びdoubtnut

CHEMISTRY

BOOKS - P BAHADUR CHEMISTRY (HINGLISH)

RADIO ACTIVITY

Exercies

1. Caluculate the density of uranium - 235 nucleus. Given $m_{n}=m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$.

- Watch Video Solution

2. Calucate the density of the nucelus of ${ }_{47}^{107} \mathrm{Ag}$ assuming $R_{\text {nucleus }}$ is $1.4 A^{1 / 3} \times 10^{-13} \mathrm{~cm}$. Where A is mass number of nucelsus. Compare its density with density of metallic silver $10.5 \mathrm{gcm}^{-3}$
3. Calculate the binding energy per nucleion of $L i$ isotiope, which has the isotopic mass of 7.016 amu . The indivisulal masses of netutron and proton are 1.008665 amu and 1.007277 amu , respectively and the mass of electron $=0.000548 a m u$.

- Watch Video Solution

4. The aromic mass of ${ }^{16} O$ is 15.995 amu while the individual masses of proton and neutron are 1.0073 amu and 1.0087 amu respetively. The mass of electron is 0.000548 amu . Calculate the binding energy of the oxygen nucleus.

Watch Video Solution

5. The isotopic masses of . ${ }_{1}^{2} \mathrm{He}$ and $-(2)^{4} \mathrm{He}$ are 2.0141 and 4.0026 amu respectively and the velocity of light in vacumm is $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Calculate the quantiy of energy (in J) liberated when two mole of.${ }_{1}^{2} H$ undergo fusion to form one mole of ${ }_{2}^{4} \mathrm{He}$

- Watch Video Solution

6. What is the charge in mass when 2 mole of hydroghen atoms combine to form 1 mole fo H_{2} molecule if: $2 H \rightarrow H_{2}, \Delta E=-436 k J$? Comment on the result.

- Watch Video Solution

7. A radioactive element decays by β - emission. If mass of parent and daughter nucliede are m_{1} and m_{2} respectively, caluclate energy liberated during the emission.

- Watch Video Solution

8. How may $\alpha-$ and β - particles will be emitted when ${ }_{90} T h^{232}$ changes into ${ }_{82} P b^{208}$?

Watch Video Solution

9. In the decay series .92 U^{238} to ${ }^{82} \mathrm{~Pb}^{206}$, how many α-paritcles and how many β^{θ}-particles are emitted?

- Watch Video Solution

10. Calculate the no. of $\alpha-$ and β - particles given during the change:
${ }_{93}^{237} \mathrm{~Np} \rightarrow{ }_{83}^{209} \mathrm{Bi}$
Also report the nature and name of this radioactive series.

- Watch Video Solution

11. Caculalate the mass of.${ }^{140} L A$ in a sample whose activity is $3.7 \times 10^{10} \mathrm{~Bq}$ (1 Becquerel, $B q=1$ disntegration per second) given that is $t_{1 / 2}$ is 40 hour.

- Watch Video Solution

12. The half line is ${ }_{38}^{90} S r$ is 20 year. If the sample of this nuclide has an activity of 8,000 disintergrations $\min ^{-1}$ today, what will be its activity after 80 year.

- Watch Video Solution

13. Two radioactive nuclides A and B have half-lives in the ratio $2: 3$ respectively. An experiment is made with one mole of each of them.

Calculate the molar ratio of A and B after a time interval of three times of half-line of A.
14. Two radioactive nuclides A and B have decay constant 10λ and λ respectively. If initially they have same number of nuclei, calculate the ratio of nuclei of A and B after a time $1 / 9 \lambda$

- Watch Video Solution

15. A drug is given intravenously and drug concentrations in blood measured at 1 and 4 hour are 26 and $18 \mu g / m L$. What is the half-line of drug and at what time will the level decreases to $10 \mu \mathrm{~g} / \mathrm{mL}$

- Watch Video Solution

16. A sample of wooden aircrafts is found to undergo $9 d p m g^{-1}$ of.${ }^{14} C$.

What is appoximate age of aircraffts? The half line of ${ }_{6}^{14} C$ is 5730 year and rate of disintergration of wood recently cut down is $15 \mathrm{dpmg}^{-1}$ do .$_{6}^{14} C$?
17. A piece of wood from an archelogical source shows a $\cdot{ }^{14} C$ activity which is 60% of the activity found in fresh wood today. Caculate the age of the archeologival sample. ($t_{1 / 2}$ for . ${ }^{14} C=5570$ year)

- Watch Video Solution

18. The β - activity of a sample of CO_{2} prepared forma contemporarty wood gave a count rate of 25.5 counts per minute ($c p m$). The same of CO_{2} form an ancient wooden stratue gave a count rate of 20.5 cpm , in the same counter condition. Calculate its age to the nearest 50 year taking $t_{1 / 2}$ for.${ }^{14} C$ as 5770 year. What would be the expected count rate of an identical mass of CO_{2} form a sample which is 4000 year old?

- Watch Video Solution

19. The radioactive isotope ${ }_{27}^{60} \mathrm{Co}$ which has now replaced radium in the treatment of cancer can be made by $a(n, p)$ or (n, γ) reaction. For each
reactio, indicate the apporipriate target nucleus. If the half life of ${ }_{27}^{60} \mathrm{Co}$ is 7 year evaluate the decay constant in s^{-1}.

- Watch Video Solution

20. A piece of charcoal from the ruins of a settlement in Japan was found to have $\cdot{ }^{14} C / .{ }^{14} C$ ratio what was 0.617 times that found in living organisms. How old is the piece of charcol? $\left(t_{1 / 2}\right.$ for.${ }^{14} C$ is 5770 year?)

- Watch Video Solution

21. A sample of ${ }_{131}^{53} I$ is iodide ion was admistered to a patient in a carrier consisting of 0.10 mg of stable iiodide ion. After 4 day 67.7% of initial radioactivity was detected in the throid gland of the patient. What mass of stable iodide ion had migrated to thyroid glad? $\left(t_{1 / 2}\right.$ for iodide ion $=8$ day)

- View Text Solution

22. A solution of 1 litre has 0.6 g of non-radioactive Fe^{3+} with mass no. 56. To this solution 0.209 g of radioactove Fe^{2+} is added with mass no. 57 and the following reaction occurred.

$$
.{ }^{57} \mathrm{Fe}^{2+}+.{ }^{56} \mathrm{Fe}^{3+} \rightarrow .{ }^{57} \mathrm{Fe}^{3+}+.{ }^{56} \mathrm{Fe}^{2+}
$$

At the end of one hour it was found that 10^{-5} moles of non-radioactive . ${ }^{56} \mathrm{Fe}^{2+} \mathrm{mol} L^{-1} h r^{-1}$. Negalecting any charge in volume, calculate the activity of the sample at the end of $1 h r\left(t_{1 / 2}\right.$ for $.{ }^{57} \mathrm{Fe}^{2+}=4.62 h r$.)

D View Text Solution

23. Write the nuclear reactions for the following radioactive decay:
(a) ${ }_{92} U^{238}$ undergoes $\alpha-$ decay.
(b) ${ }_{91} P^{234}$ undergoes $B \eta-$ decay.
(c) ${ }_{\cdot 11} N a^{22}$ undergoes $B \eta^{+}$decay.

- Watch Video Solution

24. Give the example each of (a) $\alpha-$ emission
(b) $\beta^{+}-$emission, and (c) $K-$ capture.
write the equation for these nuclear changes.

- Watch Video Solution

25. Complete the following nuclear changes.
(a) . ${ }_{42}{ }^{66} \mathrm{Mo}(. ., n) \cdot{ }_{43}^{97} \mathrm{Tc}$
(b) . . $(\alpha, 2 n){ }_{\cdot 85}^{211} A t$
(c) . ${ }_{25}^{55} \mathrm{Mn}(n, \gamma) \ldots$
(d) ${ }_{96}^{246} \mathrm{Cm}+{ }_{6}^{12} C \rightarrow \ldots+4_{0}^{1} n$
(e) ${ }_{13}^{27} A l(\alpha, n)$. .
(f) ${ }_{235}^{92} U\left(\alpha, \beta^{-}\right) \ldots$

- Watch Video Solution

26. Complete the equations for the following nuclear processes:
(a). ${ }_{17}^{35} \mathrm{Cl}+{ }_{.}{ }_{1}^{0} n \rightarrow \ldots+{ }_{.}^{4} \mathrm{He}$
(b) ${ }_{\cdot 92}^{235} U+{ }_{\cdot 0}^{1} n \rightarrow \ldots+{ }_{\cdot 54}^{137} X e+2{ }_{0}^{1} n$
(c) $\cdot{ }_{13}^{27} \mathrm{Al}+\cdot{ }_{2}^{4} \mathrm{He} \rightarrow \ldots+\cdot{ }_{0}^{1} n$
(d) $\ldots(n, p) \cdot{ }_{16}^{35} S$
(e).$_{94}^{239} P u\left(\alpha, \beta^{-}\right) \ldots$

- Watch Video Solution

27. A Piece of wood, reportedly from king Tut's tomb was burnt and $7.32 g$.$^{14} \mathrm{CO}_{2}$ was collected. The total radioacticity in the.${ }^{14} \mathrm{CO}_{2}$ was 10.8 dis -1 \min. How old was the wood sample? $t_{1 / 2}$ for.${ }^{14} C$ istope $=15.3$ dis $\min g^{-1}$.

- Watch Video Solution

28. The half of.${ }^{238} U$ decomposed to.${ }^{206} \mathrm{~Pb}$ in 4.5×10^{8} year. What will be the age of rock that contains equal weight of both?

- Watch Video Solution

29. ${ }_{238}^{92} U$ by sucessive radioactive decays changes to ${ }_{82}^{206} \mathrm{~Pb}$. A sample of uranium ore was analysed and found to contain $1.0 g^{238} U$ and $0.1 g^{206} P b$. Assuming that.${ }^{206} \mathrm{~Pb}$ has accumlated due to delay of uranium, find out the age of ore.

$$
\text { (} t_{1 / 2} \text { for . }{ }^{238} U=10^{9} \text { year) }
$$

- Watch Video Solution

30. The isotopic compostion fo rubidium is $.{ }^{85} R b-72$ per cent and $.{ }^{87} R b-28$ per cent..${ }^{87} R b$ is weakly radioactive and decay by β^{-} emission with a decay constant of 1.1×10^{-11} per year. A sample of the mineral pollucite was found to contain 450 mgRb and 0.72 mg of ${ }^{87} \mathrm{Sr}$.

Estimiate the age of mineral pollution, starting any assumption made.

- View Text Solution

31. A $0.2 m L$ sample of a solution containing 1.0×10^{-7} curie of.${ }_{1}^{3} \mathrm{H}$ is injected to the blood stream of an animal. After sufficient time for
circulatory equilibrium to be esalablished, 0.10 mL of blood is found to have an activity of $20 d p m$. Calculate teh volume fo blood in animal, assuming no change in activity of sample during circulatroy equilibrium.

- Watch Video Solution

32. Specific acticvity (activiy per gram) of a sample of . ${ }^{239} \mathrm{Pu}$ and ${ }^{240} \mathrm{Pu}$ was found to be 6×10^{9} dps. Given that $t_{1 / 2}(P u-239)$ and $t_{1 / 2}(P u-240)$ are 2.44×10^{4} year and 6.58×10^{3} year respectively, then calcualte the isotopic compostion of mixture.

- View Text Solution

Exercies 2

1. Fill in the blanks:
(a) $.{ }_{92}^{235} U+{ }_{.}^{1} n \rightarrow{ }_{.}{ }_{55}^{42} A+{ }_{.{ }_{37}}^{92} B+\ldots$
(b) ${ }_{34}^{82} S e \rightarrow \ldots 2 \cdot{ }_{-1} e^{0}$
2. Calculate the number of α - and β-particles emitted when ${ }_{92} U^{238}$ into radioactive ${ }_{82} \mathrm{~Pb}^{206}$.

- Watch Video Solution

3. $T h^{234}$ disintergrates and emits $6 \beta-$ and $7 \alpha-$ particles to form a stable product. Find the atomic number and mass number of the stable product and also identify the element.

- Watch Video Solution

4. One of the hazards of nuclear expolsion is the generation of ${ }^{90} \mathrm{Sr}$ and its subsequent incorportion in bones. This nuclide has a half-life of 28.1 year. Suppose one microgram was absorted by a new-born chid, how much $S r^{90}$ will remain in his bones after 20 year?
5. What mass fo C^{14} with $t_{1 / 2}=5730$ year has activity equal to one curie?

- Watch Video Solution

6. The disntergration rate of a certain radioactive sample at any instant is 4750 dpm . Five minute later, the rate becomes 2700 dpm Calculate half-line of sample.

- Watch Video Solution

7. A certain radio isotope $\cdot{ }_{Z} X^{A}$ (half life $=10$ days) decays to give ${ }^{Z}{ }_{-2} Y^{A-4}$. If $1.0 g$ atom of X is kept in a sealed vessel, find the volume of helium accumulated at $S T P$ in 20 days ?

- Watch Video Solution

8. 10 g -atoms of an α-active radioisotope are disintegrating in a sealed container. In one hour the helium gas collected at STP is $11.2 \mathrm{~cm}^{3}$. Calculate the half life of the radioisotope.

- Watch Video Solution

9. How many atoms of $0.1 g$-atom of a radioacitve isotope ${ }_{Z} X^{A}$ (half life $=5$ days) will decay during the 11th day?

- Watch Video Solution

10. ${ }_{84} P o^{210}$ decays with $\alpha-$ particle to ${ }_{82} P b^{206}$ with a half-line of 138.4 day. If 1.0 g of ${ }_{.84} \mathrm{Po}^{210}$ is placed in a sealed tube, how much helium will accumulate in 69.2 day? Express the answer in cm^{3} at $S T P$. Also report the volume of He formed if 1 g of $\mathrm{Po}^{210} \mathrm{O}_{2}$ is used.

- Watch Video Solution

11. A sample of U^{238} (half-line $=4.5 \times 10^{9} y r$) ore is found to contain $23.8 g$ of U^{238} and $20.6 g$ of Pb^{206} Calculate the age of the ore.

- Watch Video Solution

12. (a) On analysis a sample of uranium ore was found to contian 0.277 g of $.82 P b^{206}$ and $1.667 g$ of $.92 P b^{206}$ and $1.667 g$ of ${ }_{92} U^{238}$. The half life period of U^{238} is 4.51×10^{9} year. IF all the lead were assumed to have come from decay of $.92 U^{238}$, What is the age of earth?
(b) An ore of ${ }_{92} U^{238}$ is found to contain ${ }_{92} U^{238}$ and ${ }_{82} \mathrm{~Pb}^{206}$ in the weight ratio of $1: 0.1$ The half-life period of $.92 U^{238}$ is 4.5×10^{9} year. Caluculate the age of ore.

- Watch Video Solution

13. In natue a decay chain sereis starts with $.90 h^{232}$ and finally terminates at . $82 P b^{208}$. A throium ore sample was found to contain $8 \times 10^{-5} \mathrm{~mL}$ of $H e$ At $S T P$ and $5 \times 10^{7} g$ of $T h^{232}$. Find the age of ore sample assuming
that sources of $H e$ to be only due to decay of $T h^{232}$ Also assume complete retention of He within the ore, $t_{1 / 2}$ for $T h^{232}=1.39 \times 10^{10}$ year.

- View Text Solution

14. An experiment requires minimum beta activity produced at the rate of 346 beta particles per minute. The half- life period of _ (42) Mo^{99}, which is a beta emitter, is 66.6 h . Find the minimum amount of $\quad(42) M o^{99}$ required to carry out the experiment in 6.909 h .

- Watch Video Solution

15. A samll amount of solution containing $N a^{24}$ radio nuclide with activity $A=2 \times 10^{3} \mathrm{dps}$ was administered into blood of a patient in a hospital. Afer 5 hour a sample of the blood drawn out form the patient showed an activity of 16 dpm per $\mathrm{t}_{1 / 2}$ for $N a^{24}=15 h r$. Find:
(a) Volume of the blood in the patient.
(b) Activity fo blood sample drawn after a further time fo $5 h r$.

- View Text Solution

16. The nuclide ratio, ${ }_{1}^{3} H$ to $\cdot{ }_{1}^{1} H$ in a sample of water si $8.0 \times 10^{-18}: 1$ Tritum undergoes decay with a half-line period of $12.3 y r$ How much tritum atoms would 10.0 g of such a sample conatins 40 year after the original sample is collected?

Watch Video Solution

17. With what velocity should an α paricle travel towards the nucleus of a copper atom so as to arrive at a distance $10^{-13} \mathrm{~m}$ from the nucleus of the copper atom?

- Watch Video Solution

18. . ${ }^{227} A c$ has a half-line of 22 year with respect to radiioactive decay. The decay follows two parallel paths, one leading to.${ }^{227} T h$ and the other leading to.$^{223} \mathrm{Fr}$. The percentage yiedls of these two daughter nuclides
are 2% and 98.0% respectovely. What is the rate constant in year ${ }^{-1}$, for each of the separate paths?

- View Text Solution

19. ${ }^{64} \mathrm{Cu}$ (hlaf lifre $=12.8 \mathrm{~h}$) deacays by β^{-}emission $(38 \%), \beta^{+}-$ emission (19%) and electron capute (43%). Write the decay products and calculate partial half-live for each of the decay processes.

- View Text Solution

Exercies 3A

1. Two radioactive elements X and Y half-live pf 50 and 100 minute respectiv ely. Intial sample of both the elements have same number of atoms. The ratio of the reamaining number of atoms of X and Y after 20 minute is:
A. 2
B. $1 / 2$
C. 4
D. $1 / 4$

Answer: (d)

- Watch Video Solution

2. The human body contains 18% carbon by weight, in which.${ }^{14} \mathrm{C}$ is 1.56×10^{-6} per cent. If the half-life of.${ }^{14} C$ is 5570 year, then the number of disintengration per mintute in the body of this weight is:
A. 194
B. 1940
C. 19400
D. 28600
3. The radioactive elements A and B have half-lives of 15 and 5 minute respectively. Thew experiment begins with 4 times the number the number of B atoms as A atoms. At which of the followig times does the number fo A atoms left equals the number of B atoms left:
A. 30minute
B. 15 minute
C. 10minute
D. 5minute

Answer: (b)

- Watch Video Solution

4. The number of millimoles of ${ }_{6}^{14} \mathrm{C}$ equivalent to one millicuires if $t_{1 / 2}=5770$ year and 1 curie $=3.7 \times 10^{10} \mathrm{dps}$ is:
A. 1.56×10^{-2}
B. 3.12×10^{-2}
C. 4.34×10^{-2}
D. 7.80×10^{-2}

Answer: (a)

- Watch Video Solution

5. Antineutrion can vbe deteced during the emission of:
A. $\alpha-$ rays
B. β - particles
C. protons
D. X - rays

Answer: (b)
6. Which has magic number of neutrons?
A. ${ }_{13}^{27} A l$
B. ${ }_{83}^{209} \mathrm{Bi}$
C. ${ }_{92}^{238} U$
D. ${ }_{26}^{56} \mathrm{Fe}$

Answer: (b)

D Watch Video Solution

7. Nuclides having some atomic number and same mass number but different rate of decay are called:
A. isotones
B. isobars
C. nuclear isomers
D. isotopes

Answer: (c)

- Watch Video Solution

8. Neutrions was predicted to:
A. conserve mass of the nuclear reaction
B. conserve charge of the nuclear reaction
C. conserve spin of the nuclear reaction
D. all of these

Answer: (c)

- Watch Video Solution

9. Half-life-speed of lead is:
A. infinite
B. 1590 day
C. 1590 year
D. zero

Answer: (a)

- Watch Video Solution

10. What is the value of n for the present element of $(4 n+3)$ series?
A. 59
B. 58
C. 57
D. 60

Answer: (b)
11. $._{84}^{210} \mathrm{Po} \rightarrow{ }_{82}^{206} \mathrm{~Pb}+{ }_{2}^{4} \mathrm{He}$ in this reaciton predict the positon of group of $P o$ when lead is the the $I V B$ group:
A. $I I A$
B. $I V B$
C. VIB
D. VIA

Answer: (c)

- Watch Video Solution

12. .90 Th a member of III group on losing α - particles forms a new element belonging to:
A. I group
B. III group
C. II group
D. $I V$ group

Answer: (c)

- Watch Video Solution

13. Isodiaphers are atoms having:
A. p / n constant
B. $(p-n)$ constant
C. $(n-p)$ constant
D. $(n-p)$ different

Answer: (c)
14. If two light nuclie are fused together in nuclear reaction, the average energy per nucleon:
A. increaes
B. decreases
C. reamians same
D. none of these

Answer: (b)

- Watch Video Solution

15. ${ }_{92}^{235} U$ belongs to $I I I B$ group of the periodic table, It loses one $\alpha-$ particle, the new element will belong to the group.
A. $I B$
B. $I A$
C. $I I B$
D. $V B$

Answer: (c)

- Watch Video Solution

16. A small subatojmic particle was passed through large watger tank conatining $C d$. The existence of this particles was inferred when two $-\gamma-$ rays were produced and a neutron was captured by $C d$. The particle was:
A. proton
B. neutrinos
C. electron
D. none of these

Answer: (b)
17. Radioacity of naptunium stops, when it is converted to:
A. $T h$
B. $R n$
C. Pb
D. $B i$

Answer: (d)

- Watch Video Solution

18. Least branching is found in which of the following radioactive series?
A. $4 n+2$
B. $4 n$
C. $4 n+3$
D. $4 n+1$

Answer: (b)

- Watch Video Solution

19. Conservation of energy into mass occurs in:
A. radioactivity
B. pair production
C. chemical change
D. all of these

Answer: (b)

- Watch Video Solution

20. The isotope used to find the age of series:
A. $\cdot{ }_{7}^{13} N$
B. ${ }_{6}^{12} C$
C. ${ }_{88}^{226} R a$
D. ${ }_{6}^{14} \mathrm{C}$

Answer: (d)

- Watch Video Solution

21. In the carbon cycle form which hot starts obain their energy, the ${ }_{6}^{12} C$ nuclecus:
A. is completely converted into energy
B. is regenrated at the end of the cycle
C. is broken up into its consituednt protons and neutrons
D. is combined with oxygen to from carbon monoxide

Answer: (d)

22. The $t_{1 / 2}$ for . ${ }^{14} \mathrm{C}$ in (i). ${ }^{14} \mathrm{CO}_{2}$, (ii) . ${ }^{14} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$,
(iii) Coal containing $\cdot{ }^{14} C$,
(iv) Cellulose conatining. ${ }^{14} \mathrm{C}$ os:
A. more in ${ }^{14} \mathrm{CO}_{2}$
B. more in coal containing. ${ }^{14} C$
C. more in . ${ }^{14} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
D. Same in all species.

Answer: (d)

- Watch Video Solution

23. The radioactivity of a sample is R_{1} at a time T_{1} and R_{2} at a time, T_{2} If the half-line of the secimen is T, the number of atoms that have disintergrated in the time $\left(T_{2}-T_{1}\right)$ is proportional to:
A. $\left(R_{1} T_{1}-R_{2} T_{2}\right)$
B. $\left(R_{2}-R_{1}\right)$
C. $\left(R_{2}-R_{1}\right) / T$
D. $\left(R_{2}-R_{1}\right) T / 0.693$

Answer: (d)

- Watch Video Solution

24. Which nuclear raction is not correct?
A. ${ }_{29}^{63} C U\left(p,{ }_{1} H^{2}\right) \cdot{ }_{29}^{62} C u$
B. ${ }_{4}^{9} B e\left(\alpha,{ }_{0} n^{1}\right) \cdot{ }_{12}^{6} C$
C. ${ }_{5}^{10} B\left(\alpha, .{ }_{0} n^{1}\right) \cdot{ }_{13}^{7} N$
D. ${ }_{27}^{59} \mathrm{Co}\left({ }_{.0} n^{1},{ }_{1} H^{2}\right) \cdot{ }_{25}^{62} \mathrm{Mn}$

Answer: (d)
25. The parent nucleus of $(4 n+3)$ seires is:
A. ${ }^{228} A c$
B. . ${ }^{235} U$
C. . ${ }^{238} U$
D. ${ }^{237} T h$

Answer: (b)

- Watch Video Solution

26. If $5 g \mathrm{pf}$ a radioactive substanc ehas $t_{1 / 2}=12 h r, 20 g$ of the same substance will have a $t_{1 / 2}$ equal to:
A. $56 h r$
B. $3.5 h r$
C. $14 h r$
D. $28 h r$

Answer: (c)

- Watch Video Solution

27. A radioactive istope having a half-line of 3 day was received after 12
day. It was found that there were $3 g$ the istope when packed was:
A. $12 g$
B. $24 g$
C. $36 g$
D. $48 g$

Answer: (d)

- Watch Video Solution

28. Radioactive material is deacign with $t_{1 / 2}=30$ days on being, separated into two fractions, one of the fracation, immediately after separation decays with $t_{1 / 2}=2$ days. The other fraction, immediately after separation, would show:
A. Constant specific activitty
B. Increaing specific activity
C. Decay with $t_{1 / 2}=30$ day
D. Decay with $t_{1 / 2}=28$ day

Answer: (b)

- Watch Video Solution

29. A radioactive substance has a constant actity of 2000 disintegraion/mintue. The material is swparated into two fractions, one of which has an initlial activity of 100 disntegration per secound while the
other fraction decays with $t_{1 / 2}=24$ hour. The total activity in both samples after 48 hour of separation is:
A. 1500
B. 1000
C. 1250
D. 2000

Answer: (d)

- View Text Solution

30. The energy released during the fussion of 1 kg uranium is a) $9 \times 10^{23} \mathrm{ergs}$ b) $9.0 \times 10^{10} \mathrm{ergs} \mathrm{c)} 9.0 \times 10^{18} \mathrm{ergs} \mathrm{d)} 9.0 \times 10^{8} \mathrm{ergs}$
A. $9.0 \times 10^{20} \mathrm{erg}$
B. $9.0 \times 10^{10} \mathrm{erg}$
C. $9.0 \times 10^{18} \mathrm{erg}$.
D. $9.0 \times 10^{8} \mathrm{erg}$

Answer: (a)

- Watch Video Solution

31. Consider the following process of decay,
${ }_{.92}^{234} U \rightarrow{ }_{90}^{230} \mathrm{Th}+{ }_{.}{ }_{2}^{4} \mathrm{He}, t_{1 / 2}=250000 \mathrm{yr}$
${ }_{.90}^{230} \mathrm{Th} \rightarrow{ }_{.88}^{226} \mathrm{Ra}+{ }_{.2}(4) \mathrm{He}, r_{1 / 2}=80000 \mathrm{yr}$
${ }_{.88}^{226} R a \rightarrow{ }_{.86}^{222} R n+{ }_{2}^{4} \mathrm{He}, t_{1 / 2}=1600 y r$
After the above process has occurred for a long tiem, a state is reached where for every two thorium atoms formed form ${ }_{92}^{234} U$ one decomposes to from ${ }_{.88}^{226} R a$ and for every two ${ }_{.88}^{226} R a$ formed, one decomposes. The ratio of ${ }_{90}^{230} T h$ to ${ }_{88}^{226} R a$ will be:
A. $\frac{25000}{80000}$
B. $\frac{80000}{1600}$
C. $\frac{250000}{1600}$
D. $\frac{250000 \times 1600}{80000}$

- View Text Solution

32. The nucleus and an atom can be assumed to be spherical. The relation between radius of the nucleus and mass number A is given by $1.25 \times 10^{-13} \times A^{\frac{1}{3}}$. The radius of atom is one \AA if the mass number is 64 , the fraction fo the atomic volume that is occupied by the nucleus is:
A. 1.0×10^{-13}
B. 5.0×10^{-5}
C. 2.0×10^{-2}
D. 1.25×10^{-13}

Answer: (d)

33. A freshly prepared radioactive source to half-life $2 h r$, emits radiatiosn of intensity which is 64 times the permissible safe level. The minumum time after which it would be possibleto work safely with the source is:
A. $6 h r$
B. $12 h r$
C. $24 h r$
D. $128 h r$

Answer: (b)

- Watch Video Solution

34. Two radio-isotopes P and Q of atomic weight 10 and 20 respetively are mixed ratio is found to be $1: m 4$ Isotope P has a half-life of 10 day The half of isotope Q is:
A. Zero
B. 5 day
C. 20 day
D. Infinite

Answer: (d)

- View Text Solution

35. Half-life on an element is ' t ' secound. In $t / 2$ second the fraction of the element decayed is:
A. 29%
B. 25%
C. 21%
D. 17%

Answer: (a)

36. A radiioactive element X, decays by the sequence and with half-lives, given below:
$X[$ Half-life $=30 \mathrm{~min}] \xrightarrow{\lambda_{1}} Y+\alpha$
$Y[$ Half-life $=2$ day $] \xrightarrow{\lambda_{2}} Z+2 \beta$
Which of the follwing statements is correct?
A. Disinetration constant $\lambda_{2}>\lambda_{1}$
B. Atomic number of X and Z are same.
C. The mass numner of X and Z are same
D. Y and Z are isotopes.

Answer: (b)

- Watch Video Solution

37. A radioactive element X has an atomic number of 100. It decays directly into an element Y which decays directly into an element Z. In
both the processes either one α or one β - particle is emitted. Which of the following statement could be true?
A. Y has an atomic number of 102
B. Y has an atomic number of 101
C. Z has an atomic number of 100
D. Z has an atomic number of 37

Answer: (b)

- Watch Video Solution

38. When ${ }_{17} \mathrm{Cl}^{35}$ undergoes (n, p) reaction, the radioisotope formed is
a). ${ }_{15} P^{32}$
b). ${ }_{16} S^{35}$
c). ${ }_{16} S^{34}$
d). ${ }_{15} P^{34}$
A. ${ }_{15}^{32} P$
B. ${ }_{16}^{35} S$
C. ${ }_{16}^{34} S$
D. ${ }_{15}^{34} P$

Answer: (b)

- Watch Video Solution

39. A radioactive isotope has initial activity of 28 dpm Its activity is reduced to 14 dpm after half an hour. The initial number of nuclide in sample was:
A. 200
B. 400
C. 600
D. 1211

Answer: (d)

- Watch Video Solution

40. The number of β - particle emitted during the change.$a X^{c} \rightarrow_{d} Y^{b}$ is
A. $\frac{a-b}{4}$
B. $d+\left[\frac{a-b}{2}\right]+c$
C. $d+\left[\frac{c-b}{2}\right]-a$
D. $d+\left[\frac{a-b}{2}\right]-c$

Answer: (c)

(D) Watch Video Solution

41. The nucler reacion,
$.{ }_{29}^{63} \mathrm{Cu}+{ }_{.}{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{.17}^{37} \mathrm{Cl}+14 \cdot{ }_{1}^{1} \mathrm{H}+16 .{ }_{0}^{1} n$ represents:
A. Artofoca, radopactivity
B. Induced radioactivity
C. Nuclear fission
D. Spallation reaction

Answer: (d)

- Watch Video Solution

42. The mass number of a nuclide is 64 . What is its nuclear radius?
A. 1 fermi
B. 5.2 fermi
C. 6.5 fermi
D. 3.8 fermi

Answer: (b)

- Watch Video Solution

43. In the nuclear chain ractio:
${ }_{.}^{235} \mathrm{U}+.{ }_{0}^{1} n \rightarrow{ }_{.}{ }_{56}^{141} \mathrm{Ba}+{ }_{.}{ }_{36}^{92} \mathrm{Kr}+3 .{ }_{0}^{1} n+E$
The number fo neutrons and energy relaesed in nth step is:
A. $3 n, n E$
B. $3^{n}, n E$
C. $3^{n}, 3^{n-1} E$
D. none of these

Answer: (c)

- Watch Video Solution

44. One mole of A present in a closed vessel undergoes decay as:
$\cdot{ }_{Z}^{A} \rightarrow{ }_{Z-4}^{m-8} B+2 \cdot{ }_{2}^{4} \mathrm{He}$. The volume of He collected at $N T P$ after 20
day ($t_{1 / 2}$ for $A=10$ day) is:
A. 11.2 litre
B. 22.4 litre
C. 33.6 litre
D. 67.2 litre

Answer: (c)

- Watch Video Solution

45. The half life of . ${ }^{131} I$ is 8 day. Given a sample of.${ }^{131} 1$ at $t=0$, we can assert that:
A. No mucleus wil decay $t=4$ day
B. No nucleus will decay before $t=8$ day
C. All nuclei will decay before $t=16$ day
D. A given nucleus may decay at any time after $t=0$

Answer: (d)

46. Number of neutrons i8n a parent nucleus X, which gives.${ }_{7}^{14} \mathrm{~N}$ after two sucessive β - emission would be:
A. 6
B. 7
C. 8
D. 9

Answer: (d)

- Watch Video Solution

47. The activity fo a radio nuclide $\left({ }^{100} X\right)$ is 6.023 cuire. If the disnegration constant is $3.7 \times 10^{-4} \mathrm{sec}^{-1}$, the mass of radio nuclide is:
A. $10^{-14} g$
B. $10^{-6} g$
C. $10^{-15} g$
D. $10^{-3} g$

Answer: (c)

- Watch Video Solution

48. Sulphur $35(34,96903 \mathrm{amu})$ emits a β - particles but no γ-rays. The product is chlorine $-35(34,96885 \mathrm{amu})$., The maximum energy carried by $\beta-$ particle is:
A. 16.758 MeV
B. 1.6758 MeV
C. 0.16758 MeV
D. 0.016758 MeV

Answer: (c)
49. A radioactive element A decays with a decay constant λ. The fraction of nuclei that decayed at any time t, if the initial nucle are N_{0} is given by:
A. $e^{-\lambda t}$
B. $1-e^{-\lambda t}$
C. $e^{\lambda t}$
D. $\frac{1}{1-e^{\lambda t}}$

Answer: (b)

- Watch Video Solution

50. Which of the following can show $\gamma-$ emission?
A. $\left.{ }_{937}\right)^{81} R b+{ }_{-1}^{0} e \rightarrow{ }_{-36}^{81} \mathrm{Kr}+\ldots$
B. . ${ }_{6}^{11} C \rightarrow{ }_{.}^{11} B+\ldots$
C. $.{ }_{7}^{14} \mathrm{~N}+.{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{.}^{17} \mathrm{O}+\ldots$
D. $.{ }_{27}^{60 \mathrm{~m}} \mathrm{Co} \rightarrow{ }_{27}^{60} \mathrm{Co}+\ldots$

Answer: (d)

- Watch Video Solution

51. γ radiations form a radioactive element may be produced:
A. Directly without emission fo α or β - particles
B. Simulaneouly with emission of α or β - particles
C. Subsequency with emission of α or β - particles
D. Never

Answer: (c)

- Watch Video Solution

52. Which of the following statement is wrong?
A. Nuclear radius is often expressed in fremi $\left(1 F=10^{-15} \mathrm{~m}\right)$
B. Nuclear forces are short range and not strong attractive forces
C. Nuclear forces are about 10^{21} times stronger than coulombic forces
D. Stabililty of nucleus is governed by inverse square law.

Answer: (d)

- Watch Video Solution

53. Which of the following statements is wrong?
A. Area of cross-section of nucleas in about 1 barn

$$
\left(1 \text { barn }=10^{-24} \mathrm{~cm}^{2}\right)
$$

B. Elements placed below the belt of stablility shwo positorn emission to increase their $\frac{n}{p}$ ratio
C. Elements placed above the belt of stablility show β - emission to decrease their $\frac{n}{p}$ ratio
D. $K-$ electron capture emits γ rays.

Answer: (d)

- Watch Video Solution

54. Which of the following statements is wrong?
A. α - decay always produces isodiapher
B. β - decay always produces isbar
C. The maximum $\frac{n}{p}$ ratio and maxiumum $\frac{n}{p}$ ratio stands for $H-$ isotoopes
D. Synchroton can accelerate neutron particles.

Answer: (d)
55. If E_{e} is the energy needed to remove an electron from atom and E_{n} be energy needed remove a nucleion, then:
A. $E_{n}<E_{e}$
B. $E_{n}>E_{e}$
C. $E_{n}<E_{e}$
D. $E_{n} . \gtrless E_{e}$

Answer: (b)

- Watch Video Solution

56. Nuclear reacations either exoeerge or endoregic shows the exchange of:
A. Kinetic energy
B. Electrical energy
C. Potential energy
D. Heat energy

Answer: (a)

- View Text Solution

57. The reaction, ${ }_{\cdot 13}^{27} \mathrm{Al}+{ }_{\cdot 2}^{4} \mathrm{He} \rightarrow{ }_{\cdot 14}^{30} \mathrm{~S}+\cdot{ }_{1}^{1} \mathrm{H}$:
A. Nuclear fission
B. Nulclear fusion
C. Nuclear transmutration
D. Artifical radioactivity

Answer: (c)

- Watch Video Solution

58. ${ }_{6}^{11} C$ on decay produces:
A. Positron
B. $\beta-$ particle
C. $\alpha-$ particle
D. $\gamma-$ rays

Answer: (a)

- Watch Video Solution

59. One important source of energy of volacans erruption is:
A. Hot mealn steam trapped in earth
B. The pressure of ice at the earth pole
C. Decay of radioactive matter
D. The petroleum deposits stored under pressure

Answer: (c)
60. The decay of mass during nuclear fusion and nuclear fission are respectively:
A. $0.1 \%, 0.231$
B. $0.231 \%, 0.1 \%$
C. $0.2 \%, 0.4 \%$
D. $0.3 \%, 0.6 \%$

Answer: (a)

- View Text Solution

61. If equal number of atom of two radioactive elements are consisdered, the most dangerous would be the one with a half-life of:
A. 4.0 million year
B. 100 year
C. 0.01 sec
D. 1 sec

Answer: (c)

- Watch Video Solution

62. As an $\alpha-$ paricle approaches $a .{ }_{7} N^{14}$ nuclesus, the potential energy:
A. Increases as it approaches nuclus
B. Attains maximum value as inernuclear distance is approached
C. Reaches to a minium at the time of fusion.
D. All of the above

Answer: (d)
63. An alkaline earth metal is radioactive. It and its daughter element decay by emitting 3α-particles in succession. In what group should the resulting element be formed?
A. 4
B. 6
C. 16
D. 14

Answer: (d)

- Watch Video Solution

64. Two radioactive nuclides A and B have half-lives in the ratio $2: 3$ respectively. An experiment is made with one mole of each of them.

Calculate the molar ratio of A and B after a time interval of three times of half-line of A.
A. $1: 2$
B. 2:1
C. $1: 3$
D. 3:1

Answer: (a)

- Watch Video Solution

65. The rate of decay of a radioactive species is given by R_{1} at time t_{1} and
R_{2} at later time t_{2}. The mean life of this radioactive species is:
A. $\frac{t_{2}-t_{1}}{\operatorname{In} R_{1}-\operatorname{In} R_{2}}$
B. $\frac{t_{2}-t_{1}}{\operatorname{In} R_{2}-\operatorname{In} R_{1}}$
C. $\frac{t_{2}+t_{1}}{\operatorname{In} R_{2}+\operatorname{In} R_{1}}$
D. $\frac{t_{2}-t_{1}}{\operatorname{In} R_{2}+\operatorname{In} R_{1}}$
66. Two radioactive materials X_{1} and X_{2} have decay constants 10λ and λ respectively. If initially they have the same numbers of nucle, then the ratio fo the nclie of X_{1} to that X_{2} will be $1 / e$ after a time:
A. $\frac{1}{10 \lambda}$
B. $\frac{1}{11 \lambda 0}$
C. $\frac{11}{10 \lambda}$
D. $\frac{1}{9 \lambda}$

Answer: (d)

- Watch Video Solution

67. The half life of . ${ }^{215} A t$ is $100 \mu s$. The time taken for the radioacticity of . ${ }^{215} A t$ to decay to $1 / 16^{\text {th }}$ of its initial value is:
A. $400 \mu s$
B. $6.3 \mu s$
C. $40 \mu s$
D. $300 \mu s$

Answer: (a)

- Watch Video Solution

68. The order of magnitude of density of urnaitum nucleus is:
$\left(m_{\text {nucleus }}=1.67 \times 10^{-27} \mathrm{~kg}\right)$
A. $10^{20} \mathrm{~kg} / \mathrm{m}^{3}$
B. $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
C. $10^{14} \mathrm{~kg} / \mathrm{m}^{3}$
D. $10^{11} \mathrm{~kg} / \mathrm{m}^{3}$
69. ${ }^{22}$ Ne nucleus after absorting energy, decays into two alpha-particles and an unknown nucleus. The nucleus is:
A. N
B. C
C. B
D. O

Answer: (b)

- Watch Video Solution

70. The half-life period of a radioactive element x is same as the mean life time of another radioactive element y. Initially, both of them have the same number of atoms. Then,
(a) x and y have the same decay rate initially
(b) x and y decay at the same rate always
(c) y will decay at a faster rate than x
(d) x will decay at a faster rate than y
A. X and Y have the same decay rate initially
B. X and Y decay at the same rate always
C. Y will decay at a faster rate than X
D. X will decay at a faster rate than Y

Answer: (c)

- Watch Video Solution

71. Consider $\alpha-, \beta$ - particles and $\gamma-$ rays, each having an energy fo 0.5 Mev in increasing order f penertation power, the radiations are:
A. α, β, γ
B. α, γ, β
C. β, γ, α
D. γ, β, α

Answer: (a)

- Watch Video Solution

72. During a negative beta decay:
A. An atomic electron is ejected
B. Am electron which is already present in nucleus is ejected.
C. A neutron in the nucleus decay emitting electrons
D. A part of the biniding energy of the nucleus is converted into electron

Answer: (c)
73. The half-life period of radon is 3.8 days. After how many will only onetwentieth of radon sample be left over?
A. 3.8 day
B. 16.5 day
C. 33 day
D. 76 day

Answer: (b)

- Watch Video Solution

74. The equation: $4 .{ }_{1}^{1} \mathrm{H}^{+} \rightarrow .{ }_{2}^{4} \mathrm{He}{ }^{2+}+2 e+26 \mathrm{MeV}$ represnets.
A. β - decay
B. $\gamma-$ decay
C. Fusion
D. Fission

- Watch Video Solution

75. Mases of two isobars ${ }_{.29}^{64} \mathrm{Cu}$ and ${ }_{930}^{64} \mathrm{Zn}$ are 63.9298 amu and 63.9292 amu respectively. It can be concluded form these data that:
A. Both the isobars are stable
B. ${ }^{64} \mathrm{Zn}$ is radioactive, decaying to.${ }^{64} \mathrm{Cu}$ through β - decay
C. . ${ }^{64} \mathrm{Cu}$ is radioactive, decaying to.$^{64} \mathrm{Zn}$ through $\gamma-$ decay
D. ${ }^{64} \mathrm{Cu}$ is radioactive, decaying to.${ }^{64} Z n$ throgh $\beta-$ decay

Answer: (d)

- Watch Video Solution

76. The deacy time t for radioactive element proceeds to 4 half-lives. The total decay time (t) in terms of average life (T) is given by:
A. $t=27 \ln 2$
B. $t=4 T \ln 2$
C. $t=27^{4} \ln 2$
D. $\frac{1}{T^{2}} \ln 2$

Answer: (b)

- Watch Video Solution

77. The half-life of $4.0 \mathrm{mg} \beta$ - emitter of . ${ }^{210} X$ is 5 day and the average energy of emitted $\beta-$ particle is 0.34 MeV . At what rate in watts does the sample emits energy?
A. 2.0
B. 0.1
C. 1.5
D. 1.0

Answer: (d)

D Watch Video Solution

78. In sun and other stars, where temperature is about $10^{7} \mathrm{~K}$ fusion, takes place dominatly by:
A. Proton-nitrogen cycle
B. Proton-proton cycle
C. proton-deuterium cycle
D. proton-lithium cycle

Answer: (b)

- Watch Video Solution

79. In botter star where the temperature is about $10^{8} \mathrm{~K}$, fusion takes place3 and the cyclic is known as:
A. Proton-carbon cycle
B. Proton-proton cycle
C. Carbon-deuterium cylce
D. Nitrogen-oxygen cycle

Answer: (a)

D Watch Video Solution

80. Which radioactive series do not show emanation?
A. $T h$ - series
B. $N p-$ series
C. $U-$ series
D. $A c-$ series

Answer: (b)
81. Two elements P and Q have half-line of 10 and 15 minutes repectively. Freshly preapared sample of mixuture containing equal number of atoms is allowed to decay for 30 minutes. The ratio of number of atoms of P and Q in left in mixture is:
A. 0.5
B. 2.0
C. 3.0
D. 4.0

Answer: (a)

- Watch Video Solution

82. If $m g$ of a radioactive species (molar mass M) has decay constant λ The specis activity of sample at $t=$ is given by:
A. $\frac{\lambda . N_{A}}{M}$
B. $\frac{\lambda . N_{A} \cdot m}{M}$
C. $\frac{\lambda . m}{M}$
D. $m-M e^{\lambda}$

Answer: (a)

- Watch Video Solution

83. A radioactive nulei has half-life of 1.0 minute. If one of the nuclie decay now, the next nuclei will decay after:
A. 1.0 minute
B. $1 / 2$ minute
C. any time
D. $1 / N$ minute (N is no. of nuclei present at that moment)
84. A graph plotted between $\log N$ vs, time gives a slope and intercept equal to:
A. $-\frac{\lambda}{2.303}, \log N_{0}$
B. $\frac{\lambda}{2.303}, \log N_{0}$
C. $-\frac{\lambda}{2.303}, N_{0}$
D. $\frac{\lambda}{2.303}, N_{0}$

Answer: (a)

- Watch Video Solution

85. A radioactive species undergoes decay for time t where $t=4 t_{1 / 2}$. The average life (T) of species can therefore be given by:
A. $2 t$ in $2=T$
B. $4 t$ in $2=T$
C. $T=\frac{t}{4 \operatorname{In} 2}$
D. $T=\frac{t}{2 \operatorname{In} 2}$

Answer: (c)

- Watch Video Solution

86. The half of a radioactive sample is $2 n$ year. The fraction left undecyed after n year is:
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{\sqrt{3}}$
D. 2
87. The density of a nucleus varies with the mass number A as:
A. $(A)^{2}$
B. $(A)^{0}$
C. $(A)^{1 / 3}$
D. (A)

Answer: (b)

Watch Video Solution
88. ${ }_{1}^{3} H$ and.${ }_{2}^{4} H e$ are:
A. Nuclear isomers
B. Isotones
C. Isodiaphers
D. Isobars

D Watch Video Solution

89. The rate of decay of a radioactive species is given by R_{1} at time t_{1} and R_{2} at later time t_{2}. The mean life of this radioactive species is:
A. $T=\frac{\left(t_{1}-t_{2}\right)}{\operatorname{In}\left(R_{2} / R_{1}\right)}$
B. $T=\frac{\left(t_{2}-t_{1}\right)}{\operatorname{In}\left(R_{2} / R_{1}\right)}$
C. $T=\frac{\left(t_{2}-t_{1}\right)}{\operatorname{In}\left(R_{1} / R_{2}\right)}$
D. $T=\frac{\operatorname{In}\left(R_{2}\right) / R_{1}}{\left(t_{2}-t_{1}\right)}$

Answer: (a)

- Watch Video Solution

90. Two reactions having their energy of activation E_{1} and E_{2} temperature coefficients $T_{c_{1}}$ and $T_{c_{2}}$ respectively within the temperature

300 and 310 K . The ratio of their temperature coefficient is:
A. $e^{E_{1} / E_{2}}$
B. $e^{\left(E_{1}-E_{2}\right) \times 10^{-4} / R}$
C. $10^{E_{1} / E_{2}}$
D. $e^{\left(E_{1}-E_{2}\right) / 4}$

Answer: (b)

- View Text Solution

91. The activity fo a radioactive sample decrases $t 1 / 3$ of the orginal acticity. A_{0} in a period of 9 year. After 9 year more, its activity will be:
A. $\frac{A_{0}}{2}$
B. $\frac{2 A_{0}}{9}$
C. $\frac{3 A_{0}}{9}$
D. $\frac{A_{0}}{9}$

Answer: (d)

- Watch Video Solution

92. The half line of a radioactive element is $2 n$ year. The fraction decayed in n year.
A. 0.10
B. 0.29
C. 1.414
D. 0.414

Answer: (b)

- Watch Video Solution

Exercies 3B

1. Proton rich nuclide often tends to decrease proton count. Ibnall such types of decay which probable decay occurs:
A. Emission of posittion: ${ }^{29} P \rightarrow{ }_{15}^{29} \mathrm{Si}+{ }_{{ }^{0}}{ }_{+1} \mathrm{e}$
B. Caputre of electron: ${ }_{4}^{7} \mathrm{Be}+.{ }_{-1}^{0} \mathrm{e} \rightarrow{ }_{.}^{7} \mathrm{Li}$
C. Emission of proton: $:{ }_{21}^{43} S c \rightarrow{ }_{.{ }_{20}}^{42} C a+{ }_{+{ }_{+1}}^{p}+\gamma$
D. Emisssion of $\alpha-$ particle: ${ }_{6}^{14} C \rightarrow .{ }_{7}^{14} N+.{ }_{-1}^{0} e$

Answer: (a, b, c, d)

- Watch Video Solution

2. Select the correct statements.
A. The diameter of nucleus is of the order 10 fm
B. ${ }_{53}^{137} I$ undergoes decay to give ${ }_{53}^{136} I$ and neutron
C. $K-$ electron capture always followed by X - rays emission
D. Nuclide with higher binding energy can emit β - particles in first decay.

Answer: (a, b, c)

- Watch Video Solution

3. The nuclear reaction accompanied with emission of neutron (s) are:
A. ${ }_{13} A l^{17}+{ }_{.2} H e^{4} \rightarrow{ }_{15} P^{30}$
B. . ${ }_{6} C^{12}+{ }_{.1} H^{1} \rightarrow{ }_{.7} N^{14}$
C. ${ }_{15} P^{30} \rightarrow{ }_{14} S i^{30}+{ }_{+1} e^{0}$
D. ${ }_{96} A m^{241}+{ }_{.2} \mathrm{He}^{4} \rightarrow{ }_{.97} B k^{244}+{ }_{.+1} e^{0}$

Answer: (a, d)
4. In breeder reactors:
A. U^{2380} isotpoe can be used to breed the fissionable isotope $P u^{239}$
B. $T h^{232}$ isotope can be used to breed the fissionable isotope U^{233}
C. Any radioactive can be used to breeed the fissionable isotope.
D. More fissionable material is produced than it is consumed.

Answer: (a, b, d)

- Watch Video Solution

5. Which of the following statements (s) is (are) correct?
A. $(4 n+2)$ series starts from ${ }_{.92} U^{238}$ and ends with ${ }_{82} P b b^{206}$
B. $(4 n+1)$ series is also called uranium series.
C. Neptunium series consists of man made elements.
D. The mass no. of all the members of $4 n+1$ series give 1 (one) when dividied by 4.

Answer: (a, c, d)

D Watch Video Solution

6. A radioactive element X, decays by the sequence and with half-lives, given below,

Which of the follwing statemetns about this system are correct?
A. After two hours, less than 10% of the initail X si left.
B. Maximum amount of Y present at any time is less than 50% of the initial amount of X
C. Atomic no.of X and Z are same.
D. Mass no. of Y is greater than X.

Answer: (a, c)

D Watch Video Solution

7. The activity of a radioactive substance is R_{0} at $t=0, R_{1}$ at $t=t$ and
R_{2} at $t=2 t$. The decay constant of this species is/are given by:
A. $\frac{\log _{e} R_{1}-\log _{e} R_{2}}{t}$
B. $\frac{\log _{e} R_{0}-\log _{e} R_{1}}{t}$
C. $\frac{\log _{e} R_{2}-\log _{e} R_{1}}{2 t}$
D. $\frac{\log _{e} R_{0}-\log _{e} R_{1}}{2 t_{2}}$

Answer: (a, b, d)

- Watch Video Solution

8. Which of the following equactions pick out the possible nuclear fusion reactions?
A. ${ }_{6} C^{13}+{ }_{\cdot 1} H^{1} \rightarrow{ }_{\cdot 6} C^{14}+$ energy
B. ${ }_{6} C^{12}+{ }_{\cdot 1} H^{1} \rightarrow{ }_{\cdot 7} N^{13}+$ energy
C. ${ }_{7} N^{14}+{ }_{\cdot 1} H^{1} \rightarrow{ }_{.8} O^{15}+$ energy
D. ${ }_{92} U^{235}+{ }_{.0} n^{1} \rightarrow{ }_{.54} X e^{140}+.{ }_{.38} S r^{94}+{ }_{.0} n^{1}+{ }_{.0} n^{1}+$ energy

Answer: (b, c)

- Watch Video Solution

9. Which of the following statements are not correct?
A. Carbon dating cannot be used to determine concentration of C^{14} in dead being.
B. Radioactive absorption due to cosmic radiation is equal to the rate
fo radioactive decay, hence the carbon contents remains constant in organism
C. In living organism circularion of C^{14} from attosmphere is high so that carbon content is constant is organism.
D. Carbon dating can be made to find out the age of earth and rocks.

Answer: (a, c, d)

D View Text Solution

10. Which statements about radioactive equillibrium are correct?
A. It is also called secular equiliibrium.
B. The equiilbrium is attanied when parent atom has $t_{1 / 2}$ more than
$t_{1 / 2}$ of daughter element.
C. the equilibrium is attained when λ of parent element is more than daugter element.
D. No equilibrium if $t_{1 / 2}$ of parent element is less than $t_{1 / 2}$ of daughter element.

Answer: (a, b, d)

- Watch Video Solution

11. Which of the following nuclie have two magic numbers ?
A. ${ }_{8}^{16} O$
B. . ${ }_{2}^{4} \mathrm{He}$
C. ${ }_{92}^{238} U$
D. ${ }_{82}^{208} \mathrm{~Pb}$

Answer: (a, b, d)

- Watch Video Solution

12. Select the correct statements.
A. Amount decayed in a half-line depends upon the nature of radioactive species.
B. The fraction of amount deacayed is given by $1-e^{-\lambda t}$
C. Amoutn decauyed in first half is maximum.
D. None of these

Answer: (a, b, c)

- Watch Video Solution

13. If m_{p} and m_{n} are masses of proton and neutron respectively and M_{1} and M_{2} are masses of ${ }_{10} \mathrm{MeNe} e^{20}$ and ${ }_{20} \mathrm{Ca}^{40}$ nucleus repectively, then:
A. $M_{2}=2 M_{1}$
B. $M_{2}<2 M_{1}$
C. $M_{2}>2 M_{1}$
D. $M_{1}<10\left(m_{n}+m_{p}\right)$

Answer: (b, d)

- Watch Video Solution

Exercies 4

1. The intergrated rate equation is
$R t=\log , C_{0}-\log C_{t}$. The straight line graph is obtained by plotting:
A. t vs $\log C_{t}$
B. $\frac{1}{t}$ vs $\log C_{t}$
C. t vs C_{t}
D. $\frac{1}{t}$ vs $\log \frac{1}{C_{t}}$

Answer: (a)

- Watch Video Solution

2. β - particle in radioactivity is emitted by:
A. Coversion of proton to neutron
B. Outermost orbit
C. Conversion of neutron to proton
D. β - particle is not emitted

Answer: (c)

- Watch Video Solution

3. The half-life of a radioactive isotope is 3 hour. IF the initial mass of isotope were $256 g$ the mass of it remaining undercayed after $18 h r$ is:
A. $12 g$
B. $16 g$
C. $4 g$
D. $8 g$

Answer: (c)

- Watch Video Solution

4. The radioactive nuclide ${ }_{.90}^{234} T h$ shows two successive $\beta-$ decay followed by one $\alpha-$ decay. The atomic number and mass number respectively of the resulting atom is:
A. 90 and 230
B. 92 and 230
C. 92 and 234
D. 94 and 230

Answer: (a)
5. Consider the follwing nuclear reactions:
${ }_{.92}^{238} M \rightarrow{ }_{9}^{x} N+2.2 H e^{4}$
${ }_{\cdot}^{x} N \rightarrow \cdot{ }_{B}^{A} L+2 \beta^{+}$
A. 146
B. 144
C. 140
D. 142

Answer: (b)

- Watch Video Solution

6. The half-life of a radioisotoe is four horu. If the initial mass of the isotope was $200 g$, the mass left after 24 hour undercayed is:
A. $4.167 g$
B. $2.084 g$
C. $3.125 g$
D. $1.042 g$

Answer: (c)

- Watch Video Solution

7. Hydrogen bomb is based on the principle of
A. Nuclear fission
B. Natural radioactivity
C. Nuclear fusion
D. Artifical radioactivity

Answer: (c)
8. A photon of hard gamma radiations knocks out a proton for ${ }_{12}^{24} \mathrm{Mg}$ nucleaus to from:
A. The isotope of parent nucleus
B. The isobar of parent nucleaus
C. The nuclide ${ }_{11}^{23} \mathrm{Na}$
D. The isobar of ${ }_{11}^{23} N A$

Answer: (c)

- Watch Video Solution

9. In the transormation fo ${ }_{992}^{238} U$ to ${ }_{.92}^{234} U$, if one emission is an $\alpha-$ particle, what should be the other emission(s)?
A. Two β^{-}
B. Two β^{-}and one β^{+}
C. One β^{-}and one γ
D. One β^{+}and one β^{-}

Answer: (a)

- Watch Video Solution

10. A radioactive element gets spilled over the floor of a room. Its half life period is 30 days. If the initial activity is ten times the permissibel value, after how many days will it be safe to enter the room?
A. $\equiv 1000$ days
B. $\equiv 300$ days
C. $\equiv 10$ days
D. $\equiv 100$ days

Answer: (d)

- Watch Video Solution

11. Which of the follwong nuclear reactiosn will generate an isotope?
A. neutron particle emission
B. position emission
C. $\alpha-$ particle emssion
D. $\beta-$ particle emission

Answer: (a)

- Watch Video Solution

12. ${ }_{13} A l^{27}$ is a stable isotope. ${ }_{13} A l^{29}$ is expected to disintegrate by
A. $\alpha-$ emission
B. $\beta-$ emission
C. postion emission
D. proton emission

Answer: (b)

- Watch Video Solution

13. The number of neutrons accompanying the formation of ${ }_{54} X e^{139}$ and ${ }_{\cdot 38} S r^{94}$ from the absorption of a slow neutron by $.92 U^{235}$, followed by nuclear fission is
A. 0
B. 2
C. 1
D. 3

Answer: (d)

Watch Video Solution
14. Decreases in atomic number is observed in:
A. $\alpha-$ emission
B. $\beta-$ emssion
C. positron emssion
D. electron capture

Answer: (a)

D Watch Video Solution

15. ${ }^{23} \mathrm{Na}$ is the more stable isotope of Na . Find out the process by which
.${ }_{-11}^{24} \mathrm{Na}$ can undergo radioactive decay.
A. $\beta-$ emssion
B. $\alpha-$ emission
C. β^{+}-emission
D. $K-$ electron capture
16. A positron is emitted from $\cdot{ }_{11} N a^{23}$. The ratio of the atomic mass and atomic number of the resulting nuclide is
A. $22 / 10$
B. $22 / 11$
C. $23 / 10$
D. $23 / 12$

Answer: (c)

- Watch Video Solution

17. Bombaradment of aluminium by α - particle leads to its artifical disinetegration in two ways, (i) and (ii) as shwon. Produces X, Y and Z
respectively are,

A. proton, neutron,positron
B. neutron,positron,proton
C. proton,positron,neutron
D. positron, proton, neutron

Answer: (a)

- Watch Video Solution

1. Calculate the number of α - and β-particles emitted when ${ }_{92} U^{238}$ into radioactive ${ }_{82} \mathrm{~Pb}^{206}$.

- Watch Video Solution

2. $C o^{60}$ has half-life of 5.3 years. Find the number of half-lives for $7 / 8$ of the orignal sample to disintergrate.

- Watch Video Solution

3. Find out the total number of α and β - particles in the following disintegration:
${ }_{.90} T h^{228} \rightarrow{ }_{.83} B i^{212}$

- Watch Video Solution

4. The decay product of tritium is $\cdot Z X^{A}$. Find the value of Z.
5. At radioactive equillibrium, the ratio between two atoms of radioactive element X and Y are $3.1 \times 10^{9}: 1$, If half life period of X is 2.17×10^{10} years. Find half life of Y.

- Watch Video Solution

6. Find the number of neutrons in a parent nucleus X, which gaves ${ }_{7} N^{14}$ after two succe3ssive β - emission.

- Watch Video Solution

7. If $12 g$ of a sample is taken, then $6 g$ of a sample decays in $1 h r$. Find the amount of sample showing decay in next hour.

- Watch Video Solution

8. The activity of a radioactive sample decreases to $1 / 3$ of the original activity, A_{0} in a period of 9 years. After 9 years more, its activity A_{0} / x. Find the value of x.

- Watch Video Solution

9. The number fo radioactive atoms of a radio isotope fails to 12.5% in 27 day. Calcualate the half-life of isotope.

- Watch Video Solution

10. Radioactive element of alkaline earth metal is succession loses $\alpha-$ and β - particles. How many particles it can loose before forming stable element?

- Watch Video Solution

11. The half-life of a radioactive isotope is 3 hour. IF the initial mass of isotope were $256 g$ the mass of it remaining undercayed after $18 h r$ is:

- Watch Video Solution

12. Two radioactive elements A and B have half life of t and $2 t$ respectively. If we start an experiment with 1 mole of each of them, the mole ratio after a time interval of $6 t$ so $x: y$. Find the value of $x+y$

- Watch Video Solution

13. The number of neutrons emitteed when ${ }_{.92}^{235} U$ undergoes controlled nulclear fission to ${ }_{54}^{142} \mathrm{Xe}$ and ${ }_{38}^{90} \mathrm{Sr}$ is:

- Watch Video Solution

14. The periodic table consists of 18 grooups. An isotope of copper, on bombardment with protons, undergoes a nuclear reaction yielding element X as shown below. To which group, element X belogns in the periodic table?
$.{ }_{29}^{63} \mathrm{Cu}+\cdot{ }_{1}^{1} \mathrm{H} \rightarrow 6 \cdot{ }_{0}^{1} n+\alpha+2 .{ }_{1}^{1} H+X$

- Watch Video Solution

Exercies 7

1. The stabiliy of nuclies has been explained in terms of binding energy.

Higher is binding energy, more is stabliliy to nucleus. The binding energy is written as $B . E=931.478 \times \Delta m^{\prime} \mathrm{MeVm}$ wehre Δm^{\prime} is mass decayed in amu. If $B . E$. /nucleon lies below the belt of stablilty, the nucleus undergoes α - emission in order to lower down the energy level of nucleus but its n / p ratio increases. To lower down the energy level of nucleus but is n / p ratio increases. To lower down level of nucleus loses
$\beta-$ particles and if stability is not gained, $\gamma-$ emission is noticed. A
radioactive element on losing on α - particles shows a loss in its mass number by 4 units and atomic number by 2 units whereas β - emission leads to a gain in at.no by one units and mass no. remains same. Loss in mass during the change.
A. $3.07 \times 10^{-26} g$
B. $3.07 \times 10^{-20} g$
C. $1.86 \times 10^{-2} g$
D. $1.86 \times 10^{-4} g$

Answer: a

- View Text Solution

2. The stabiliy of nuclies has been explained in terms of binding energy.

Higher is binding energy, more is stabliliy to nucleus. The binding energy is written as $B . E=931.478 \times \Delta m^{\prime} \mathrm{MeVm}$ wehre Δm^{\prime} is mass decayed in amu. If $B . E$. /nucleon lies below the belt of stablilty, the nucleus undergoes α - emission in order to lower down the energy level
of nucleus but its n / p ratio increases. To lower down the energy level of nucleus but is n / p ratio increases. To lower down level of nucleus loses $\beta-$ particles and if stability is not gained, $\gamma-$ emission is noticed. A radioactive element on losing on α - particles shows a loss in its mass number by 4 units and atomic number by 2 units whereas $\beta-$ emission leads to a gain in at.no by one units and mass no. remains same.
$\underset{(E . S .)}{{ }_{8}^{19}} O \rightarrow \underset{(G . S .)}{{ }_{8}^{19}} O+1.06 \times 10^{8} \mathrm{kcal} / \mathrm{mol}$. The two oxygen atoms differ by a mass per mol is:
A. $5 \times 10^{-6} g$
B. $5 \times 10^{-3} g$
C. $5 \times 10^{-4} g$
D. $5 \times 10^{-5} g$

Answer: a

- Watch Video Solution

3. The stabiliy of nuclies has been explained in terms of binding energy. Higher is binding energy, more is stabliliy to nucleus. The binding energy is written as $B . E=931.478 \times \Delta m^{\prime} \mathrm{MeVm}$ wehre Δm^{\prime} is mass decayed in amu. If $B . E$. /nucleon lies below the belt of stablilty, the nucleus undergoes α - emission in order to lower down the energy level of nucleus but its n / p ratio increases. To lower down the energy level of nucleus but is n / p ratio increases. To lower down level of nucleus loses $\beta-$ particles and if stability is not gained, $\gamma-$ emission is noticed. A radioactive element on losing on α - particles shows a loss in its mass number by 4 units and atomic number by 2 units whereas β - emission leads to a gain in at.no by one units and mass no. remains same.
${ }_{.90}^{228} T h \xrightarrow{-\alpha} A$,If $T h$ belongs to IIIgpof periodic table, then ' A ' belongs to:
A. $I g p$.
B. IIgp.
C. IIIgp.
D. Zero $g p$

Answer: 'b

- Watch Video Solution

4. The stabiliy of nuclies has been explained in terms of binding energy. Higher is binding energy, more is stabliliy to nucleus. The binding energy is written as $B . E=931.478 \times \Delta m^{\prime} \mathrm{MeVm}$ wehre Δm^{\prime} is mass decayed in amu. If $B . E$. /nucleon lies below the belt of stablilty, the nucleus undergoes α - emission in order to lower down the energy level of nucleus but its n / p ratio increases. To lower down the energy level of nucleus but is n / p ratio increases. To lower down level of nucleus loses $\beta-$ particles and if stability is not gained, $\gamma-$ emission is noticed. A radioactive element on losing on α - particles shows a loss in its mass number by 4 units and atomic number by 2 units whereas $\beta-$ emission leads to a gain in at.no by one units and mass no. remains same.

An element having n / p ratio greater than 1 will show:
A. $\alpha-$ emission
B. β - emission
C. $\gamma-$ emission
D. Positron emission

Answer: b

- Watch Video Solution

5. The stabiliy of nuclies has been explained in terms of binding energy. Higher is binding energy, more is stabliliy to nucleus. The binding energy is written as $B . E=931.478 \times \Delta m^{\prime} \mathrm{MeVm}$ wehre Δm^{\prime} is mass decayed in amu. If $B . E$. /nucleon lies below the belt of stablilty, the nucleus undergoes α - emission in order to lower down the energy level of nucleus but its n / p ratio increases. To lower down the energy level of nucleus but is n / p ratio increases. To lower down level of nucleus loses $\beta-$ particles and if stability is not gained, $\gamma-$ emission is noticed. A radioactive element on losing on α - particles shows a loss in its mass number by 4 units and atomic number by 2 units whereas $\beta-$ emission leads to a gain in at.no by one units and mass no. remains same.

An element having n / p ratio lesser than 1 and lying below the belt of stabiiliy shows:
A. $\alpha-$ emission
B. β - emission
C. $\gamma-$ emission
D. Positron emission

Answer: d

- Watch Video Solution

6. The stabiliy of nuclies has been explained in terms of binding energy. Higher is binding energy, more is stabliliy to nucleus. The binding energy is written as $B . E=931.478 \times \Delta m^{\prime} \mathrm{MeVm}$ wehre Δm^{\prime} is mass decayed in amu. If B. E. /nucleon lies below the belt of stablilty, the nucleus undergoes α - emission in order to lower down the energy level of nucleus but its n / p ratio increases. To lower down the energy level of nucleus but is n / p ratio increases. To lower down level of nucleus loses
$\beta-$ particles and if stability is not gained, $\gamma-$ emission is noticed. A radioactive element on losing on α - particles shows a loss in its mass number by 4 units and atomic number by 2 units whereas $\beta-$ emission leads to a gain in at.no by one units and mass no. remains same.

Durting $K-$ electron capture, the emission is always in the region of:
A. $U V$
B. $I R$
C. $\gamma-$ emission
D. Positron emission

Answer: d

- Watch Video Solution

7. The stabiliy of nuclies has been explained in terms of binding energy. Higher is binding energy, more is stabliliy to nucleus. The binding energy is written as $B . E=931.478 \times \Delta m^{\prime} \mathrm{MeVm}$ wehre Δm^{\prime} is mass decayed in amu. If B. E. /nucleon lies below the belt of stablilty, the
nucleus undergoes α - emission in order to lower down the energy level of nucleus but its n / p ratio increases. To lower down the energy level of nucleus but is n / p ratio increases. To lower down level of nucleus loses $\beta-$ particles and if stability is not gained, $\gamma-$ emission is noticed. A radioactive element on losing on α - particles shows a loss in its mass number by 4 units and atomic number by 2 units whereas $\beta-$ emission leads to a gain in at.no by one units and mass no. remains same. Total number of $\alpha-$ and β - particles emitted during radioactive emssion of ${ }_{92}^{235} U$ to attain stabilty is:
A. $7 \alpha, 4 \beta$
B. $6 \alpha, 7 \beta$
C. $4 \alpha, 3 \beta$
D. $3 \alpha, 4 \beta$

Answer: a
8. Radioactive disintergation always follow I order kinetics and is independent of all external factors and is represented by the relation $N=N_{0} e^{-\lambda t}$ where λ is decay constant and N atoms are left at time t. The radioactive nature of element is expressed in terms of average life numerically equal to decay constant $(1 / \lambda)$ however all the radioactive do not lose their radioactive nature in thier average life. The radioactive emission involves α, β particles as well as $\gamma-$ rays.The penertrating power order is $\alpha<\beta<\gamma$. The emissions can perntrate even thick steel walls but are however unable to penttrate Pb blocks. The S unit fo rate of decay is $d p s$.

The percentage of atoms decayed in average life of a radioactive element is:
A. 36.78%
B. 63.22%
C. 3.678%
D. 6.322%

- Watch Video Solution

9. Radioactive disintergation always follow I order kinetics and is independent of all external factors and is represented by the relation $N=N_{0} e^{-\lambda t}$ where λ is decay constant and N atoms are left at time t. The radioactive nature of element is expressed in terms of average life numerically equal to decay constant $(1 / \lambda)$ however all the radioactive do not lose their radioactive nature in thier average life. The radioactive emission involves α, β particles as well as $\gamma-$ rays.The penertrating power order is $\alpha<\beta<\gamma$. The emissions can perntrate even thick steel walls but are however unable to penttrate $P b$ blocks. The S unit fo rate of decay is $d p s$.

The completion of radioactive emission from a species takes place in:
A. Average life
B. Half-life
C. $\frac{1}{2} \times$ average life
D. Infinity

Answer: d

- Watch Video Solution

10. Radioactive disintergation always follow I order kinetics and is independent of all external factors and is represented by the relation $N=N_{0} e^{-\lambda t}$ where λ is decay constant and N atoms are left at time t. The radioactive nature of element is expressed in terms of average life numerically equal to decay constant $(1 / \lambda)$ however all the radioactive do not lose their radioactive nature in thier average life. The radioactive emission involves α, β particles as well as $\gamma-$ rays.The penertrating power order is $\alpha<\beta<\gamma$. The emissions can perntrate even thick steel walls but are however unable to penttrate $P b$ blocks. The S unit fo rate of decay is $d p s$.

Which one cause more damage to humain tissue if exposed to radioacitve emission out of α or $\beta-$ paricles?
A. $\alpha-$ particles
B. $\beta-$ particles
C. Equal
D. None of these

Answer: a

D Watch Video Solution

11. Radioactive disintergation always follow I order kinetics and is independent of all external factors and is represented by the relation $N=N_{0} e^{-\lambda t}$ where λ is decay constant and N atoms are left at time t. The radioactive nature of element is expressed in terms of average life numerically equal to decay constant $(1 / \lambda)$ however all the radioactive do not lose their radioactive nature in thier average life. The radioactive emission involves α, β particles as well as $\gamma-$ rays.The penertrating power order is $\alpha<\beta<\gamma$. The emissions can perntrate even thick steel walls but are however unable to penttrate $P b$ blocks. The S unit fo rate of
decay is $d p s$.
Report the wrong realation:
A. Amount decayed after n halves $=\frac{N_{0}\left[2^{n}-1\right]}{2}$
B. Av. Life $=t_{1 / 2} \times \frac{1}{0.693}$
C. Fraction of nuclie decayed $=1-e^{-\lambda t}$
D. None of these

Answer: d

- Watch Video Solution

12. Radioactive disintergation always follow I order kinetics and is independent of all external factors and is represented by the relation $N=N_{0} e^{-\lambda t}$ where λ is decay constant and N atoms are left at time t. The radioactive nature of element is expressed in terms of average life numerically equal to decay constant $(1 / \lambda)$ however all the radioactive do not lose their radioactive nature in thier average life. The radioactive emission involves α, β particles as well as $\gamma-$ rays.The penertrating
power order is $\alpha<\beta<\gamma$. The emissions can perntrate even thick steel walls but are however unable to penttrate Pb blocks. The S unit fo rate of decay is $d p s$.

The number of $\beta-$ particles emitted during the change,.${ }_{a}^{c} X \rightarrow{ }_{d}^{b} Y$ is:
A. $\frac{a-b}{4}$
B. $d+\left[\frac{a-b}{2}\right]+c$
C. $d+\left[\frac{c-b}{2}\right]-a$
D. $d+\left[\frac{a-b}{2}\right]-c$

Answer: c

- Watch Video Solution

13. Radioactive disintergation always follow I order kinetics and is independent of all external factors and is represented by the relation $N=N_{0} e^{-\lambda t}$ where λ is decay constant and N atoms are left at time t. The radioactive nature of element is expressed in terms of average life numerically equal to decay constant $(1 / \lambda)$ however all the radioactive do
not lose their radioactive nature in thier average life. The radioactive emission involves α, β particles as well as $\gamma-$ rays.The penertrating power order is $\alpha<\beta<\gamma$. The emissions can perntrate even thick steel walls but are however unable to penttrate $P b$ blocks. The S unit fo rate of decay is $d p s$.

The half-life of $3 g$ of sample of a radioactive species.$^{14} \mathrm{CO}_{2}$ is 2 minute. If 10 g sample of.${ }^{14} \mathrm{CO}_{2}$ is taken, the half-life would be:
A. 2 minute
B. 1 minute
C. $\frac{46}{30}$ minute
D. $\frac{30}{46}$ minute

Answer: a

- Watch Video Solution

14. Radioactive disintergation always follow I order kinetics and is independent of all external factors and is represented by the relation
$N=N_{0} e^{-\lambda t}$ where λ is decay constant and N atoms are left at time t. The radioactive nature of element is expressed in terms of average life numerically equal to decay constant $(1 / \lambda)$ however all the radioactive do not lose their radioactive nature in thier average life. The radioactive emission involves α, β particles as well as $\gamma-$ rays.The penertrating power order is $\alpha<\beta<\gamma$. The emissions can perntrate even thick steel walls but are however unable to penttrate $P b$ blocks. The S unit fo rate of decay is $d p s$.

The mass of . ${ }^{14} C$ with $t_{1 / 2}=5730$ year having activity equal to 1 curies si:
A. $0.0043 g$
B. $2.243 g$
C. $22.43 g$
D. $224.3 g$

Answer: a

15. Rutherford studied the first nuclear reaction $\left[{ }_{7}^{14} N(\alpha, p) \cdot{ }_{8}^{17} O\right]$ which take place with a change in energy equivalent to 1.193 MeV . Later on various types of nuclear reactions such as artifical radioactivity, artifical transmutatoon, nuclear fission, nuclear fussion, spallation reactions etc.
were studied.
The reaction ${ }_{97}^{14} \mathrm{~N}+\cdot{ }_{2}^{4} \mathrm{He}+{ }_{8}^{17} \mathrm{O}+.{ }_{1}^{1} \mathrm{H}$ may be carried out by bombaring N atoms with α - particles of energy:
A. $=1.193 \mathrm{MeV}$
B. $>1.193 \mathrm{MeV}$
C. $<1.93 \mathrm{MeV}$
D. $\leq 1.93 \mathrm{MeV}$

Answer: b

- Watch Video Solution

16. Rutherford studied the first nuclear reaction $\left[{ }_{7}^{14} N(\alpha, p) \cdot{ }_{8}^{17} \mathrm{O}\right]$ which take place with a change in energy equivalent to 1.193 MeV . Later on various types of nuclear reactions such as artifical radioactivity, artifical transmutatoon, nuclear fission, nuclear fussion, spallation reactions etc. were studied.

The reaction, $._{33}^{75} \mathrm{As}+{ }_{1}^{2} H \rightarrow{ }_{25}^{56} \mathrm{Mn}+9 \cdot{ }_{1}^{1} H+12 \cdot{ }_{0}^{1} n$ is called nuclear reaction or:
A. Spallation reaction
B. Induced radioactivity
C. Nuclear fusion
D. Artifical radioactivity

Answer: a

- Watch Video Solution

17. Rutherford studied the first nuclear reaction $\left[{ }_{7}^{14} N(\alpha, p) \cdot{ }_{8}^{17} O\right]$ which take place with a change in energy equivalent to 1.193 MeV . Later on various types of nuclear reactions such as artifical radioactivity, artifical transmutatoon, nuclear fission, nuclear fussion, spallation reactions etc. were studied.

Nuclear fusion reactions is not:
A. Uncontrolled reaction
B. used in formation of H bomb
C. Thermo nuclear reactions
D. Carried out at low temperature

Answer: d

- Watch Video Solution

18. Rutherford studied the first nuclear reaction $\left[{ }_{7}^{14} N(\alpha, p) \cdot{ }_{8}^{17} O\right]$ which take place with a change in energy equivalent to 1.193 MeV . Later on
various types of nuclear reactions such as artifical radioactivity, artifical transmutatoon, nuclear fission, nuclear fussion, spallation reactions etc. were studied.

Which one is correct?
A. Nuclear fusion involves 0.231% of mass decay
B. Nuclear fission involves 0.1% of mass decay
C. . ${ }^{238} U$ does not undergo nuclear fission
D. . ${ }^{239} P u$ is non-fissionable nuclei

Answer: d

- View Text Solution

19. Carbon 14 is used to determine the age of organic material. The procerdure is based on the formation of . ${ }^{14} C$ by neutron capture in the upper atmosphere.
${ }_{.}^{14} N+.{ }_{0}^{1} n \rightarrow .{ }_{6}^{14} C+.{ }_{1} n^{1}$
.$^{14} C$ is abosorbed by living organisms during phostosythesis. The.${ }^{14} C$
content is constant in living organisms once the plant or animal dies, the uptake of carbon dioxide by it ceases and the level of.$^{14} C$ in the dead being, falls due to the decay which. ${ }^{14} C$ undergoes.
${ }_{\cdot 6}^{14} C \rightarrow{ }_{7}^{14} C+\beta^{-}$
The half-life period of . ${ }^{14} C$ is 5770 years. The decay constant (λ) can be calculated by using the following formula $\lambda=\frac{0.693}{t_{1 / 2}}$ The comparison fo the β^{-}activity fo the dead matter with that of the carbon still in circulation enables measurement of the period of the isolation the materail form the living cycle. The method however, ceases to be accurate ever periods longer than 30,000 years. The proportaion of .${ }^{14} C$ to.${ }^{12} C$ living matter is $1: 10^{12}$.

Which fo the following option is correct?
A. In living organism, circulation of ${ }^{14} C$ from atomsphere is high so the carbon content is constant in orginsm.
B. carbon dating can be used to find out the age of earth crust and rocks.
C. Radioactive absoption due to cosmic radiation is equal to the rate
of radioactive decay, hence the carbon content remains constant in living organisms.
D. Carbon dating cannot be used to determine concentration of . ${ }^{14} \mathrm{C}$ in dead beings.

Answer: c

- Watch Video Solution

20. Carbon 14 is used to determine the age of organic material. The procerdure is based on the formation of. ${ }^{14} C$ by neutron capture in the upper atmosphere.
$.{ }_{7}^{14} N+.{ }_{0}^{1} n \rightarrow .{ }_{6}^{14} C+.{ }_{1} n^{1}$
.${ }^{14} \mathrm{C}$ is abosorbed by living organisms during phostosythesis. The.${ }^{14} \mathrm{C}$ content is constant in living organisms once the plant or animal dies, the uptake of carbon dioxide by it ceases and the level of. ${ }^{14} \mathrm{C}$ in the dead being, falls due to the decay which. ${ }^{14} C$ undergoes.
$.{ }_{6}^{14} C \rightarrow{ }_{7}^{14} C+\beta^{-}$
The half-life period of.${ }^{14} C$ is 5770 years. The decay constant (λ) can be calculated by using the following formula $\lambda=\frac{0.693}{t_{1 / 2}}$

The comparison fo the β^{-}activity fo the dead matter with that of the carbon still in circulation enables measurement of the period of the isolation the materail form the living cycle. The method however, ceases to be accurate ever periods longer than 30, 000 years. The proportaion of .${ }^{14} C$ to.${ }^{12} C$ living matter is $1: 10^{12}$.

What should be the age of fossil for meainingful determination of its age?
A. 6 years
B. 6000 years
C. 60,000 years
D. It can be used to calcualte any age

Answer: b
21. Carbon 14 is used to determine the age of organic material. The procerdure is based on the formation of. ${ }^{14} C$ by neutron capture in the upper atmosphere.
${ }_{\cdot}^{14} N+.{ }_{0}^{1} n \rightarrow{ }_{6}^{14} C+.{ }_{1} n^{1}$
.${ }^{14} C$ is abosorbed by living organisms during phostosythesis. The.${ }^{14} C$ content is constant in living organisms once the plant or animal dies, the uptake of carbon dioxide by it ceases and the level of. ${ }^{14} \mathrm{C}$ in the dead being, falls due to the decay which. ${ }^{14} C$ undergoes.

$$
.{ }_{6}^{14} C \rightarrow{ }_{7}^{14} C+\beta^{-}
$$

The half-life period of . ${ }^{14} C$ is 5770 years. The decay constant (λ) can be calculated by using the following formula $\lambda=\frac{0.693}{t_{1 / 2}}$
The comparison fo the β^{-}activity fo the dead matter with that of the carbon still in circulation enables measurement of the period of the isolation the materail form the living cycle. The method however, ceases to be accurate ever periods longer than 30, 000 years. The proportaion of .${ }^{14} C$ to.${ }^{12} C$ living matter is $1: 10^{12}$.

A nulcear explosion has taken place leading to increases in conventration of ^ (14) C in nearly areas. ${ }^{\wedge}(14) C$ concentration is C_{1} in nearby areas
and C_{2} in areas far away. If the age of the fossil is detemined to be T_{1} and T_{2} at the places respectively, then:
A. The age of the fossil will increases at the place where explosion has
taken and

$$
T_{1}-T_{2}=\frac{1}{\lambda} \ln \frac{C_{1}}{C_{2}}
$$

B. The age of the fossill will decrease at the place where explosion has
taken place and
$T_{1}-T_{2}=\frac{2}{\lambda} \ln \frac{C_{1}}{C_{2}}$
C. The age of fossil will be determined to be same
D. $\frac{T_{1}}{T_{2}}=\frac{C_{1}}{C_{2}}$

Answer: a

Watch Video Solution

22. Some times a reacant undergoes chemical/radioactive changes following two or more different paths to yield two or more different
produces respectively. Such reactions are called parallel path reactions. If K_{1} and K_{2} are rate constans for the reaction of A follwing two parallel paths, then

Then $K_{a v}=K_{1}+K_{2}$

if E_{1} and
E_{2} are energy fo activations, then
A. $E_{\text {Total }}=E_{1}+E_{2}$
B. $E_{\text {Total }}=E_{1}-E_{2}$
C. $E_{\text {Total }}=K_{1} E_{1}+K_{2} E_{2}$
D. $E_{\text {Total }}=\frac{K_{1} E_{1}+K_{2} E_{2}}{K_{1}+K_{2}}$

Answer: d

- View Text Solution

23. Some times a reacant undergoes chemical/radioactive changes following two or more different paths to yield two or more different produces respectively. Such reactions are called parallel path reactions. If K_{1} and K_{2} are rate constans for the reaction of A follwing two parallel paths, then

K_{2}

Then $K_{a v}=K_{1}+K_{2}$
If average life of A for p is T_{1} and for Q is T_{2} then:
A. $T_{a v}=T_{1}+T_{2}$
B. $T_{a v}=\frac{T_{1} T_{2}}{T_{1}+T_{2}}$
C. $T_{a v}=\frac{T_{1}+T_{2}}{T_{1} T_{2}}$
D. $T_{a v}=K_{1} T_{1}+K_{2} T_{2}$

Answer: b
24. Some times a reacant undergoes chemical/radioactive changes following two or more different paths to yield two or more different produces respectively. Such reactions are called parallel path reactions. If K_{1} and K_{2} are rate constans for the reaction of A follwing two parallel paths, then

Then $K_{a v}=K_{1}+K_{2}$
Which one of the following is correct for the above reaction:
A. Fractionl yield of $p=\frac{K_{1}}{K_{2}}$
B. Fractional yield of $p=\frac{K_{1}+K_{2}}{K_{a v}}$
C. Fractional yeild of $p=\frac{K_{1}}{K_{a v}}$
D. Fractional yield of $p=\frac{K_{2}}{K_{a v}}$

- View Text Solution

Exercies 8

1. Statement:.${ }_{26}^{56} \mathrm{Fe}$ is most stable nucleus.

Explanation: Binding energy per nucleon is maximum for ${ }_{.{ }_{926}}^{56} F e$
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: c

- Watch Video Solution

2. Statement: Neutron decay result in β - emission and emission of neutrino.

Explanation: Higher values of n / p ratio give rise to neutron decay.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: b

- Watch Video Solution

3. Statement: K - electron capture leads to emission of neutron and
X - rays.
Explanation: The vacancy created in $K-$ shell is filled by electrons form higher levels and thus X - rays are given out.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: b

- Watch Video Solution

4. Statement: Binding energy per nucleons becomes almost constant at
7.6 for elements beyond $P b$ and onwards.

Explanation: The lower value of binding energy/nucleons is responsible for decay of transuranic elements.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

5. Statement: Yukawa predicted the existence of $\pi-$ mesons.

Explanation: π - mesons have their mass about 237 times more than electrons.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: d
6. Statement: parent element of $(4 n+1)$ series is Plutonim -241

Explanation: It decays to give 8α and 5β particles.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: c

- Watch Video Solution

7. Statement: Rutherfored studied the firest nuclear reaction:
$.{ }_{7}^{14} \mathrm{~N}+.{ }_{2}^{4} \mathrm{He} \rightarrow .{ }_{8}^{17} \mathrm{O}+.{ }_{1}^{1} \mathrm{H}+1.193 \mathrm{MeV}$
Explanation: $\alpha-$ particels lesser than energy 7.6 MeV were found ineffective.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: d

- Watch Video Solution

8. Statement: The first man-made atom produced by artifical transmulation was $T c$.

Explanation: The phenolmenon of converting a stable nuclei into radioactive one is called artifical radioactivity.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

9. Statement: $t_{1 / 2}$ of.$^{14} \mathrm{C}$ is same whether it is CO_{2} or in cellulose or in coal.

Explanation: The rate of decay of an element is independent of all external factors.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: c

10. Statement: The neutrons are better initiater of nuclear reactions than protons, deutrons, deutrons or $\alpha-$ particles.

Explanation: Neutrons being uncharged particles, not exert repulsive forces form nucleus.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: c

- Watch Video Solution

11. Statement: 500 mg of an isotope becomes 250 mg in 120 minute. Therefore 100 mg of the isotpe will becomes 50 mg in 24 minute. Explanation: The process fo radioactive decay follows first order kinetics.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: b

- Watch Video Solution

12. Statement: Nuclear fusion involves more energy change than nuclear fission.

Explanation: 0.23 \% of mass undergoes decay in nulclear fusion whereas only 0.1% in nuclear fission.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

- Watch Video Solution

13. Statement: Rate of reaction of.${ }_{1}^{2} H$ is more than rate of.${ }_{1}^{1} H$ in a simple reaction.

Explanation: Lighter isotopes are more reactive at the same temperature.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: b
14. Statement: It is the oxygen of $\mathrm{H}_{2} \mathrm{IO}$ coming out during photosynthesis.

Explanation: $6 n \mathrm{CO}_{2}+5 n \mathrm{H}_{2} \mathrm{O}^{18} \rightarrow\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{n}+6 n \mathrm{O}_{2}^{18}$
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: c

- Watch Video Solution

15. Statement: $\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic and $\mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{~s}$ tribasic acid.
$\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ on reacting with $\mathrm{D}_{2} \mathrm{O}$ gives $\mathrm{HD}_{2} \mathrm{PO}_{3}$ and $\mathrm{D}_{3} \mathrm{PO}_{4}$ respectively.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: c

- Watch Video Solution

16. Statement: Nuclide $\cdot{ }_{13}^{30} \mathrm{Al}$ is less stable than ${ }_{\cdot 20}^{40} \mathrm{Ca}$

Explanation: Nuclides having odd number of protons and neutrons are general unstable.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Exercies 9

1. How much energyh must a γ - ray photon have to produce and antiproton each having kinetic energy 10 MeV ? ($m_{p}=1.007825 \mathrm{amu}$. Assumwe $1 \mathrm{amu}=391 \mathrm{MeV}$.)

- Watch Video Solution

2. The sun radiates energy at the rate of 4×10^{26} joule $\sec ^{-1}$. If the energy of fusion process 4. ${ }_{1}^{1} H \rightarrow .{ }_{2}^{4} \mathrm{He}+2 .{ }_{1}^{0} e$ is 27 MeV , calculated amount of hydrogen atoms that would be consumed per day for the given process.

- Watch Video Solution

3. Calcualte the energy released (in joule and MeV) in the follwing nulcear reaction:
$.{ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow .{ }_{2}^{3} H e+.{ }_{0}^{1} n$
Assume that the masses of $\cdot{ }_{1}^{2} \mathrm{H}, .{ }_{2}^{3} \mathrm{He}$ and neutron (n) are $2.0141,3.0160$ and 1.0087 respectively in amu.

- Watch Video Solution

4. Consider an $\alpha-$ particle just in contact with a . ${ }_{92} U^{238}$ nucleus.

Calculate the coulombic repulsion energy (i.e., the height fo coulombic barrier between U^{238} and $\alpha-$ particle.)Assume that the distance between them is equal to the sum of their radii.

- Watch Video Solution

5. Natural nitrogen atoms has found to exist in two isotopic forms, ${ }_{7} N^{14}$ with mass 14.0031 and ${ }_{7} N^{15}$ with mas 15.0001 amu . Which isotope is more stable? Assume mass of n and p to eb 1.00893 and 1.00757 amu.

(D) Watch Video Solution

6. . $92 U^{238}$ is a neutral $\alpha-$ emitter. After $\alpha-$ emission, the residual nucleus callled $U X_{1}$ in turns emits $a \beta^{-1}$ particle to produce another nucleuis $U X_{2}$ Find out the atomic and mass numbers of $U X_{1}$ and $U X_{2}$.

Also if uranium belongs to IIIgp to which group $U X_{1}$ and $U X_{2}$ belong.

- Watch Video Solution

7. How much heat would be developed per hour form 1 curie of C^{14} source, if all the energy of beta decay were imprisoned? Atomic masses of C^{14} and N^{14} are 14.00324 absd 14.00307 amu respectively.

- Watch Video Solution

8. In a nuclear reactor, U^{235} undergoes fission libertaing 200 MeV of energy. The reactor has a 10% efficiency and produces 1000 MW power.

If the reactor is to function for 10 years, find the total mass of urnaium needed.

- Watch Video Solution

9. α - particles of 6 MeV energy is scattered back form a silver foil.

Calculate the maximum volume in which the entire positive charge fo the atom is supposed to be concentrated. (Z for silver $=47$)

- Watch Video Solution

10. The activity of a radioactive isotope falls to 12.5% in 90 days.

Compute the half life and decay constatn of isotope.

- Watch Video Solution

11. A mixture is to eb anlysed for penicllin. You add 10.0 mg fo penicllin labelled with.${ }^{14} C$ that has a specific activity of $0.785 \mu \mathrm{Cimg}^{-1}$. From
this mixture you are able to isotlate only 0.42 mg of pure penicllin. The specific activity of the isolated pen,om od $0.102 \mu \mathrm{Cimg}^{-1}$. How much penicllin was in the original mixture?

- View Text Solution

12. An archeological speciment containing $\cdot{ }^{14} C$ gives 40 counts in 5 mintues per gram of carbon. A specimen of freshly cut wood gives 20.3 counts per gram of carbon per minute. The counter used recorded a background count of 5 counts per mintue in absence of any.${ }^{14} C$ containing sample. What is the age of the speciment? (T_{50} of

$$
{ }^{14} C=5668 \text { year) }
$$

- View Text Solution

13. Upon irradiating californium with neutrons, a scientist discovered a new nuclide having mass scientist discovered a new nuclide having mass number of 250 and a half-life of 0.50 hr . Three hours after the irradiation
the observated radioactivity due to the nuclide was $10 d i s / \mathrm{min}$. How many atoms of the nuclide were perepared initially?

- View Text Solution

14. Equal masses of two samples of charcoal A and B are burnt separately and the resulting carbon dioxide is collected in two vessels. The radioacitivity of . ${ }^{14} C$ is measured for both the gas samples. The gas from the charcoal A gives 1400 counts per week. Find teh age difference between the two samples.
(Half-life $.{ }^{14} C=5730 y r$)

D View Text Solution

15. One gram of ${ }_{.79} A u^{198}\left(t_{1 / 2}=65 h r\right)$ decays by $\beta-$ emission to produce stable $H g$.
(a) Write nuclear reaction for process.
(b) How much Hg will be present after $260 h r$?
16. $1 g R a^{226}$ is placed in an evacused tube whose volume is 5 , Assuming that each $R a$ nucleus yields for $H e$ atoms which are retained in the tube, what will be the pressure of He preoduced at $27^{\circ} \mathrm{C}$ after the end of 1590 year? ($t_{1 / 2}$ for $R a$ is 1590 year)

- View Text Solution

17. The activity of the hair of an egyptain mummy is 7 disinetgration minute ${ }^{-1}$ of of C^{14}. Find the age of mummy. Given $t_{0.5}$ of C^{14} is 1570 year and disintegration rate of fresh sample of C^{14} is 14 disntegration minute ${ }^{-1}$.

- Watch Video Solution

18. The decay constant for an $\alpha-$ decay of $T h^{232}$ is $1.58 \times 10^{-10} \sec ^{-1}$.

Find out the no. of α - decays that occur form $1 g$ sample in 365 days.
19. Two reacants A and B are present such that $\left[A_{0}\right]=4\left[B_{0}\right]$ and $t_{1 / 2}$ of A and B are 5 and 15 mintute respectively. If both decay folliwing I order, how much time later will concentrations of both of them would be equal?

- Watch Video Solution

20. Two ratio-isotopes P and Q atomic weight 100 and 200 respectively are mixed in equal amount by weight. After 20 days their weight ratio is found to be $1: 4$ if $t_{1 / 2}$ for P is 10 day calculate $t_{1 / 2}$ for Q.

- View Text Solution

21. The rate of decay of a radioactive sample is R_{1} at time t_{1} and R_{2} at time t_{2}. Calculate the mean liffe of sample.
22. $1 g$ atom of $R a^{226}$ is placed in an evacuated tube of volume 5 liter. Assuming that each ${ }_{.88} R a^{226}$ nucleus is an $\alpha-$ emitter and all the contents are present in tube, calculate the total pressure of gases and partial pressure of He collected in tube at 27° after the end of 800 year. Neglect volume occupied by undecayed $R a$.

- View Text Solution

23. A sample of . ${ }^{14} \mathrm{CO}_{2}$ was mixed with ordinary. ${ }^{12} \mathrm{CO}_{2}$ for stuyding a biological tracer experiment. The $10 m L$ of ths mixture at $S T P$ possess the rate of 10^{4} disintegration per minute. How many milli-curie of radioactive carbon is needed to prepare 60 litre of such a mixture?

- View Text Solution

24. A solution contains 1 milli-curie fo L - phenyol alanine C^{14} (unifromly labellled) in 2.0 mL solution. The activity of labelled sample is given as 150 milli-curie/milli-mole. Calculatate:
(a) The concentration of sample in the solution in mol/litre.
(b) The actitivity of the solution in terms of counting per minute/ mL at a counting efficiency of 80%.

- View Text Solution

25. A sample of pithchbelen is found to contain 50% uranium and 2.425% lead. Of this lead only 93% was $P b^{206}$ isotope. If the disintegration constant is $1.52 \times 10^{-10} y r$ how old could be the pithblende deposits?

D View Text Solution

26. The half-life of.${ }^{32} P$ si 14.3 day. Calculate the specific activity of a phosphours containing seciment having 1.0 part per million.${ }^{32} P$ (Atomic weight of $p=31$)

- View Text Solution

27. A mixture of $P u^{239}$ and $P u^{240}$ has a specific acticity of 6×10^{9} sps per g sample. The half lives of the isotopes are 2.44×10^{4} year and 6.58×10^{3} years respectively. Calcualte the composition of mixture.

- View Text Solution

28. 54.5 mg of $N a_{3} p O_{4}$ contains p^{32} (15.6% of sample) and P^{31} atoms. Assuming only P^{32} (15.6% of sample) and P^{31} atoms. Assuming only P^{32} atoms radioactive caculate the rate of decay for the given sample of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ (Half-life period for $p^{32}=14.3$ days mol. we of $\left.N a_{2} P O_{4}=161.2\right)$

- View Text Solution

29. The isotopic composition of rubidism is. ${ }^{85} \mathrm{Rb}, 72 \%$ and.${ }^{87} \mathrm{Rb} 28 \%$ is weakly radioactive and $.{ }^{87} \mathrm{Rb}, 28 \% . .{ }^{87} \mathrm{Rb}$ si weakly radioactive and decays by $\beta-$ emission with a decay constant of 1.1×10^{-11} per year. A
sample of the minearl pollucite was found to contain 450 mgRb and 0.72 mg of.$^{87} \mathrm{Sr}$. Estimate the age of polluucite.

- View Text Solution

30. A sample contains two radioactive nuclie x and y with half-lives 2 hour and 1 hour respectively. The nucleus x-decays to y and y-decays into a stable nucelus $z . A t \mathrm{t}=0$, the activates of the components in the same were equal. Find the ratio of the number of the active, nuclei of y at $t=4$ hours to the number at $t=0$.

- View Text Solution

31. Tritium, ${ }_{1} T^{3}$ (an isotope of H) combine wityh flurine to form a weak acid $T F$ wheh ionises to give T^{+}prepared dilute aquios solution of $T F$ has a $p t$ (euivalent of $p H$) fo 1.7 and frezze at $-0.372^{\circ} \mathrm{C}$. If 600 mL of freshly prapared soltuion were allowed to stand for 24.8 years, calculate:
(ii) Charge carried by $\beta-$ particles emitted by tritium in faraday.

Given: K_{f} for $H_{2} O=1.86, t_{1 / 2}(T)=12.4 y r s$.

- View Text Solution

32. A solution contains a mixture of isotopes of $X^{A}\left(t_{1 / 2}=14\right.$ days $)$ and $X^{A_{2}}\left(t_{1 / 2}=25\right.$ days(. Total acticity is 1 curie at $t=0$. The activity reduces by 50% in 20 days. Find:
(a) The initial activitites of $X^{A_{1}}$ and $X^{A_{2}}$
(b) The ratio of their initial no.of nuclei.

- View Text Solution

33. The mean lives of radioactive substance are 1620 year and 405 year for $\alpha-$ emission and $\beta-$ emission respectively. Find out the time during which three fourth of a sample will decay, if it is decaying both by $\alpha-$ emission and β - emission simulaneously.
34. For the following sequential reaction,
$A \xrightarrow{K_{1}} B \xrightarrow{K_{2}} C$
Find out the concentraion of C at tiem $t=1$ day. Given that $K_{1}=1.8 \times 10^{-5} s^{-1}$ and $K_{2}=1.1 \times 10^{-2} s^{-1}$ and initial molar concentration of A is 1.8

- View Text Solution

35. A radioactive isotope decays as
${ }_{Z} A^{m} \rightarrow{ }_{Z-2} B^{m-4} \rightarrow{ }_{Z-1} C^{m-4}$
The half lives of A and B are 6 months respectively. Assuming that initially only A was present, will it be possibel to achieeve radioactive equilibrium fo B ? If so, what would be the ratio ot A and B ? If so, what would happen if the half-lives for A and B were 10 months adn 6 months respectively?

- View Text Solution

36. A radioactive isotope decays as
${ }_{Z} A^{m} \rightarrow{ }_{Z-2} B^{m-4} \rightarrow{ }_{Z-1} C^{m-4}$
The half lives of A and B are 6 months respectively. Assuming that initially only A was present, will it be possibel to achieeve radioactive equilibrium fo B ? If so, what would be the ratio of nuclei A and B ? If so, what would happen if the half-lives for A and B were 10 months adn 6 months respectively?

- View Text Solution

37. The half life of $P b^{212}$ is 10.6 hour. It undergoes decay to its daughter (unstable) element $B i^{212}$ of half-,ofe 60.5 mintue. Calcualte the time at which daughter element wil have maximum activity.

- View Text Solution

38. A very small amoutn of radioactive isotope of $P b^{213}$ was mixed with a non-radioactive lead salt containg $0.01 g$ of $P b$ (atomic mss 207). The
whole lead was brought into solution and lead chromate was prcipitated by addition of a soluabolr chromate. Evaporation of $10 \mathrm{~cm}^{3}$ fo the supernatent liquid gave a residue having a radioactivity $\frac{1}{24000}$ of that of the original quanity if $P b^{213}$ caculate the solubility of lead chromate in $\mathrm{mol} d m^{-3}$.

- View Text Solution

39. The nuclei of two radioactive isotopes of same substance A^{236} and B^{234} are present in the ratio of 4:1 in an ore obtained form some other planet. Their half-lives are 30 and 60 minutes respectibvely. Both isotopes are alpha emitters and acitity of isotope A^{236} si 1 rutherford $\left(10^{6} \mathrm{dps}\right)$. Calcualte:
(a) After how much time their activities will becomes identical?
(b) The time required to bring the ratio of their atoms to $1: 1$

- View Text Solution

40. Detemine the oxidation no. of the folliwing elements given in bold letters:
(a) KmnO_{4}, (b) $\mathrm{H}_{2} \mathrm{SO}_{5}$
(c) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8} \mathrm{~m}$ (d) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(e) $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$, (f) OsO_{4}
(g) $H C N$, (h) $H N C$
(i) HNO_{3}, (j) KO_{2}
(k) $\mathrm{Fe}_{3} \mathrm{O}_{4}$, (I) KI_{3}
(m) $\mathrm{N}_{3} \mathrm{H}$, (n) $\mathrm{Fe}(\mathrm{CO})_{5}$
(o) $\mathrm{Fe}_{0.94} \mathrm{O}$, (p) $\mathrm{NH}_{2} \mathrm{NH}_{2}$
(q) FeSO . (4). $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} 6 \mathrm{H}_{2} \mathrm{O}$
(r) $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$, (u) $\left[\mathrm{Fe}(\mathrm{NO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{SO}_{4}$
(v) $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
(v) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(w) Dimethyl sulphoxide or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$
(x) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, (y) CrO_{5} or $\mathrm{CrO}\left(\mathrm{O}_{2}\right)_{2}$
(z) CaOCl_{2}
41. Determine the oxidation number of following elements given in bodl letters.
(i) CuH , (ii) $\mathrm{Na}_{2} \mathrm{~S}_{3} \mathrm{O}_{6}$
(iii) $\mathrm{N}_{2} \mathrm{O}$, (iv) $\mathrm{Ba}_{2} \mathrm{XeO}_{6}$
(v) $\left.\mathrm{C}_{93}\right) \mathrm{O}_{2}$, (vi) $\mathrm{V}\left(\mathrm{BrO}_{2}\right)_{2}$
(vii) $\mathrm{Ca}\left(\mathrm{clO}_{2}\right)_{2}$, (viii) $\mathrm{Cs}_{4} \mathrm{Na}\left(\mathrm{HV}_{10} \mathrm{O}_{28}\right)$
(ix) LiAlH_{4}
(x) $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(xi) $\left[N i(C N)_{4}\right]^{2}$, (xii) $N a_{2} S_{2}$
(xiii) $\mathrm{Fe}(\mathrm{CO})_{5}$, (xiv) $[O C N]^{-}$
(xv) $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, (xvi) $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$

- View Text Solution

42. Predict the highest and lowest possible oxidation state of each of the following elements:
(a) $T a, 9 \mathrm{~b}) T e$, (c) $T c$, (d) $T i$, (e) $T l$
(f) N, (g) $P,(h) \mathrm{F},(i) \mathrm{Cl},(j) \mathrm{Zn}(k) \mathrm{C}^{\prime}$.

- View Text Solution

43. Select the types of redox reaction form the following on the basis of type of tedox changes:
(a) intermolecular redox, (b) intramolecular redox
(c) auto redox. If none, write none.
(i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{\mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$
(il) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(iii) $2 \mathrm{Mn}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}$
(iv) $\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{HSO}_{4}^{ \pm}$
(v) $\mathrm{Fe}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{NH}_{3}+\mathrm{Fe}(\mathrm{OH})_{2}$
(vi) $\left.2 \mathrm{KOH}+\mathrm{Br}_{92}\right) \rightarrow \mathrm{KBr}+\mathrm{KBrO}$
(vii) $2 C u^{+} \rightarrow C u+C u^{2+}$
(viii) $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} \xrightarrow{2 \mathrm{H}^{+}} \mathrm{Ag}^{+}+2 \mathrm{NH}_{4}^{+}$
(ix) $5 \mathrm{KI}+\mathrm{KIO}_{3}+6 \mathrm{HCl} \rightarrow 3 \mathrm{I}_{2}+6 \mathrm{KCI}+3 \mathrm{H}_{2} \mathrm{O}$
44. Select the oxidant/reducant atoms in the following change. Also report the number of electrons involved in redox change. $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$

- View Text Solution

45. In the reaction $\mathrm{Al}+\mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}$
(a) Which element is oxidized and which is reduced?
(b) Total no. of elecetros transferred during the change.

- View Text Solution

46. Identify the substance acting as oxidant or reductatant if any in the following:
(i) $\mathrm{AlCl}_{3}+3 \mathrm{~K} \rightarrow \mathrm{Al}+3 \mathrm{KCl}$
(ii) $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaCl}$
(iv) $3 \mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NalO}_{3}+5 \mathrm{Nal}+3 \mathrm{H}_{2} \mathrm{O}$

- View Text Solution

47. Find out the value of n in: $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+\mathrm{ne} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

- View Text Solution

48. Both VO_{2}^{+}and VO^{2+} are known as vandyl ion.
(a) Determine the oxidation number of vandium in each.
(b) Which one of them is oxovanadium(iv) ion and which are is dioxovanadium(v) ion?

- Watch Video Solution

49. One mole of $N_{2} H_{4}$ loses 10 mole electrons to form a new compound Y. Assuming that all the N_{2} appears in new compound, what is oxidation

state of N in Y ?

There is no charge in oxidant state of H.

D View Text Solution

50. HNO_{3} acts only as as oxidant whereas, HNO_{2} acts as reducant and oxidant both.

- View Text Solution

51. Balance the following equactions:
(a) $\mathrm{BaCrCO}+\mathrm{KI}+\mathrm{HCI} \rightarrow \mathrm{BaCl}_{2}+\mathrm{I}_{2}+\mathrm{KCl}+\mathrm{CrCl}_{3}+\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{SO}_{2}+\mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{I}_{2}+\mathrm{PH}^{-} \rightarrow \mathrm{CHI}_{3}+\mathrm{HCO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}+\underset{(\text { Basic })}{\mathrm{I}^{-}}$
(d) $A s_{2} S_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\underset{\text { (Acid) }}{\mathrm{NO}}$
(e) $\ldots .+\mathrm{HC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{CO}_{3}^{2+}+\mathrm{CI}^{-}$
(f) $\mathrm{HgS}+\mathrm{HCl}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{HgCl}_{4}+\mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
(g) $\mathrm{Mn}_{2} \mathrm{O}_{7} \rightarrow \mathrm{MnO}_{2}+\mathrm{O}_{2}$
52. KMnO_{4} oxidises NO_{2}^{-}to NO_{3}^{-}in basic medium. How many moles of NO_{2}^{-}are oxidised by 1 mol of KMnO_{4} ?

- View Text Solution

53. Calculate the equivalent weight of each oxidant and reducant in:
(a) $\mathrm{FeSO}_{4}+\mathrm{KCl}_{3} \rightarrow \mathrm{KCl}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(b) $\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{Na}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Cr}(\mathrm{OH})_{3}$
(c) $\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{KMnO}_{4} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{MnO}_{2}$
(d) $\mathrm{KI}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}$
(e) $M n^{4+} \rightarrow M n^{2+}$
(f) $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{N}_{2}$
(g) $\mathrm{N}_{2} \rightarrow \mathrm{NH}_{3}$
(h) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
(i) $\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}$
54. 20 mL fo $0.2 \mathrm{MMbnSO}_{4}$ are completely oxidiz3d by 16 mL of KMnO_{4} of unknown normaliity each froming $M n^{4+}$ oxidation state. Find out the normality and molarity of KMnO_{4} solution.

- View Text Solution

55. An element A in conmpound $A B D$ has an oxidation no. A^{n-}. It is oxidisides by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acid medium. In an experiment 1.68×10^{-3} mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ was required for 3.26×10^{-3} moel of the compound $A B D$. Calculate new oxidation state of A.

- View Text Solution

56. KMnO_{4} oxidizes X^{n+} ion to XO_{3}^{-}itself changing to Mn^{2+} in acid solution. 2.68×10^{-3} moel of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ was required 1.61×10^{-3} mole of MnO_{4}^{-}. What is the value of n ? Also calcualte the atomic mass of X, if the weight of $1 g$ equivalent of $X C l_{n}$ is 56
57. Mg can reduce NO_{3}^{-}to NH_{3} in basic solution:
$\mathrm{NO}_{3}^{-}+\mathrm{Mg}_{(s)}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(s)}+\mathrm{OH}_{(\text {aq. })}^{-}+\mathrm{NH}_{3(g)}$
A 25.0 mL sample of NO_{3}^{-}solution was treated with Mg . The $\mathrm{NH}_{3(\mathrm{~g})}$ was passed into 50 mL to 0.15 NHCl . The excess HCl required 32.10 mL of 0.10 MNaOH for its neutralisation. What was the molarity of NO_{3}^{-} ions in the original sample?

- View Text Solution

58. Hydroxylamine reduces iron $I I I$ according to the equaction, $4 \mathrm{Fe}^{3+}+2 \mathrm{NH}_{2} \mathrm{OH} \rightarrow \mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{Fe}^{2+}+4 \mathrm{H}^{+}$. Orpm II thus produced is estimatedf by tiration with standard KMnO_{4} solution. The reaction is $\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$. A 10 mL of hydroxyamine solution was diluted to one litere. 50 mL of this diluted soltuion was boiled with an excess of Fe^{3+} solution. The resulting solution required $12 m L$ of $0.02 \mathrm{MKMnO}_{4}$ solution for
complete oxidation of Fe^{2+}. Calculate the weight of $\mathrm{NH}_{2} \mathrm{OH}$ in one litre of orignal solution.

- View Text Solution

59. A solution is containing $2.52 g$ litre $^{-1}$ of a reductant, $25 m L$ of this solution required 20 mL of $0.01 \mathrm{MKMnO}_{4}$ in acid medium for ocidation. Find the mol. Wt of reducant. Given that each of the two atoms which undergo oxidation per molecule of reducant, suffer an increase in oxidation state by one unit.

- View Text Solution

60. Two solutions of $0.1 M c r_{2} O_{7}^{2-}$ (aq.) and $0.1 M M n I_{4}^{-}$(aq.) are to be used to titatre (titrating solution) be required for a given solution of $f e^{2+}(a q$.
(b) If a given titration requires 24.50 mL of $0.100 \mathrm{MCr}_{2} \mathrm{O}_{7}^{2-}$ (aq.), how many $m L$ of $0.100 \mathrm{MMnO}_{4}^{-}(a q$.$) would have been required if it had$ been used instead?

- View Text Solution

61. KMnO_{4} solution is to be standaridised by titration against $\mathrm{AsO}_{3}(s)$. A 0.1097 g sample of $A s_{2} O_{3}$ requires 26.10 mL of the solution for its titration. What are the molarity and normally of the KMnO_{4} solution?

D View Text Solution

62. A steel sample is to be analysed fo rCr and $M n$ simultaneously. By suitable treatment the Cr is oxidised to $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and the Mn to MnO_{4}^{-}. A 10.00 g sample of steel is used to produce 250.0 mL of a solution containing $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and MnO_{4}^{-}
(a) A 10.00 mL portion of this solution is added to a BaCl_{2} solution and by proper adjument of the acidity, the chromimum is completeley precipitated as $0.0549 g \mathrm{BaCrO} \mathrm{O}_{4}$.
(b) A second 10.00 mL portion of this soltuion requires exactily 15.95 mL of 0.0750 M standard Fe^{2+} solution for its titaration (in acid solution).

Calculate the $\%$ of $C r$ in the steel sample.
$(C r=52, M n=55, B a=137)$

- View Text Solution

63. A $200 m L$ sample of a citrus fruit drinks containing ascorbic acid (vitamin C , mol. We176.13) was acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 10 mL of $0.250 M I_{2}$ was added. Some of the iodine was reduced by the ascorbic acid to I^{-}. The excess of I_{2} required 4.6 mL of $0.01 \mathrm{MNa} a_{2} S_{2} O_{3}$ for reduction. What was the vitamin C content of the drink in $m g$ vitamin per $m L$ drink?

The reactions are:
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}+\mathrm{I}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}+2 \mathrm{HI}$
$5 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+4 \mathrm{I}_{2} \rightarrow 2 \mathrm{SO}_{4}^{2-}+8 \mathrm{I}^{-}+10 \mathrm{H}^{-}$

D View Text Solution

64. An acid solution of KReO_{4} sample containing 26.83 mg of combined rhenium was reduced by passage through a column of granulated zinc.

The effulent solution including the washings from the column, was then titrated with $0.5 \mathrm{NKMnO}_{4} .11 .45 \mathrm{~mL}$ of the standard KMnO_{4} was required for the reoxidation of all the rhendium of all the rehniuym to the perryhentate ion $R e_{O_{-}}(4)^{-}$. Assuming that rhenium was the only element reduced, what is the oxisation state to which rhenium was reduced by the zinc column?

- View Text Solution

65. 2.480 g of KcIO_{3} are dissolved in conc. HCl and the solution was boiled. Chorine gas evolved in the reaction was then passed through a solution of $K i$ and libeerated iondine was titrated with 100 mL of hypo $12.3 m L$ of same hypo solution required 26.6 mL of 0.5 N idone for complete neutralization. Calculate \% purity of KCIO_{3} sample.

- View Text Solution

66. 1 g of moist sample of KCI and KCIO_{3} was dissolved in water to make 250 mL solution, 25 mL of this solution was treated with SO_{2} to
reduce chlorirate to chloride and excess of SO_{2} was removed by boiling. The total chloride was precipitaed as silver chloride. the weight of precipitate was 0.1435 g . In another experiment, 25 mL of original solution was heated with 30 mL of 0.2 N ferrous sulphate solution and unreached ferrous sulphate required 37.5 mL of 0.8 N solution of an oxidant for complete oxidation. Caculate the molar ratio of chlorate int eh given mixture. Fe^{2+} reacts with CIO_{3}^{-}accroding to equaction, $\mathrm{CIO}_{3}^{-}+6 \mathrm{Fe}^{2+}++6 \mathrm{H}^{+} \rightarrow \mathrm{CI}^{-}+6 \mathrm{Fe}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$

- View Text Solution

67. $0.84 g$ iron are containing X per cent of iron was taken in a solution containg all the iron in ferrous state. The solution required Xml of a porassium dichromate soltuion for oxidation of iron content to ferric state. Calculate the strength of potassium dichromate solution.

- View Text Solution

68. 0.5 g sample of iron containg mineral mainly in the form of $\mathrm{CuFeS} \mathbf{2}_{2}$ was reduced suitably to vonvert all the ferruic ions into ferrous ions $\left(\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+}\right)$ and was obtained as solution. In the absence of any interferring radical, the solution. In the absence of any interfeerring radical, the solution required $42 m L$ of interferring radical, the solution required $42 m L$ of $0.1 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for tirtration. Calculate $\%$ of $\mathrm{CuFeS} 2_{2}$ in sample.

- View Text Solution

69. $0.2828 g$ of iron wire was dissolved in excess dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the solution was made up to 100 mL .20 mL of this solution required 30 mL of $\mathrm{N} / 30 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ doluyion for exact oxidation. Calculate $\%$ purity of $F e$ in wire.

- View Text Solution

70. A substance of crude copper is boiled in $\mathrm{H}_{2} \mathrm{SO}_{4}$ till all the copper has reacted. The impurites are inert to acid. The SO_{2} liberated in the reaction is passed into 100 mL of 0.4 M acidified KMnO_{3}. The solution of KMnO_{4} after passage of SO_{2} is allowed to react with oxalic acid and requireds $23.6 m L$ of $1.2 M$ oxalic acid. IF the purity of copper is 90% what was the weight of sample?

- View Text Solution

71. What mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is required to produce 5.0 litre CO_{2} at $75^{\circ} \mathrm{C}$ and 1.07 atm pressure from excess of oxlaic acid? Also report the volume of 0.1 NNaOH required to neutralise the CO_{2} evolved.

- View Text Solution

72. Calculate the mass of oxalic $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ which can be oxidised to CO_{2} by 100 mL of MnO_{4}^{-}(acidic) solution, 10 mL of which are
capable of oxidising 50.0 mL of $1.0 \mathrm{mI}^{-}$to I_{2}. Also calculate the weight of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ oxidised by same amount of MnO_{4}^{-}.

- View Text Solution

73. The calcium contained in a solution of $1.048 g$ of a substance being analysed was precipitated with $25 m L H_{2} C_{2} O_{4}$. The excess of $C_{2} O_{4}^{2-}$ in one fourth of filrtate was back titrated with $5 m L$ of $0.1025 \mathrm{NKMnO}_{4}$. To determine the conc. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ soloution, it was diluted foru folds and titration of $25 m L$ of same KmnO_{4} solution. Calculate \% of Ca in substance.

D View Text Solution

74. 100 mL solution of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ and FeSO_{4} is compleltely oxidized by 60 mL of $0.2 \mathrm{MKMnO}_{4}$ in acid medium. The resulting soltuion is then reduced by $Z n$ and dil. The reduced soltuion is again oxidized completely by 40 mL of $0.2 \mathrm{MKMnO}_{4}$. Calculate normality of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ and FeSO_{4} in mixture.

- View Text Solution

75. 25 mL of a solution containing Fe^{2+} and Fe^{3+} sulphate acidifed with $H_{2} S O_{4}$ is reduced by $3 g$ of metalllic zinc. The dsolution required 34.25 mL of $\mathrm{N} / 10$ solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for oxidation. Before reduction with zinc, $25 m L$ of the same solution. Calculate the strength of FeSO_{4} and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in solution.

- View Text Solution

76. A sample of ferrous sulphate and ferrous oxalate was dissolved in dil.
$\mathrm{H}_{2} \mathrm{SO}_{4}$ the complete oxidation of reaction mixture required 40 mL pf $N / 15 \mathrm{KMnO}_{4}$. After the oxidation, the reaction mixture was reduced by Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$. On again oxidation by same $\mathrm{KMnO}_{4}, 25 m L$ were required. Calucate the ratio of $f e$ in ferrous sulphate and oxalate.

- View Text Solution

77. A soltuion contains mixture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, 25 \mathrm{~mL}$ of $N / 10 \mathrm{NaOH}$ for neutralization and 23.45 mL fo $\mathrm{N} / 10 \mathrm{KMnO}_{4}$ for oxisation. Calcualte:
(i) Normality of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) Strength of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Assume molecular weight of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=126$

- View Text Solution

78. A compound is known to be hydrated doubel salt of potassium oxalate and oxalic acid of the tuype $a \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, b \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{cH}_{2} \mathrm{O}$, where a, b and c are unknown. When $1.613 g$ of this compound is dissolved in water and solution is neutralised by 19.05 mL of 0.1 N alkali and reduces 25.40 mL of this solution. What is the formula of the salt?

- View Text Solution

79. 30 mL of a soltuion containg $9.15 \mathrm{~g} /$ litre of an oxalte $K_{X} H_{Y}\left(C_{2} O_{4}\right)_{Z} \cdot n H_{2} \mathrm{O}$ are required for titrating 27 mL of 0.12 NNaOH
and $36 m L$ of $0.12 \mathrm{NKMnO}_{4}$ separalty. Calculalte X, Y, Z are in the simple ratio of g atoms.

- View Text Solution

80. On igniion, Rochelle salt $\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} .4 \mathrm{H}_{2} \mathrm{O}$ (mol. Wt 282) is converted into NaKCO_{3} (molwt. 122). 0.9546 g sample of the rochelle salt on ignition gives NaKCO_{3} which is titrated wih $41.72 \mathrm{~mL} . \mathrm{H}_{2} \mathrm{SO}_{4}$. From the follwing data, find the percentage purtiy of the rochelle salt. The solution after neutralisation requires its 1.91 mL of 0.1297 NNaOH . The $\mathrm{H}_{2} \mathrm{SO}_{4}$ used for the neutralisation requires its 10.27 mL aganist 10.35 mL of 0.1297 NNaOH

- View Text Solution

81. 25 mL of a solution of ferric alum $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right) / 24 \mathrm{H}_{2} \mathrm{O}$ containing 1.25 g of the salt was boiled with iron when the reaction $\mathrm{Fe}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow 3 \mathrm{FeSO}_{4}$ occurred treated with $0.107 \mathrm{NKMnO}_{4}$ in
acid medium. What is titre value? If $C u$ has been used in place of Fe what would have been titre value?

- View Text Solution

82. A 2.5 g sample containing $\mathrm{As}_{2} \mathrm{O}_{5} \mathrm{Na}_{2} \mathrm{HAsO}_{3}$ and inert substance is dissolved in water and the $p H$ is adjusted to neutral with excess of NaHCO_{3}. The solution is titrated with $0.15 \mathrm{MI}_{2}$ solution, requiring $11.3 m L$ to just reach the end point, then the solution is acidified with $H C l, K I$ is added and the liberated iodine requires $41.2 m L$ fo $0.015 M N a_{2} S_{2} O_{3}$ under basic conditions where it converts to SO_{4}^{2-}. Calculate per cent compositon of mixture.

- View Text Solution

83. Calculate the weight of MnO_{2} and the volume fo HCI of specific gravity $1.2 g m L^{-1}$ and 4% nature by weight, needed to produce 1.78 litre of $C l_{2}$ at $S T P$ by the reaction:
$\mathrm{MnO}_{2}+4 \mathrm{HCI} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CI}+{ }_{2}$

- View Text Solution

84. Chile saltpetre, a source of NaNO_{3} also contains NalO_{3}. The NalO_{3} can be used as a source of iodine, produced in the follwng reactions:

$$
\begin{align*}
& \mathrm{IO}_{3}^{-}+3 \mathrm{HSO}_{3}^{-} \rightarrow \mathrm{I}^{-}+3 \mathrm{H}^{+}+3 \mathrm{SO}_{4}^{2-} \tag{1}\\
& 5 \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2(\mathrm{~s})}+3 \mathrm{H}_{2} \mathrm{O} \tag{2}
\end{align*}
$$

One litre of chile salphere soltuion containg $5.08 \mathrm{gNaIO}_{3}$ is treated with stochiometric quanity of NaHSO_{3}. Now an additional amount of same solution is added to reaction mixture to bring about the secound reaction. How many grams of NaHSO_{3} are required in step i and what additional volume of chile salphetre must be added in step $I I$ to bring in complete conversion of I^{-}to I_{2} ?

- View Text Solution

85. (a) CusO_{4} reacts with KI in acidic medium to liberate I_{2} :
$2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$
(b) Merrcuric per isodate $\mathrm{Hg}_{5}\left(\mathrm{IO}_{6}\right)_{2}$ reacts with a mixture of $K I$ and
$H C I$ follwing the equaction:
$\mathrm{Hg}_{5}\left(10_{6}\right) .(2)+34 \mathrm{KI}+24 \mathrm{HCI} \rightarrow 5 \mathrm{~K}_{2} \mathrm{HgI}_{4}+8 \mathrm{I}_{2}+24 \mathrm{KCI}+12 \mathrm{H}_{2} \mathrm{O}$
(c) The liberted iodine s titrated against $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. One mL of whcih is equivalent to 0.0499 g of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. What volume in $m L$ of $N a_{2} S_{2} O_{3}$ solution will be required to react with I_{2} liberated from $0.7245 g$ of $H g_{5}\left(10_{6}\right)_{2}$? M. wt, of $H g_{5}\left(10_{6}\right)_{2}=1448.5$ and M. wt of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}=249.5$

- View Text Solution

86. Calculate the amont of SeO_{4}^{2-} in solution on the basic of the following data. 20 mL of $\mathrm{M} / 60$ solution of KBrO_{3} was added to a define volume of SeO_{3}^{2-} solution. The bromic evolved was removed by boiling and excess of KBrO_{3} was back titrated with 5.1 mL of $M / 25$ solution fo
$\mathrm{NaAsO} \mathrm{O}_{2}$. The reaction are given below:
(a) $\mathrm{SeO}_{3}^{2-}+\mathrm{BrO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{SeO}_{4}^{2-}+\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{BrO}_{3}^{-}+\mathrm{AsO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Br}^{-}+\mathrm{AsO}_{4}^{3-}+\mathrm{H}^{+}$

- View Text Solution

87. A mixture containg $\mathrm{As}_{2} \mathrm{O}_{3}$ and $\mathrm{As}_{2} \mathrm{O}_{5}$ and required 20.10 mL of 0.05 N iodine for titration. The resulting solution is then acidified and excess fo $K I$ was added. The liberated iondine required $1.1113 g$ hypo ($\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} 5 \mathrm{H}_{2} \mathrm{O}$) for complete reaction. Calculate mass of mixture. The reactions are:

$$
\begin{aligned}
& A s O_{3}+3 l_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow A s_{2} \mathrm{O}_{5}+4 \mathrm{H}^{+}+4 I^{-} \\
& A s_{2} \mathrm{O}_{5}+4 \mathrm{H}^{+}+4 l^{-} \rightarrow A s_{2} \mathrm{O}_{3}+2 l_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

- View Text Solution

88. In a quality control analysis for sulphur impurity 5.6 g steel sample was burnt in a stream of oxygen and sulphur was converted into SO_{2} gas. The SO_{2} was then oxidized to sulphate by using $\mathrm{H}_{2} \mathrm{O}_{2}$ solution to which has been added 30 mL of 0.04 MNaOH . The equation of the reaction is:
$\mathrm{SO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(a q .)}+2 \mathrm{OH}_{(a q .)}^{-} \rightarrow \mathrm{SO}_{4(a q .)}^{2-}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
22.48 mL of $0.024 M H C I$ was required to neutralize the base remaining after oxidation reaction. Calculate \% sulphur in given sample.
89. $0.108 g$ of finely divided copper was treated with an excess of ferric sulphate solution until copper was comnpletely dissolved. The solution after the addition of excess dilute sulphuric acid required $33.7 m L$ of $0.1 \mathrm{NKMnO}_{4}$ for complete oxidation. Find the equaction which represents the reaction between metallic copper and ferric sulphate solution. At wt. of $C u=63.6$ and $F e=56$.

- View Text Solution

90. 1.249 g of a sample fo pure BaCO_{3} and impure CaCO_{3} containing some CaO was treated with dil. HCI and it $\mathrm{BaCrO} \mathrm{O}_{4}$ was precipitaate was dissolvbed in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and with KI solution libetared iodine which required exactly 20 mL of $0.05 \mathrm{NNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Calculate percentage of CaO in the sample.

- View Text Solution

91. A 10 g mixture of $\mathrm{Cu}_{2} S$ and CuS was treated with 200 mL of $075 \mathrm{MMnO}_{4}^{-}$in acid solution producing $\mathrm{SO}_{2}, \mathrm{CU}^{2+}$ and Mn^{2+}. The SO_{2} was boiled off and the excess of MnO_{4}^{-}. The SO_{2} was boiled off and the excess of MnO_{4}^{-}was titrated with 175 mL of $1 \mathrm{MFe}^{2+}$ solution. Caculaate \% fo CuS in original mixture.

D View Text Solution

92. For estimating ozone in the air, a ceratin volume of air is passed through an acidified or neutral $K I$ solution when oxygen is evolved and iodide is oxidised to give iodine. When such a solution is acidified, free iodine is evolved which can be be titrated with standard $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. In an experiment 10 litre of air at 1 atm and $27^{\circ} C$ were passed through an alkaline $K I$ solution, at the end, the iodine entrapped in a solution on titration as above required 1.5 mL of $0.01 \mathrm{NNa} a_{2} S_{2} \mathrm{O}_{3}$ solution. Calculate volume $\%$ fo O_{3} in sample.
93. A forensic chemist needed to determine the conventration of $H C N$ in the blood of a suspected homicle victim and decided to titrate a diluted sample fo the blood with iodine, using the reaction,

$$
H C N_{(a q .)}+I_{3}^{-} \rightarrow I C N_{(a q .)}+2 I_{(a q .)}^{-}+H_{(a q .)}^{+}
$$

A diluted blood sample of volume $15 m L$ was titrated to the stoihometric point with 5.21 mL of an I_{3}^{-}aolurion. The molarity of I_{3}^{-}in the solution was determined by titrating it against arsenci (III) oxide, which in solution forms arenious acid, $\left.\left.H_{93}\right) A s\right)_{3}$. It was found that $10.42 m L$ of the tri-iodide solution was needed to reach teh stoichmetric point with a 10 mL sample of $0.1235 \mathrm{MH}_{3} \mathrm{AsO}_{3}$ in the reaction.

$$
\mathrm{H}_{3} \mathrm{AsO}_{3(a q)}+v I_{3(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4(a q)}+3 I_{(a q .)}^{-}+2 \mathrm{H}_{(a q .)}^{+}
$$

(a) What is the normally of tri-iodie ions in the initlal solution?
(b) What is the molar concentration of $H C N$ in the blood sample?

- View Text Solution

94. A mixture of two gases, $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} is passes throgh three beakers successivly. The first beaker contains Pb^{2+} ions, which absobs all $H_{2} S$ to
form PbS . The second beaker contains $25 m L$ of $0.0396 N I_{2}$. Which ocidises all SO_{2} to SO_{4}^{2-}. The third beaker contains 10 mL of 0.0345 N thisulphate solution ti retain any I_{2} carried over from the second absorber. The solution from first absorber was made acidic and treated with 20 mL of $0.0066 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, acidic and treated with 20 mL of $0.006 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ which converted S^{2-} to SO_{2}. The excess dichromate was reacted with solid $K I$ and the liberated iodine required 7.45 mL of $0.0345 N N a_{2} S_{2} O_{3}$ solution. The solution in the second and thrid absorbers were combined and the resulatant iodide was treated with
$2.44 m L$ fo the same solution of thisulphate. Calculate the conventrations fo SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ in $\frac{m g}{\text { litre }}$ of the sample.

- View Text Solution

95. A 0.141 g sample of phosphorus containing compound was digested in a mixture of HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ which resulant in formnation of $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$. Addition of ammounium molybdate yielded a solid having the composition $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MoO}_{3}$. The precipitate was filtered, washed and dissolved in 50.0 mL of 0.20 MNaOH .
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PIO}_{4} \cdot 12 \mathrm{MoO}_{3(s)}+26 \mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{4}^{2-}+12 \mathrm{MoO}_{4}^{2-}+14 \mathrm{H}_{2} \mathrm{O}$ After boiling the solution to remove the NH_{3}, the excess of NaOH was titrated with 14.1 mL of $0.174 \mathrm{M}, \mathrm{HCl}$. Calculate the percentage of phosprous in the sample.

- View Text Solution

96. $1 g$ of a sample of NaOH was dissolved in 50 mL 0.33 M alkaline solution of KMnO_{4} and refulxed till all the cycanide was converted into $O C N^{-}$. The reaction mixture was cooled and tis $5 m L$ portion was acidified by adding $\mathrm{H}_{2} \mathrm{SO}_{4}$ in excess an dtehn titrated to end point against 19.0 mL of $0.1 \mathrm{MFeSO}_{4}$ solutio. Calculate\% purity of NaCN sample.

- View Text Solution

97. How many mole of FeCl_{3} can be prepared by the reaction of 10 g pf $\mathrm{KMnO}_{4} 10.07$ mole of FeCl_{2} and 500 mL of 3 MHCl follwing the
reaction:
$5 \mathrm{FeCl}_{2}+\mathrm{KMnO}_{4}+8 \mathrm{HCI} \rightarrow 5 \mathrm{FeCl}_{3}+\mathrm{KCl}+\mathrm{MnCl}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

- View Text Solution

98. A steel sample is to be analysed fo rCr and $M n$ simultaneously. By suitable treatment the Cr is oxidised to $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and the Mn to MnO_{4}^{-}.

A 10.00 g sample of steel is used to produce 250.0 mL of a solution containing $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and $\mathrm{MnO}_{4}^{-} \cdot 10 \mathrm{~mL}$ of this solution is added to BaCl_{2} solution and by prooper adjument of the pH , the chromium is completely precipitate as $\mathrm{BaCrO}_{4}(0.0549 \mathrm{~g})$. The second 10 mL solution protion requires exactly 15.95 mL of 0.0750 M standard for complete reduction of this solution. Calculate \% of $M n$ and $C r$ in this sample.

- View Text Solution

99. A define amount of impure sample of $P_{4} O_{6}$ is treated with 20 mL of XMKMnO_{4} in acidic medium to produce $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{MnCl}_{2} .20 \mathrm{~mL}$ of same KMnO_{4} on treatement with $0.2 \mathrm{MFeSO}_{4}$ requires exctly 10 mL of
FeSO_{4} solution. What is amount of pure $\mathrm{P}_{4} O_{6}$? If 1 g sample is taken calculate \% purity of $P_{4} O_{6}$.

- View Text Solution

