 mL of this solution is
A. $20 m L$
B. 40 mL
C. $10 m L$
D. $15 m L$

Answer: B

- Watch Video Solution

122. $0.63 g$ of diabasic acid was dissolved in water. The volume of the solution was made 100 mL .20 mL of this acid solution required 10 mL of $\mathrm{N} / 5 \mathrm{NaOH}$ solution. The molecular mass of acid is:
B. 126
C. 252
D. 128

Answer: B

- Watch Video Solution

Exercise(3B)Objective problems

1. Which quantity is (are) independent of temperature?
A. Mole faraction
B. Molality
C. Molarity
D. $\%$ by weight

Answer: A::B::D

- Watch Video Solution

2. Which one are correct about the solution that contains
$3.42 \mathrm{ppm} A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $1.42 \mathrm{ppm} \mathrm{Na}_{2} \mathrm{SO}_{4}$?
A. $\left[S O_{4}^{2-}\right]=\left[N a^{+}\right]=\left[A l^{3+}\right]$
B. $\left[\mathrm{Na}^{+}\right]+\left[\mathrm{Al}^{3+}\right]=\left[\mathrm{SO}_{4}^{2-}\right]$
C. $\left[\mathrm{SO}_{4}^{2-}\right]=\left[\mathrm{Na}^{+}\right]$
D. $\left[A l^{3+}\right]=\left[N a^{+}\right]$
3. One mole of CO_{2} contains:
A. $6.023 \times 10^{23} g$-atom of CO_{2}
B. 12.04×10^{23} atom of oxygen
C. 18.1×10^{3} molecule of CO_{2}
D. 6.023×10^{23} atom of carbon

Answer: B::D

(D) Watch Video Solution

4. A mixture containing one mole of $B a F_{2}$ and two mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be neutralised by:
A. 1 mole $K O H$
B. 4 mole KOH
C. 2 mole KOH
D. 2 mole $\mathrm{Ca}(\mathrm{OH})_{2}$

Answer: C

D Watch Video Solution

5.11.2litre of a gas $S T P$ weighs $14 g$. The gases would be:
A. N_{2}
B. $C O$
C. $\mathrm{N}_{2} \mathrm{O}$
D. $B_{2} H_{6}$

(D) Watch Video Solution

6. Choose the correct statement (S):
A. The no. of atoms present in a molecule of gas represented its atomicity
B. One mole of electron weigh 0.55 mg
C. The extent of both inter and intramolecular H-bonding depends on the temperature
D. None of these

Answer: A::B::C

D Watch Video Solution
7. Sulphur molecule exists under various condition as $S_{8}, S_{6}, S_{4}, S_{2}$ and S. Which of the following statements (s) is (are) incorrect?
A. Mass of one mole of each of these is same
B. Number of molecules in one mole of each of these is same
C. Number of atoms in one mole of each of these is same
D. None of these

Answer: A::C

- Watch Video Solution

8. The density of a $3 M N a_{2} S_{2} O_{3}$ (sodium thiosulphate) solution is $1.25 \mathrm{gmL}^{-1}$. Calculate:
a. \% by weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
b. Mole fraction of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
c. Molalities of Na^{\oplus} and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ ions.
A. The $\%$ weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} i s 37.92$
B. The mole fraction of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} i s 0.065$
C. The molalityof $N a^{+} i s 8.732$
D. The molality of $S_{2} O_{3}^{2-} i s 3.866$

Answer: A::B::D

- Watch Video Solution

9. 25 mL of $0.50 \mathrm{MH}_{2} \mathrm{O}_{2}$ solution is added to 50 mL of $0.20 \mathrm{MKMnO}_{4}$ is acid solution. Which of the following statements is true?
A. 0.010 mole of oxygen is liberated
B. 0.005 mole of KMnO_{4} does not react with $\mathrm{H}_{2} \mathrm{O}_{2}$
C. 0.0125 g -mol. Of oxygen gas is evolved
D. In the final solution there are only water molecules and

$$
M n^{2+} \text { ions }
$$

Answer: B::C

- Watch Video Solution

10. Ag of a metal displaces VmLofH_{2} at $N T P$ Eq.wt. of metal,
E is (are):
A. $E=\frac{A \times 1.008 \times 22400}{\text { Vol.of } H_{2} \text { displaced } \times 2}$
B. $E=\frac{A \times E q . \text { mass .of } H}{\text { mass of } H_{2} \text { displaced }}$
C. $E=\frac{A \times 1.008}{\text { Vol.of displaced } \times 0.000897}$
D. None of these

Answer: A::B::C

- View Text Solution

11. 2.0 g of oleum is diluted with water. The solution was then neutralised by $432.5 m L o f 0.1 N N a O H$. Select the correct statements:
A. Equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.03$
B. Equivalent of $\mathrm{SO}_{3}=0.01325$
C. $\%$ of free $\mathrm{SO}_{3}-26.5$ in oleum
D. $\%$ of oleum $=108.11$
12. If one mole of $H_{3} P O_{x}$ is completely neutralized by 40 gof NaOH , select the correct statements (s):
A. $x=2$ and acid is monobasic
B. $x=3$ and acid is dibasic
C. $x=4$ and acid is tribasic
D. $x=2$ and acid does not form acid salt

Answer: A::D

- View Text Solution

13. Which of the following statements are correct?
A. The equivalent weight of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right) i s 100.1$
B. The equivalent weight of $\mathrm{Na}_{3} \mathrm{PO}_{4} i s 54.66$
C. The equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4} i s 32.67$
D. The equivalent weight of $\mathrm{Ca}(\mathrm{OH})_{2} i s 36.5$

Answer: A::B::C

- Watch Video Solution

14. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ acts as an acid as well as an oxidising agent. The correct statements (s) about $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is (are):
A. It forms two series of salts
B. Equivalent weight of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ as an acid for completer neutralisation and as oxidant are same
C. 100 mL of $0.1 M$ solution of KMnO_{4} (acid) will be completely reduced by 50 mL of $1 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. 100 mL of 0.1 N solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ will be completely neutralised by 50 mL of $0.2 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Answer: A::B::D

- View Text Solution

15. The reaction
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}\left(\mathrm{HPO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Which statements (s) is (are)true?
A. Equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is 49
B. For complete neutralization $3 / 2$ mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ are
C. Resulting mixture is neutralised by 1 mole of KOH
D. Equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4} i s 98$

Answer: A::B::C

D Watch Video Solution

Exercise (4) Objective problems

1. Number of atoms in $558.5 g F e(a t . w t .55 .85)$ is:
A. Twice that in $60 g$ carbon
B. 6.023×10^{22}
C. Half in $8 g H e$
D. $558.5 \times 6.023 \times 10^{23}$

- Watch Video Solution

2. Which of the following with increase in temperature?
A. Molality
B. Weight fraction of solute
C. Fraction of solute present in water
D. Mole fraction

Answer: C

- Watch Video Solution

3. A compound of carbon, hydrogen, and nitrogen contains the three elements in the respective ratio of $9: 1: 3.5$ Calculculate the empirical formula. If the molecular weight of the compound is 108 , what its molecular formula?
A. $C_{2} H_{6} N_{2}$
B. $C_{3} H_{4} N$
C. $C_{6} H_{8} N_{2}$
D. $C_{9} H_{12} N_{3}$

Answer: C

- Watch Video Solution

4. What volume of H_{2} at 273 K and 1 atm will be consumed in
obtaining 21.6 g of elemental boron (atomic mass of $B=10.8$)
from the reduction of $B C l_{3}$ with H_{2}.
A. 44.8 L
B. 22.4 L
C. 89. L
D. $67.2 L$

Answer: D

- Watch Video Solution

5. 6.02×10^{20} molecules of urea are present in 100 mL solution.

The concentration of urea solution is:
A. $0.1 M$
B. 0.01 M
C. $0.02 M$
D. $0.001 M$

Answer: B

D Watch Video Solution

6. Two solutions of a substance (non-electroyte) are mixed in the following manner 480 mL of 1.5 M of first solution with 520 mL or $1.2 M$ of second solution. The molarity of final solution is:
A. 1.20 M
B. 1.50 M
C. $1.344 M$
D. 2.70 M

- Watch Video Solution

7. If $1 / 6$, in place of $1 / 12$, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will:
A. Decrease twice
B. Increase two folds
C. Remain uncharges
D. Be a function of the molecular mass of element

Answer: C

- Watch Video Solution

8. How many mole of magnesium phosphate $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will contain 0.25 mole of oxygen atoms?
A. 0.02
B. 3.125×10^{-2}
C. 1.25×10^{-2}
D. 2.5×10^{-2}

Answer: B

- Watch Video Solution

9. Density of $2.05 M$ solution of acetic acid in water is $1.02 g / m L$. The molality of same solution is:
A. $1.14 \mathrm{molkg}^{-1}$
B. $3.28 \mathrm{molkg}^{-1}$
C. $2.28 \mathrm{molkg}^{-1}$
D. $0.44 \mathrm{molkg}^{-1}$

Answer: C

(D) Watch Video Solution

10. In the reaction:
$2 A l_{(s)}+6 H C l_{(a q .)} \rightarrow 2 A l_{(a q .)}^{3+}+6 C l_{(a q .)}^{-}+3 H_{2(g)}$
A. 6 litre $\mathrm{HCl}_{(a q .)}$ is consumed for every $3 L H_{2(g)}$ produced
B. 33.6litre $\mathrm{H}_{2(\mathrm{~g})}$ is produced regardless of temperature and pressure for every mole $A l$ that react
C. 67.2 litre $H_{2(g)}$ at $S T P$ is produced for every mole $A l$ that reacts
D. 11.2litre $\mathrm{H}_{2(\mathrm{~g})}$ at $S T P$ is produced for every mole $H C l_{(a q .)}$ consumed

Answer: D

- Watch Video Solution

11. Calculate the density (in gm L^{-1}) of a 3.60 M sulphuric acid solution that is 29 \% $\mathrm{H}_{2} \mathrm{SO}_{4}$ by mass $\left(\right.$ molar mass $\left.=98 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
A. 1.64
B. 1.88
C. 1.22
D. 1.45

Answer: C

- Watch Video Solution

12. How many moles of electrons weigh one kilogram?
A. 6.023×10^{23}
B. $\frac{1}{9.108} \times 10^{23}$
C. $\frac{6.023 \times 10^{54}}{9.108}$
D. $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Answer: D

13. Which of the following has the maximum number of atoms?
A. $24 g C(12)$
B. $56 g F e(56)$
C. $27 g A l(27)$
D. $108 g A g(108)$

Answer: A

- Watch Video Solution

14. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator.

The number of moles of Mohr's salt required per mole of dichromate is:
A. 3
B. 4
C. 5
D. 6

Answer: D

- Watch Video Solution

15. Given that the abundacne of isotopes $\cdot{ }^{54} \mathrm{Fe}, .{ }^{56} \mathrm{Fe}$, and ${ }^{57} \mathrm{Fe}$ is $5 \%, 90 \%$ and 5% respectively. The atomic mass of $F e$ is
A. 55.85
B. 55.95
C. 55.75

Answer: B

- Watch Video Solution

16. 25 mL of a solution of barium hydroxide on titration with 0.1molar solution of hydrochloric acid give a titre value of $35 m L$. The molarity of barium hydroxide is:
A. 0.28
B. 0.35
C. 0.07
D. 0.14

Answer: C

17. To neutralize completely 20 mL of $0.1 M$ aqueous solution of phosphorus $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ acid the volume of 0.1 M aqueous KOH solution required is:
A. $60 m L$
B. 20 mL
C. 40 mL
D. $10 m L$

Answer: C

- Watch Video Solution

18. The normality of 0.3 M phosphorous acid $\mathrm{H}_{3} \mathrm{PO}_{3}$ is:
A. 0.1
B. 0.9
C. 0.3
D. 0.6

Answer: D

- Watch Video Solution

19. An aqueous solution of $6.3 g$ oxalic acid dihydrate is made up to 250 mL . The volume of 0.1 NNaOH required to completely neutralise $10 m L$ of this solution is
A. 40 mL
B. 20 mL
C. $10 m L$
D. $4 m L$

Answer: A

- Watch Video Solution

20. Dissolving $120 g$ of urea $(M w=60)$ in $1000 g$ of water gave a solution of density $1.15 \mathrm{gmL}^{-1}$. The molarity of solution is:
A. $1.78 M$
B. 1.02 M
C. 2.05 M
D. 0.50 M

Answer: C

Exercise 6 (INTEGER ANSWERS TYPE PROBLEMS)

1. How many g-atom are in $84 g$ of carbon?

- Watch Video Solution

2. How many moles are in $96 g O_{2}$?

- Watch Video Solution

3. How many g-atom of S are present in $196 g$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
4. The measured density at $N T P$ of He is $0.1784 g L^{-1}$. Calculate the weight of 1 mole of He .

- Watch Video Solution

5. Calculate the number of moles of water in $610 \mathrm{gBaCl} 2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

6. Haemoglobin contains 0.312% iron by weight. The molecular weight of haemoglobin in 89600 . Find the number of iron atoms per molecular of haemoglobin.
7. A solid element is specific heat $1 J g^{-1} K^{-1}$. If equivalent weight of an element is 9 , find its valence.

- Watch Video Solution

8. An element has atomic mass 31 . Mass of 1.12 litre at $S T P$ of
vapours of this element weighs $6.2 g$. Find the atomicity of this element.

- Watch Video Solution

9. On heating 1.763 g of hydrated BaCl_{2} to dryness, 1.505 g of anhyrous salt remained, What is the formula of hydrate?

- Watch Video Solution

10. A gaseous alkane was exploded with oxygen. The volume of
O_{2} for complete combustion to CO_{2} formed was in the ratio of

7: 4. The molecular formula of alkane is:

- Watch Video Solution

11. A branded tooth paste contains $0.754 g$ sodium in form of sodium monofluoroortho phosphate $\left(\mathrm{Na}_{3} \mathrm{PO}_{4} \mathrm{~F}\right)$ in 100 mL solution. Calculate the amount of $\mathrm{Na}_{3} \mathrm{PO}_{4} \mathrm{~F}$ present in 100 mL of solution.

(D) Watch Video Solution

12. Find the molality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution whose specific gravity is
$1.98 m L^{-1}$ and 93% by volume $\mathrm{H}_{2} \mathrm{SO}_{4}$
13. Calculte the degree of hardness of a sample of water containing 6 mg of MgSO_{4} per kg of water.

- Watch Video Solution

14. Find the number of g-molecules of oxygen in $6.023 \times 10^{24} \mathrm{CO}$ molecules.

- Watch Video Solution

15. Calculate the mass of $C a O$ that shall be obtained by heating 20 kg of 80% pure limestone $\left(\mathrm{CaCO}_{3}\right)$.
16. $\mathrm{H}_{2} \mathrm{O}_{2}$ is marked 22.4 volume. How much of it is required to oxidise $3.5 g \mathrm{H}_{2} \mathrm{~S}$ gas?

- Watch Video Solution

17. Calculate the weight of NaOH in 75 mill-equivalents.

- Watch Video Solution

18. Calculate the normality of $0.74 g \mathrm{Ca}(\mathrm{OH})_{2}$ in 10 mL of solution.

- Watch Video Solution

19. What is the strength in g / L of a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}, 14 m L$ of which neutralized 20 mL of $\mathrm{N} / 10 \mathrm{NaOH}$ solution?

- Watch Video Solution

20. Find the weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 919 mL of a solution of 0.2 N strength.

D Watch Video Solution

21. Calculate the volume of a solution of HCl containing 80.5 g of acids per litre would suffice for the exact neutralization of NaOH obtained by allowing 0.46 g of metallic sodium to act upon water?
22. $1 g$ of an acid $C_{6} H_{10} O_{4}$ is completely neutralised by 0.768 gKOH . Calculate the number of neutralizable protons in acid.

- Watch Video Solution

23. $0.9698 g$ of an acid are present in 300 mL of a solution. 10 mL of this solution requires exactly 20 mL of 0.05 NKOH solution. If the mol. $w t$. of acid is 98 , calculate the number of neutralizable protons.

- Watch Video Solution

24. On being heated in oxygen, 3.120 g of a metal M convert to 4.560 g of oxide. Fine the valency of metal (at.wt. of metal $=52$).

- Watch Video Solution

25. 3.150 g of oxalic acid $\left[(\mathrm{COOH})_{2} \cdot x \mathrm{H}_{2} \mathrm{O}\right]$ are dissolved in water and volume made up to 500 mL . On titration $28 m L$ of this solution required 35 mL of 0.08 NNaOH solution for complete neutralization. Find the value of x.

- Watch Video Solution

26. Find the concentration of 1.6 N solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ in terms of volume.
27. The equivalent weight of an element is 4 . Its chloride has a vapour density 59.25 . Find the valency of element.

- Watch Video Solution

28. 2.68×10^{-3} moles of solution containing anion A^{n+} require 1.61×10^{-3} moles of MnO_{4}^{-}for oxidation of A^{n+} to AO_{3}^{-}in acidic medium. What is the value of n ?

- Watch Video Solution

29. What is the molality of acetic acid solution containing $6 g$ of acetic acid in $100 g$ water?
30. A bottle is labelled 122.5% oleum. 22.7 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$ is unknown molarity are used to completely neutralise $1 g$ oleum. Find the normality of $\mathrm{Ca}(\mathrm{OH})_{2}$.

- Watch Video Solution

31. $15 g$ sample of an alloy containing $C u$ and $Z n$ reacts completely with $3 \mathrm{MHNO}_{3}$ as,

$$
\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}^{2+}+\mathrm{NO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{Zn}+\mathrm{HNO}_{3} \rightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

The liberated $\mathrm{NO}_{2(\mathrm{~g})}$ was found to be 4.647litre at 1 atm and $300 K$. Find the amount of zince (to the closest value) in alloy.
$(C u-63.6, R=0.0821)$
32. What is the ' n ' factor or valency factor of ozone during the change: $20_{3} \rightarrow 3 O_{2}$?

- Watch Video Solution

33. A student of performs a titration with different burettes and finds titre values of $25.2 m L, 25.25 m L$, and $25.0 m L$. The number of significant figures in the average titre value is

- Watch Video Solution

34. The volume (in $m L$) of $0.1 \mathrm{MAgNO}_{3}$ required for complete precipitation of chloride ions present in 30 mL of 0.01 M solution of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$, as silver chloride is close to:
35. $29.2 \%(w / w) \mathrm{HCl}$ stock, solution has a density of $1.25 \mathrm{gmL}^{-1}$. The molecular weight of HCl is $36.5 \mathrm{gmol}^{-1}$. The volume ($m L$) of stock solution required to prepare a $200 m L$ solution of 0.4 MHCl is :

- Watch Video Solution

Exercise 7 Comprehension based objective problems

1. The term mole first used by Ostwald in 1896 refers for the ratio of mass of a substance in g and its molecular weight.

1mole of a gaseous compound occupies 22.4litre at $N T P$ and contains 6.023×10^{23} molecules of gas.
weight of 1atom of hydrogen is:
A. $1.66 \times 10^{-24} \mathrm{amu}$
B. $3.32 \times 10^{-24} g$
C. $1.66 \times 10^{-24} g$
D. $3.32 \times 10^{-24} \mathrm{amu}$

Answer: C

(D) Watch Video Solution

2. How many years it would take to spend Avogadro's number of rupees at the rate of 10 lakh rupees per second?
A. 1.91×10^{10} year
B. 2.91×10^{10} year
C. 3.91×10^{10} year
D. 4.91×10^{10} year

Answer: A

- Watch Video Solution

3. The term mole first used by Ostwald in 1896 refers for the ratio of mass of a substance in g and its molecular weight. 1mole of a gaseous compound occupies 22.4litre at $N T P$ and contains 6.023×10^{23} molecules of gas.

The amount of sulphur required to produce 100 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
A. $3.2 \times 10^{3} g$
B. $32.65 g$
C. $32 g$
D. $3.2 g$

Answer: A

- Watch Video Solution

4. The vapour density of a mixture containing NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is
$38.3 a t 27^{\circ} \mathrm{C}$. Calculate the mole of NO_{2} in 100 mole mixture.
A. 33.48
B. $32.65 g$
C. $32 g$
D. $3.2 g$

Answer: A

5. The term mole first used by Ostwald in 1896 refers for the ratio of mass of a substance in g and its molecular weight. 1mole of a gaseous compound occupies 22.4 litre at $N T P$ and contains 6.023×10^{23} molecules of gas.

A substance contains 3.4% sulphur. If it contains two molecules of sulphur per molecule the minium molecular weight of substance will be:
A. 941
B. 1882
C. 470.5
D. 1411.5

Answer: B

6. Calculate the residue obtained on strongly heating $2.76 \mathrm{gAg}_{2} \mathrm{CO}_{3}$.
A. 0.02 mole
B. 1mole
C. 0.01 mole
D. 2 mole

Answer: A

- Watch Video Solution

7. The term mole first used by Ostwald in 1896 refers for the ratio of mass of a substance in g and its molecular weight. 1mole of a gaseous compound occupies 22.4litre at $N T P$ and
contains 6.023×10^{23} molecules of gas.
The volume of air needed to burning $12 g$ carbon completely at $S T P$ is:
A. 22.4litre
B. 112litre
C. 44.8litre
D. 50litre

Answer: B

- Watch Video Solution

8. The term mole first used by Ostwald in 1896 refers for the ratio of mass of a substance in g and its molecular weight. 1mole of a gaseous compound occupies 22.4litre at $N T P$ and
contains 6.023×10^{23} molecules of gas.
The maximum number of atoms present are in:
A. $4 g H e$
B. $4 g O_{2}$
C. $4 g O_{3}$
D. $4 g \mathrm{H}_{2} \mathrm{O}_{2}$

Answer: A

- Watch Video Solution

9. The term mole first used by Ostwald in 1896 refers for the ratio of mass of a substance in g and its molecular weight. 1mole of a gaseous compound occupies 22.4litre at $N T P$ and contains 6.023×10^{23} molecules of gas.

The hydrated salt $\mathrm{Na}_{2} \mathrm{SO}_{4} . n \mathrm{H}_{2} \mathrm{O}$ undergoes 56% loss in weight on heating and becomes anhydrous. The value of n will be:
A. 5
B. 3
C. 7
D. 10

Answer: D

- Watch Video Solution

10. The concentration of solutions can be expressed in number of ways such that Normality, Molarity, Molality, Mole fractions, Strength, \% by weight, \% by volume and \% by strength. The
molarity of ionic compound is usually expressed as formality beacuse we use formula weight of ionic compound. Addition of water to a solution changes all these terms, however increase in temperature does not change molality, mole fraction and \% by weight terms.

Number of oxalate ions in 100 mL of 0.1 N oxalic acis is:
A. $\frac{N_{A}}{100}$
B. $\frac{N_{A}}{20}$
C. $\frac{N_{A}}{200}$
D. $\frac{N_{A}}{1000}$

Answer: C

- Watch Video Solution

11. The concentration of solutions can be expressed in number of ways such that Normality, Molarity, Molality, Mole fractions,

Strength, \% by weight, \% by volume and \% by strength. The molarity of ionic compound is usually expressed as formality beacuse we use formula weight of ionic compound. Addition of water to a solution changes all these terms, however increase in temperature does not change molality, mole fraction and \% by weight terms.

Volume of water required to convert 100 mL 0.5 MNaOH solutions to 0.2 MNaOH solution is:
A. $250 m L$
B. 150 mL
C. 100 mL
D. 400 mL

D Watch Video Solution

12. The concentration of solutions can be expressed in number of ways such that Normality, Molarity, Molality, Mole fractions, Strength, \% by weight, \% by volume and \% by strength. The molarity of ionic compound is usually expressed as formality beacuse we use formula weight of ionic compound. Addition of water to a solution changes all these terms, however increase in temperature does not change molality, mole fraction and \% by weight terms.

The normality of $0.3 \mathrm{NH}_{3} \mathrm{BO}_{3}$ is:
A. $0.3 N$
B. 0.15 N
C. $0.6 N$
D. 0.9 N

Answer: C

D Watch Video Solution

13. The concentration of solutions can be expressed in number of ways such that Normality, Molarity, Molality, Mole fractions,

Strength, \% by weight, \% by volume and \% by strength. The molarity of ionic compound is usually expressed as formality beacuse we use formula weight of ionic compound. Addition of water to a solution changes all these terms, however increase in temperature does not change molality, mole fraction and \% by weight terms.

Which is not a molecular formula?
A. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
B. $\mathrm{CH}_{3} \mathrm{COOH}$
C. NO_{2}
D. $\operatorname{Th}\left(\mathrm{NO}_{3}\right)_{4}$

Answer: D

- Watch Video Solution

14. What weight of $A g C l$ will be precipitated when a solution containing 4.77 gNaCl is added to a solution of 5.77 g of AgNO_{3}.
A. $4.88 g$
B. 5.77 g
C. 4.77 g
D. None of these

Answer: A

- Watch Video Solution

15. Find out the equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in the reaction:
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{CaHPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
A. 49
B. 32.66
C. 98
D. None of these

Answer: A

16. 20 mL of $0.2 \mathrm{MAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is mixed with 20 mL of $0.6 \mathrm{MBaCl}_{2}$. Calculate the concentration of each ion in solution.
A. $0.6 N, 0.6 N$
B. $0.2 N, 0.6 N$
C. $0.6 N, 0.2 N$
D. $0.2 N, 0.2 N$

Answer: A

- Watch Video Solution

17. A 6.90 M solution of KOH contains 30% by weight of $K O H$.

Calculate the density of the solution.
A. $1.288 g / m L$
B. $12.88 \mathrm{~g} / \mathrm{mL}$
C. $0.1288 g / m L$
D. None of these

Answer: A

- Watch Video Solution

18. Find the weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1200 mL of a solution of 0.2 N strength.
A. $11.76 g$
B. $5.83 g$
C. $16.42 g$
D. $2.92 g$

Answer: A

- Watch Video Solution

19. The concentration of solutions can be expressed in number of ways such that Normality, Molarity, Molality, Mole fractions, Strength, \% by weight, \% by volume and \% by strength. The molarity of ionic compound is usually expressed as formality beacuse we use formula weight of ionic compound. Addition of water to a solution changes all these terms, however increase in temperature does not change molality, mole fraction and \% by weight terms.

The weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ sample of 95% purity required to neutralise 45.6 mL of 0.235 N acid is:
A. $0.60 g$
B. $0.80 g$
C. $0.40 g$
D. $0.20 g$

Answer: A

- Watch Video Solution

20. The concentration of solutions can be expressed in number of ways such that Normality, Molarity, Molality, Mole fractions, Strength, \% by weight, \% by volume and \% by strength. The molarity of ionic compound is usually expressed as formality beacuse we use formula weight of ionic compound. Addition of water to a solution changes all these terms, however increase in temperature does not change molality, mole fraction and \% by
weight terms.
Two litre of NH_{3} at $30^{\circ} \mathrm{C}$ and 0.20 atm is neutralised by $134 m L$ of acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. The molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is:
A. 0.12
B. 0.24
C. 0.06
D. 0.03

Answer: B

- Watch Video Solution

21. How much $B a C l_{2}$ would be needed to make 250 mL of a solution having same concentration of $C l^{0-}$ as the one containing $3.78 g$ of NaCl per 100 mL .
A. $8.40 g$
B. $16.80 g$
C. $25.20 g$
D. 4.20 g

Answer: B

- Watch Video Solution

22. The concentration of solutions can be expressed in number of ways such that Normality, Molarity, Molality, Mole fractions, Strength, \% by weight, \% by volume and \% by strength. The molarity of ionic compound is usually expressed as formality beacuse we use formula weight of ionic compound. Addition of water to a solution changes all these terms, however increase in temperature does not change molality, mole fraction and $\%$ by
weight terms.
Molecular weight of O_{3} in the reaction, $2 O_{3} \Leftrightarrow 3 O_{2}$ is:
A. 8
B. 16
C. 24
D. 48

Answer: A

- Watch Video Solution

23. The domestic water supply is treated by bleaching powder to remove unhygienic species in water and to make it safe for drinking water. However, this given rise to Ca^{2+} and Cl^{-}ion contamination in water. Both these ions are also injurious for
health if a minimum concentration is crossed. The chloride ions are tested by a kit provided by many companies having $\mathrm{AgNO} \mathrm{O}_{3}$ solution that is added drop by drop to $23 m L$ of water sample to which an indicator has been added. When sufficient silver nitrate is added to remove Cl^{-1} ions as AgCl solid, the solid turns orange. The colour change is noticed by addition of AgNO_{3} having molar concentration such that each drop (0.05 mL) of AgNO_{3} converts 12.5 mg of Cl^{-}ions AgCl .

If 12 drops of AgNO_{3} solution are used to reach the colour point, what mass of chloride ion is present in one litre sample?
A. $6.52 g$
B. $7.150 g$
C. $5.125 g$
D. $1.25 g$

- Watch Video Solution

24. The domestic water supply is treated by bleaching powder to remove unhygienic species in water and to make it safe for drinking water. However, this given rise to Ca^{2+} and Cl^{-}ion contamination in water. Both these ions are also injurious for health if a minimum concentration is crossed. The chloride ions are tested by a kit provided by many companies having $\mathrm{AgNO} \mathrm{O}_{3}$ solution that is added drop by drop to $23 m L$ of water sample to which an indicator has been added. When sufficient silver nitrate is added to remove Cl^{-1} ions as AgCl solid, the solid turns orange. The colour change is noticed by addition of AgNO_{3} having molar concentration such that each drop (0.05 mL) of AgNO_{3} converts 12.5 mg of Cl^{-}ions AgCl .

The molar concentration of Cl^{-}in the sample of water used is:
A. $3.225 \times 10^{-3} M$
B. $2.225 M$
C. $1.521 M$
D. $0.1837 M$

Answer: D

- Watch Video Solution

25. The domestic water supply is treated by bleaching powder to remove unhygienic species in water and to make it safe for drinking water. However, this given rise to $C a^{2+}$ and $C l^{-}$ion contamination in water. Both these ions are also injurious for health if a minimum concentration is crossed. The chloride ions are tested by a kit provided by many companies having AgNO_{3} solution that is added drop by drop to $23 m L$ of water sample
to which an indicator has been added. When sufficient silver nitrate is added to remove $C l^{-1}$ ions as AgCl solid, the solid turns orange. The colour change is noticed by addition of AgNO_{3} having molar concentration such that each drop (0.05 mL) of AgNO_{3} converts 12.5 mg of Cl^{-}ions AgCl .

The molar concentration of AgNO_{3} solution if one drop of AgNO_{3} measure 0.05 mL is:
A. $6.04 \times 10^{-3} M$
B. $7.04 \times 10^{-3} M$
C. $150 M$
D. $3.52 M$

Answer: B

- Watch Video Solution

26. The domestic water supply is treated by bleaching powder to remove unhygienic species in water and to make it safe for drinking water. However, this given rise to Ca^{2+} and Cl^{-}ion contamination in water. Both these ions are also injurious for health if a minimum concentration is crossed. The chloride ions are tested by a kit provided by many companies having $\mathrm{AgNO} \mathrm{O}_{3}$ solution that is added drop by drop to $23 m L$ of water sample to which an indicator has been added. When sufficient silver nitrate is added to remove $C l^{-1}$ ions as $A g C l$ solid, the solid turns orange. The colour change is noticed by addition of AgNO_{3} having molar concentration such that each drop (0.05 mL) of AgNO_{3} converts 12.5 mg of Cl^{-}ions AgCl .

Assuming that concentration of Ca^{2+} ions in solution is equal equivalence ratio to chloride ions, the hardness of water is:
A. $9.185 \times 10^{3} \mathrm{ppm}$
B. $6.185 \times 10^{3} \mathrm{ppm}$
C. $1.185 \times 10^{3} \mathrm{ppm}$
D. $4.185 \times 10^{3} \mathrm{ppm}$

Answer: A

- Watch Video Solution

27. Chemical reactions involve interation of atoms and molecules. A large number of atoms / molecules approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic / molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry, and radiochemistry. The following example illustrates a typical case, involving chemical / electrochemical
reaction, which requires a clear understanding of the mole concept.

A 4.0 M aqueous solution of NaCl is prepared and 500 mL of this solution is electrolyzed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass of $N a$ is 23 and $H g$ is 200$)(1 F=96500 C)$.

The total number of moles of chlorine gas evolved is
A. 0.5
B. 1.0
C. 2.0
D. 3.0

Answer: B

- Watch Video Solution

28. Chemical reactions involve interation of atoms and molecules. A large number of atoms / molecules approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic / molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry, and radiochemistry. The following example illustrates a typical case, involving chemical / electrochemical reaction, which requires a clear understanding of the mole concept.

A 4.0 M aqueous solution of NaCl is prepared and 500 mL of this solution is electrolyzed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass of $N a$ is 23 and $H g$ is 200$)(1 F=96500 C)$.

If the cathode is an $H g$ electrode, the maximum weight $(\in g)$ of amalgam formed from this solution is
A. 200
B. 225
C. 400
D. 446

Answer: D

- Watch Video Solution

29. Chemical reactions involve interation of atoms and molecules. A large number of atoms / molecules (approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic / molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry,
electrochemistry, and radiochemistry. The following example illustrates a typical case, involving chemical / electrochemical reaction, which requires a clear understanding of the mole concept.

A 4.0 M aqueous solution of NaCl is prepared and 500 mL of this solution is electrolyzed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass of $N a$ is 23 and Hg is 200$)(1 F=96500 C)$.

The total charge (coulomb) required for complete electrolysis is
A. 24125
B. 48250
C. 96500
D. 193000

- Watch Video Solution

30. Bleaching powder and bleach solution are produced on a large scale and used in several hous-hold products. The effectiveness of bleach solution id often measured by iodometry.
$25 m L$ of household bleach solution was mixed with 30 mL of $0.50 M K I$ and 10 mL of 4 N acetic acid. In the titration of the liberated iodine, 48 mL of $0.25 N N a_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was used to reach the end point. The molarity of the household bleach solution is
A. $0.48 M$
B. 0.96 M
C. $0.24 M$
D. $0.24 M$

- Watch Video Solution

31. Bleaching powder and bleach solution are produced on a large scale and used in several hous-hold products. The effectiveness of bleach solution id often measured by iodometry.

Bleaching powder contains a salt of an oxoacid as one of its components. The anhydride of that oxoacid is:
A. $\mathrm{Cl}_{2} \mathrm{O}$
B. $\mathrm{Cl}_{2} \mathrm{O}_{7}$
C. ClO_{2}
D. $\mathrm{Cl}_{2} \mathrm{O}_{6}$

- Watch Video Solution

Exercise 8 Statements: Explanation type problems

1. Statement The atomic weight of an element is given by Dulong Petit's law: at. $w t . \times s p$. heat (cal /mole) cong6.4.

Explanation The formula is valid for metals only and not for all elements.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: B

D View Text Solution

2. Statement $1 \mathrm{~mole}_{3}=\mathrm{Nmolecule} \mathrm{O}_{3}=3 \mathrm{~N}$ atoms of $O=48 g$

Explanation A mole is the amount of matter that contains as many as objects as the amount of atoms exactly in $12 g C^{12}$.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: C

- Watch Video Solution

3. Statement The volume of 1 mole of an ideal gas at 1 bar pressure at $25^{\circ} \mathrm{C}$ is 24.78 litre.

Explanation: 1bar $=0.987 \mathrm{~atm}$
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: D

D Watch Video Solution

4. Statement Equivalent weight of a species can be written as molecular weight of species divided by valence factor.

Explanation Valence factor represents valence in element, acidity in bases, basicity in acids and total charge on cation or anion in an ionic compound.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of
S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: D

- Watch Video Solution

5. Statement $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid and its salt $\mathrm{Na}_{2} \mathrm{PO}_{3}$ does not exist.

Explanation Being dibasic nature, only two H are replaceable.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of
S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: C

- Watch Video Solution

6. Statement $\mathrm{H}_{3} B O_{3}$ is monobasic Lewis acid but its salt $N a_{3} B O_{3}$ exist.

Explanation $\mathrm{H}_{3} \mathrm{BO}_{3}$ reacts with NaOH to give $\mathrm{Na}_{3} \mathrm{BO}_{3}$.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: A

- Watch Video Solution

7. Statement Addition of water to a solution containing solute and solvent changes its normality or molarity only.

Explanation The milli-equivalent and milli-moles of solutes are not changed on dilution.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: D

- Watch Video Solution

8. Statement On increasing the temperature the milli-moles of solute, milli-equivalent of solute, molality, mole fraction of solute and \% by weight does not change.

Explanation Each of these involves only weights of solute and solvent.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: C

- Watch Video Solution

9. Statement 1 equivalent of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ has 1 equivalent of
$K, C r$ and O each.

Explanation Equivalent and milli-equivalent reacts in equal number to give same eq.or meq. of product.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: C

- Watch Video Solution

10. Statement $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ represent a way to express concentration of industrial $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Explanation It represents that $9 g H_{2} \mathrm{O}$ reacts with $40 g S O_{3}$ to produce $49 \mathrm{gH}_{2} \mathrm{SO}_{4}$ in addition to $100 \mathrm{gH}_{2} \mathrm{SO}_{4}$.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: D

- Watch Video Solution

11. Statement Equivalent weight of an element may have different value.

Explanation Equivalent weight depends upon the nature of chemical reaction shown by that element.
A. S is correct but E is wrong.
B. S is wrong but E is wrong.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of 'S.

Answer: C

- Watch Video Solution

Exercise 9 Advanced numerical problems

1. A polystyrene, having formula $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{n}$, was perpared by heating styrene with tribromobenzoyl peroxide in
the absence of air. If it was found to contain 10.46% bromine by weight, find the value of n.

- Watch Video Solution

2. Calculate the $\%$ of free SO_{3} in oleum (a solution of SO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$) that is labelled $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight.

- Watch Video Solution

3. A mixture of $N H_{3(g)}$ and $N_{2} H_{4_{(g)}}$ is placed in a sealed container at 300 K . The total pressure is 0.5 atm . The container is heated to $1200 K$, at which time both substances decompose
completely according to the equations:
$2 \mathrm{NH}_{3(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$
$\mathrm{N}_{2} \mathrm{H}_{4_{(g)}} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})}$

After decomposition is complete, the total pressure at 1200 K is found to be 4.5 atm . Find the amount (mole) per cent of $N_{2} H_{4(g)}$ in the original mixture.

- Watch Video Solution

4. Chemical absorbes can be used to remove exhaled CO_{2} of
space travellers in short spce flight. $L i_{2} O$ is one of the most efficient in terms of absorbing capacity per unit weight. If the reaction is:
$\mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}$,
What is the absorption efficiency of pure $\mathrm{Li}_{2} \mathrm{O}$ in litre $\mathrm{CO}_{2}(S T P) p e r k g ?$

- Watch Video Solution

5. Copper forms two oxides. For the same amount of copper, twice as much oxygen was used to form first oxide than to form second one. What is the ratio of the valencies of copper in first and second oxides?

- Watch Video Solution

6. 105 mL of pure water at $4^{\circ} \mathrm{C}$ saturated with NH_{3} gas yielded a solution of density $0.9 \mathrm{gmL}^{-1}$ and containing $30 \% \mathrm{NH}_{3}$ by mass. Find out the volume of NH_{3} solution resulting and the volume of NH_{3} gas at $4^{\circ} \mathrm{C}$ and 775 mm of Hg , which was used to saturate water.

- Watch Video Solution

7. 50 mL of dry ammonial gas was sparked for a long time in an eudiometer tube mercury. After sparking, the volume becomes
$97 m L$. After washing the gas with water and drying, the volume becomes $94 m L$. This was mixed with $60.5 m L$ of oxygen and the mixture was burnt. After the completion of the combustion of H_{2}, the volume of the residual gas was $48.75 m L$. Derive molecular formula of ammonia.

D View Text Solution

8. The mass of one litre sample of ozonised oxygen at $N T P$ was found to be 1.5 g . When 100 mL of this mixture at $N T P$ were treated with terpentine oil, the volume was reduced to 90 mL . Hence calculate the molecular mass of ozone.
(Terpentine oil absorbs ozone)
9. A sample of gaseous hydrocarbon occupying 1.12litre at $N T P$, when completely burnt in air produced $2.2 g C O_{2}$ and $1.8 \mathrm{gH}_{2} \mathrm{O}$. Calculate the weight of hydrocarbon taken and the volume of O_{2} at $N T P$ required for its combustion.

- Watch Video Solution

10. A 5.0 g sample of a natural gas consisting of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$ was burnt in excess of oxygen yielding $14.5 g \mathrm{CO}_{2}$ and some $\mathrm{H}_{2} \mathrm{O}$ as product. What is weight percentage of CH_{4} and $\mathrm{C}_{2} H_{4}$ in mixture?
11. Determine the formula of ammonia from the following data:
(i)Volume of ammonia $=25 m L$.
(ii) Volume on addition of O_{2} after explosion $=71.2 m L$.
(iii) Volume after explosion and reaction with O_{2} on cooling $=14.95 \mathrm{~mL}$.

- Watch Video Solution

12. 0.05 g of a commercial sample of KClO_{3} on decomposition liberated just sufficient oxygen for complete oxidation of 20 mLCO at $27^{\circ} \mathrm{C}$ and 750 mm pressure. Calculate $\%$ of KClO_{3} in sample.

- View Text Solution

13. Igniting MnO_{2} in air converts it quantitatively to $\mathrm{Mn}_{3} \mathrm{O}_{4}$. A sample of pyrolusite is of the following composition: $\mathrm{MnO}_{2}=80 \%, \mathrm{SiO}_{2}$ and other inert constituents $=15 \%$, and rest bearing $\mathrm{H}_{2} \mathrm{O}$. The sample is ignited to constant weight. What is the percent of $M n$ in the ingnited sample?

- Watch Video Solution

14. A granulated sample of aircraft alloy $(A l, M g, C u)$ weighing $8.72 g$ was first treated with alkali and then with very dilute HCl , leaving a residue. The residue after alkali boiling weighed $2.10 g$ and the acid insoluble residue weighed $0.69 g$. What is the composition of the alloy?

- Watch Video Solution

15. A hydrated sulphate of metal contained 8.1% metal and
$43.2 \% \mathrm{SO}_{4}^{2-}$ by weight. The specific heat of metal is $0.24 \mathrm{cal} / \mathrm{g}$. What is hydrated sulphate?

- Watch Video Solution

16. A saturated solution is prepared at $70^{\circ} C$ containing $32.0 \mathrm{gCus} \mathrm{O}_{4} .5 \mathrm{H}_{2} \mathrm{Oper} 100 \mathrm{~g}$ solution. A 335 g sample of this solution is then cooled to $0^{\circ} \mathrm{C}$ so that. $\mathrm{CuSO} \mathrm{O}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ crystallises out. If the concentration of a saturated solution at $0^{\circ} \mathrm{C}$ is $12.5 \mathrm{gCuSO} \mathrm{C}_{4} .5 \mathrm{H}_{2} \operatorname{Oper} 100.0 \mathrm{~g}$ solution, how much of $\mathrm{CuSO} \mathrm{C}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is crystallised?
17. In a gravimetric determination of P, an aqueous solution of dihydrogen phosphate ion $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right.$] is treated with a mixture of ammonium and magnesium ions to precipitate magnesium ammonium phosphate, $\left[\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]$. This is heated and decomposed to magnesium pyrophosphate $\left[\mathrm{Mg}_{2} \mathrm{P}_{2} O_{7}\right.$], which is weighed. A solution of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$yielded 1.054gof $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. What weight of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ was present originally? $(N a=23, H=1, P=31, O=16, M g=24)$

- Watch Video Solution

18. A mixture contains $N a C l$ and unknown chloride $M C l$.
(a) $1 g$ of this is dissolved in water, excess of acidified AgNO_{3}
solution is added to it, so that 2.567 g of white $p p t$. Is obtained.
(b) $1 g$ of original mixture is heated to $300^{\circ} C$. Some vapours
come out which are absorbed in AgNO_{3} (acidified) solution.
$1.341 g$ of white precipitate is obtained.
Find the mol.wt. of unkonwn chloride.

- Watch Video Solution

19. A precipitate of $A g C l$ and $A g B r$ weighs $0.4066 g$. On heating in a current of chlorine, the $A g B r$ is converted to $A g C l$ and the mixutre loses $0.0725 g$ in weight. Find the $\%$ of $C l$ in original mixture.

- Watch Video Solution

20. What weight of $\mathrm{Na}_{2} \mathrm{CO}_{3} o f 95 \%$ purity would be required to neutralize 45.6 mL of 0.235 N acid?
21. What volume of water is required to make 0.20 N solution from 1600 mL of 0.2050 N solution?

- Watch Video Solution

22. How much $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and pure water are to be mixed to prepare 50 g of 12.0% (by wt.) $B a C l_{2}$ solution?

D Watch Video Solution

23. A piece of $A l$ wieghing $2.7 g$ is titrated with 75.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (specific gravity $1.8 m L^{-1}$ and $24.7 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight).

After the metal is completely dissolved, the solution is diluted to 400 mL . Calculate the molarity of free $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
24. To 50 L of $0.2 \mathrm{NNaOH}, 5 \mathrm{~L}$ of 1 NHCl and 15 L of $0.1 \mathrm{NFeCl} l_{3}$ solution are added. What weight of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ can be obtained from the precipitate? Also report the normality of NaOH left in the resultant solution.

- Watch Video Solution

25. Chlloride samples are prepared for analysis by using NaCl , $\mathrm{KCl}, \mathrm{NH}_{4} \mathrm{Cl}$ separately or as mixtures. What minimum volume of a 5.0% by weight AgNO_{3} Solution (Density $=1.04$) must be added to a sample wehging 0.3 g in order to ensure complete precipitation of choride in every possible cases?

- Watch Video Solution

26. A sample of water has its hardness due to only CaSO_{4}. When this water is passed through on anion exchange resin, SO_{4}^{2-} ions are replaced by OH^{-}. A 25.0 mL sample of water so treated requires 21.58 mL of $10^{-3} \mathrm{MH}_{2} \mathrm{SO}_{4}$ for its titration. What is the hardness of water expressed in terms of CaCO_{3} in ppm ? Assume density of water $1.0 \mathrm{~g} / \mathrm{mL}$.

- View Text Solution

27. 250 " mL of " x M solution and 500 mL of " y M solution of a solute are mixed and diluted to 2 L to produce a final concentration of 1.6 M. If $x: y=5: 4$, calculate x and y .
28. The cupric salt (i.e., Cu^{2+}) of a monobasic acid contains 3 molecules of water of hydrogen per atom of $C u$. One gram of hydrated salt yielding on strong heating 0.3306 g of CuO . What is the equivalent weight of anhydrous acid?

- Watch Video Solution

29. 25 mL of $0.107 \mathrm{MH}_{3} \mathrm{PO}_{4}$ was titrated with 0.115 M solution of NaOH to the end point identified by indicator bromocresol green.This required $23.1 m L$. The titration was repeated using phenolphthalein as indicator. This time $25 m L$ of $0.107 \mathrm{MH}_{3} \mathrm{PO}_{4}$ reuired 46.2 mL of the 0.115 MNaOH . What is the coefficient of n in this equation for each reaction?

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+n \mathrm{OH}^{-} \rightarrow n \mathrm{H}_{2} \mathrm{O}+\left[\mathrm{H}_{3-n} \mathrm{PO}_{4}\right]^{n-}
$$

30. How many $m L$ of a 0.1 MHCl are required to react completely with $1 g$ mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} containing equimolar amounts of two?

- Watch Video Solution

31. A solution of specific gravity $1.6 \mathrm{gmL} L^{-1}$ is 67% by weight. What will be the \% by weight of the solution of same acid if it is diluted to specific gravity $1.2 g m L^{-1}$?

- View Text Solution

32. 0.5 g of fuming sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3}\right)$, called oleum, is diluted with water. Thus solution completely
neutralised 26.7 " mL of " 0.4 M NaOH. Find the percentage of free SO_{3} in the sample solution.

- Watch Video Solution

33. A sample of $M g$ metal containing some $M g O$ as impurity was dissolved in 125 mL of $0.1 \mathrm{NH}_{2} \mathrm{SO}_{4}$. The volume of H_{2} evolved at $27.5^{\circ} \mathrm{C}$ and 1 atm was 120.0 mL . The resulting solution was found to be 0.02 N with respect to $\mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the weight of sample dissolved and the \% by weight of pure $M g$ metal in sample. Neglect any change in volume.

- View Text Solution

34. Manganese trifluoride can be prepared by the reaction:
$M n I_{2(s)}+13 / 2 F_{2(g)} \rightarrow M n F_{3}+2 I F_{5}$

What is the minimum amount of F_{2} that must be used to react with $12 g$ of $M n I_{2}$ if only $75 \% F_{2}$ is utilized to convert all of $M n I_{2}$ to $M n F_{3}$?

- View Text Solution

35. A natural gas sample contains 84% (by volume) of $\mathrm{CH}_{4}, 10 \%$ of $\mathrm{C}_{2} \mathrm{H}_{6}, 3 \%$ of $\mathrm{C}_{3} \mathrm{H}_{8}$ and $3 \% \mathrm{~N}_{2}$. If a series of catalytic reactions could be used for converting all the carbon atoms into butadiene, $C_{4} H_{6}$, with 100% efficiency, how much butadiene could be prepared from $100 g$ of the natural gas?

- View Text Solution

36. 1.5 g sample of $\mathrm{P}_{2} \mathrm{O}_{3}$ and some impurity was dissolved in water and warmed gentally till $P_{2} O_{3}$ disproportionated
quantitatively to PH_{3} and $\mathrm{H}_{3} \mathrm{PO}_{4}$. The solutions was then boiled to get rid off $\mathrm{PH}_{3(\mathrm{~g})}$ and then cooled finally to room temperature and diluted to 100 mL .10 mL of this solution was mixed with 20 mL of $0.3 M N a O H$. Now 10 mL of this solution required 3.6 mL of $0.05 \mathrm{MH}_{2} \mathrm{SO}_{4}$ for back titration. Determine $\%$ by weight of $P_{2} O_{3}$ in sample.

- View Text Solution

37. In presence of fluoride ion Mn^{2+} can be titrated with MnO_{4}^{-}both reactants being converted to a complex of $M n(I I)$ in presence of F^{-}ions. A $0.545 g$ of sample containing $\mathrm{Mn}_{3} \mathrm{O}_{4}$ was dissolved and all manganese was converted to Mn^{2+}. The titration in presence of fluoride ion consumed 31.1 mL of KMnO_{4} that was 0.117 N against oxalate.
(a) Write balanced chemical equation of titration was assuming
that the complex is MnF_{4}^{-}.
(b) What was the $\%$ of $\mathrm{Mn}_{3} \mathrm{O}_{4}$ in sample?

- View Text Solution

38. What volume of $0.20 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is required to produce 34.0 g of $\mathrm{H}_{2} \mathrm{~S}$ by the reaction?
$8 \mathrm{KI}+5 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 4 \mathrm{~K}_{2} \mathrm{SO}_{4}+4 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

39. A drop $(0.05 m L)$ of $12 M H C l$ is spread over a thin sheet of aluminium foil (thickness 0.10 mm and density of
$A l=2.70 \mathrm{~g} / \mathrm{mL}$). Assuming whole of HCl is used to dissolve $A l$, what will be maximum area of hole produced in foil ?
40. A solution of palmitic acid in benzine contains $4.24 g$ of acid per litre. When this solution is dropped on water surface, benzene gets evaporated and palmitic acids forms a unimolecular film on surface. If we wish to cover an area of $500 \mathrm{~cm}^{2}$ with unimolecular film, what volume of solution should be used? The area covered by one palmitic acid molecule may be taken as $0.21 \mathrm{~nm}^{2}$. Mol.wt.of palmitic acid is 256 .

- View Text Solution

41. $11.2 g$ carbon reacts completely with 19.63 litre of O_{2} at
$N T P$. The cooled gases are passed through 2litre of
2.5 NNaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution. CO does not react with

NaOH under these conditions.
42. 20litre of air containing CO_{2} at $S T P$ passed through 100 mL of 0.12 N solution of $\mathrm{Ca}(\mathrm{OH})_{2}$. The filtrate obtained after the reaction required 50 mL of a solution of HCl of specific gravity $1.25 g m L^{-1}$ containing 0.35% by weight of acid. Find the amount of CO_{2} present in the volume of air as well as the percentage by volume of CO_{2} in air.

- View Text Solution

43. 1.0 gallon pure octane (density $2.65 \mathrm{~kg} /$ gallon) on combustion prodeces $11.53 \mathrm{kgCO}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O} . \mathrm{CO}$ is formed partially due to combustion of octane which is responsible to decrease the efficiency of engine. If complete combustion of octane to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ provide 100%
efficiency to engine, calculate efficiency of engine in the above case.

- View Text Solution

44. $11.2 g$ of carbon reacts with 21.1 litres of oxygen at $18^{\circ} \mathrm{C}$ and

750 mm of Hg . The cooled gases are passed through 2 litre of
2.5 NNaOH . Determine the concetration of NaOH remaining
in solution which is not converted to $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Assume that
CO does not react with NaOH :
a. Whatis the mole fraction of $C O$ in the gases?
b. What is the concetration of NaOH which is not converted to
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the remaining solution?

- Watch Video Solution

45. $5 m L$ of a gaseous hydrocarbon was exposed to $30 m L$ measure 25 mL of which 10 mL are absorbed by NaOH and the remainder by pyrogallol. Determine molecular formula of hydrocarbon. All measurements are made at constant pressure and temperature.

- View Text Solution

46. The gases produced when $18 g$ carbon reacts with 5litre of oxygen at $18^{\circ} \mathrm{C}$ and 5 atm pressure are treated with 0.5 litre of
$2 M N a O H$. Calculate the concentration of sodium carbonate and sodium bicarbonate produced by the reaction of CO_{2} with
$\mathrm{NaOH} . \mathrm{CO}$ has no reaction under these conditions.

- View Text Solution

47. The molecular mass of an organic acid was determined by the study of its barium salt. 4.290 g of salt was quantitatively converted to free acid by the reaction with $21.64 m L$ of $0.477 \mathrm{MH}_{2} \mathrm{SO}_{4}$. The barium salt was found to have two mole of water of hydration per Ba^{2+} ion and the acid is mono-basic. What is molecular weight of anhydrous acid?

D View Text Solution

48. $1 g$ of a mixture containing equal no.of moles of carbonates
of two alkali metals, required 44.4 mL of 0.5 NHCl for complete
reaction. The atomic weight of one metal is 7 , find the atomic weight of other metal. Also calculate amount of sulphate formed on quantitative conversion of 1.0 g of the mixture in two sulphates.
49. What would be the molality of a solution obtained by mixing equal volumes of 30% by weight $H_{2} S O_{4}\left(d=1.218 \mathrm{gmL}^{-1}\right)$ and 70% by weight $H_{2} S_{4}\left(d=1.610 \mathrm{gmL}^{-1}\right)$? If the resulting solution has density $1.425 \mathrm{~g} / \mathrm{mL}$, calculate its molarity.

- View Text Solution

50. A sample of fuming sulphuric acid containing $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{3}$ and SO_{2} weighing 1.0 g is found to require 23.47 mL of 1.0 N alkali for its neutralisation. A separate sample shows the presence of $1.5 \% S_{2}$. Find the percentage of free $\mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and combined SO_{3} in the sample.

D View Text Solution

51. Calculate the ionic strength of a solution containing 0.2MNaCL and $0.1 M N a_{2} S O_{4}$.

- View Text Solution

52. 200 mL of a solution of mixture of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was first titrated with phenolphthalein and $N / 10 \mathrm{HCl} .17 .5 \mathrm{~mL}$ of HCl was required for the end point. After this methyl orange was added and $2.5 m L$ of same HCl was required for next end point. Find out amounts of NaOOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in mixture.

- View Text Solution

53. Two drops of phenolphthalein was added to 40 " mL of " HCl solution. When 30 " mL of " 0.1 M NaOH was added, part of the
the solution turned pink, but colour disappeared on mixing the solutiion. Addition of NaOH was continued drop-wise untill a one-drop addition produced a lasting pink colour, and the colume of NaOH added was 32.56 mL . Calculate
(a). The concentration of HCl solution.
(b). The concentration of HCl solution when 30 mL base was added.
(c). The pH of solution when 30 mL base was added.
(d). The pH of solution when 32.56 mL base was added

- Watch Video Solution

54. A sample supposed to be pure CaCO_{3} is used to standardise a solution of HCl . The substance really was a mixture of MgCO_{3} and BaCO_{3}, but the standardisation of HCl was accurate. Find the percentage of BaCO_{3} and MgCO_{3} in mixture.

- View Text Solution

55. 100 mL sample of hard water is passed through a column of the ion exchange resin RH_{2}. The water coming off the column requires 15.17 mL of 0.0265 MNaOH for its titration. What is the hardness of water as ppm of Ca^{2+} ?

D View Text Solution

56. A sea water sample has density of $1.03 \mathrm{~g} / \mathrm{cm}^{3}$ and $2.8 \% \mathrm{NaCl}$ by mass. A saturated solution of NaCl in water is
5.45MNaCl. How much water would have to be evaporated from 10^{6} litres of sea water before NaCl would precipitate?

- Watch Video Solution

57. One litre of a mixture containing BaF_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ was taken for analysis. $25 m L$ of this mixture was added to $100 m L$ of $0.05 \mathrm{NK}_{2} \mathrm{CO}_{3}$ solution and precipitate was filtered off. The filtrate required $12 m L$ fo $0.025 M$ oxalic acid solution using phenolphthalein as indicator. Find the strength of $B a F_{2}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in mixture.

D View Text Solution

58. 5 g of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is intended to be prepared by using CuO and four times the stoichiometric amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Assuming that 10% of the material is lost in crystallisation, what weight of oxide should be taken and how many litre of $m L$ of a $5 \mathrm{MH}_{2} \mathrm{SO}_{4}$?
59. A mixture contains $20 g$ of caustic soda, $20 g$ of sodium
carbonate and $20 g$ of sodium bicarbonate in one litre. What will be the titre value if $55 m L$ of this mixutre is used for titration against 1 NHCl if ?
(a) First titrated with phenolphthalein.
(b) Methyl orange added after first ene point.
(c) Methyl orange added from the very beginning.

D View Text Solution

60. The reaction, $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}+\mathrm{ZnSO}_{4}$ goes to completion. In one experiment, $10 g$ of metallic zinc was added to 200 mLCuSO 4 solution. After all the Cu was precipitated, it was found that not all the zinc has dissolved. After filtration, the total solid at the end of reaction was $9.81 g$. Calculate the
weight of Cu deposited and molarity of CuSO_{4} in original solution.

- Watch Video Solution

61. A sample of green crystals of nickel (II) sulphate heptahydrate was heated carefully to produce the bluish-green nickel (II) sulphate hexahydrate. What are the formulas of the hydrates? If $8.753 g$ of the heptahydrate produces $8.192 g$ of the hexahydrate, how many grams of anhydrous nickel (II) sulphate could be obtained?

- Watch Video Solution

