# ©゙doubtnut 

India's Number 1 Education App

## CHEMISTRY

# BOOKS - P BAHADUR CHEMISTRY (HINGLISH) 

## THERMOCHEMISTRY

Exercise 1

1. Red phosphorus reacts with liquid bromine in an exotermic reaction :
$2 P_{(s)}+3 B r_{2(l)} \rightarrow 2 P B r_{3(g)} \quad \Delta_{r} H^{\circ}=-243 k J . \quad$ Calculate the enthalpy change when $2.63 g$ of phosphorus with an excess of bromine in this way.

## - Watch Video Solution

1. Ammonium nitrate can decompose with explosion by the following reaction :
$\mathrm{NH}_{4} \mathrm{NO}_{3(s)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}, \Delta \mathrm{H}=-37.0 \mathrm{~kJ}$ Calculate the heat produced when 2.50 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ decomposes.

## - Watch Video Solution

## Exercise 3

1. Heat of reaction for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(s)}+6 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{v}$ at constant pressure is -651 kcal at $17^{\circ} \mathrm{C}$. Calculate the heat of reaction at constant volume at $17^{\circ} \mathrm{C}$.

## - Watch Video Solution

Exercise 4

1. The enthalpy change $(\Delta H)$ for the reaction, $\mathrm{NH}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3 g}$ is -92.38 kJ at 298 K What is $\Delta U$ at $298 K$ ?

## - Watch Video Solution

## Exercise 5

1. The reaction:
$\mathrm{NH}_{2} \mathrm{CN}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
Was carried out in a bomb caloriemeter. The heat released was
$743 \mathrm{kJmol}^{-1}$. The value of $\Delta H_{300 K}$ for this reaction would be

## - Watch Video Solution

1. $\Delta H_{f}^{\circ}$ for HgO is $-21.7 \mathrm{kcal} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. Calculate the mass of mercury which can be liberated by treatment of excess of HgO with 10.0kcal. At. Wt. of $H g=200.6$.

## - Watch Video Solution

## Exercise 7

1. $\Delta H_{f}^{\circ}$ for $\mathrm{Al}_{2} \mathrm{O}_{3}$ is -1670 kJ . Calculate the enthalpy change for the reaction: $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$.

## - Watch Video Solution

## Exercise 8

1. The specific heats of iodine vapour and solid are 0.031 and $0.055 \mathrm{cal} / \mathrm{g}$ respectively. If heat of sublimation of iodinde is $24 \mathrm{cal} / \mathrm{g}$ at $200^{\circ} \mathrm{C}$, what

## - Watch Video Solution

## Enthalpy Change

1. How much heat is produced when 4.50 g methane gas is burnt in a constant pressure system ?

$$
\text { Given : } \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-8.2 \mathrm{~kJ}
$$

## - Watch Video Solution

2. A cooking gas cylinder is assumed to contain 11.2 kg isobutane. The combustion of isobutane is given by :
$\mathrm{C}_{4} \mathrm{H}_{10(g)}+(13 / 2) \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{CO}_{2(g)}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}, \Delta \mathrm{H}=-2658 \mathrm{kJmol}$
(a) If a family needs 15000 kJ of energy per day for cooking, how long would the cylinder last?
(b) Assuming that $30 \%$ of the gas is wasted due to incomplete combustion, how long would the cylinder last ?

## - Watch Video Solution

3. Assuming that $50 \%$ of the heat is useful, ow many kg of water at $15^{\circ} \mathrm{C}$ can be heated to $95^{\circ} \mathrm{C}$ by burning 200 litre of methane at $S T P$ ? The heat of combustion of methane is $211 \mathrm{kcal} / \mathrm{mol}$. Specific heat of water is $1.0 \mathrm{kcalkg}^{-1} \mathrm{~K}^{-1}$.

## - Watch Video Solution

4. 1.0litre sample of a mixture of $\mathrm{CH}_{4}$ and $\mathrm{O}_{2}$ measured at $25^{\circ} \mathrm{C}$ and $740 \rightarrow r r$, was allowed to react at constant pressure in a calorimeter, together with its contents had a heat capacity of $1260 \mathrm{calK}{ }^{-1}$. The complete combustion of $\mathrm{CH}_{4}$ to $\mathrm{CO}_{2}$ and water caused a temperature rise in calorimeter of 0.667 K . Calculate mole $\%$ of $\mathrm{CH}_{4}$ in the original mixture. Heat of combustion of $\mathrm{CH}_{4}$ is -210.8 kcal .
5. When $3.725 g$ of $K C l$ is dissolved in excess of water, the amount of heat absorbed is $X K j$. Calculate the enthalpy of solution of $K C l$.

## - Watch Video Solution

6. Calculate the enthalpy of solution of sodium chloride. The lattice energy of NaCl is $+186 \mathrm{kcalmol}^{-1}$. And the solution enthalpies of cations and anions are respectively -97 and $-85 \mathrm{kcalmol}^{-1}$

## - Watch Video Solution

7. Calculate the amount of heat released when heat of neutralization is
$-57.0 k J$ :
(a) 0.5 mole of $\mathrm{HNO}_{3}$ in aqueous solution.
(b) 200 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is mixed with 150 mL of 0.2 MKOH .
8. Calculate the heat of neutralization by mixing 200 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ and 200 mL of 0.2 MKOH if heat generated by the mixing is 2.3 kJ .

## - Watch Video Solution

9. When a student mixed 50 mL of 1 MHCI and 150 mL of 1 MNaOH in a coffee cup calorimeter, the temperature of the resultant solution increases from $21^{\circ} \mathrm{C}$ to $27.5^{\circ} \mathrm{C}$. Assuming that the calorimeter absorbs only a negligible quantity of heat, that the total volume of solution is $100 m L$, its density $1 \mathrm{gm}-m L^{-1}$ and that its specific heat is $4.18 \mathrm{Jg}^{-1}$. calculate:
a. The heat change during mixing.
b. The enthalpy change for the reaction

$$
\mathrm{HCI}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCI}(a q)+\mathrm{H}_{2} \mathrm{O}(a q)
$$

## - Watch Video Solution

10. Acetic acid ( ethanoic acid ) and hydrochloric acid react with KOH solution. The enthalpy of neutralisation of ethanoic acis is $-55.8 \mathrm{kJmol}^{-1}$ while that of hydrochloric acid is $-57.3 \mathrm{kJmol}^{-1}$. Can you think of how are these different?`

## - Watch Video Solution

11. The heat released on neutralisation of a strong alkali say NaOH with strong acid is $13.7 \mathrm{kcal} / \mathrm{mol}$. The heat released on neutralisation of NaOH with HF if $-16.4 \mathrm{kcal} / \mathrm{mol}$. Calculate $\Delta H^{\circ}$ of ionisation of $H F$ in water.

## - Watch Video Solution

12. A swimmer coming out from a pool is covered with a film of water weighing about $80 g$. How much heat must be supplied to evaporate this waateer ? If latent heat of evaporation for $\mathrm{H}_{2} \mathrm{O}$ is $40.79 \mathrm{kJmol}^{-1}$ at $100^{\circ} \mathrm{C}$.

## - Watch Video Solution

13. How much heat is necessary to convert 100 g ice at $0^{\circ} \mathrm{C}$ to water vapour ( steam) at $100^{\circ} \mathrm{C}$ ? Given

$$
\begin{aligned}
& \Delta H_{\text {fusion }}=80 \mathrm{kcal} / \mathrm{kg}, \Delta H_{\text {vap }}=540 \mathrm{kcal} / \mathrm{kg}, \text { heat } \\
& =1.0 \mathrm{kcal} / \mathrm{kg} .
\end{aligned}
$$

## - Watch Video Solution

14. The melting point of a certain substance is $70^{\circ} \mathrm{C}$ and its normal boiling point is $450^{\circ} \mathrm{C}$. Its enthalpy of fusion is $30.0 \mathrm{cal} / \mathrm{g}$, enthalpy of vaporisation is $45.0 \mathrm{cal} / \mathrm{g}$ and its heat capacity is $0.215 \mathrm{calg}^{-1} \mathrm{~K}^{-1}$. Calculate the heat required to convert 100 g of substance from solid state at $70^{\circ} \mathrm{C}$ to vapour state at $450^{\circ} \mathrm{C}$.

## - Watch Video Solution

15. Standard vaporization enthalpy of benzene at its boiling point is $30.8 \mathrm{kJmol}^{-1}$, for how long would a 100 W electric heater have to operate in order to vaporize a 100 g sample of benzene at its boiling temperature?

## - Watch Video Solution

16. $0.562 g$ of graphite kept in a bomb calorimeter in excess of oxygen at 298 K and 1 atmospheric pressure was burnt according to the equation,

$$
C_{\text {Graphite }}+O_{2(g)} \rightarrow C O_{2(g)}
$$

durgin the reaction, temperature rises from 298 K o 298.89 K . If the heat capacity of the calorimeter and its contents is $20.7 \mathrm{~kJ} / \mathrm{K}$, what is the enthalpy change for the above reaction at 298 K and 1 atm ?

## - Watch Video Solution

17. (a) Calculate the energy needed to raise the temperature of 10.0 g of iron from $25^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ if specific heat capacity of iron if
$0.45 J\left(.^{\circ} C\right)^{-1} g^{-1}$
(b) What mass of gold ( of specific heat capacity $0.13 J\left(.^{\circ} C\right)^{-1} g^{-1}$ can be heated can be heated through the same temperature difference when supplied with the same amount of energy as in (a) ?

## - Watch Video Solution

18. When Fe powder reacts with chlorine. $\mathrm{FeCl}_{3(s)}$ is obtained in two steps :
$F e((s))+C l_{2(g)} \rightarrow F e C l_{2(s)}$
$\mathrm{FeCl}_{2(s)}+\frac{1}{2} \mathrm{Cl}_{2(s)} \rightarrow \mathrm{FeCl}_{3(s)}$
If standard enthalpy of formation $\left(\Delta H_{f}^{\circ}\right)$ of $\mathrm{FeCl}_{2}$ is $-341.8 \mathrm{kJmol}^{-1}$ and heat of reaction for conversion of $\mathrm{FeCl}_{2}$ into $\mathrm{FeCl}_{3}$ is $-57.7 \mathrm{kJmol}^{-1}$, then calculate the enthalpy of formation of $\mathrm{FeCl}_{3(s)}$.

## - Watch Video Solution

19. Calculate the standard enthalpy of combustion of $\mathrm{CH}_{4}$, it standard enthalpies of formation of $\mathrm{CH}_{4(g)}, \mathrm{H}_{2} \mathrm{O}_{(l)}$, and $\mathrm{CO}_{2(g)}$ are

## - Watch Video Solution

20. Calculate the standard enthalpy of formation of acetylene from the following data :

$$
C_{(g)}+O_{2(g)} \rightarrow C O_{2(g)}, \Delta H^{\circ}=-393 \mathrm{kJmol}^{-1}
$$

$\mathrm{H}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta H^{\circ}=-285.8 \mathrm{kJmol}^{-1}$
$2 \mathrm{C}_{2} \mathrm{H}_{2(g)}+5 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta \mathrm{H}^{\circ}=-2598.8 \mathrm{kJmol}^{-1}$

## - Watch Video Solution

## Hess Law

1. The heat released on neutralisation of a strong alkali say NaOH with strong acid is $13.7 \mathrm{kcal} / \mathrm{mol}$. The heat released on neutralisation of

NaOH with HF if $-16.4 \mathrm{kcal} / \mathrm{mol}$. Calculate $\Delta H^{\circ}$ of ionisation of $H F$ in water.

## - Watch Video Solution

2. Calculate the enthalpy change during the reaction :
$\mathrm{H}_{2(g)}+\mathrm{Br}_{2(g)} \rightarrow 2 \mathrm{HBr}_{(g)}$
Given,

$$
e_{H-H}=435 \mathrm{kJmol}^{-1}, e_{B r-B r}=192 \mathrm{kJmol}^{-1} \quad \text { and }
$$

$$
e_{H-B r}=368 \mathrm{kJmol}^{-1} .
$$

## - Watch Video Solution

3. Determine enthalpy change for the reaction,
$\mathrm{CH}_{4(g)}+\mathrm{Cl}_{2(g)} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}_{(g)}+\mathrm{HCl}_{(g)}$
Bond energies for $\quad \mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{Cl}, \mathrm{Cl}-\mathrm{Cl}, \mathrm{H}-\mathrm{Cl} \quad$ are
$412,338,242,431 \mathrm{kJmol}^{-1}$ respectively.

## - Watch Video Solution

4. The heat of atomisation of $P H_{3}$ is $228 \mathrm{~K} \mathrm{cal} / \mathrm{mol}$ and that os $P_{2} H_{4}$ is $335 \mathrm{kCal} / \mathrm{mol}$. The energy of $P-P$ is (in kcal)

## - Watch Video Solution

## Misc Problems

1. In solid $\mathrm{NH}_{3}$ each $\mathrm{NH}_{3}$ molecule has six other $\mathrm{NH}_{3}$ molecules as nearest neighbouts. $\Delta H$ of sublimation of $\mathrm{NH}_{3}$ at the melting point is $30.8 \mathrm{k} \mathrm{Jol}^{-1}$ and the estimated $\Delta H$ of sublimation in the absence of $H-$ bonding is $14.4 \mathrm{kJmol}^{-1}$. What is the strength of a hydrogen bond in solid ammonia ?

## - Watch Video Solution

2. During one of his adventure Chacha Chaudhary got trapped in an underground cave which was sealed two hundred years back. The air inside was poisonous and contains CO in addition to $\mathrm{O}_{2}$ and $\mathrm{N}_{2}$. Sabu,
being huge, could not enter cave. In order to save Chacha Chaudhary he started sucking the poisonous air out of the cave by mouth. In each cycle he used to fill his lungs with cave air and exhale it out in the surroundings. In the mean time fresh air $\left(N_{2}+O_{2}\right)$ from the surrounding effused into cave till the pressure was 1 atmosphere. Each time Sabu sucked air,the pressure in the cave dropped ito $1 / 2 a t m$. An initial sample of air taken from the cave measured $11.2 m L$ at STP and give $7 J$ on complete combusion at constant pressure.
(a) If the safe level of $C O$ required in cave for life is less thatn $0.001 \%$ by volume, how many times does Sabu need to suck out air in order to save Chacha Chaudhary ?
(b) Sabu should rescue Chacha Chaudhary within 10 minutes else he will die. Precious 80 second are wasted in thinking of a way to rescue him. At maximum how much time should each cycle of inhaling - exhaling take. Given, $\Delta H_{\text {comb }} C O=-280 \mathrm{kJmol}^{-1}$ ? Neglect Graham's law effect during operations.

## Watch Video Solution

3. $\Delta H$ for combustion of ethane and ethyne are -341.1 and -310.0 kcal respectively. Which gas is better for welding purpose and why ?

## - Watch Video Solution

4. Thermochemical equation for two rocket fuels are given below :
$2 A l_{(s)}+(3 / 2) O_{2(g)} \rightarrow A l_{2} O_{3(s)}, \Delta H=-1667.8 k J$
$H_{2(g)}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta H=-285.9 k J$

## - Watch Video Solution

5. Specific heat of $L i(s), N a(s), K(s), R b(s)$ and $C s(s)$ at $398 K$ are $3.57,1.23,0.756,0.363$ and $0.242 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ respectively. Compute the molar heat capacity of these elements and identify any periodic trend. If there is trend, use it to predict the molar heat capacity of $F r$.

## - Watch Video Solution

1. The heat liberated on complete combustion of 7.8 g benzene is 327 kJ . This heat has been measured at constant volume and at $27^{\circ} \mathrm{C}$. Calculate heat of combustion of benzene at constant pressure at $27^{\circ} \mathrm{C}$. $\left(R=8.3 \mathrm{Jmol}^{-1} K^{-1}\right)$

## - Watch Video Solution

## Exercise 3

1. When 2 mole of $C_{2} H_{6}$ are completely burnt $-3129 k J$ of heat is liberated. Calculate the heat of formation of $C_{2} H_{6} . \Delta_{f} H^{\Theta}$ for $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ are -395 and -286 kJ , respectively.

## - Watch Video Solution

1. The heats of combustion of $C_{2} H_{4(g)}, C_{2} H_{6(g)}$ and $H_{2(g)}$ are $-1405,-1558.3$ and -285.6 kJ respectively. Calculate heat of hydrogenation of ethylene.

## - Watch Video Solution

## Exercise 5

1. At $300 K$, the standard enthalpies of formation of $C_{6} \mathrm{H}_{5} \mathrm{COOH}_{(s), \mathrm{CO}_{2(g)}} \quad$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are $-408,-393$ and $-286 \mathrm{kJmol}^{-1}$ respectively. Calculate the heat of combustion of benzoic acid at
(i) constant pressure,
(ii) constant volume. $\left(R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$

## - Watch Video Solution

1. Calculate standard heat of formation of $C S_{2}$. Given that standard heat of combustion of $C, S$ and $C S_{2}$ are $-393.3,-293.72$ and $-1108.76 \mathrm{kJmol}^{-1}$.

## - Watch Video Solution

## Exercise 7

1. The standard ethelpy of combustion at $25^{\circ} \mathrm{C}$ of hydrogen, cyclohexene $\left(C_{6} H_{10}\right)$, and cyclohexane $\left(C_{6} H_{12}\right)$ are $-241,-3800$, and $-3920 \mathrm{kJmol}^{-1}$ repectively. Calculate the heat of hydrogenation of cyclohexane.

## - Watch Video Solution

1. From the following data, calculate the enthalpy change for the combustion of cyclopropane at 298 K . The enthalpy of formation of $\mathrm{CO}_{2(g)}, \mathrm{H}_{2} \mathrm{O}_{(l)} \quad$ and $\quad$ Propene $_{(g)} \quad$ are $-393,-285.8$ and $20.42 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of isomerisation of cyclopropane to propene is $-33.0 \mathrm{kJmol}^{-1}$

## - Watch Video Solution

## Exercise 9

1. Determine enthalpy change for,

$$
D_{3} H_{8(g)}+H_{2(g)} \rightarrow C_{2} H_{6(g)}+\mathrm{CH}_{4(g)}
$$

at $25^{\circ} \mathrm{C}$ using heat of combustion values under standard condition.
Compounds $\quad H_{2(g)} \quad \mathrm{CH}_{4(g)} \quad C_{2} H_{6(g)} \quad C_{(\text {Graphite })}$
$\Delta H^{\circ} \mathrm{inkJ} / \mathrm{mol}-285.8-890.0-1560.0-393.5$
The standard heat of formation of $C_{3} H_{8(g)}$ is $-103.8 \mathrm{kJmol}^{-1}$.

## - Watch Video Solution

1. The molar heat of formation of $\mathrm{NH}_{4} \mathrm{NO}_{3(s)}$ is $-367.54 k J$ and those of $\mathrm{N}_{2} \mathrm{O}_{(g)}, \mathrm{H}_{2} \mathrm{O}_{(l)}$ are 81.46 and -285.8 kJ respectively at $25^{\circ} \mathrm{C}$ and 1 atmosphere pressure. Calculate $\Delta H$ and $\Delta U$ of the reaction $\mathrm{NH}_{4} \mathrm{NO}_{3(s)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$.

## - Watch Video Solution

## Exercise 11

1. Standard heat of formation of $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ are $-76.2,-394.8$ and $-241.6 \mathrm{kmol}^{-1}$ respectively. Calculate the amount of heat evolved by burning $1 m^{3}$ of $C H_{4}$ measured under normal conditions.

## - Watch Video Solution

1. Determine the value of $\Delta H$ and $\Delta U$ for the reversible isothermal evaporation of 90.0 g of water at $100^{\circ} \mathrm{C}$. Assume that water behaves as an ideal gas and heat of evaporation of water is $540 \mathrm{calg}^{-1}\left(R=2.0 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}\right)$.

## - Watch Video Solution

## Exercise 13

1. The standard molar enthalpies of formation of cyclohexane (I) and benzene (I) at $25^{\circ} \mathrm{C}$ are -156 and $+49 \mathrm{kJmol}^{-1}$, respectively. The standard enthaly of hydrogenation of cyclohenxene (I) at $25^{\circ} \mathrm{C}$ is $-119 \mathrm{kJmol}^{-1}$ Use this data to estimate the magnitude of the resonance enegry of benzene.
2. Diborane is a potential rocket fuel that undergoes combustion according to the reaction,

$$
\mathrm{B}_{2} \mathrm{H}_{6}(g)+3 \mathrm{O}_{2}(g) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)
$$

From the following data, calculate the enthalpy change for the combustion of diborane:

## ( Watch Video Solution

## Exercise 15

1. Calculate $\Delta H_{f}^{\circ}$ for chloride ion from the following data :
$\frac{1}{2} H_{2(g)}+\frac{1}{2} C l_{2(g)} \rightarrow H C l_{(g)}, \Delta H_{f}^{\circ}=-92.4 k J$
$\mathrm{HCl}_{(g)}+n \mathrm{H}_{2} \mathrm{O} \rightarrow H_{(a q .)}^{+}+\mathrm{Cl}_{(a q .)}^{-}, \Delta H^{\circ}=-74.8 k J$
$\Delta H_{f}^{\circ} H_{(a q .)}^{+}=0.0 k J$

## - Watch Video Solution

1. The enthalpy change involved in the oxidation of glucose is $-2880 \mathrm{kJmol}^{-1}$. Twenty five per cent of this energy is available for muscular work. If $100 k J$ of muscular work is needed to walk one kilometre, what is the maximum distance that a person will be able to walk after eating $120 g$ of glucose ?

## D Watch Video Solution

## Exercise 17

1. A gas mixture of $3.67 L$ of ethylene and methane on complete combustion at $25^{\circ} \mathrm{C}$ produces 6.11 L of $\mathrm{CO}_{2}$. Find out the heat evolved on buring $1 L$ of the gas mixture. The heats of combustion of ethylene and methane are -1423 and $-891 \mathrm{kJmol}^{-1}$, respectively, at $25^{\circ} \mathrm{C}$.
2. An intimate mixture of ferric oxide and aluminium is used as solid fuel in rockets. Calculate the fuel value per $\mathrm{cm}^{3}$ of the mixture.

Heats of formation and densities are as follows:
$H_{f\left(A I_{2} O_{3}\right)}^{\Theta}=-399 \mathrm{kcalmol}^{-1}, H_{f\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}^{\Theta}=-199 \mathrm{kcalmol}^{-1}$ Density of $\mathrm{Fe}_{2} \mathrm{O}_{3}=4.0 \mathrm{gcm}^{-3}$, Density of $\mathrm{Al}=2.0 \mathrm{gcm}^{-3}$

## - Watch Video Solution

## Exercise 19

1. The bond dissociation energy of gaseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104, 58 and $103 \mathrm{kcalmol}^{-1}$ respecitvely. Calculate the enthalpy of formation for HCl gas.

## - Watch Video Solution

1. The polymerisation of ethylene to linear polyethylene is represented by the reaction
$n \mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}$
When $n$ has a large integral value. Given theat the average enthalpies of bond dissociation for $C=C$ and $C-C$ at $298 K$ are +590 and $+331 \mathrm{kJmol}^{-1}$ respectively, calculate the enthalpy of polymerisation per mole of ethylene at $298 K$.

## - Watch Video Solution

## Exercise 21

1. Calculate enthalpy change of the following reaction:
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3(\mathrm{~g})}$
The bond energy of $C-H, C-C, C=C, H-H$ are 414, 347, 615 and $435 \mathrm{kJmol}^{-1}$ respectively.

## Exercise 22

1. Using the data ( all vaues in $\mathrm{kcalmol}^{-1} \mathrm{at} 25^{\circ} \mathrm{C}$ ) given below, calculate bond energy of $C-C$ and $C-H$ bonds.
$C_{(s)} \rightarrow C_{(g)}, \Delta H=172$
$H_{2} \rightarrow 2 H, \Delta H=104$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}, \Delta \mathrm{H}=-68.0$
$C_{(s)}+O_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=-94.0$
Heat of combustion of $C_{20 H_{6}=}=-372.0$
Heat of combustion of $C_{3} H_{8}=-530.0$

## - Watch Video Solution

## Exercise 23

1. Calculate the resonance enegry of $\mathrm{N}_{2} \mathrm{O}$ form the following data
$\Delta_{f} H^{\Theta}$ of $N_{2} O=82 \mathrm{kJmol}^{-1}$
Bond enegry of $N \equiv N, N=N, O=O$, and $N=O$ bond is $946,418,498$, and $607 \mathrm{kJmol}^{-1}$, respectively.

## - Watch Video Solution

## Exercise 24

1. Compute the heat of formation of liquie methyl alcohol is kilojoule per mol using the following data. Heat of vaporisation of liquid methyl alcohol $=38 \mathrm{~kJ} / \mathrm{mol}$. Heat of formation of gaseous atoms from the elements in their standard states
$: H=218 \mathrm{~kJ} / \mathrm{mol}, C=715 \mathrm{~kJ} / \mathrm{mol}, O=249 \mathrm{~kJ} / \mathrm{mol}$.
Average bond energies:
$C-H 415 k J / m o l, C-O 356 k J / m o l, O-H 463 k J / m o l$.

## - Watch Video Solution

1. In order to get maximum calorific output, a burner should have an optimum fuel to oxygen ratio which corresponds to 3 times as much oxygen as is required theoretically for complete combustion of the fuel. A burner which has been adjusted for methane as fuel ( with $X$ litre / hour OF $\mathrm{CH}_{4}$ and 6 X litre $/$ hour of $O_{2}$ ) is to be readjusted for butane $C_{4} H_{10}$ . In order to get same calorific output, what should be the rate of supply of butane and oxygen ? Assume that losses due to incomplete combustion etc., are the same for both fuels and that gases behave ideally. Heat of combustion $C H_{4}=809 \mathrm{kJmol}^{-1}$,

$$
C_{4} H_{10}=2878 \mathrm{kJmol}^{-1}
$$

## - View Text Solution

## Exercise 26

1. The standard heat of formation values of $S F_{6}(g), S(g)$, and $F(g)$ are $-1100,275$, and $80 \mathrm{kJmol}^{-1}$, respectively. Then the average $S-F$ bond enegry in $S F_{6}$

## - Watch Video Solution

## Exercise 27

1. For the reaction
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta \mathrm{H}=-560 \mathrm{~kJ}$,
2 mol of CO and 1 mol of $O_{2}$ are taken in a container of volume 1 L . They completely form 2 mol of $\mathrm{CO}_{2}$. The gaseous deviate appreciably from ideal behaviour. If the pressure in the vessel changes from 70 to 40 atm , find the magnetic (absolute) value of $\Delta U a t 500 K .(1 L-a t m=0.1 \mathrm{~kJ})$

## - Watch Video Solution

1. Equal volumes of 1 MHCI and $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ are neutralised by 1 MNaOH solution and $x$ and $y k J /$ equivalent of heat are liberated, respectively. Which of the following relations is correct?
A. $x=y$
B. $x=\frac{y}{2}$
C. $x=2 y$
D. None of these

## Answer: B

## - Watch Video Solution

2. The standard heat of combustion of solid boron is equal to :
A. $\Delta_{f} H^{\circ}\left(B_{2} O_{3}\right)$
B. $\frac{1}{2} \Delta_{f} H^{\circ}\left(B_{2} O_{3}\right)$
C. $2 \Delta_{f} H^{\circ}\left(B_{2} O_{3}\right)$
D. $-\frac{1}{2} \Delta_{f} H^{\circ}\left(B_{2} O_{3}\right)$

## Answer: B

## - Watch Video Solution

3. The compound with negative value of heat of formation are called :
A. endothermic compound
B. exothermic compound
C. hear of formation compounr
D. None of these

## Answer: B

## - Watch Video Solution

4. Which reaction is endothermic in nature?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{C}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}$
C. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

## Answer: A

## - Watch Video Solution

5. Which plot represents for an exothermic reaction ?
A.
(a)

B.
(b)

(c)
$\underset{\text { Time } \longrightarrow}{\mathrm{H} \mathrm{H}_{P}}$
C.
(d)

D.
Time

## Answer: A

## D Watch Video Solution

6. For the reaction, $3 O_{2} \rightarrow 2 O_{3}, \Delta H=+v e$. We can say that :
A. ozone is more stable than oxygen
B. ozone is less stable than oxygen and ozone decomposes forming oxygen readily
C. oxygen is less stble than ozone and oxygen readily forms ozone
D. None of these

## Answer: B

## - Watch Video Solution

7. The enthalpy changes of formation of the gaseous oxides of nitrogen ( $\mathrm{N}_{2} \mathrm{O}$ and NO ) are positive because of :
A. the high bond energy of the nitrogen molecule
B. the hight electrone affinity of oxygen atoms
C. the high electron affinity of nitrogen atoms
D. the tendency of oxygen to form $O^{2-}$

## Answer: A

## - Watch Video Solution

8. The heats of neutralisation of four acids $A, B, C$ and $D$ are $-13.7,-9.4,-11.2$ and $-12.4 k$ cal respectively, when they are
neturalised by a common base. The acidic character obeys the order :
A. $A>B>C>D$
B. $A>D>C>B$
C. $D>C>B>A$
D. $D>B>C>A$

## Answer: B

## - Watch Video Solution

9. Which fuel provides the highest calorific values ?
A. Charcoal
B. Kerosene
C. Wood
D. Dung

## Answer: B

10. In a flask, colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown-coloured $\mathrm{NO}_{2}$. At equilibrium, when the flask is heated to $100^{\circ} \mathrm{C}$ the brown colour deepens and on cooling, the brown colour became less coloured. The change in enthalpy $\Delta H$ for the ayatem is
A. negative
B. positive
C. zero
D. undefined

## Answer: B

## - Watch Video Solution

11. The difference between the heats of reaction at constant pressure and
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ in $k J$ is
A. -7.43
B. +3.72
C. -3.72
D. +7.43

## Answer: A

## - Watch Video Solution

12. The temperature of a $5 m L$ of strong acid increases by $5^{\circ}$ when $5 m L$ of strong base is added to it. If $10 m L$ of each are mixed, temperature should increase by :
A. $5^{\circ} \mathrm{C}$
B. $10^{\circ} \mathrm{C}$
C. $15^{\circ} \mathrm{C}$
D. cannot be know

## Answer: A

## - Watch Video Solution

13. Heat of combustion of $\mathrm{CH}_{4}, C_{2} H_{4}, C_{2} H_{6}$ are $-890,-1411$ and
$-1560 \mathrm{~kJ} / \mathrm{mol}$ respectively. Which has the lowest calorific fuel value ?
A. $\mathrm{CH}_{4}$
B. $C_{2} H_{4}$
C. $C_{2} H_{6}$
D. Same for all

Answer: B

## - Watch Video Solution

14. In which case of mixing of a strong acid and a base each of $1 N$ concentration, temperature increase is highest ?
A. $15 m L$ acid $-20 m L$ alkali
B. $10 m L$ acid $-40 m L$ alkali
C. $25 m L$ acid $-25 m L$ alkali
D. $35 m L$ acid $-15 m L$ alkali

## Answer: C

## - Watch Video Solution

15. The dissociation energy of $C H_{4}$ and $C_{2} H_{6}$ are respectively 360 and $620 \mathrm{kcal} / \mathrm{mol}$. The bond energy of $C-C$ bond is :
A. $260 \mathrm{kcal} / \mathrm{mol}$
B. $180 \mathrm{kcal} / \mathrm{mol}$
C. $130 \mathrm{kcal} / \mathrm{mol}$
D. $80 \mathrm{kcal} / \mathrm{mol}$

Answer: D

## - Watch Video Solution

16. Given that ,
$A(s) \rightarrow A(l) \Delta H=x$
$A(l) \rightarrow A(g), \Delta H=y$
The heat of sublimation of $A$ will be :
A. $x-y$
B. $x+y$
C. $x$ or $y$
D. $-(x+y)$

## Answer: B

17. A person requires 2870 kcal of energy to lead normal daily life. If heat of combustion of cane sugar is $-1349 k c a l$, then his daily comsumption of sugar is :
A. $728 g$
B. $0.728 g$
C. $342 g$
D. $0.342 g$

## Answer: A

## - Watch Video Solution

18. If, combustion of $4 g$ of $\mathrm{CH}_{4}$ liberates 2.5 kcal of heat, the heat of combustion of $\mathrm{CH}_{4}$ is :
A. -20 kcal
B. -10 kcal
C. 2.5 kcal
D. $-5 k \mathrm{cal}$

## Answer: B

## - Watch Video Solution

19. A solution of 500 mL of 2 MKOH is added to 500 mL of 2 MHCl and the mixture is well shaken. The rise in temperature $T_{1}$ is noted. The experiment is then repeated using 250 mL of each solution and rise in temperature $T_{2}$ is againg noted. Assume all heat is taken up by the solution :
A. $T_{1}=T_{2}$
B. $T_{1}$ is 2 times as larger as $T_{2}$
C. $T_{2}$ is twice larger as $T_{1}$
D. $T_{1}$ is 4 time as larger as $T_{2}$

## - Watch Video Solution

20. Under the same conditions, how many $m L$ of $1 M K O H$ and $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solutions, respectively, when mixed to form a total volume of 100 mL , produces the highest rise in temperature?
A. $67: 33$
B. $33: 67$
C. $40: 60$
D. $50: 50^{`}$

## Answer: D

## - Watch Video Solution

21. $A B, A_{2}$ and $B_{2}$ are diatomic molecules. If the bond enthalpies of $A_{2}, A B$ and $B_{2}$ are in the ratio 1:1:0.5 and the enthalpy of formation of
$A B$ from $A_{2}$ and $B_{2}$ is $-100 \mathrm{kJmol}^{-1}$, what is the bond enthalpy of $A_{2}$ ?
A. $400 \mathrm{kJmol}^{-1}$
B. $200 \mathrm{kJmol}^{-1}$
C. $100 \mathrm{kJmol}^{-1}$
D. $300 \mathrm{kJmol}^{-1}$

## Answer: A

## - Watch Video Solution

22. $\Delta C_{p}$ for change , $N_{2(g)}+3 H_{2(g)}=2 \mathrm{NH}_{3(g)}$ is :
A. $C_{p N H_{3}}-\left(C_{p N_{2}}\right)$
B. $2 C_{p N H_{3}}-\left(C_{p N_{2}}+3 C_{p H_{2}}\right)$
C. $2 C_{p N H_{3}}-\left(C_{p H_{2}}\right)$
D. $2 C_{p N H_{3}}+\left(C_{p N_{2}}+3 C_{p H_{2}}\right)$

## - Watch Video Solution

23. Consider the reactions :
$C_{(s)}+2 H_{2(g)} \rightarrow C H_{4(g)}, \Delta H=-X k c a l$
$C_{(g)}+4 H_{(g)} \rightarrow C H_{4(g)}, \Delta H-X_{1} k c a l$
$\mathrm{CH}_{4(g)} \rightarrow \mathrm{CH}_{3(g)}+H_{(g)}, \Delta H=+Y k c a l$
The average bond energy of $C-H$ bond is :
A. $\frac{X}{4}$ kcalmol $^{-1}$
B. $Y_{k c a l m o l}{ }^{-1}$
C. $\frac{X_{1}}{4} \mathrm{kcalmol}^{-1}$
D. $X_{1} \mathrm{kcalmol}^{-1}$

## Answer: C

24. Which of the following is incorrect about the reaction :

$$
C+O_{2(g)} \rightarrow \underset{(\text { Diamond })}{C O_{2(g)}, \Delta H}=-94.3 \mathrm{kcal} \text { at } 25^{\circ} \mathrm{C} \text { and } 1 \mathrm{~atm} ?
$$

A. Heat of combustion of $C=-94.3 k c a l$
B. Heat of formation of $\mathrm{CO}_{2}=-94.3 \mathrm{kcal}$
C. $\Delta H=\Delta U$
D. Standard heat of formation of $\mathrm{CO}_{2}=-94.3 \mathrm{kcal}$

## Answer: D

## - Watch Video Solution

25. For $N_{2}(g)+3 H_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)+22 k c a l, E_{a}$ for the reaction is 70 kcal . Hence, the activation energy for $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ is :
A. 70 kcal
B. 92 kcal
C. 48 kcal
D. None of these

## Answer: B

## - Watch Video Solution

26. Bond energy of $N-H, H-H$ and $N \equiv N$ are $a, b, c$ respectively. The $\Delta H$ for the reaction,
$2 \mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$ is :
A. $6 a-3 b-c$
B. $6 a+3 b+c$
C. $a+6 b-c$
D. $6 a+b-3 c$

## Answer: A

## - Watch Video Solution

27. If heat of neutralisation is -13.7 kcal at $25^{\circ} \mathrm{C}$ and $H_{f\left(\mathrm{H}_{2} \mathrm{O}\right)}^{\circ}=-68 \mathrm{kcal}$, then standard enthalpy of $\mathrm{OH}^{-}$would be :
A. 54.3 kcal
B. -54.3 kcal
C. 71.3 kcal
D. -71.3 kcal

## Answer: B

## - Watch Video Solution

28. If $\frac{1}{2} X_{2} O_{(s)} \rightarrow X_{(s)}+\frac{1}{4} O_{2(g)}, \Delta H=90 k J$ then heat change during reaction of metal $X$ with $1 \mathrm{moleO}_{2}$ to form oxide to maximum extent is :
A. $-360 k J$
B. -180 kJ
C. $+360 k J$
D. +180 kJ

## Answer: A

## - Watch Video Solution

29. The data given below are for vapour phase reactions at constant pressure.
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \dot{\mathrm{C}}_{2} \dot{H}_{5}+\dot{H}, \Delta H=-4200 \mathrm{kJmol}^{-1}$
$\dot{C}_{2} H_{6} \rightarrow C_{2} H_{4}+\dot{H}, \Delta H=168 \mathrm{kJmol}^{-1}$
The enthalpy change for the reaction ,
$2 \dot{C}_{2} H_{5} \rightarrow C_{2} H_{6}+C_{2} H_{4}$ is :
A. $+250 \mathrm{kJmol}^{-1}$
B. $+588 \mathrm{kJmol}^{-1}$
C. $-252 \mathrm{kJmol}^{-1}$
D. $-588 \mathrm{kJmol}^{-1}$

## - Watch Video Solution

30. The product of combustion of an aliphatic thiol $(R S H)$ at 298 K are :
A. $\mathrm{CO}_{2(g)}, \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ and $\mathrm{SO}_{2(g)}$
B. $\mathrm{CO}_{2(g)}, \mathrm{H}_{2} \mathrm{O}_{(l)}$ and $\mathrm{SO}_{2(g)}$
C. $\mathrm{CO}_{2(l)}, \mathrm{H}_{2} \mathrm{O}_{(l)}$ and $\mathrm{SO}_{2(g)}$
D. $\mathrm{CO}_{2(g)}, \mathrm{H}_{2} \mathrm{O}_{(l)}$ and $\mathrm{SO}_{2(l)}$

## Answer: B

## - Watch Video Solution

31. The bond energy of $H_{2}$ is $104.3 \mathrm{kcalmol}^{-1}$. If means that :
A. 104.3kcalheat is needed to break up ' $N$ ' bonds in $N$ molecules of $H_{2}$.
B. 104.3 kcal heat is needed to break up $6.023 \times 10^{23}$ molecules into
$1.2046 \times 10^{24}$ atoms of $H$
C. 104.3kcal heat is evolved during combination of 2 N atoms of $H$ to
form $N$ molecules of $H_{2}$.
D. all of these

## Answer: D

## - Watch Video Solution

32. Heat of neutralisation of NaOH and HCl is -57.46 kJ / equivalent. The heat of ionisation of water in $k J / m o l$ is :
A. -57.46
B. +57.46
C. -114.92
D. +114.92

## Answer: B

## - Watch Video Solution

33. The lattice energy of solid NaCI is $180 \mathrm{kcalmol}^{-1}$. The dissolution of the solid in $\mathrm{H}_{2} \mathrm{O}$ is endothermic to the extent of $1.0 \mathrm{kcalmol}^{-1}$. If the hydration energies of $N a^{\oplus}$ and $C I^{\Theta}$ ions are in the ratio of $6: 5$ what is the enthalpy of hydration of sodium ion?
A. $-85.6 \mathrm{kcalmol}^{-1}$
B. $-97.64 \mathrm{kcalmol}^{-1}$
C. $+82.6 \mathrm{kcalmol}^{-1}$
D. $+100 \mathrm{kcalmol}^{-1}$

## Answer: B

34. Heat of neutralisation of $H F$ is :
A. $57.32 k J$
B. $>57.32 k J$
C. $<57.32 k J$
D. none of these

## Answer: B

## - Watch Video Solution

35. The heat of atomisation of $P H_{3(g)}$ is $228 \mathrm{kcalmol}^{-1}$ and that of $P_{2} H_{4}$ is $355 \mathrm{kcalmol}^{-1}$. Calculate the average bond energy of $P-P$ bond.
A. 102
B. 51
C. 26
D. 204

## Answer: B

## - Watch Video Solution

36. Given that :
$2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{CO}_{2(g)}, \Delta H^{\circ}=-\mathrm{PkJ}$
$C_{(s)}+O_{2(g)} \rightarrow C O_{2(g)}, \Delta H^{\circ}=-Q k J$
the enthalpy of formation of carbon monoxide is :
A. $\frac{P-Q}{2}$
B. $2 Q-P$
C. $P-2 Q$
D. $\frac{P-2 Q}{2}$

## Answer: D

## D Watch Video Solution

37. For which reaction $\Delta H=\Delta U$ ?
A. $P C l_{5(g)} \rightarrow P C l_{3(g)}+C l_{2(g)}$
B. $2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{CO}_{2(g)}$
C. $\mathrm{H}_{2(g)}+\mathrm{Br}_{2(g)} \rightarrow 2 \mathrm{HBr}_{(g)}$
D. $\mathrm{C}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow 2 \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)}$

## Answer: C

## - Watch Video Solution

38. The enthalpy of hydrogenation of cyclohexene is $-119.5 \mathrm{kJmol}^{-1}$. If resonance energy of benzene is $-150.4 \mathrm{kJmol}^{-1}$, its enthalpy of hydrogenation would be :
A. $-269.9 \mathrm{kJmol}^{-1}$
B. $-358.5 \mathrm{kJmol}^{-1}$
C. $-508.9 \mathrm{kJmol}^{-1}$
D. $-208.1 \mathrm{kJmol}^{-1}$

## Answer: D

## - Watch Video Solution

39. For which of the following reactions heat of formation $\left(\Delta_{f} H\right)$ is equal to $\Delta H / 2$ ?
A. $N_{2}+O_{2} \rightarrow 2 N O, \Delta H=X_{1}$
B. $\mathrm{CO}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta \mathrm{H}=\mathrm{X}_{2}$
C. $P C l_{3}+$ Cl $_{2} \rightarrow P C l_{5}, \Delta H=X_{3}$
D. $C+O_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=X_{4}$
40. For a hypothetical reaction, $3 A \rightarrow A_{3}$
$\Delta C_{p}(i n J)=6.0+2.0 \times 10^{-3} T$
$\Delta H=-20 \mathrm{kJmol}^{-1}$ at 300 K

The temperature at which reaction neither absorbs nor releases heat is :
A. $2557^{\circ} \mathrm{C}$
B. $255^{\circ} \mathrm{C}$
C. $2284^{\circ} \mathrm{C}$
D. $228^{\circ} \mathrm{C}$

## Answer: C

## - Watch Video Solution

41. In a flask, colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown-coloured $\mathrm{NO}_{2}$.

At equilibrium, when the flask is heated to $100^{\circ} \mathrm{C}$ the brown colour
deepens and on cooling, the brown colour became less coloured. The change in enthalpy $\Delta H$ for the ayatem is
A. (a) The $\Delta H$ for the reaction :
$\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(g)}$ is $+v e$
B. Paramagnetic decreases on cooling
C. The $\Delta H-\Delta U$ at $100^{\circ} \mathrm{C}$ is equal to 200 cal
D. Dimerisation is reduced on heating

## Answer: C

## - Watch Video Solution

42. 1mole of ice melts at $0^{\circ} \mathrm{C}$ and constant pressure of 1 atm by absorbing 1.44 kcal heat . The density of ice $0.918 \mathrm{~g} / \mathrm{Ml}$ and of water $1 g / m L$ respectively. The two values of $\Delta H$ and $\Delta U$ differ by :
A. -0.039 cal
B. +0.039 cal
C. -0.39 cal
D. +0.39 cal

## Answer: A

## - Watch Video Solution

43. Which of the following statement is wrong for
$C_{(\text {graphite })} \rightarrow C_{(\text {diamond })} ? \Delta H^{\circ}=+1.90 \mathrm{~kJ}$
A. $\Delta H^{\circ}{ }_{-}(f)$ for $C_{(\text {graphite })}$ is zero
B. $\Delta H^{\circ}{ }_{-}(f)$ for $C_{(\text {diamond })}$ is +1.90 kJ
C. The enthalpy of formation of element in a form other than its most stable one is non zero
D. None of these

## Answer: D

44. 2moles of CO and 1 mole of $\mathrm{O}_{2}$ are allowed to react completely to form $\mathrm{CO}_{2}$ at $27^{\circ} \mathrm{C}$. If the heat liberated during the course of reaction $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$ at constant pressure is 560 kJ , the amount of heat liberated by carrying the reaction in one litre vessel will be : ( Given 1litre - atm $=0.1 \mathrm{~kJ}$ )
A. +535.37 kJ
B. -557.537 kJ
C. -58 kJ
D. +57 kJ

## Answer: B

## - Watch Video Solution

45. One mole of a gas is allowed to expand freely in vacuum at $27^{\circ} \mathrm{C}$. The work done during the process is :
A. zero
B. $300 k J$
C. 150 kJ
D. 300 J

## Answer: A

## - Watch Video Solution

46. A system is provided $50 \times 10^{3} \mathrm{~J}$ energy and work done on the system is 100 J . The change in internal energy is :
A. 50 kJ
B. 50.1 kJ
C. 150 J
D. 50 J

## Answer: B

47. A piston exering a pressure of one atm rests on the surface of water at 373 K . The pressure is reduced to smaller extent and as a result 10 gm of water evaporates and absorbs 22.4 kJ of heat. The change in internal energy is :
A. 19.678 kJ
B. 22.06 kJ
C. 23.943 kJ
D. 20.678 kJ

## Answer: D

## - Watch Video Solution

48. For a reaction $\Delta C_{p}=2.0+0.2 T$ cal $^{\circ} C$ and enthalpy of reaction at 10 K is -14.3 kcal . The enthalpy of this reaction at 100 K is :
A. -16.3 kcal
B. $-17.02 k c a l$
C. $-13.13 k c a l$
D. -14.08 kcal

## Answer: C

## - Watch Video Solution

49. The latent heat of vaporisation of liquid is $10 \mathrm{kcalmol}^{-1}$ at 1 atm and $227^{\circ} C$. What will be the change in internal energy of 3 moles of the liquid at same condition?
A. $14 k c a l$
B. $-14 k \mathrm{cal}$
C. 27kcal
D. -27 kcal

## Answer: C

## D Watch Video Solution

50. One gram sample of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is decomposed in a bomb calorimeter. The temperature of the calorimeter increases by $6.23 K$. The heat capacity of the system is $1.23 k J / g-d e g$. The molar heat of decomposition for $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is :
A. $-16.1 \mathrm{kJmol}^{-1}$
B. $-7.53 \mathrm{kJmol}^{-1}$
C. $-621.89 \mathrm{kJmol}^{-1}$
D. $-498.1 \mathrm{kJmol}^{-1}$

## Answer: C

## D Watch Video Solution

51. Bond dissociation enthalpy of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 434, 242 and $431 \mathrm{kJmol}^{-1}$ respectively. Enthalpy of formation of HCl is :
A. $-93 \mathrm{kJmol}^{-1}$
B. $245 \mathrm{kJmol}^{-1}$
C. $93 \mathrm{kJmol}^{-1}$
D. $-245 \mathrm{kJmol}^{-1}$

## Answer: A

## - Watch Video Solution

52. The amount of heat released during the reaction of 300 mL of 1 MHCl with 100 mLof 1 M NaOH : $:$
A. 573 kJ
B. $573 \times 10^{-3} \mathrm{Kj}$
C. 57.3 kJ
D. 5.73 kJ

## Answer: D

## - Watch Video Solution

53. The change is entropy when 1 mole of an ideal gas is compressed to $1 / 4 t h$ to its intial volume and simultaneously heated to twice of its initial temperature is :
A. $\left[C_{v}-R\right] \ln 2$
B. $\left[C_{v}-2 R\right] \ln 2$
C. $\left[C_{v}+2 R\right] \ln 2$
D. $\left[C_{v}-R\right] \ln 4$

## Answer: B

## - Watch Video Solution

1. Which of the following pairs are correctly matched ?
A. Arrhenius equation : Variation of enthalpy of a reaction with temperature.
B. Kirchhoff equation : Variation of rate constant with temperature
C. Second law of thermodynamics : Entropy of an isolated system tends to increase and reach a maximum value
D. Hess's law of constant heat summation: Enthalpy change in a reaction is always constant and independent of the manner in which he reactions occurs

## Answer: C::D

## - Watch Video Solution

2. Which of the following statements is (are ) correct ?
A. The heat of neutralization of a strong acid with a strong base is always the same
B. The enthalpy of combustion is alwaysa negative
C. A spontaneous change involves a lowering of free energy
D. The enthalpy of an element in the standard state is assumed to be unity at $298 K$

## Answer: A::B::C

## - Watch Video Solution

3. Which is (are) correct for ideal gas ?
A. $\left(\frac{\delta U}{\delta T}\right)_{P}=0$
B. $\left(\frac{\delta T}{\delta P}\right)_{H}=0$
c. $\left(\frac{\delta E}{\delta V}\right)_{T}=0$
D. $\left(\frac{\delta U}{\delta P}\right)_{T}=0$

## Answer: B::C::D

## - View Text Solution

4. Which of the following are applicable for a thermochemical equation ? It tells :
A. about the physical state of reactants and products
B. about the allotropic form ( if any) of the reactants
C. whether the reaction is exothermic or endothermic
D. whether a particular reaction is spontaneous or not

## Answer: A::B::C

5. The heat of reaction depends upon :
A. the manner by which the reaction is carried out
B. temperature at which the reaction is carried out
C. physical state of reactant and products
D. whether the reaction is carried out at constant pressure or at constant volume

## Answer: B::C::D

## - Watch Video Solution

6. The enthalpy of formation of $U F(g)$ is $22 \mathrm{kcalmol}^{-1}$ and that of $U(g)$ is $128 \mathrm{kcalmol}^{-1}$.

The bond energy of the $F-F$ bond is $37 \mathrm{kcalmol}^{-1}$. The bond dissociation energy of $U F(g)$ is (are):
A. $124.5 \mathrm{kcalmol}^{-1}$
B. $131.1 \mathrm{kcalmol}^{-1}$
C. $521 \mathrm{kJmol}^{-1}$
D. $623 \mathrm{kJmol}^{-1}$

## Answer: A::C

## - Watch Video Solution

7. The standard heat of formation of a compound is the :
A. change in enthalpy for the production of 1 mole of the compound at STP
B. change in enthalpy for the formation of 1 mole of the compound from its elements
C. change in enthalpy for the formation of 1 mole of the compound from its elements at 298 K and 1 atm pressure
D. change in enthalpy for the formation of 1 mole of the compound from its elements at $25^{\circ} \mathrm{C}$ and 760 mm of Hg pressure.

## Answer: C::D

## - Watch Video Solution

8. The heat of neutralization of a strong acid by a strong base is a constant because :
A. the strong acid and strong base react completely
B. the strong acid and strong base dissociate completely and only

$$
\mathrm{H}^{+} \text {and } \mathrm{OH}^{-} \text {ions react in every case }
$$

C. the salt formed do not hydrolyse
D. there is no side reaction during neutralization

## Answer: B::D

9. Which of the following is (are) true ?
A. The evaporation of water is an endothermic change
B. The conversion of white phosphours to red phosphorus is an exothermix reaction
C. The heat of neutralization of a strong acid with a strong base is always the same
D. $\Delta H$ is negative for endothermic reactions

## Answer: A::B::C

## - Watch Video Solution

10. The standard heat of formation of $U_{3} O_{8}$ is $-853.5 \mathrm{kcalmol}^{-1}$ and standar heat of the reaction, $3 \mathrm{UO}_{2}+O_{2} \rightarrow U_{3} O_{8}$ is -76.01 kcal . The standard heat of formation of $U O_{2}$ is (are):
A. $-1083 \mathrm{kJmol}^{-1}$
B. $-1102 \mathrm{kJmol}^{-1}$
C. $-259 \mathrm{kcalmol}^{-1}$
D. $302 \mathrm{kcalmol}^{-1}$

## Answer: A::C

## - Watch Video Solution

11. For which of the following substances is the heat of formation in the standard state zero ?
A. Aluminium
B. $C_{\text {diamond }}$
C. Zinc
D. $C_{\text {graphite }}$

## Answer: A::C::D

12. Which of the following statements is (are) true ?
A. $\Delta H$ is $-v e$ for exothermic reactions
B. $\Delta H$ is $+v e$ for endothermic reactions
C. The heat of neutralization of strong acid and strong bases is constant
D. The enthalpy of fusion is $+v e$

## Answer: A::B::C::D

## - Watch Video Solution

13. The heat of combustion of ethanol was determined in a bomb calorimeter and was found to be $-670.48 \mathrm{kcalmol}^{-1}$ at $25^{\circ} \mathrm{C}$. What will be $\Delta U$ for the same reaction at 298 K ?
A. $-2802.6 k J$
B. -669.28 cal
C. -670.48 kcal
D. $-280.26 \times 10^{4} \mathrm{~kJ}$

## Answer: C::D

## - Watch Video Solution

14. If $\Delta_{f} H^{\circ}{ }_{-}\left(C_{3} H_{8}(g)\right)=-85 \mathrm{kJmoll}^{-1}$,
$\Delta_{f} H^{\circ}{ }_{-}\left(C_{3} H_{8}(g)\right)=-104 \mathrm{kJmol}^{-1}$,
$\Delta H$ for $C_{(s)} \rightarrow C_{(g)}$ is $718 \mathrm{kJmol}^{-1}$ and heat of formation of $H-$ atom is $218 \mathrm{kJmol}^{-1}$, then :
A. $e_{C-H}=414 k J$
B. $e_{C-C}=345 k J$
C. $e_{H-H}=218 k J$
D. $e_{H-H}=436 k J$

## D Watch Video Solution

15. During the melting of an ice slab at 273 K at atmospheric pressure :
A. Positive work is doen on the ice - water system by the atmosphere.
B. Positive work is done by the ice - water system on the atmosphere
C. The internal energy of the ice - water system decreases
D. The internal energy of the ice - water system increases.

## Answer: A::D

## - Watch Video Solution

16. Select the incorrect statement $(s)$ :
A. $\Delta G$ is $+v e$, the process is endoergic
B. $\Delta G$ is $-v e$, the process is exoergic.
C. $\Delta G$ is $-v e$, the process is non - spontaneous.
D. $\Delta G$ is $-v e$, the process is spontaneous.

## Answer: A::B::C

## - Watch Video Solution

17. A reaction in equilibrium shows the following characteristics $l_{k}$ :
A. dynamic equilibrium
B. a balance between maximum and minimum enthalpies
C. $\Delta_{r} H$ remains constant till the equilibrium exist
D. $\Delta_{r} H$ changes if the temperature raised

## Answer: A::B::C::D

18. $C_{v}$ and $C_{p}$ denote the molar specific heat capacities of a gas at constant volume and constant pressure, respectively. Then
A. $C_{p}+C_{v}$ is larger for a diatomic ideal gas than for a monoatomic ideal gas.
B. $C_{p}-C_{v}$ is larger for a diatomic ideal gas ghtan for a monoatomic ideal gas.
C. $C_{p} . C_{v}$ is larger for a diatomic ideal gas than for monoatomic ideal gas.
D. $C_{p} / C_{v 0}$ is larger for a diatomic ideal gas than for a monoatomic ideal gas.

## Answer: A:C

## - Watch Video Solution

1. For the reaction,
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta \mathrm{H}=-393 \mathrm{~J}$
$2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}, \Delta H=-412 \mathrm{~J}$
Which one is correct ?
A. Carbon can reduce $Z n O$ to $Z n$
B. Oxidation of carbon is not feasible
C. Oxidation of $Z n$ is not feasible
D. $Z n$ liberates more heat than carbon during oxidation

## Answer: A

## - Watch Video Solution

2. The heat requried to raise the temperature of body by $1^{\circ} C$ is called :
A. specific heat
B. thermal capacity
C. water equivalent
D. None of these

## Answer: C

## - Watch Video Solution

3. The enthalpy of reaction does not depend upon:
A. the nature of intermediate state
B. the differences in initial and final temperature
C. the physical state of reactants and product
D. use of different reactant for same product

## Answer: A

4. Calculate enthalpy change of the following reaction :
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3(\mathrm{~g})}$
The bond energy of $C-H, C-C, C=C, H-H$ are 414, 347, 615 and $435 \mathrm{kJmol}^{-1}$ respectively.
A. $+125 k J$
B. $-125 k J$
C. +250 kJ
D. -250 kJ

## Answer: B

## - Watch Video Solution

5. The enthalpies of combustion of carbon and carbond monoxide are -393.5 and $-283 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of formation of carbond monoxide per mole is :
A. $-110.5 k J$
B. 676.5 kJ
C. $-676.5 k J$
D. 110.5 kJ

## Answer: A

## - Watch Video Solution

6. Consider the reaction,
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ carried out at constant pressure and temperature. If $\Delta H$ and $\Delta U$ are change in enthalpy and change in internal energy respectively, then :
A. $\Delta H=0$
B. $\Delta H=\Delta U$
C. $\Delta H<\Delta U$
D. $\Delta H>\Delta U$

## Answer: C

## - Watch Video Solution

7. If the bond dissociation energies of $X Y, X_{2}$ and $Y_{2}$ ( all diatomic molecules ) are in the ratio $1: 1: 0.5$ and $\Delta_{f} H$ of $X Y$ is $-200 \mathrm{kJmol}^{-1}$. The bond dissociation energy of $X_{2}$ will be :
A. $800 \mathrm{kJmol}^{-1}$
B. $200 \mathrm{kJmol}^{-1}$
C. $300 \mathrm{kJmol}^{-1}$
D. $400 \mathrm{kJmol}^{-1}$

## Answer: A

8. The standard enthalpy of formation $\left(\Delta_{f} H^{\circ}\right)$ at 298 K for methane $\left(\mathrm{CH}_{4(\mathrm{~g})}\right)$ is $-74.8 \mathrm{kJmol}^{-1}$. The additional information required to determine the average energy for $C-H$ bond formation would be :
A. the dissociation energy of $H_{2}$ and enthalpy of sublimation of carbon
B. latent heat of vaporisation of methane
C. the first four ionisation energy of carbon and electrone gain enthalpy of hydrogen
D. the dissociation energy of $H_{2}$ molecule

## Answer: A

## - Watch Video Solution

9. The enthalpy change for the following process are listed below:
(a) $\mathrm{Cl}_{2(g)} \rightarrow 2 C l_{(g)}, \Delta H=242.3 \mathrm{kJmol}^{-1}$
(b) $I_{2(g)} \rightarrow 2 I_{(g)}, \Delta H=151.0 \mathrm{kJmol}^{-1}$
(c) $I C l_{(g)} \rightarrow I_{(g)}+C l_{(g)}, \Delta H=211.3 \mathrm{kJmol}^{-1}$
(d) $I_{2(s)} \rightarrow I_{2(g)}, \Delta H=62.76 \mathrm{kJmol}^{-1}$

If standard state of iodine and chloride are $I_{2(s)}$ and $C l_{2(g)}$, the standard enthalpy of formation for $I C l_{(g)}$ is :
A. $-14.6 \mathrm{kJmol}^{-1}$
B. $-16.8 \mathrm{kJmol}^{-1}$
C. $+16.8 \mathrm{kJmol}^{-1}$
D. $+244.8 \mathrm{kJmol}^{-1}$

## Answer: C

## - Watch Video Solution

10. $(\Delta H-\Delta U)$ for the formation of carbon monoxide $(C O)$ from its elements at 298 K is
$\left(R=8.314 K^{-1} \mathrm{~mol}^{-1}\right)$
A. $-1238.78 \mathrm{Jmol}^{-1}$
B. $1238.78 \mathrm{Jmol}^{-1}$
C. $-2477.57 \mathrm{Jmol}^{-1}$
D. 2477.57 $\mathrm{Jmol}^{-1}$

## Answer: B

## - Watch Video Solution

11. Assuming that water vapour is an ideal gas, the internal energy change $(\Delta U)$ when 1 mole of water is vaporised at $1 b a r$ pressure and $100^{\circ} C$, ( given: molar enthalpy of vaporization of water $41 \mathrm{kJmol}^{-1}$ at 1 bar and 373 K and $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ ) will be :
A. $4.100 \mathrm{kJmol}^{-1}$
B. $3.7904 \mathrm{kJmol}^{-1}$
C. $37.904 \mathrm{kJmol}^{-1}$
D. $41.00 \mathrm{kJmol}^{-1}$

## Answer: C

## - Watch Video Solution

12. Identify the correct statement regarding a spontaneous process :
A. For a spontaneous process in an isolated system, the change in entropy is positive
B. Endothermic processes are never spontaneous
C. Exothermic processes are always spontaneous
D. Lowering of energy in the reaction process is the only criterion for spontanity

## Answer: A

## - Watch Video Solution

13. In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is :
$\mathrm{CH}_{3} \mathrm{OH}_{(l)}+\frac{3}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
At 298 K standard Gibb's energies of formation for $\mathrm{CH}_{3} \mathrm{OH}(l), \mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are $-166.2,-237.2$ and $-394.4 \mathrm{kJmol}^{-1}$ respectively. If standard enthalpy of combustion of methanol is $-726 \mathrm{kJmol}^{-1}$, efficiency of the fuel cell will be :
A. $80 \%$
B. $87 \%$
C. $90 \%$
D. $97 \%$

## Answer: D

## - Watch Video Solution

14. On the basis of the following thermochemical data : $\left(\Delta_{f} G^{\circ} H_{(a q .)}^{+}=0\right)$
$\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{(a q .)}^{+}+\mathrm{OH}_{(a q .)}^{-}, \Delta H=57.32 k J$
$H_{2(g)}+\frac{1}{2} O_{2(g)} \rightarrow H_{2} O_{(l)}, \Delta H=-286.20 k J$
The value of enthalpy of formation of $\mathrm{OH}^{-}$ion at $25^{\circ} \mathrm{C}$ is :
A. $-22.88 k J$
B. -228.88 kJ
C. $+228.88 k J$
D. $-343.52 k J$

## Answer: B

## - Watch Video Solution

15. For which change $\Delta H \nearrow \Delta U$ ?
A. $H_{2(g)}+(I)_{2(g)} \Leftrightarrow 2 H I_{(g)}$
B. $\mathrm{HCl}_{(a q .)}+\mathrm{NaOH}_{(a q .)} \rightarrow \mathrm{NaCl}_{(a q .)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
C. $C_{(s)}+O_{2(g)} \Leftrightarrow C O_{2(g)}$
D. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$

## Answer: D

## - Watch Video Solution

16. Molar heat capacity of water in equilibrium with the ice at constant pressure is :
A. zero
B. infinity ( $\infty$ )
C. $40.45 .45 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
D. $75.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

## Answer: B

17. Standard molar enthalpy of formation of $\mathrm{CO}_{2}$ is equal to :
A. zero
B. the standard molar enthalpy of combustion
C. the sum of standard molar enthalpies of formation of CO and $\mathrm{O}_{2}$
D. the standard molar enthalpy of combustion of carbon ( graphite )

## Answer: D

## - Watch Video Solution

18. $\Delta_{f}^{\circ}$ for $\mathrm{CO}_{2(g)}, \mathrm{CO}_{(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{(g)}$ are $-393.5,-110.5$ and $-241.8 \mathrm{kJmol}^{-1}$ respectively. The standard enthalpy change (in kJ ) for given reaction is :

$$
\mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)} \rightarrow \mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}
$$

A. +524.1
B. +41.2
C. -262.5
D. -41.2

## Answer: B

## - Watch Video Solution

19. Which of the reaction defines $\Delta_{f} H^{\circ}$ ?
A. $C_{(\text {diamond })}+O_{2} \rightarrow \mathrm{CO}_{2(g)}$
B. $\frac{1}{2} H_{2(g)}+\frac{1}{2} F_{2(g)} \rightarrow H F_{(g)}$
C. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(g)}$
D. $\mathrm{CO}_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$

## Answer: B

20. Using the data provided, calculate the multiple bond energy $\left(\mathrm{kJmol}^{-1}\right)$ of a $C \equiv C$ bond in $\mathrm{C}_{2} \mathrm{H}_{2}$. That energy is (take the bond energy of a $X-H$ bond as $350 \mathrm{kJmol}^{-1}$ ).
$2 C_{(s)}+H_{2(g)} \rightarrow C_{2} H_{2(g)}, \Delta=225 \mathrm{kJmol}^{-1}$
$\left.2 C_{(g)} \rightarrow 2 C_{g}\right), \Delta H=1410 \mathrm{kJmol}^{-1}$
$H_{2(g)} \rightarrow 2 H_{(g)}, \Delta H=330 \mathrm{kJmol}^{-1}$
A. 1165
B. 837
C. 865
D. 815

## Answer: D

## - Watch Video Solution

21. The incorrect expression among the following is :
A. in isothermal process, $w_{\text {reversible }}=-n R T \ln \frac{V_{f}}{V_{i}}$
B. $\ln K=\frac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}$
C. $K=e^{-\Delta G / R T}$
D. $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T$

## Answer: B

## - Watch Video Solution

## Exercise 6 Interger Answer Type Problem

1. Calculate the enthalpy change when infinitely dilute solutions of $\mathrm{CaCl}_{2}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed. $\Delta_{f} \mathrm{H}^{\circ}$ for $\mathrm{Ca}_{(\text {aq. })}^{2+}, \mathrm{CO}_{3(\text { aq. })}^{2-}$ and $\mathrm{CaCO}_{3(s)}$ are $-129.80,-161.65$ and $288.46 \mathrm{kcal} / \mathrm{mol}$ respectively.
2. Calculate the heat of transition for carbon from the following:
$C_{\text {Diamond }}+O_{2} \rightarrow \mathrm{CO}_{2}(g), \Delta H=-94.3 k c a l$
$C_{\text {Amorphous }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-97.6 \mathrm{kcal}$
Also calculate the heat required to change $1 g$ of $C_{\text {Diamond }}$ to $C_{\text {Amorphous }}$.

## - Watch Video Solution

3. The enthalpy change involved in the oxidation of glucose is $-3000 \mathrm{kJmol}^{-1} .25 \%$ of this energy is available for muscular work. If 100 kJof muscular work is needed to walk 1 kilometer, what is the maximum distance that a person will be able to walk after eating $144 g$ flucose?

## Watch Video Solution

4. The heat of combustion of ethane gas is $368 \times 10^{3} \mathrm{calmol}^{-1}$. If 62 per cent of heat is useful, how many $m^{3}$ of ethane measured at STP must be burnt to supply enough heat to convert 50 kg of water at $10^{\circ} \mathrm{C}$ to steam
at $100^{\circ} \mathrm{C}$ ? Specific heat and heat of vaporisation of water are $1 \mathrm{cal} / \mathrm{g}$ and $540 \mathrm{cal} / \mathrm{g}$ respectively.

## - Watch Video Solution

5. The combustion of 10 g coke raised to temperature of 1.0 kg water from $10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Calculate the fuel value of cock. ( $S p$. heat of $\left.\mathrm{H}_{2} \mathrm{O}=1 \mathrm{cal} / \mathrm{g}\right)$.

## - Watch Video Solution

6. Lattice energy of $N a C l(s)$ is $-788 \mathrm{kJmol}^{-1}$ and enthalpy of hydration is $-784 \mathrm{kJmol}^{-1}$. Calculate the heat of solution of $\mathrm{NaCl}_{(s)}$.

## - Watch Video Solution

7. An intimate mixture of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and Al is used in solid fuel rocket. $\Delta H$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are 399 kcal and 199 kcal respectively. Calculate the
fuel value in $\mathrm{kcalg}^{-1}$ of mixture.

## - Watch Video Solution

8. In above question7, if the density of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and Al are $5.2 \mathrm{~g} / \mathrm{mL}$ and $2.7 \mathrm{~g} / \mathrm{mL}$ respectively. Calculate the fuel value in $\mathrm{kcalm} L^{-1}$ of mixture.

## - Watch Video Solution

## Exercise 7 Comprehension Based Objective Problems

1. Heat of reaction is the change in enthalpy or internal energy as represented by a balanced thermochemical equation. The amount of energy released during a chemical change depends upon the state of reactants and products, the conditions of pressure and volume at which reaction is carried out, and temperature. The variation of heat of reaction $\left(\Delta H_{1}\right.$ or $\left.\Delta E\right)$ with temperature is given as $\Delta H_{2}-\Delta H_{1}=\Delta C_{P}\left[T_{2}-T_{1}\right]$ or $\Delta E_{2}-\Delta E_{1}=\Delta C_{v}\left(T_{2}-T_{1}\right.$.

Standard heat enthalpy of elements in their most stable state is assumed to be zero whereas standard heat enthalpy of compound is referred as heat of formation of that compound at 1 atm pressure and $25^{\circ} \mathrm{C}$. Oxidation of $\mathrm{N}_{2}$ to $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{NO}_{2}$ shows absorption of energy whereas heat of combustion of $N_{2}$ is exothermic like other heat of combustion.

Standard heat enthalpy has been assumed to be zero for :
A. graphite
B. diamond
C. charcoal
D. lamp black

## Answer: A

## - Watch Video Solution

2. Heat of reaction is the change in enthalpy or internal energy as represented by a balanced thermochemical equation. The amount of energy released during a chemical change depends upon the state of
reactants and products, the conditions of pressure and volume at which reaction is carried out, and temperature. The variation of heat of reaction $\left(\Delta H_{1}\right.$ or $\left.\Delta E\right)$ with temperature is given as $\Delta H_{2}-\Delta H_{1}=\Delta C_{P}\left[T_{2}-T_{1}\right]$ or $\Delta E_{2}-\Delta E_{1}=\Delta C_{v}\left(T_{2}-T_{1}\right.$.

Standard heat enthalpy of elements in their most stable state is assumed to be zero whereas standard heat enthalpy of compound is referred as heat of formation of that compound at 1 atm pressure and $25^{\circ} \mathrm{C}$. Oxidation of $\mathrm{N}_{2}$ to $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{NO}_{2}$ shows absorption of energy whereas heat of combustion of $N_{2}$ is exothermic like other heat of combustion.

Which statements regarding the formation of NO and $\mathrm{NO}_{2}$ respectively from $N_{2}$ and $O_{2}$ are correct ?
(1) Heat of formation of $N O$ is exothermic
(2) Heat of formation of $\mathrm{NO}_{2}$ is exothermic
(3) The oxidation of $\mathrm{N}_{2}$ to NO and $\mathrm{NO}_{2}$ is favoured at high temperature.
(4) If heat of formation of NO to $\mathrm{NO}_{92}$ ) are 21.55 and 8.50 kcal , heat of reaction for
$\mathrm{NO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$ is -13.05 kcal
A. 1, 2
B. 3,4
C. $1,2,4$
D. $1,2,3$

## Answer: b

## - Watch Video Solution

3. Heat of reaction is the change in enthalpy or internal energy as represented by a balanced thermochemical equation. The amount of energy released during a chemical change depends upon the state of reactants and products, the conditions of pressure and volume at which reaction is carried out, and temperature. The variation of heat of reaction $\left(\Delta H_{1}\right.$ or $\left.\Delta E\right)$ with temperature is given as $\Delta H_{2}-\Delta H_{1}=\Delta C_{P}\left[T_{2}-T_{1}\right]$ or $\Delta E_{2}-\Delta E_{1}=\Delta C_{v}\left(T_{2}-T_{1}\right.$.

Standard heat enthalpy of elements in their most stable state is assumed to be zero whereas standard heat enthalpy of compound is referred as heat of formation of that compound at 1 atm pressure and $25^{\circ} \mathrm{C}$.

Oxidation of $\mathrm{N}_{2}$ to $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{NO}_{2}$ shows absorption of energy whereas heat of combustion of $N_{2}$ is exothermic like other heat of combustion.

Heat of combustion of carbon in diamond and amorphous form ar -94.3 and $-97.6 \mathrm{kcal} / \mathrm{mol}$. The heat required to convert 6 g carbon from diamond to amorphous form is :
A. -1.65 kcal
B. +1.65 kcal
C. -3.3 kcal
D. +3.3 kcal

## Answer: a

## - Watch Video Solution

4. Heat of reaction is the change in enthalpy or internal energy as represented by a balanced thermochemical equation. The amount of energy released during a chemical change depends upon the state of reactants and products, the conditions of pressure and volume at which
reaction is carried out, and temperature. The variation of heat of reaction
$\left(\Delta H_{1}\right.$ or $\left.\Delta E\right)$ with temperature is given as
$\Delta H_{2}-\Delta H_{1}=\Delta C_{P}\left[T_{2}-T_{1}\right]$ or $\Delta E_{2}-\Delta E_{1}=\Delta C_{v}\left(T_{2}-T_{1}\right.$.
Standard heat enthalpy of elements in their most stable state is assumed
to be zero whereas standard heat enthalpy of compound is referred as heat of formation of that compound at 1 atm pressure and $25^{\circ} \mathrm{C}$. Oxidation of $\mathrm{N}_{2}$ to $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{NO}_{2}$ shows absorption of energy whereas heat of combustion of $N_{2}$ is exothermic like other heat of combustion.

Heat of vaporisation of $\mathrm{H}_{2} \mathrm{O}$ is $627.78 \mathrm{cal} / \mathrm{g}$. If heat of formation of $\mathrm{H}_{2} \mathrm{O}_{(l)}$ is -68.3 kcal , heat of formation of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ is :
A. -57.0 kcal
B. 559.5 kcal
C. 676.73 kcal
D. cannot be calculated

## Answer: a

## - Watch Video Solution

5. Heat of reaction is the change in enthalpy or internal energy as represented by a balanced thermochemical equation. The amount of energy released during a chemical change depends upon the state of reactants and products, the conditions of pressure and volume at which reaction is carried out, and temperature. The variation of heat of reaction $\left(\Delta H_{1}\right.$ or $\left.\Delta E\right) \quad$ with temperature is given as $\Delta H_{2}-\Delta H_{1}=\Delta C_{P}\left[T_{2}-T_{1}\right]$ or $\Delta E_{2}-\Delta E_{1}=\Delta C_{v}\left(T_{2}-T_{1}\right.$.

Standard heat enthalpy of elements in their most stable state is assumed to be zero whereas standard heat enthalpy of compound is referred as heat of formation of that compound at 1 atm pressure and $25^{\circ} \mathrm{C}$. Oxidation of $\mathrm{N}_{2}$ to $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{NO}_{2}$ shows absorption of energy whereas heat of combustion of $N_{2}$ is exothermic like other heat of combustion. The specific heat of $I_{20}$ in vapour and solid state are 0.031 and $0.55 \mathrm{cal} / \mathrm{g}$ respectively. If heat of sublimation of iodine is $6.096 \mathrm{kcalmol}^{-1}$ at $200^{\circ} \mathrm{C}$, the heat of sublimation of $I_{2}$ at $250^{\circ} \mathrm{C}$ is :
A. $5.8 \mathrm{kcalmol}^{-1}$
B. $2.28 \mathrm{kcalmol}^{-1}$
C. $4.8 \mathrm{kcalmol}^{-1}$
D. $3.8 \mathrm{kcalmol}^{-1}$

## Answer: a

## - Watch Video Solution

6. Heat of neuralisation is amount of heat evolved or absorbed when $1 g$ - equivalent of an acid reacts with $1 g$ - equivalent of a base in dilute solution. If weak acid or weak bae are neutralised, the heat released during neutralisation is somewhat lesser than -13.7 kcal or -57.27 kJ . Het of neutralisation is also referred as heat of formation of
water from $H^{+}$ and $O H^{-}$ ions
i.e., $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-13.7 \mathrm{kcal}$.

Heat of neutralisatio of $H F$ and acetic acid respectively are (in $k c a l$ ):
A. $>-13.7, \leftarrow 13.7$
B. $>-13.7,<-13.7$
C. $\leftarrow 13.7$
D. $\leftarrow 13.7,>-13.7$

Answer: b

## - Watch Video Solution

7. Heat of neuralisation is amount of heat evolved or absorbed when $1 g$ - equivalent of an acid reacts with $1 g$ - equivalent of a base in dilute solution. If weak acid or weak bae are neutralised, the heat released during neutralisation is somewhat lesser than $-13.7 k c a l$ or -57.27 kJ . Het of neutralisation is also referred as heat of formation of water from $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$ions
i.e., $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-13.7 \mathrm{kcal}$.

Which of the following statements are correct ?
(1) $\Delta H=\Delta U+\Delta n R T$
(2) Heat changes measured by bomb calorimeter give change in heat enthalpy during the reaction.
(3) $\Delta H=\Delta U$ for the reaction :
$C_{(s)}+O_{2(g)} \rightarrow C O_{2(g)}$
(4) Heat of formation for $C_{6} H_{6}$ can be directly measured.
A. 2,3
B. 1,4
C. 1, 2, 3
D. 1,3

## Answer: D

## - Watch Video Solution

8. Heat of neuralisation is amount of heat evolved or absorbed when $1 g$ - equivalent of an acid reacts with $1 g$ - equivalent of a base in dilute solution. If weak acid or weak bae are neutralised, the heat released during neutralisation is somewhat lesser than $-13.7 k c a l$ or -57.27 kJ . Het of neutralisation is also referred as heat of formation of water from $H^{+}$ and $O H^{-}$ ions
i.e. $, \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-13.7 \mathrm{kcal}$.

200 mL of 0.1 MNaOH is mixed with 100 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ in 1 experiment. In $I I$ experiment 100 mL of 0.1 MNaOH is mixed with 50 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$. Select the correct statements:
(1) heat liberated in each of the two reactions is 274 cal .
(2) heat liberated in $I$ is 274 cal and in $I I$ is 137 cal ., brgt (3) temperature rise is $I$ reaction is equal to the temperature rise in $I I$.
(4) temperature rise in $I$ reaction is equal to the temperaure rise in $I I$
A. 1, 3
B. 2,4
C. 2, 3
D. 1,4

## Answer: b

## - Watch Video Solution

9. Hess's law of heat of summatiion is based on law of conservation of energy. It has found significance in deriving heats of many reactions
which either do not take place or if take place, than other side reactions also accompany it. For example heat of reaction for $\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}$ can not be studied directly as it occurs with simultaneous reaction of oxidation of CO to $\mathrm{CO}_{2}$. Bond energy is referred as heat enthalpy when a bond is broken to produce isolated gaseous atoms. In case of breaking up of bonds between unlike atoms e.g., $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{CH}_{4}$, bond energy is referred as avarage bond energy as four $C-H$ bonds are broken up.

Which of the following statements are correct ?
(1) The dissociation of $a$ ond is always endothermic
(2) The formation of a bond is always exothermic.
(3) Heat of formation of an atom $=1 / 2 \times$ bond energy like atoms covalent bond.
(4) The heat enthalpy change in a chemical reaction is equal but opposite to the heat enthalpy if reaction is reversed.
(5) Hess's law can be verified experimentally.
A. $1,2,3,4$
B. $1,2,3,4,5$
C. $2,3,4,5$
D. $3,4,5$

## Answer: a

## - Watch Video Solution

10. Hess's law of heat of summatiion is based on law of conservation of energy. It has found significance in deriving heats of many reactions which either do not take place or if take place, than other side reactions also accompany it. For example heat of reaction for $\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}$ can not be studied directly as it occurs with simultaneous reaction of oxidation of CO to $\mathrm{CO}_{2}$. Bond energy is referred as heat enthalpy when a bond is broken to produce isolated gaseous atoms. In case of breaking up of bonds between unlike atoms e. g., $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{CH}_{4}$, bond energy is referred as avarage bond energy as four $C-H$ bonds are broken up.

Heat of dissociation of $\mathrm{CH}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ are 360 and $620 \mathrm{kcalmol}^{-1}$. The $C-C$ bond energy would be :
A. 60 kcal
B. 80 kcal
C. 100 kcal
D. 40 kcal

## Answer: b

## - Watch Video Solution

11. Hess's law of heat of summation is based on law of conservation of energy. It has found significance in deriving heats of many reactions which either do not take place or if take place, than other side reactions also accompany it. For example heat of reaction for $\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}$ can not be studied directly as it occurs with simultaneous reaction of oxidation of CO to $\mathrm{CO}_{2}$. Bond energy is referred as heat enthalpy when a bond is broken to produce isolated gaseous atoms. In case of breaking up of bonds between unlike atoms e. g., $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{CH}_{4}$, bond energy is referred as avarage bond energy as four $C-H$ bonds are
broken up.
If $C+\frac{1}{2} O_{2(g)} \rightarrow C O_{(g)}, \Delta H=-110 k J$
$\mathrm{C}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{CO}_{(g)}+\mathrm{H}_{2(g)}, \Delta H=132 k J$
The mole composition of mixture of steam and $O_{2}$ and steam on being passed over coke at 1273 K so that temperature remains constant is :
A. $0.6: 1$
B. 1.67: 1
C. 0.3:1
D. 0.4:1

## Answer: a

## - View Text Solution

12. Hess's law of heat of summatiion is based on law of conservation of energy. It has found significance in deriving heats of many reactions which either do not take place or if take place, than other side reactions also accompany it. For example heat of reaction for $\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}$
can not be studied directly as it occurs with simultaneous reaction of oxidation of CO to $\mathrm{CO}_{2}$. Bond energy is referred as heat enthalpy when a bond is broken to produce isolated gaseous atoms. In case of breaking up of bonds between unlike atoms e.g., $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{CH}_{4}$, bond energy is referred as avarage bond energy as four $C-H$ bonds are broken up.

The heat of fusion for water is +1.44 kcal . The heat requried to change $27 g$ ice at $0^{\circ} C$ to water is :
A. 2.16 kcal
B. $0.72 k c a l$
C. 25.92 kcal
D. 2.88 kcal

## Answer: a

## - Watch Video Solution

1. Statement: Heat of combustion are always exothermic.

Explanation : Combustio of $N_{2}$ to give $N O$ is exothermic.

## Watch Video Solution

2. Statement : Combustion of $N_{2}$ to give $N O$ is endothermic

Explanation: Bond energy of $N_{2}$ is very high.

## - Watch Video Solution

3. Statement : Standard heat enthalpy of a compound is its heat of formation at $25^{\circ} \mathrm{C}$ and 1 atm

Explanation : Standard heat enthalpy of pure elements have arbitrarily assumed to be zero.

## - Watch Video Solution

4. Statement: The variation of heat of reaction with temperature are given in terms of Kirchhoff's equation.

$$
\text { Explanation : The kirchhoff's equation is : } \Delta H=\Delta U+\Delta n R T
$$

## - Watch Video Solution

5. Statement : The ratio of heat of vaporisation and the normal boiling point of a liquid is approximately $88 \mathrm{~J} / \mathrm{mol}$.

Explanation : This is Trouton's rule derived by experimental data.

## - Watch Video Solution

6. Statement : Heat of neutralisation can be given as :
$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-13.6 \mathrm{kcal}$.
Explanation : Heat of neutralisation can be alternatively defined as heat of formation of water.
7. Statement : Heat of neutration for $H F$ is $-68.552 k J / e q$. whereas for HCl it is $-57.26 \mathrm{~kJ} / e q$.

Explanation : The acid $H F$ is weak acid.

## ( Watch Video Solution

8. Statement : In a diatomic molecule involving two like atoms covalently bonded with each other, bond energy $=2 \times$ heat of formation of atom.

Explanation : $H_{2} \rightarrow 2 H, e_{H-H}=\Delta H$

## - Watch Video Solution

9. Statement : Bond energy for breaking up a bond is endothermic

Explanation : Heat is required to overpower the attractions between two atoms.
10. Statement: $C+\frac{1}{2} O_{2} \rightarrow C O, \Delta H=-26.0 \mathrm{kcal}$
$\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta \mathrm{H}=-68.3 \mathrm{kcal}$
$\therefore C+O_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=-94.3 k c a l$
Explanation: This is an experimental proof of Hess's law.

## - Watch Video Solution

## Exercise 9 Advance Numerical Problems

1. The heat of reaction for,
$C_{10} H_{8(s)}+12 O_{2(g)} \rightarrow 10 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}$ at constant volume is -1228.2 kcal at $25^{\circ} \mathrm{C}$. Calculate the heat of reaction at constant pressure at $25^{\circ} \mathrm{C}$.

## - Watch Video Solution

2. The heat of reaction for $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ at $27^{\circ} \mathrm{C}$ is -91.94 kJ .

What will be its value at $50^{\circ} \mathrm{C}$ ? The molar heat capacities at constant
pressure and $27^{\circ} \mathrm{C}$ for $\mathrm{N}_{2}, \mathrm{H}_{2}$ and $\mathrm{NH}_{3}$ are 28.45, 28.32 and 37.07 joule respectively.

## - Watch Video Solution

3. The heat evolved in the conversion of $1 g$ - atom of $\beta$ - sulphur into alph - sulphur is 82 cal at $25^{\circ} \mathrm{C}$. If the specific heats of $\alpha-$ and $\beta-$ sulphur are 0.163 and $0.171 \mathrm{cal} / \mathrm{g}$, calculate the heat of transition for $\beta$ - sulphur into $\alpha-$ sulphur at $50^{\circ} \mathrm{C}$.

## - Watch Video Solution

4. Since their discovery in 1985 , fullerenes have received the attention of many chemical researchers. In a recentrly reported data, the specific internal energy of combustion of crystalline $C_{60}$ is found to be $-36 \mathrm{kJg}^{-1}$ at 298 K . Compute the standard enthalpy of combustion and formation for the same. Standard enthalpy of combustion of graphite is $-395 \mathrm{kJmol}^{-1}$. If the standard enthalpy of formation of diamond is $+2 k J p e r m o l$ of $C-$ atom, which is more stable : $C_{60}$ or diamond?

## (D) Watch Video Solution

5. The heat evolved on combustion of $1 g$ starch $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{n}$ into $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ is $17.49 \mathrm{kJg}^{-1}$. Compute the enthalpy of formation of $1 g$ starch. Given, $\Delta H_{f}$ of $H_{2} O_{(l)}=-285.85 \mathrm{kJmol}^{-1}, \Delta H_{f} \quad$ of $\mathrm{CO}_{2}=-293.7 \mathrm{kJmol}^{-1}$.

## Watch Video Solution

6. Given the following standard heats of reactions:
(a) heat of formation of water $=-68.3 \mathrm{kcal}$, (b) heat of combustion of $C_{2} H_{2}=-310.6 k$ cal, (c ) heat of combustion of ethylene $=-337.2 k c a l$. Calculate the heat of reaction for the hydrogenation of acetylene at constant volume and at $25^{\circ} \mathrm{C}$.

## - Watch Video Solution

7. Calculate the heat of neutralisation from the following data:

200 mL of 1 MHCI is mixed with 400 mL of 0.5 MNaOH . The temperature rise in calorimeter was found to be $4.4^{\circ} \mathrm{C}$. Water equivalent of calorimeter is $12 g$ and specific heat is 1 calmL $L^{-1}$ degree $^{-1}$ for solution.

## - Watch Video Solution

8. The enthalpies of neutralisation of a string acid $H A$ and a weaker acid $H B$ by $N a O H$ are -13.7 and $-12.7 \mathrm{kcalEq}^{-1}$, respectively. When one equivalent of NaOH is added to a mixture containing one equivalent of $H A$ and $H B$, the enthalpy change was $-13.5 k c a l$. In what ratio is the base distributed between $H A$ and $H B$ ?

## - Watch Video Solution

9. Two solutions initially at $25^{\circ} \mathrm{C}$ were mixed in an insulated bottle. One contains 400 mL of 0.2 N weak monoprotic acid solution. The other
contains 100 mL of 0.8 NNaOH solution. After mixing the temperature rises to $26.17^{\circ} \mathrm{C}$. Calculate the heat of neutralisation of weak acid with NaOH . Assume density of final solution $1.0 \mathrm{gcm}^{-3}$. and speicific heat of final solution $4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$.

## - Watch Video Solution

10. A monobasic acid is dissociated to $25 \%$ in $0.1 N$ solution. When 100 mL of the acid is neutralised by 0.1 NKOH solution, heat evolved was 120 cal . Calculate heat of dissociation per mole of acid.

## - View Text Solution

11. The dissolution of 1 mole of $\mathrm{NaOH}_{(s)}$ in 100 mole of $\mathrm{H}_{2} \mathrm{O}_{(l)}$ give rise to evolution of heat equal to -42.34 kJ . However if 1 mole of $\mathrm{NaOH}_{(s)}$ is dissolved in 1000 moleof $\mathrm{H}_{2} \mathrm{O}_{(l)}$, the heat given out is 42.76 kJ . What would be enthalpy change when 900 mole of $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are added to a solution containing 1 mole of $\mathrm{NaOH}_{(s)}$ in 100 mole of $\mathrm{H}_{2} \mathrm{O}$ ?
12. The integral enthalpy of solution in $k J$ of one mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissolved in $n$ mole of water is given by :
$\Delta H_{s}=\frac{75.6 \times n}{n+1.8}$
Calculate $\Delta H$ for the following processes :
(a) 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissolved in 2 mole of $\mathrm{H}_{2} \mathrm{O}$.
(b) 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissolved in 7 mole of $\mathrm{H}_{2} \mathrm{O}$.
(c) 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissolved in 5 mole of $\mathrm{H}_{2} \mathrm{O}$.
(d) solution (a) dissolved in 5 mole of $\mathrm{H}_{2} \mathrm{O}$.
(e) 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissolved in excess of $\mathrm{H}_{2} \mathrm{O}$.

## - Watch Video Solution

13. The heat of solution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in water was determined by measuring the amount of electrical work needed to compensate for the cooling which the $\mathrm{NH}_{4} \mathrm{NO}_{3}$ was added to the water, electrical energy was provided by passage of current through a resistance coil until the
temperature of the solution reached the value it had prior to the addition of salt. In a typical experiment, $4.4 g$ of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ was added to $200 g$ water. A current of 0.75 ampere was provided through the heater coil, and the voltage across the terminals was 6.0 V . The current was applied for 5.2 minute. Calculate $\Delta H$ for the solution of $1.0 \mathrm{~mole} \mathrm{NH}_{4} \mathrm{NO}_{3}$ in enough water to give same concentration as was attained in the above experiment.

## - Watch Video Solution

14. An athelet takes 20 breaths per minute at room temperature. The air inhaled in each breath is 200 mL which contains $20 \%$ oxygen by volume, while exhaled air contains $10 \%$ oxygen by volume. Assuming that al the oxygen consumed if used for converting glucose into $\mathrm{CO}_{2}$ and $\left.\mathrm{H}_{92}\right) \mathrm{O}_{(l)}$ , how much glucose will be burnt in the body in one hour and what is the heat produced ? ( Room temperature $-27^{\circ} \mathrm{C}$ and enthalpy of combustion of glucose is $-2822.5 \mathrm{kJmol}^{-1} a t 0^{\circ} \mathrm{C}$ )
15. A slice of banana weighing $2.502 g$ was burnt in a bomb calorimeter producing a temperature rise of $3.05^{\circ} \mathrm{C}$. The combustion of 0.316 g of benzoic acid in the same calorimeter produced a temperature rise of $3.24^{\circ} \mathrm{C}$. The heat of combustion of benzoic acid at constant volume is $-3227 \mathrm{kJmol}^{-1}$. If average banana weigh 125 g , how many calories can be obtained from one average banana?

## - Watch Video Solution

16. A person inhales 640 g of $O_{20}$ per day. If all the $O_{2}$ is used for converting sugar into $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, how much sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is consumed in the body in one day and what is the heat evolved ?
$\left(\Delta H_{\text {combination of sucrose }}=-5645 \mathrm{kJmol}^{-1}\right)$

## - Watch Video Solution

17. The heat of formation of carbon dioxide from graphite at $15^{\circ} \mathrm{C}$ and constant volume is 97400 cal , and that of carbon monoxide under the
same conditions is 25400 cal . What heat should be evolved when 100 litre of carbon monoxide measured at N.T.P. is burnt in an excess of oxygen, both reactants and products being at $15^{\circ} \mathrm{C}$ ?

## - Watch Video Solution

18. When 12.0 g of carbon reacted with oxygen to form CO and $\mathrm{CO}_{2}$ at $25^{\circ} \mathrm{C}$ and constant pressure, 75.0 kcal of heat was liberated and no carbon remained. Calculate the mass of oxygen which reacted.

$$
\left(\Delta H_{f}^{\circ}\left(C O_{2}\right)=-95 k^{c_{a l m o l}}{ }^{-1}, \Delta H_{f}^{\circ}(C O)=-24 k^{c^{\prime a l m o l}}{ }^{-1}\right)
$$

## - Watch Video Solution

19. The heat of combustion of ethane gas is $368 \mathrm{kcal} / \mathrm{mol}$. Assuming that $60 \%$ of the heat is useful, how many $m^{3}$ of ethane 9 measured at STP ) must be burnt to supply enough heat to convert 50 kg of water at $10^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$ ? Specific heat of water is $1 \mathrm{cal} / \mathrm{g}$. Heat of vaporisation of $\mathrm{H}_{2} \mathrm{O}$ is $540 \mathrm{cal} / \mathrm{g}$.
20. The commercial production of water gas utilizes the reaction under standard conditions : $\mathrm{C}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2}+\mathrm{CO}$. The heat required for this endothermic reaction may be supplied by adding a limited amount of air and burning some carbon to $\mathrm{CO}_{20}$. How many gram of carbon must be burnt to $\mathrm{CO}_{2}$ to provide enough heat for the water gas conversion of $100 g$ carbon ? Neglect all heat losses to the environment. Also $\Delta H_{f}^{\circ}$ of $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ and $\mathrm{CO}_{2}$ are $-110.53,-241.81$ and $-393.51 \mathrm{~kJ} / \mathrm{mol}$ respectively.

## - Watch Video Solution

21. From the following data of $\Delta H$, of the following reaction,

$$
\begin{aligned}
& C_{(s)}+\frac{1}{2} O_{2(g)} \rightarrow C O_{(g)}, \Delta H=-110 k J \\
& C_{(g)}+H_{2} O_{(g)} \rightarrow+H_{2(g)}, \Delta H=132 k J
\end{aligned}
$$

Calculate the mole composition of the mixture of steam and oxygen on being passed over coke at 1273 K , keeping temperature constant.
22. When 100 c. c. of a mixture of methane $\left(\mathrm{CH}_{4}\right)$ and ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ was exploded with an excess of oxygen, the volume of carbon dioxide produced ( measured at the same temperature and pressure ) was 160 c. c. Calculate the heat evolved when 22.4 litre of the mixture of methane and ethylene ( measured at $N . T . P$. ) is completely oxidised to carbon dioxide and water at constant volume.
$\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+212000 \mathrm{cal}$,
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2}=2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+333000 \mathrm{cal}$.

## - Watch Video Solution

23. 1.0 g magnesium atoms in vapour phase absorbs 50.0 kJ of energy to convert all $M g$ into $M g$ ions. The energy absorbed is needed for the following changes :

$$
\begin{aligned}
& M g_{(g)} \rightarrow M g_{(g)}^{+}+e, \Delta H=740 \mathrm{kJmol}^{-1} \\
& M g_{(g)}^{+} \rightarrow M g_{(g)}^{2+}+e, \Delta H=1450 \mathrm{kJmol}^{-1}
\end{aligned}
$$

Find out the $\%$ of $M g^{+}$and $M g^{2+}$ in final mixture.

## - View Text Solution

24. Calculate the enthalpy change when $6.80 g$ of $\mathrm{NH}_{3}$ is passed over heated CuO . The standard heat enthalpies of $\mathrm{NH}_{3(g)}, \mathrm{CuO} \mathrm{O}_{(s)}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are $-46.0,-155.0$ and $-285.0 \mathrm{kJmol}^{-1}$ respectively and the change is
$\mathrm{NH}_{3}+\frac{3}{2} \mathrm{CuO} \rightarrow \frac{1}{2} \mathrm{~N}_{2(g)}+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}_{(l)}+\frac{3}{2} \mathrm{Cu} u_{(s)}$.

## - View Text Solution

25. 1.00litre sample of a mixture of $C H_{4(g)}$ and $O_{2(g)}$ measured at
$25^{\circ} \mathrm{C}$ and $740 t$ or $r$ was allowed to react at constant pressure in a calorimeter which together with its contents had a heat capacity of $1260 \mathrm{cal} / \mathrm{K}$. The complete combustion of the methane to $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ caused a temperature rise in the calorimeter of 0.667 K . What was the mole per cent of $\mathrm{CH}_{4}$ in the original mixture ?
$\left(\Delta H_{\text {comb. }}^{\circ}\left(\mathrm{CH}_{4}\right)=-215 \mathrm{kcalmol}^{-1}\right)$
26. The standard enthalpy of formation of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is $-65 \mathrm{kcalmol}^{-1}$ and $-197 \mathrm{kcalmol}^{-1}$ respectively. A mixture of two oxides contains FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the mole ratio 2:1. If by oxidation, it is changed into a $1: 2$ mole ratio mixture, how much of thermal energy will be released per mole of initial mixture ?

## - View Text Solution

27. When 120 mg of naphthalene $C_{10} H_{8(s)}$ was burnt in a bomb calorimeter, the temperature rise was 3.05 K . Calculate the calorimeter constant and molar standard internal energy change of combustion. Also report by how much will the temperature rise when 100 mg of Phenol $\left(C_{6} H_{5} \mathrm{OH}_{(s)}\right)$ is burnt in the same calorimeter under the same conditions, if heat liberated is 3962.85 J ?

$$
\left(\Delta H_{C}^{\circ} \text { for } C_{10} H_{8}=-5157 \mathrm{kJmol}^{-1}\right)
$$

28. The heat of dissociation of $H_{20}$ is $435 \mathrm{kJmol}^{-1}$. If $C_{(s)} \rightarrow C_{(g)}, \Delta H=720 \mathrm{kJmol}^{-1}$, calculate the bond energy per mole of the $C-H$ bond in $\mathrm{CH}_{4}$ molecule . $\left(\Delta H_{f}\right.$ for $\left.\mathrm{CH}_{4}=-75 \mathrm{kJmol}^{-1}\right)$

## - View Text Solution

29. The heat of combustion of acetylene is 312 kcal . If heat of formation of $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ are 94.38 and 68.38 kcal respectively. Calculate $\mathrm{C} \equiv \mathrm{C}$ bond energy. Given that heat of atomisation of $C$ and $H$ are 150.0 and 51.5 kcal respectively and $C-H$ bond energy is 93.64 kcal .

## - View Text Solution

30. Calculate the resonance energy of $C_{6} H_{6}$ using Kerkule formula for
$C_{6} H_{6}$ from the following data.
(i) $\Delta H_{f}^{\circ}$ for $C_{6} H_{6}=-358.5 \mathrm{kJmol}^{-1}$
(ii) Heat of atomisation of $C=716.8 \mathrm{kJmol}^{-1}$
(iii) Bond energy of $C-H, C-C, C=C$ and $H-H$ are $490,340,620,436.9 \mathrm{kJmol}^{-1}$ respectively.

## - View Text Solution

31. The specific heat at constant volume for a gas $0.075 \mathrm{cal} / g$ and at constant pressure is $0.125 \mathrm{cal} / \mathrm{g}$ Calculate :
(i) The molecular weight of gas,
(ii) Atomicity of gas,
(iii) No. of atoms of gas in its 1 mole.

## - View Text Solution

