©"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - P BAHADUR CHEMISTRY (HINGLISH)

DILUTE SOLUTION AND COLLIGATIVE

PROPERTIES

Exercise

1. The partial pressure of ethane over a saturated solution containing $6.56 \times 10^{-2} g$ of ethane is 1 bar. If the solution contains
$5.00 \times 10^{-2} g$ of ethane, then what shall be the partial pressure of the gas?

D Watch Video Solution

2. Calculate the concentration of CO_{2} in a soft drink that is bottled with a partial pressure of
$C O_{2}$ of 4 atm over the liquid at $25^{\circ} C$. The

Henry's law constant for CO_{2} in water at $25^{\circ} C$ is $3.1 \times 10^{-2} \mathrm{~mol} / /$ litre-atm.

D Watch Video Solution

3. At $37^{\circ} \mathrm{C}$ and 0.80 atm partial pressure, the
solubility of N_{2} was found to be
$5.6 \times 10^{-4} \mathrm{~mol} / L$. A deep sea diver breathes
compresssed air with the partial pressure of
N_{2} equal to 4.0 atm . The total volume of blood
in his body is 5.0 litre. After sometime he comes back on the water surface where $P^{\prime}{ }_{N}$
is 0.80 atm . Calculate the volume of N_{2} escaped during his return from depth to surface, at $37^{\circ} \mathrm{C}$ and 1 atmP .

- Watch Video Solution

4. The total concentration of dissolved particles in side red blood cells is approximately $0.30 M$ and the membrane surrounding the cells is semipermeable. What would be the atmosheric pressure in atm inside the cells become if the cells were
removed from blood plasma and placed in pure water at 298 K . Also what would happen to red blood cells?

D Watch Video Solution

5. Arginine vasopressin is a pituitary harmone.

It helps to regulate the amount of water in the blood by reducing the flow of urine from the kidneys. An aqueous solution containing 21.6 mg of vasopressin in 100 mL of solution contaning had an osmotic pressure of
3.70 mmHg at $25^{\circ} \mathrm{C}$. What is the molecular weight of the harmone?

- Watch Video Solution

6. A solution is prepared by dissolving $1.08 g$ of human serum albumin, a protein obtained from blood plasma, in $50 \mathrm{~cm}^{3}$ of aqueous solution. The solution has an osmotic pressure of 5.85 mmHg at 298 K .
a. What is the molar mass of albumin ?
b. What is the height of water column placed

in solution?

$d_{\left(\mathrm{H}_{2} \mathrm{O}\right)}=1 \mathrm{gcm}^{-3}$

D Watch Video Solution

7. The osmotic pressure of blood is 7.65 atm at $37^{\circ} \mathrm{C}$. How much glucose should be used per
litre for an intravenous injection that is to have the same osmatic pressure as blood?

- Watch Video Solution

8. At $25^{\circ} \mathrm{C}$, a solution containing 0.2 g of polyisobutylene in 100 mL of benzene developed a rise of 2.4 mm at osmotic equilibrium. Calculate the molecular weight of polyisobutylene if the density of solution is $0.88 \mathrm{~g} / \mathrm{mL}$.

- Watch Video Solution

9. At $300 \mathrm{~K}, 36 \mathrm{~g}$ of glucose present per litre in
its solution has an osmotic pressure of 4.98^{-}.

If the osmotic pressure of the solution is 1.52^{-} at the same temperature, what would be its concentration?

D Watch Video Solution

10. At $20^{\circ} C$, the osmotic pressure of urea solution is 400 mm . The solution is diluted and the temperature is raised to $35^{\circ} \mathrm{C}$, when the osmotic pressureis found to be 105.3 mm . Determine extent of dilution.
11. At $27^{\circ} C$, a 5% solution (wt. / vol) of cane-
sugar is isotonic with $8.77 \mathrm{~g} /$ litre of urea solution. Find m. wt. of urea, if m. wt. of sugar is 342 . Also report the osmotic pressure of solution is 100 mL each are mixed at $27^{\circ} \mathrm{C}$.

D Watch Video Solution

12. An aqueous solution of 2 per cent (wt. / wt) non-volatile solute exerts a pressure of 1.004 bar at the boiling point of
the solvent. What is the molecular mass of the solute?
A. 60.43 g
B. 41.35 g
C. 100.7 g
D. 23.22 g

Answer: B

- Watch Video Solution

13. The vapour pressure of water is $12.3 k P a$ at $300 K$. Calculate vapour pressure of 1 molal solution of a solute in it.

D Watch Video Solution

14. The weight of a non-volatile solute
(molecular weight $=40$), which should be dissolved in 114 g octane to reduce its vapour pressure to 80% is \qquad
15. A solution contaning 30 g of a non-volatile solute exactly in 90 g of water has a water has
a vapour pressure of 2.8 K Pa at 298 K . Further

18 g of water is added to the solution and the new vapour pressure become 2.9 Pa at 298 K .

Calculate.

Molecular mass of the solute.

Vapour presure of water of water at 2198 K.

D Watch Video Solution

16. Find the molality of a solution containing a non-volatile solute if the vapour pressure is
2% below the vapour pressure or pure water.

D Watch Video Solution

17. Dry air was suvvessively passed through a solution of $5 g$ solute in $80 g$ water and then through pure water. The loss in weight of solution was $2.5 g$ and that of pure water was
0.04 g . What is mol.wt. of solute?
18. Heptane and octane form an ideal solution.

At $373 K$, the vapour pressure of the two liquids are 105.0 kPa and 46.0 kPa , respectively. What will be the vapour pressure, of the mixture of $25 g$ of heptane and $35 g$ of octane ?

D Watch Video Solution

19. The vapour pressure of ethanol and methanol are 44.0 mmHg and 88.0 mmHg ,
respectively. An ideal solution is formed at the same temperature by mixing $60 g$ of ethanol with $40 g$ of methanol. Calculate the total vapour pressure of the solution and the mole fraction of methanol in the vapour.

D Watch Video Solution

20. At $310 K$, the vapour pressure of an ideal solution containing 2 moles of A and 3 moles of B is 550 mm of $H g$. At the same temperature, if one mole of B is added to this
solution, the vapour pressure of solution increase by 10 mmofHg . Calculate the $V . P$ of A and B in their pure state.

D Watch Video Solution

21. Water boils at $95^{\circ} C$ in Denver, the mile
high city. Calculate the atomospheric pressure in Denver. $\Delta H_{V a p}$ for $\mathrm{H}_{2} \mathrm{O}=40.67 \mathrm{~K} \mathrm{Jmol}^{-1}$.
22. An aqueous solution of liquid X (mol weight 56) 28% by weight has a vapour pressure 150 mm . Find the vapour pressure of X if vapour pressure of water is 155 mmofHg .

D Watch Video Solution

23. An aqueous solution of glucose containing
$12 g$ in $100 g$ of water was found to boil at $100.34^{\circ} C$.

Calculate of K_{b} for water in $\mathrm{Kmol}^{-1} \mathrm{Kg}$.
24. The boiling point of CHCl_{3} was raised by
$0.323^{\circ} C$ when 0.37 g of naphthalene was dissolved in $35 g \mathrm{CHCl}_{3}$. Calculate the molecular weight of naphthalene. $\left(k_{b}^{\prime}\right.$ for $\left.\mathrm{CHCl}_{3}=3.9 \mathrm{Kmol}^{-1} \mathrm{~kg}\right)$.

D Watch Video Solution

25. What will be the boliling point of bromine
when 174.5 mg of octa-atomic sulphur is
added to $78 g$ of bromine? k_{b}^{\prime} for $B r_{2}$ is $5.2 \mathrm{Kmol}^{-1} \mathrm{~kg}$ and b. pt. of $B r_{2}$ is 332.15 K

D Watch Video Solution

26. What is the depression in freezing point of a solution of non-electrolyte if elevation in
boiling
point
is
$0.13 K$
$\left(k_{b}=0.52 \mathrm{~mol}^{-1} \mathrm{~kg}, k_{f}=1.86 \mathrm{~mol}^{-1} \mathrm{~kg}\right)$
?

D Watch Video Solution

27. Pure benzene boiled at $80^{\circ} \mathrm{C}$. The boiling
point of a solution containing $1 g$ of substance dissolved in $83.4 g$ of benzene is $80.175^{\circ} \mathrm{C}$. If latent heat of vaporization of benzene is 90calperg, calculated the molecular weight of solute.

- Watch Video Solution

28. For $\left[\mathrm{CrCl}_{3} . \mathrm{xNH}_{3}\right]$, elevation in b. pt of one molal solution is triple of one molal
aqueous solution of urea. Assuming 100% ionisation of complex molecule, calculated the value of x.

D Watch Video Solution

29. In a cold climate water gets frozen causing damage to radiator of a car. Ethylene glycol is used as an anifreezing agent. Calculate the amount of ethylene glycol to be added to $4 k g$ of water to prevent it from freezing at $-6^{\circ} .($
K_{f} for water $=1.85 \mathrm{kgmol}^{-1}$)

Watch Video Solution

30. A 5% solution (by mass) of cane sugar in water has freezing point of 271 K . Calculate the freezing point of a 5% glucose (by mass) in water. The freezing point of pure water is 273.15 K.

D Watch Video Solution

31. Butylated hydroxytoluence $(B H T)$ is used as an antioxidant in processed foods (it
prevent fats and oils from becoming rancid). A solution of $2.5 g$ of $B H T$ in $100 g$ of benzene has a freezing point of 4.88 K . What is the molecular weight of $B H T$?
$\left(k_{f}(\right.$ benzene $)=5.12 \mathrm{Kmol}^{-1} \mathrm{~kg}, \quad$ freezing point of benzene $=5.45 K$)

D Watch Video Solution

32. Calculate the molecular weight of a substance whose 7.0% (by weight) solution
in water freezes at $-0.89^{\circ} C$.
$\left(k_{f}\right.$ for $\mathrm{H}_{2} \mathrm{O}=1.86$ Kmolality $\left.^{-1}\right)$.

D Watch Video Solution

33. What is osmotic pressure of the aq.

Solution of the given solute at $27^{\circ} C$ if depression in freezing point is $0.93^{\circ} \mathrm{C}$? Molal depression constant of water is
$1.86 \mathrm{Kmol}^{-1} \mathrm{~kg}$? Assume molality as molarity.
34. Calculate the osmotic pressure of 20% (wt./ vol.) anhydrous $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ solution at $0^{\circ} C$ assuming 100% ionisation.

- Watch Video Solution

35. The vapour pressure of a solution containing $2 g$ of NaCl in $100 g$ water, which dissociated in one Na^{+}and one Cl^{-}ion in water, is 751 mm , at $100^{\circ} \mathrm{C}$. Calculate the one degree of ionisation of NaCl .
36. 17.4% (wt./vol.) $K_{2}\left(\mathrm{SO}_{4}\right)$ solution at $27^{\circ} \mathrm{C}$ isotonic to 5.85% (wt./vol.) NaCl solution at $27^{\circ} \mathrm{C}$. IF NaCl is 100% ionised, what is $\%$ ionisation of $K_{2} S O_{4}$ in aq. solution?

D Watch Video Solution

37. Predict the osmotic pressure order for the following:
(I) $0.1 N$ urea
(II) 0.1 NNaCl
(III) $0.1 \mathrm{NNa} \mathrm{NO}_{4}$
(IV) $0.1 \mathrm{NNa}_{3} \mathrm{PO}_{4}$

D Watch Video Solution

38. An aqueous solution containing $\mathrm{NH}_{4} \mathrm{Cl}$
completely ionised in water freezes at $-0.3272^{\circ} C . K_{f}$ of water is 1.86 Kmolality $^{-1}$.

The solution on heating to $50^{\circ} \mathrm{C}$ gives a collection to dry gases which register
2.463atm pressreu in 1 litre container at
$27^{\circ} \mathrm{C}$. Assuming no water vaporises at $50^{\circ} \mathrm{C}$,
calculate the temperature at which the solution on cooling back freezes out.

- Watch Video Solution

39. Calculate the osmotic pressure at $17^{\circ} \mathrm{C}$ of an aqueous solution containing 1.75 g of sucrose per 150 mL solution.

D Watch Video Solution

40. At $27^{\circ} \mathrm{C}, 36 \mathrm{~g}$ of glucose per litre has an
O. P. of 4.92 atm . If the osmotic pressure of solution is 1.5 atm at the same temperature, what should be its concentration?

D Watch Video Solution

41. (a) $10 g$ of a certain non-volatile solute were dissolved in 100 g water at $20^{\circ} \mathrm{C}$. The vapour pressure was lowered from 17.3555 mm to 17.2350 mm , calculate m. wt. of solute.
(b) The vapour pressure of pure water at
$25^{\circ} \mathrm{C}$ is 23.62 mm . What will be the vapour pressure of a solution of $1.5 g$ of urea in $50 g$ of water?

- Watch Video Solution

42. The vapour pressure of pure benzene at a certain temperature is 640 mm og Hg . A nonvolatile non-electrolyte solid weighing $2.175 g$ added 39.0 g of benzene. The vapour pressure of the solution is 600 mm of Hg . What is the molecular weight of solid substance?

Watch Video Solution

43. The vapour pressure of an aqueous solution of glucose is 750 mm of mercury at $100^{\circ} C$. Calculate the molatlity and mole fraction of solute.

D Watch Video Solution

44. The molar volume of liquid bezene (density
$=0.877 \mathrm{gmL}^{-1}$) increase by a factor of 2750
as it vaporises at $20^{\circ} C$ and that of liquid
toluene (density $0.867 g m L^{-1}$) increases by a factor of 7720 at $20^{\circ} \mathrm{C}$. A solution of benzene and tuluene at $20^{\circ} \mathrm{C}$ has a vapour pressure of 46.0 torr. Find the mole fraction of benzene iin the vapour above the solution.

D Watch Video Solution

45. A very small amount of a non-volatile solute (that does not dissociate) is dissolved in $56.8 \mathrm{~cm}^{3}$ of benzene (density $0.889 \mathrm{gcm}^{3}$). At room temperature, vapour pressure of this
solution is 98.88 mmHg while that of benzene
is 100 mmHg . Find the molality of this
solution. If the freezing temperature of this
solution is 0.73 degree lower than that of benzene, what is the value of molal the freezing point depression constant of benzene?

D Watch Video Solution

46. The vapour pressure of two miscible
liquids (A) and (B) are 300 and 500 mm of
$H g$ respectively. In a flask 10 mole of (A) is mixed with 12 mole of (B). However, as soon as
(B) is added, (A) starts polymerising into a completely insoluble solid. The polymerisation
follows first-order kinetics. After 100 minute,
0.525 mole of a solute is dissolved whivh arrests the polymerisation completely. The final vapour pressure of the solution is 400 mm of Hg . Estimate the rate constant of the polymerisation reaction. Assume negligible volume change on mixing and polymerisation and ideal behaviour for the final solution.

- Watch Video Solution

47. $1.4 g$ of acetone dissolved in 100 g of benzene gave a solution which freezes at $277.12 K$. Pure benzene freezes at $278.4 K .2 .8$ of solid (A) dissolved in $100 g$ of benzene gave a solution which froze at 277.76 K . Calculate the molecular mass of (A).
48. The molal freezing point constant of $C_{6} H_{6}$
is 4.90 and its melting point is $5.51^{\circ} \mathrm{C}$. A solution of 0.816 g of a compound A dissolved in 7.5 g of benzene freezes at $1.59^{\circ} \mathrm{C}$. Calculate molecular weight of compound A.

D Watch Video Solution

49. The freezing point of a solution containing
$50 \mathrm{~cm}^{3}$ of ethylene glycol in 50 g of water is
found to be $-34^{\circ} C$. Assuming ideal
behaviour, Calculate the density of ethylene glycol $\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{Kkgmol}^{-1}\right)$.

D Watch Video Solution

50. A solution of $0.643 g$ of an organic compound in 50 mL of benzene (density
$0.879 g / m L)$ lowered its freezing point from $5.51^{\circ} \mathrm{C}$ to $5.03^{\circ} \mathrm{C}$. Calculate the molecular weight of solid. $\quad K_{f}$ for benzene is $5.12 \mathrm{Kmol}^{-1} \mathrm{~kg}$)
51. Calculate the amount of ice that will separate out on cooling containing 50 gof ethylene glycol in 200 g of water to $-9.3^{\circ} C\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{Kmol}^{-1} \mathrm{~kg}\right)$

D Watch Video Solution

52. Calculate the freezing point of an aqueous soltuion of non-electrolyte having an osmotic pressure $2.0 a t m$ at $300 K$.
$K_{f}^{\prime}=1.86 \mathrm{Kmol}^{-1} \mathrm{~kg}$ and $S=0.0821$ litre atm $K^{-1} \mathrm{~mol}^{-1}$)

D Watch Video Solution

53. A decimolar solution of potassium ferrocyanide is 50% dissociated at $300 K$.

Calculate osmotic pressure of the solution.
(Given $R=8.341 J K^{-1} \mathrm{~mol}^{-1}$)

D Watch Video Solution
54. 0.85% aqueous solution of NaNO_{3} is apparently 90% dissociated at $27^{\circ} C$.

Calculate its osmotic pressure.
$\left(R=0.0821 a t m K^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

55. $x g$ of non-electrolytic compound (molar mass $=200$) is dissolved in $1.0 L$ of
0.05 MNaCl solution. The osmotic pressure of
this solution is found to be 4.92 atm at $27^{\circ} \mathrm{C}$.

Calculate the value of x. Assume complete dissociation of NaCl and ideal behaviour of this solution.

D Watch Video Solution

56. Calculate the boiling point of a solution containing 0.61 g of benzoic acid in 50 g of carbon disulphide assuming 84% dimerization of the acid. The boiling point and K_{b} of $C S_{2}$ are $46.2^{\circ} C$ and $2.3 \mathrm{kgmol}^{-1}$.
57. A solution of a non-volatile solute in water
freezes at $-0.30^{\circ} C$. The vapour pressure of pure water at 298 K is 23.51 mmHg and K_{f} for water is 1.86 degree / molal. Calculate the vapour pressure of this solution at $298 K$.

- Watch Video Solution

58. To $500 \mathrm{~cm}^{3}$ of water, $3.0 \times 10^{-3} \mathrm{~kg}$ acetic acid is added. If 23% of acetic acid is dissociated, what will be the depression in
freezing point? K_{f} and density of water are $1.86 \mathrm{Kkgmol}^{-1}$ and $0.997 \mathrm{gcm}^{-3}$ respectively.

- Watch Video Solution

59. The degree of dissociation of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in
a dilute aqueous solution containing 7 g of salt per 100 g of water at $100^{\circ} \mathrm{C}$ is 70%.

Calculate the vapour pressure of solution.

- Watch Video Solution

60. The freezing point of solution containing
$0.2 g$ of acetic acid in $20.0 g$ of benzene is
lowered by $0.45^{\circ} \mathrm{C}$. Calculate the degree of association of acetic acid in benzene.
$\left(K_{f}=5.12 K^{\circ} \mathrm{mol}^{-1} \mathrm{~kg}^{-1}\right)$

D Watch Video Solution

61. Two grams of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ dissolved in 25.0 g of benzene shows a depression in freezing point equal to $1.62 K$.

Molal depression constant for benzene is
$4.9 \mathrm{Kkg}^{-1} \mathrm{~mol}^{-1}$. What is the percentage association of acid if it forms dimer in solution?

D Watch Video Solution

62. Phenol associates in benzene to certain extent to form a dimer. A solution containing $20 \times 10^{-3} \mathrm{~kg}$ of phenol in 1.0 kg of benzene hs its freezing point depressed by $0.69 K$.

Calculate the fraction of phenol that has
dimerized. (K_{f} for benzene is $5.12 \mathrm{Kkgmol}^{-1}$).

D Watch Video Solution

63. Match the boiling point with K_{b} for x, y and z, if molecular weight of x, y and z are same.

	b. pt	k_{b}
x	100	0.68
y	27	0.53
z	253	0.98

64. $1.22 g$ of benzoic acid is dissolved in acetone and benzene separately. Boiling point of mixture with acetone increase by $0.17^{\circ} \mathrm{C}$ and boiling point of mixture with benzene increases by $0.13^{\circ} \mathrm{C}$.
$K_{b}($ acetone $)=1.7 \mathrm{Kkgmol}^{-1}$,
Mass of acetone $=100 \mathrm{~g}$,
$K_{b}($ benzene $)=2.6 \mathrm{kKgmol}^{-1}$,
Mass of benzene $=100 \mathrm{~g}$,
Find molecular weight of benzoic acid in acetone and in benzene solution. Justify your answer with structure.

- Watch Video Solution

65. $75.2 g$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ (phenol) is dissolved in

1 kg of solvent of $k_{f}=14 \mathrm{Kmolality}^{-1}$. If depression in freezing point is $7 K$. Calculate \% of phenol that dimerises.

- Watch Video Solution

66. Equal volume of $0.1 M$ urea and $0.1 M$ glucose are mixed. The mixture will have
A. (a) Lower osmotic pressure
B. (b) Same osmotic pressure
C. (c) Higher osmotic pressure
D. (d) None of these

Answer: B

D Watch Video Solution
67. Glucose is added to 1 litre water to such an
extent that $\frac{\Delta T_{f}}{K_{f}}$ becomes equal to $\frac{1}{1000}$, the
weight of glucose added is:
A. (a) $0.32 g$
B. (b) $0.42 g$
C. (c) $0.22 g$
D. (d) $0.18 g$

Answer: D

- Watch Video Solution

68. Mole fraction of component A in vapour
phase is χ_{1} and that of component A in liquid
mixture is χ_{2}, then $\left(p_{A}^{\circ}\right)=$ vapour pressure of
pure $\mathrm{A}, p_{B}^{\circ}=$ vapour pressure of pure B), the total vapour pressure of liquid mixture is
A. $\frac{P_{A}^{\circ} \cdot X_{2}}{X_{1}}$
B. $\frac{P_{A}^{\circ} \cdot X_{1}}{X_{2}}$
C. (c) $\frac{P_{B}^{\circ} \cdot X_{1}}{X_{2}}$
D. (d) $\frac{P_{B}^{\circ} \cdot X_{2}}{X_{1}}$

Answer: A

- Watch Video Solution

69. Two solution (A) containing $\mathrm{FeCl}_{3(a q \text {.) }}$ and separated by semipermeable membrane sa shown below. If FeCl_{3} solution on reaction with $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ in aqueous solution gives blue colour of $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, the blue colour will be noticed in:

$$
\begin{array}{|c:c|}
(A) & (B) \\
\hdashline \mathrm{FeCl}_{3} & \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]
\end{array}
$$

A. (a) Blue colour formation in side A
B. (b) Blue colour formation in side B
C. (c) Blue colour formation in both sides
D. (d) No blue colour formation in either
side

Answer: D

D Watch Video Solution
70. The vapour pressure of an aqueous solution of glucose is 750 mm of Hg at 373 K .

Calculate molality and mole fraction of solute.

> A. (a) $\frac{1}{10}$
> B. (b) $\frac{1}{7.6}$
> C. (c) $\frac{1}{35}$
> D. (d) $\frac{1}{76}$

Answer: D

D Watch Video Solution
71. An aqueous solution of methanol in water has vapour pressure:
A. Less than that of water
B. Equal to that of water
C. (c) More than that of water

D. (d) Equal to that methanol

Answer: C
(Watch Video Solution
72. In which of the following molecular weight determination methods, sensitivity of the measurements decreases as the molecular weight of the solute increases?
A. (a) Elevation of boiling point/ depression in f.pt.
B. (b) Viscosity
C. (c) Osmotic pressure
D. (d) None of these
73. The boiling point of an azeotropic mixture of water and ethyl alcohol is less than that of the theoretical value of water and alcohol mixture. Hence the mixture shows
A. (a) That solution is highly saturated
B. (b) Positive deviation from Raoult's law
C. (c) Negative deviation from Raoult's law
D. (d) Nothing can be said

Answer: B

D Watch Video Solution

74. To from a supersaturated solution of salt one must:
A. Cool slowly
B. Cool rapidly
C. (c) Add some salt to cold solution
D. (d) Use a clear vessel

Answer: B

D Watch Video Solution

75. On mixing 10 mL of acetone with 40 mL of
chloroform, the total volume of the solution
is:
A. $<50 m L$
B. $>50 \mathrm{~mL}$
C. (c) $=50 m L$
D. (d) Can't be predicted

D Watch Video Solution

76. The relative lowering of vapour pressure in case of dilute solution is directly proportional to:
A. Molality
B. Molarity
C. (c) Mole fraction
D. (d) All of these

Answer: D

- Watch Video Solution

77. On mixing 10 mL of carbon tetrachloride
with 10 mL of benzene the total volume of the solution is:
A. $>20 m L$
B. $<20 m L$
C. (c) $=20 m L$
D. (d) Can't be predicted

Answer: C

D Watch Video Solution

78. Each pair forms ideal solution except:
A. $C_{2} H_{5} \mathrm{Br}$ and $\mathrm{C}_{2} \mathrm{H}_{5} I$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$
C. $C_{6} H_{6}$ and $C_{6} H_{5} . \mathrm{CH}_{3}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
79. The van't Hoff factor of NaCl assuming 100% dissociation is:
A. $1 / 2$
B. 2
C. 1
D. 3

Answer: B
80. When mercuric iodide is added to the aqueous solution of potassium iodide, then:
A. Freezing point is raised
B. Freezing point is lowered
C. Freezing point does not change
D. Boiling point does not change

Answer: A

- Watch Video Solution

81. The correct relationship between the boiling points of very dilute solutions of $A l C l_{3}\left(t_{1}\right)$ and $C a C l_{2}\left(t_{2}\right)$ having the same molar concentration is:
A. $t_{1}=t_{2}$
B. $t_{1}>t_{2}$
C. $t_{2}>t_{1}$
D. $t_{2} \geq t_{1}$

- Watch Video Solution

82. Two solutions of KNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$ are prepared separately. Molarity of both is
$0.1 M$ and osmotic pressure are P_{1} and P_{2} respectively. The correct relationship between the osmotic pressure is :
A. $P_{2}>P_{1}$
B. $P_{1}=P_{2}$
C. $P_{1}>P_{2}$

$$
\text { D. } \frac{P_{1}}{P_{1}+P_{2}}=\frac{P_{2}}{P_{1}+P_{2}}
$$

Answer: C

D Watch Video Solution

83. A thermometer which can be used only for
accurate mesurement for small differences in
temperature is known a:
A. Beckmann's thermometer
B. Contact thermometer

C. Clinical thermometer

D. Platinum thermometer

Answer: A

D Watch Video Solution

84. The experimental molecular weight of an electrolyte will always be less than its calculated value because the value of Van't Hoff factor. ' i, is:
A. Less than 1
B. Greater than 1
C. One
D. Zero

Answer: B

D Watch Video Solution

85. If P° and P_{S} are the vapour pressure of
the solvent and solution respectively,
n_{1} and n_{2} are the mole fractions of the solvent and solute respectively, then:
A. $P_{S}=P^{\circ} n_{1}$
B. $P_{S}-P^{\circ} n_{2}$
C. $P^{\circ}=P_{S} n_{2}$
D. $P_{S}=P^{\circ}\left(n_{1} / n_{2}\right)$

Answer: A

- Watch Video Solution

86. Solubility of deliquescent substances in
water is generally:
A. High
B. Low
C. Moderate
D. Cannot be said

Answer: A
(D) Watch Video Solution
87. The boiling point of
$\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \quad$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
are $\quad 80^{\circ} C, 65^{\circ} C, 184^{\circ} \mathrm{C}$ and $212^{\circ} \mathrm{C}$
respectively. Which will show highest vapour pressure at room temerature:
A. $C_{6} H_{6}$
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$

Answer: B
88. Why does the use of pressure cooker reduce cooking time?
A. (a) Heat is more evenly distributed
B. (b) b.pt. of water inside the cooker is
increased
C. (c) The high pressure tenderises the
food
D. (d) All of these

Answer: B

D Watch Video Solution

89. Water will boil at $101.5^{\circ} \mathrm{C}$ at which of the
following pressure:
A. (a) 76 cm of Hg
B. (b) 76 mm of Hg
C. (c) $>76 \mathrm{~cm}$ of Hg
D. (d) $<76 \mathrm{~cm}$ of Hg

- Watch Video Solution

90. Which solution will show the maximum
vapour pressure at $300 K$?
A. (a) $1 M N a C l$
B. (b) $1 M C a C l_{2}$
C. (c) $1 \mathrm{MAlCl}_{3}$
D. (d) $1 M C_{12} H_{22} O_{11}$

Answer: D

D Watch Video Solution

91. The van't Hoff factor (i) for a dilute aqueous solution of glucose is:
A. (a) Zero
B. (b) 1.0
C. (c) 1.5
D. (d) 2.0

Answer: B

- Watch Video Solution

92. A maximum or minima obtained in the temperature, composition curve of a mixture of two liquids indicates:
A. (a) An azeotropic mixture
B. (b) An eutectic formation
C. (c) That the liquids are immiscible with

D. (d) That the liquids are partially miscible

at the maximum or minimum

Answer: A

D Watch Video Solution

93. Benzoic acid dissolved in benzene shows a molecular weight of:
A. (a) 122
B. (b) 61

C. (c) 244

D. (d) 366

Answer: C

D Watch Video Solution

94. A substance will be deliquescent if its
vapour pressure is:
A. (a) Equal to the atmospheric pressure
B. (b) Equal to that of water vapour in the air
C. (c) Greater than that of water vapour in
the air
D. (d) Lesser than that of water vapour in
the air

Answer: D

D Watch Video Solution
95. A supersaturates solution is a metastable state of solution in which solute concentration:
A. (a) Is equal to the solubility of that substance in water
B. (b) Exceeds than its solubility
C. (c) Less than its solubility
D. (d) Continuously change

Answer: B
96. A liquid is in equilibrium with its vapour at
its boiling point. On average, the molecules in
the two phases have equal
A. (a) Potential energy
B. (b) Total energy
C. (c) Kinetic energy
D. (d) Intermolecular forces

Answer: C

- Watch Video Solution

97. The ratio of the value of colligative property for KCl solution to that of sugar solution is:
A. (a) 1
B. (b) 0.5
C. (c) 2
D. (d) 4

98. The lubricating action of an oil is more if it

 possess:A. (a) High vapour pressure
B. (b) Low vapour pressure
C. (c) High surface tension
D. (d) High density

Answer: B
99. The energy that favours dissolution of a solute in water is known as:
A. (a) Hydration energy:
B. (b) Lattice energy
C. (c) Ionisation energy
D. (d) Exothermic energy

Answer: A

- Watch Video Solution

100. The natural semipermeable membrane is:
A. (a) Gelatinous $C u_{2} \mathrm{Fe}(C N)_{5}$
B. (b) Gelatinous $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
C. (c) Plant cell
D. (d) Phenol layer

Answer: C

D Watch Video Solution
101. Which aqueous solution has minimum freezing point?

A. (a) 0.01 MNaCl
B. (b) $0.005 \mathrm{MC}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. (c) $0.005 \mathrm{MMgI}_{2}$
D. (d) $0.005 \mathrm{MMgSO}_{4}$

Answer: A

- Watch Video Solution

102. Which aqueous will have the highest boiling point?
A. (a) 1% glucose in water
B. (b) 1% sucrose in water
C. (c) $1 \% \mathrm{NaCl}$ in water
D. (d) $1 \% C a C l_{2}$ in water

Answer: C
(Watch Video Solution
103. Which solution will have least vapour pressure?
A. (a) $0.01 M B a C l_{2}$
B. (b) $0.1 M$ urea
C. (c) $0.1 M N a_{2} S O_{4}$
D. (d) $0.1 M N a_{3} \mathrm{PO}_{4}$

Answer: D

D Watch Video Solution
104. One mole of non-volatile solute is dissolved in two mole of water. The vapour pressure of the solution relative to that of water is:
A. (a) $2 / 3$
B. (b) $1 / 3$
C. (c) $1 / 2$
D. (d) $3 / 2$

Answer: A

105. The freezing point of a 0.05 molal solution

 of a non-electrolyte in water is:$\left(K_{f}=1.86\right.$ molality $\left.^{-1}\right)$
A. (a) $-1.86^{\circ} \mathrm{C}$
B. (b) $-0.93^{\circ} \mathrm{C}$
C. (c) $-0.093^{\circ} C$
D. (d) $0.093^{\circ} \mathrm{C}$

Answer: C
106. The freezing point of 1 molal NaCl solution assuming NaCl to be 100% dissociated in water is:
A. (a) $-1.86^{\circ} \mathrm{C}$
B. (b) $-3.72^{\circ} \mathrm{C}$
C. (c) $+1.86^{\circ} C$
D. (d) $+3.72^{\circ} \mathrm{C}$

- Watch Video Solution

107. Osmotic pressure of 40% (wt./vol.) urea solution is $1.64 a t m$ and that of 3.42% (wt./
vol.) cane sugar is 2.46 atm . When equal volumes of the above two solutions are mixed,
the osmotic pressure of the resulting solution is:
A. (a) 1.64 atm
B. (b) 2.46 atm
C. (c) 4.10atm

D. (d) 2.05 atm

Answer: D

D Watch Video Solution

108. Dry air was passed successively through
solution of $5 g$ of a solute in $180 g$ of water and
then through pure water. The loss in weight of solution was $2.50 g$ and that of pure solvent
$0.04 g$. The molecualr weight of the solute is:
A. (a) 31.25
B. (b) 3.125
C. (c) 312.5
D. (d) None of these

Answer: A

D Watch Video Solution

109. At $40^{\circ} C$ the vapour pressure of pure
liquids, benzene and toluene, are 160 mmHg and 60 mmHg respectively. At the same temperature, the vapour pressure of an
equimolar solution of the liquids, assuming the ideal solution will be:
A. (a) 140 mmHg
B. (b) 110 mmHg
C. (c) 220 mmHg
D. (d) 100 mmHg

Answer: B
(Watch Video Solution
110. A 3.42% (wt./vol.) solution of cane sugar is isotomic with a 5.96% (wt./vol.) solution of raffinose. The molecular weight of raffinose is:
A. (a) 59.6
B. (b) 596
C. (c) 5.96
D. (d) 5960

Answer: B
111. The vapour pressure of benzene at $90^{\circ} \mathrm{C}$
is 1020 torr. A solution of $5 g$ of a solute in
$58.5 g$ benzene has vapour pressure 990 torr.
The molecualr weight of the solute is:
A. (a) 78.2
B. (b) 178.2
C. (c) 206.2
D. (d) 220

Answer: D

D Watch Video Solution

112. $Y g$ of non-volatile organic substance of molecular mass M is dissolved in $250 g$ benzene. Molal elevation constant of benzene is K_{b}. Elevation in its boiling point is given by:s
A. (a) $\frac{M}{K_{b} Y}$
B. (b) $\frac{4 K_{b} Y}{M}$
C. (c) $\frac{K_{b} Y}{4 M}$
D. (d) $\frac{K_{b} Y}{M}$

Answer: B

D Watch Video Solution

113. The values of observed and calculated molecular wrights of silver nitrate are 92.64 and 170 respectively.The degree of dissociation of silver nitrate is:
A. (a) 60%
B. (b) 83.5%
C. (c) 46.7%
D. (d) 60.23%

Answer: B

D Watch Video Solution

114. The depression in f.pt. of $0.01 m$ aqueous solution of urea, soldium chloride and soldium sulphate is in the ration:
A. (a) $1: 1: 1$:
B. (b) $1: 2: 3$
C. (c) $1: 2: 4$
D. (d) $2: 2: 3$

Answer: B

D Watch Video Solution
115. The values of observed and calculated molecular weights of calcium nitrate are
respectively 65.6 and 164. The degree of dissociation of calcium nitrate will be:
A. (a) 25%
B. (b) 50%
C. (c) 75%
D. (d) 60%

Answer: C

- Watch Video Solution

116. The relationship between osmotic pressure at $273 K$ when $10 g$ glucose $\left(P_{1}\right), 10 g$ urea $\left(P_{2}\right)$ and $10 g$ sucrose $\left(P_{3}\right)$ are dissolved in 250 mL of water is:
A. (a) $P_{1}>P_{2}>P_{3}$
B. (b) $P_{3}>P_{1}>P_{2}$
C. (c) $P_{2}>P_{1}>P_{3}$
D. (d) $P_{2}>P_{3}>P_{1}$

Answer: C
117. An aqueous solution of urea has freezing point of $-0.52^{\circ} \mathrm{C}$. If molarity and molality are same and K_{f}^{\prime} for $H_{2} O=1.86 K_{\text {molality }}{ }^{-1}$ the osmotic pressure of solution would be:
A. (a) 6.886 atm
B. (b) 68.86 atm
C. (c) 688.6 atm
D. (d) 0.686 atm

Answer: A

- Watch Video Solution

118. Calculate the amount of ice that will separate out on cooling containing 50 gof ethylene glycol in 200 g of water to $-9.3^{\circ} C\left(K_{f}\right.$ for water $\left.=1.86 \mathrm{Kmol}^{-1} \mathrm{~kg}\right)$
A. (a) $38.71 g$
B. (b) 38.71 mg
C. (c) $42 g$

D. (d) $42 m g$

Answer: A

D Watch Video Solution

119. Insulin $\left(C_{2} H_{10} O_{5}\right)_{n}$ is dissolved in a suitable solvent and the osmotic pressure (π) of solutions of various concentrations $\left(\mathrm{g} / \mathrm{cm}^{3}\right) \mathrm{C}$ is measured at $20^{\circ} \mathrm{C}$. The slope of a plot of π against C is found to be
4.65×10^{-3}. The molecular weight of insulin
is:

A. (a) 4.8×10^{5}
B. (b) 9×10^{5}
C. (c) 3×10^{5}
D. (d) 5.16×10^{6}

Answer: D

D Watch Video Solution
120. A substance (A) is completely trimerised
on dissolution in solvent B. The van't Hoff factor (i) for such change is:
A. (a) 1
B. (b) 2
C. (c) 3
D. (d) $1 / 3$

Answer: D

- Watch Video Solution

121. An aqueous solution of a non-volatile solute boils at $100.17^{\circ} \mathrm{C}$. At what temperature
will the solution freeze? (Given: $K_{b}=0.512$
and $K_{f}=1.86$)

$$
\begin{aligned}
& \text { A. (a) }-0.544^{\circ} C \\
& \text { B. (b) }-0.512^{\circ} C \\
& \text { C. (c) }-0.272^{\circ} C \\
& \text { D. (d) }-1.86^{\circ} \mathrm{C}
\end{aligned}
$$

Answer: C

122. The freezing point of aqueous solution
that contains 5% by mass urea. 1.0% by mass $K C l$ and 10% by mass of glucose is:

$$
\left(\mathrm{K}_{f} \mathrm{H}_{2} \mathrm{O}=1.86 \mathrm{Kmolality}^{-1}\right)
$$

A. (a) $290.2 K$
B. (b) $285.5 K$
C. (c) 269.93 K
D. (d) $250 K$

Answer: C

D Watch Video Solution

123. A solution of protein (extracted from carbs) was prepared by dissolving $0.75 g$ in
$125 \mathrm{~cm}^{3}$ of an aqueous solution. At $4^{\circ} C$ and osmotic pressure rise of 2.6 mm of the solution was observed. Then molecular weight of protein is (assume density of solution is $\left.1.00 \mathrm{~g} / \mathrm{cm}^{3}\right):$
A. (a) 9.4×10^{5}
B. b) 5.4×10^{5}
C. (c) 5.4×10^{10}
D. (d) 9.4×10^{10}

Answer: B

D Watch Video Solution

124. The vapour pressure of water at room temperature is lowered by 5% by dissolving a
solute in it. What is approximate molality of solution:
A. (a) 2
B. (b) 1
C. (c) 4
D. (d) 3

Answer: D

D Watch Video Solution
125. The fish living in sea use the oxygen that is:
A. (a) Part of $\mathrm{H}_{2} \mathrm{O}$
B. (b) Dissolved in $\mathrm{H}_{2} \mathrm{O}$
C. (c) Part of salt
D. (d) None of these

Answer: B
(Watch Video Solution
126. The vapour pressure of high b. pt. liquids
is........then the vapour pressure of a low boiling liquid:
A. (a) low
B. (b) High
C. (c) May be high or low
D. (d) Same

Answer: A

127. The solubility of a salt in water is $40 g$ at
$30^{\circ} \mathrm{C}$. The amount of water required to dissolve $120 g$ at the same temperature is:
A. (a) $400 g$
B. (b) 4litre
C. (c) $300 g$
D. (d) $500 g$

Answer: C

D Watch Video Solution
128. 15 g of a solute in 100 g of water makes a solution of freeze at $-1^{\circ} \mathrm{C} .30 \mathrm{~g}$ of a solute in $100 g$ of water will give a depression in $f . p t$. equal to:
A. (a) $-2^{\circ} C$
B. (b) $0.5^{\circ} \mathrm{C}$
C. (c) $2^{\circ} \mathrm{C}$
D. (d) $1^{\circ} C$

Answer: C
129. For the given electrolyte $A_{x} B_{y}$. The degree of dissociation ' α ' can be given as:

$$
\begin{aligned}
& \text { A. (a) } \alpha=\frac{i-1}{(x+y-1)} \\
& \text { B. (b) } i=(1-\alpha)+x \alpha+y \alpha \\
& \text { C. (c) } \alpha=\frac{1-i}{(1-x-y)}
\end{aligned}
$$

D. (d) Either of these

Answer: D

130. On addition of a volatile liquid A to another volatile liquid B in any proportiona will always.........the vapour pressure of B :
A. (a) Decrease
B. (b) Increase
C. (c) Increase or decrease
D. (d) None of these

Answer: C

131. The colligative properties are......... proportional to each other:
A. (a) Inversely
B. (b) Directly
C. (c) Both (a) and (b)

D. (d) None of these

Answer: B
132. Shrinking of graphs in conc. NaCl solution is due to:
A. (a) Exosmosis
B. (b) Endosmosis
C. (c) Both (a) and (b)
D. (d) None of these

Answer: A
(Watch Video Solution
133. Realtive lowering in vapour pressure of a solution containing 1 mole $\mathrm{K}_{2} \mathrm{SO}_{4}$ in $54 \mathrm{gH} \mathrm{H}_{2} \mathrm{O}$
is ($K_{2} \mathrm{SO}_{4}$ in 100% ionised) :

> A. $\frac{1}{55}$
> B. $\frac{3}{55}$
> C. $\frac{3}{4}$
> D. $\frac{1}{2}$

Answer: C

134. Mixture containing 100 mL of $1 M$ urea solution and 300 mL of $1 M$ glucose solution at $T K$ will have osmotic pressure:
A. (a) $\frac{10 S T}{4}$
B. (b) $3 S T$
C. (c) $4 S T$
D. (d) $S T$

Answer: D

D Watch Video Solution
135. Mole fraction of vapour of A above solution in mixture of A and $B\left(X_{A}=0.4\right)$
will be $\left(P_{A}^{\circ}=100 \mathrm{~mm}, P_{B}^{\circ}=200 \mathrm{~mm}\right)$:
A. (a) 0.4
B. (b) 0.8
C. (c) 0.25
D. (d) None of these

Answer: C

D Watch Video Solution
136. 25 mL of an aqueous solution of KCl was
found to requires 20 mL of $1 \mathrm{MAgNO}_{3}$
solution when titrated using a $\mathrm{K}_{2} \mathrm{CrO}_{4}$ as indicator. Depression in freezing point of KCl solution with 100% ionisation will be :
$\left(K_{f}=2.0 \mathrm{~mol}^{-1} \mathrm{~kg}\right.$ and molarity $=$ molality $)$
A. (a) 5.0
B. (b) 3.2
C. (c) 1.6
D. (d) 0.8

Answer: B

- Watch Video Solution

137. Equal amounts of a solute are dissolved in equal amounts of two solvents A and B. The lowering of vapour pressure of solution A has twice the lowering of vapour pressure for solution B. If $M w_{A}$ and $M w_{B}$ are the molecular weights of solvents A and B, respectively , then
$\mathrm{a} . M w_{A}=M w_{B}, \mathrm{~b} . M w_{A}=M w_{B} / 2$,
$\mathrm{c} . M w_{A}=4 M w_{B}, \mathrm{~d} . M w_{A}=2 M w_{B}$
A. (a) $M_{A}=M_{B}$
B. (b) $M_{A}=M_{B} / 2$
C. (c) $M_{A}=4 M_{B}$
D. (d) $M_{A}=2 M_{B}$

Answer: D

138. The most likely an ideal solution is:

$$
\begin{aligned}
& \text { A. (a) } \mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O} \\
& \text { B. (b) } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{C}_{6} H_{6} \\
& \text { C. (c) } \mathrm{C}_{7} H_{16(l)}-\mathrm{H}_{2} \mathrm{O} \\
& \text { D. (d) } C_{7} H_{16(l)}-C_{8} H_{18(l)}
\end{aligned}
$$

Answer: D

139. Phenol (mol.wt.94) is dimerised to 60% in
a solvent, the observed molecular weight of phenol will be:
A. (a) Less than 94
B. (b) 134.2
C. (c) 100
D. (d) 150

Answer: B

- Watch Video Solution

140. Pure water boils at $99.725^{\circ} \mathrm{C}$ at Shimla. If
K_{b} for water is $0.51 \mathrm{Kmol}^{-1} \mathrm{~kg}$ the boiling point of 0.69 molal urea solution will be:
A. (a) 100.35
B. (b) 100.08
C. (c) 99.37
D. (d) None of these

Answer: B

- Watch Video Solution

141. At $10^{\circ} \mathrm{C}$, the osmotic pressure of urea solution is 500 mm .The solution is diluted and the temperature is raised to $25^{\circ} \mathrm{C}$.when the osmotic pressure is found to be 105.3 mm . Determine the extent of dilution.
A. (a) $V_{f}=5 V_{i}$
B. (b) $V_{i}>V_{f}$
C. (c) $V_{f}=4 V_{i}$
D. (d) $V_{f}=6 V_{i}$

Answer: A

- Watch Video Solution

142. Normal boiling point of water is 373 K .

Vapour pressure of water at 298 K is 23 mm enthalpy of vaporisation is $40.656 \mathrm{kJmol}^{-1}$ if atmopheric pressure becomes 23 mm , the water will boil at:
A. (a) 250 K
B. (b) 298 K
C. (c) 51.6 K

D. (d) $12.5 K$

Answer: B

D Watch Video Solution

143. van't Hoff factor for a dilute solution of a
sodium argento cyanide is:
A. (a) 2.0
B. (b) 0.25
C. (c) 0.50

D. (d) 3.0

Answer: A

D Watch Video Solution

144. The plots of $\frac{1}{X_{A}} v s . \frac{1}{Y_{A}}$ (where X_{A} and
Y_{A} are the mole fraction of liquid A in liquid and vapour phase respectively) is linear with slope and intercept respctively are given as:
A. (a) $\frac{P_{A}^{\circ}}{P_{B}^{\circ}}$ and $\frac{\left(P_{A}^{\circ}-P_{B}^{\circ}\right)}{P_{B}^{\circ}}$
B. (b) $\frac{P_{A}^{\circ}}{P_{B}^{\circ}}$ and $\frac{\left(P_{B}^{\circ}-P_{A}^{\circ}\right)}{P_{B}^{\circ}}$
C. (c) $\frac{P_{B}^{\circ}}{P_{A}^{\circ}}$ and $\frac{\left(P_{A}^{\circ}-P_{B}^{\circ}\right)}{P_{B}^{\circ}}$
D. (d) $\frac{P_{B}^{\circ}}{P_{A}^{\circ}}$ and $\frac{\left(P_{B}^{\circ}-P_{A}^{\circ}\right)}{P_{B}^{\circ}}$

Answer: B

D Watch Video Solution

145. At a certain temperature pure liquid A and liquid B have vapour pressure 10 and 37 torr respectively. For a certain ideal solution of
A and B, the vapours in equilibrium with the
liquid has the components A and B in the partial pressure ratio $P_{A}: P_{B}=1: 7$. The mole fraction of A in the solution are:
A. (a) 0.346
B. (b) 0.654
C. (c) 0.5
D. (d) 0.8

Answer: A

D Watch Video Solution
146. The vapour pressure of a solution of a non-volatile electrolyte B in a solvent A is 95% of the vapour pressure of the solvent at the same temperature. If the molecular weight of the solvent is 0.3 times, the molecular weight of solute, the weight ratio of the solvent and solute are:
A. (a) 0.15
B. (b) 5.7
C. (c) 0.2
D. (d) 4.0

Answer: B

D Watch Video Solution

147. For $\left[\mathrm{CrCl}_{3} . x \mathrm{NH}_{3}\right]$, elevation in $b . p t$ of one molal solution is triple of one molal aqueous solution of urea. Assuming 100% ionisation of complex molecule, calculated the value of x.
A. (a) 4
B. (b) 5

C. (c) 6

D. (d) None of these

Answer: A

D Watch Video Solution

148. At $40^{\circ} C$, the vapour pressure in torr of methyl and ethyl alcohol solutions is represented by $P=119 X_{A}+135$, where X_{A} is mole fraction of methyl alcohol. The value of
$\frac{P_{B}^{\circ}}{X_{B}}$ at $\left.\lim X_{A} \rightarrow 0\right)$, and $\frac{P_{A}^{\circ}}{X_{A}}$ at $\lim X_{B} \rightarrow 0$ are:
A. (a) 135,254
B. (b) 135,230
C. (c) 119,135
D. (d) 140,135

Answer: A

- Watch Video Solution

149. A liquid is kept in a closed vessel. If a glass plate (negligible mass)with a small hole is kept on top of the liquid surface, then the vapour pressure of the liquid in the vesel is :
A. More than what would be if the gas
plate was removed
B. Same as what would be if glass plate was
removed
C. Less as what would be if the gas plate

D. Cannot be predicted

Answer: B

D Watch Video Solution

150. For an ideal binary liquid solutions with
$P_{A}^{\circ}>P_{B}^{\circ}$, which relation between X_{A} (mole
fraction of A in liquid phase) and Y_{A} (mole fraction of A in vapour phase) is correct:

$$
\text { A. } X_{A}=Y_{A}
$$

B. $X_{A}>Y_{A}$
C. $X_{A}<Y_{A}$
D. $\frac{X_{A}}{X_{B}}<\frac{Y_{A}}{Y_{B}}$

Answer: D

- Watch Video Solution

151. A solution of urea (mol. Mass $60 \mathrm{gmol}^{-1}$) boils of $100.18^{\circ} \mathrm{C}$ at one one atmospheric pressure. If k_{f} and K_{b} for water are 1.86 and
$0.512 \mathrm{Kkgmol}^{-1}$ respectively, the above solution will freeze at:
A. $-6.54^{\circ} C$
B. $6.54^{\circ} C$
C. $-0.654^{\circ} \mathrm{C}$
D. $0.654^{\circ} \mathrm{C}$

Answer: C
(Watch Video Solution
152. The vapour pressure of two liquid P and Q
are 80 torr and 60 torr respectively. The total
vapour pressure obtained by mixing 3 moles of P and 2 mole of Q would be
A. $69=8$ torr
B. 20torr
C. 140torr
D. 72 torr

Answer: D

153. A solution has $1: 4$ mole ratio of pentane
to hexane . The vapour pressure of pure
hydrocarbons at $20^{\circ} \mathrm{C}$ are 440 mmHgfor pentane and 120 mmHg for hexane. The mole
A. 0.786
B. 0.549
C. 0.478
D. 0.200

Answer: C

D Watch Video Solution

154. Arrange the following solutions in order of increasing osmotic pressure. Assume 100 \% isonisation for electrolytes:

$$
\begin{array}{lll}
1 \mathrm{NNaCl} & 1 \mathrm{NNa}_{2} \mathrm{SO}_{4} & I N \mathrm{Na}_{3} \mathrm{PO}_{4} \\
I & I I & I I I
\end{array}
$$

A. I gt II gt III
B. III gt II gt I
C. II gt III gt I

D. II gt I gt II

Answer: A

D Watch Video Solution

155. A solution containing $10 \mathrm{gper} \mathrm{dm}^{3}$ of urea
(mol.wt. $=60 \mathrm{gmol}^{-1}$) is isotonic with a $5 \%($ mass//vol.) of a non-volatile solute. The molecular mass of non-volatile solute is:
A. $350 \mathrm{gmol}^{-1}$
B. $200 \mathrm{gmol}^{-1}$
C. $250 \mathrm{gmol}^{-1}$
D. $300 \mathrm{gmol}^{-1}$

Answer: D

D Watch Video Solution

156. 1.0 g of a non-electrolyte solute(mol. Mass $250.0 \mathrm{gmol}^{-1}$) was dissolved in 5.12 g benzene.

If the freezing point depression constant, K_{f}
of benzene is $5.12 \mathrm{Kkgmol}^{-1}$, the freezing point of benzene will be lowered by:
A. $0.5 K$
B. $0.2 K$
C. $0.4 K$
D. 0.3 K

Answer: C
(Watch Video Solution
157. The ratio of vapour pressure over solution
phase on mixing two immiscibe liquids is
equal to:
A. Ratio of their weight
B. Ratio of their mol.wt.
C. Ratio of their moles in vapours phase
D. Ratio of their moles in liquids phase

Answer: C

D Watch Video Solution
158. During osmosis, flow of water through a semipermeable membrane is:
A. From both sides of semipermeable membrane with unequal flow ratio

B. From
solutions
having
low

concentration only
C. From solutions having high
concentration only
D. From both sides fo semipermeable membrane with equal flow rate

Answer: A

D Watch Video Solution

159. The boiling point $T^{\prime}{ }_{b}$ of a solvent becomes T_{b} on addition of X_{1} mole fraction of solute. Heat of vaporisation of solvent is
$\Delta H_{\text {vap }}$. The relation between elevation in b.pt.
$\Delta T_{b}=\left(T_{b}-T^{\prime}{ }_{b}\right)$ can be given by:
$\frac{\Delta T_{b}}{T_{b} \times T_{b}^{\prime}}=-\frac{2 \ln X_{1}}{\Delta H_{\text {vap }}}$
A graph plotted between $\log _{10} X_{1} v s \frac{1}{T_{b}}$ gives:
A. a straight line with slope $\frac{R}{\Delta H_{\text {vap }}}$ and intercept $T^{\prime}{ }_{b}$
B. a stright line with slope $\frac{2.303 R}{\Delta H_{\text {vap }}}$ and intercept $\frac{1}{T_{b}}$
C. a straight line with slope $\frac{\Delta H_{\text {vap }}}{\Delta H_{\text {vap }}}$ and intercept $\frac{1}{T^{\prime}{ }_{b} \times 2.303}$
D. a straight line with slope $\frac{\Delta H_{v a p}}{2.303 R}$ and
intercept $-\frac{\Delta H_{\text {vap }}}{2.303 R T^{\prime}{ }_{b}}$

Answer: D

D Watch Video Solution

160. At higher altitude, boiling of water is
$95^{\circ} \mathrm{C}$. The amount of NaCl added to 1 kg
water $\left(k_{b}=0.52 \mathrm{Kmol}^{-1} \mathrm{~kg}\right)$ in order to raise
the b.pt. of solution to $100^{\circ} \mathrm{C}$ is (assume 90% ionisation of NaCl :
A. $296.5 g$
B. $281.25 g$
C. $270 g$
D. $310 g$

Answer: A

- Watch Video Solution

161. The elevation in boiling point of a solution
$d T_{b}$ is related with molality of solution (m) by
the reaction:
$d T_{b}=\left[\frac{R T_{b}^{2}}{\Delta H_{v a p}}\right]\left[\frac{M_{1}}{1+m M_{1}}\right]$, where M_{1} is
moalr mass of solvent and $\Delta H_{v a p}$ is heat of
vaporisation of solvent. For a dilute solution,
the relation $\left(\frac{\partial T_{b}}{\partial T_{n}}\right)_{m \rightarrow 0}$

gives:

A. Molal ebullioscopic constant
B. Elevation in boiling point
C. Elevation in boiling ∂T_{b} becomes more
predominant
D. Boiling point of solvent

Answer: A
162. Elevation in boiling point of an aqueous
$0.52\left(k_{b}\right.$ for water $\left.=0.52 \mathrm{Kmolality}^{-1}\right) . \quad$ The mole fraction is urea in this solution is :
A. 0.98
B. 0.0567
C. 0.943
D. 0.02
163. If quantities $\Delta T_{f}, \Delta T_{b}, \Delta p$ and π without subscript refer to the electrolyte solution and these with subscript refer to the nonelectrolyte solution then which one is incorrect?

$$
\begin{aligned}
\text { A. } i & =\frac{\Delta T_{f}}{\left(\Delta T_{f}\right) 0} \\
\text { B. } i & =\frac{\Delta T_{b}}{\left(\Delta T_{b}\right) 0} \\
\text { C. } i & =\frac{\Delta P}{\left(P^{\circ}\right) 0}
\end{aligned}
$$

$$
\text { D. } i=\frac{\pi}{(\pi)_{0}}
$$

Answer: C

D Watch Video Solution

164. An experimenter tries to determine the molecular weight to glucose by observing the depression in freezing point. He carries out his experiment in duplicates. In one he uses pure water as the solvent and in the other independent experiment by mistake, he uses a
$0.1 N$ aqueous $N a C l$ as the solvent. It is expected that he will report:
A. (a) Same results in both the cases
B. (b) A higher value of molecular weight of
glucose in the second case
C. (c) A lower value of molecular weight of
glucose in the second case
D. (d) An average of the molecular weights
of glucose and sodium chlorise in the
second case

Answer: A

D Watch Video Solution

165. $30 m L$ of $0.1 M K I_{a q}$. and $10 m L$ of
$0.2 \mathrm{MAgNO}_{3}$ are mixed. The solution is then
filtered out. Assuming that no change in total
volume, the resulting solution will freezing at:
$\left[K_{f}\right.$ for $\mathrm{H}_{2} \mathrm{O}=1.86 \mathrm{Kkgmol}^{-1}$,
molality $=$ molality $]$
A. (a) 0.22
B. (b) 0.28
C. (c) 0.149
D. (d) 0.074

Answer: B

D Watch Video Solution

166. When 250 mg of eugenol is added to 100 g
of camphor $\left(K_{f}=39.7 K\right.$ molality $\left.{ }^{-1}\right)$, it
lowered the freezing point by $0.62^{\circ} \mathrm{C}$. The molar mass of eugenol is:
A. (a) $160 \mathrm{gmol}^{-1}$
B. (b) $165 \mathrm{gmol}^{-1}$
C. (c) $200 \mathrm{gmol}^{-1}$
D. (d) $250 \mathrm{gmol}^{-1}$

Answer: A

D Watch Video Solution

167. Two grams of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ dissolved in 25.0 g of benzene shows a depression in freezing point equal to 1.62 K .

Molal depression constant for benzene is
$4.9 \mathrm{Kkg}^{-1} \mathrm{~mol}^{-1}$. What is the percentage association of acid if it forms dimer in solution?
A. (a) 90.2%
B. (b) 99.2%
C. (c) 9.8%
D. (d) 0.8%

Answer: B
168. Select the correct mathematical
representations for Raoult's law.
A. $P_{S}=P^{\circ} \frac{N}{n+N}$
B. $\frac{P^{\circ}-P_{S}}{P_{S}}=\frac{n}{N}$
C. $\frac{P^{\circ}-P_{S}}{P^{\circ}}=\frac{n}{n+N}$
D. $P_{S} \propto$ mole fraction of solvent

Answer: A::B::C::D

(Watch Video Solution
169. Select the correct statements.
A. The melting of ice becomes fast if salt is
spreaded on it
B. The boiling occurs late in pressure
cooker
C. Osmosis is a bilateral (both direction)
process
D. $1 \mathrm{NNa}_{2} \mathrm{SO}_{4}$ solution is hypertonic with respect to $1 N N a C l$ solution

Answer: A::B::C

D Watch Video Solution

170. Which of the following pairs are correctly matched?
A. Determination of transport number by

Hittorf's method
B. Determination of order of reaction by
van't Hoff differential method
C. Determination of molecular weight of non-volatile solute by Victor Meyer's method D. None of these

Answer: A::B

D Watch Video Solution

171. The following is a graph plotted between
the vapour pressure of two volatile liquids against their respective mole fractions. Which
of the following statements is/are correct?

A. When $\quad X_{A}=1$ and $X_{B}=0$, then

$$
P=P_{A}^{\circ}
$$

B. When $\quad X_{B}=1$ and $X_{A}=0$, then

$$
P>P_{A}^{\circ}
$$

C. When $\quad X_{A}=1$ and $X_{B}=0$, then

$$
P<P_{B}^{\circ}
$$

D. When $\quad X_{B}=1 \quad$ and $\quad X_{A}=0, \quad$ then

$$
P=P_{B}^{\circ}
$$

Answer: A::B::C::D

- Watch Video Solution

172. The vapour pressure of a dilute solution of a solute is influeneced by:
A. tempressure of solution
B. mole fraction of solute

C. melting point of solute

D. degree of dissociation of solute

Answer: A::B::D

D Watch Video Solution

173. Two miscible liquids A and B having vapour pressure in pure state P_{A}° and P_{B}° are mixed in mole fraction χ_{A} and χ_{B} to get a mixtue having total vapour vapour pressure of
mixture P_{M}. Which of the following relations are correct?

$$
\begin{aligned}
& \text { A. } X_{=} \frac{P_{M}-P_{B}^{\circ}}{P_{A}^{\circ}-P_{B}^{\circ}} \\
& \text { B. } \frac{X_{A}(l)}{X_{A}^{\prime}(v)}=\frac{P_{M}}{P_{A}^{\circ}} \\
& \text { C. } \frac{X_{A}(l)}{X_{A}^{\prime}(v)}=\frac{P_{M}}{P_{B}^{\circ}}
\end{aligned}
$$

D. None of these

Answer: A::B

D Watch Video Solution

174. For an ideal binary liquid system:
A. Raoult's law is obeyed
B. the change in enthalpy (ΔH) is zero
C. change in volume (ΔV) is zero
D. None of these

Answer: A::B::C
175. A graph is plotted between the vapour pressure and mole fraction of a solutionn containing benzene and toluene. Select the correct statements.

A. At the point a, the mole fraction of toluene is 0.80
B. $b \rightarrow c$ represents condesation
C. $c \rightarrow d$ represents vaporization
D. $c \rightarrow d$ represents vaporization as well as condensation

Answer: A::B::C

D Watch Video Solution

176. Art what temperature (s) a 5% solution
(w / V) of glucose will develop an osmotic pressure of 7 atm?
A. $273 K$
B. $306.94 K$
C. $33.94^{\circ} \mathrm{C}$
D. $33.94 K$

Answer: B::C

- Watch Video Solution

177. Among $0.1 M$ solution of
 $\mathrm{NH}_{2} \mathrm{CONH}_{2}, \mathrm{Na}_{2} \mathrm{PO}_{4}$ and $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$:

A. The $V . P$. and freezing point are the highest for urea.
B. The elevation in boiling point is the highest for $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
C. The $V . P$. and freezing point is the lowest for urea
D. The depression in freezing point in the highest for the $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: A::B::D

178. A mixture of two immiscible liquids A and
B, having vapour pressure in pure state obeys
the following relationship if χ_{A} and χ_{B} are mole fractions of A and B in vapour phase over the solution
A. If $P^{\prime}{ }_{A}>P^{\prime}{ }_{B}$ then $X_{A}^{\prime}<X^{\prime}{ }_{B}$
B. If $P_{A}^{\prime}>P_{B}^{\prime}$ then $n_{A}>n_{B}$
C. $\frac{P^{\prime}{ }_{A}}{P^{\prime}{ }_{B}}=\frac{w_{A} \times m_{B}}{m_{A} \times w_{B}}$
D. $P^{\prime}{ }_{A}=P_{M} \cdot X^{\prime}{ }_{A}$

Answer: B::C::D

D Watch Video Solution

179. Study the following figure, and select the correct statements.

Semipermeable

 membraneA. There will be no mevement of any
solution across the membrane
B. Water from $B a C l_{2}$ will flow towards the

NaCl solution
C. Water from $N A C l$ will flow towards the
$B a C l_{2}$
D. The osmotic pressure of 0.1 MNaCl is
higher than the osmotic pressure of
0.05 $\mathrm{MBaCl} l_{2}$, assuming complete
dissociation of the electrolyte

- Watch Video Solution

180. In the depression of freezing point experiment, it is found that the:
A. $V . P$. of the solution is less than that of
pure solvent
B. $V . P$. os the solution is more than that
of pure solvent
C. only solute molecules solidify at the

freezing point

D. only solvent molecules solidify at the

freezing point

Answer: A::D

- Watch Video Solution

181. For different aqueous solutions of $0.1 N$
$0.1 N N a_{3} P O_{4}$ solution at $27^{\circ} \mathrm{C}$, select the correct statements:
A. The order of osmotic pressure is:
$\mathrm{NaCl}>\mathrm{Na}_{2} \mathrm{SO}_{4}>\mathrm{Na}_{3} \mathrm{PO}_{4}>$ urea
B. $\pi=\frac{\Delta T_{b}}{K_{b}} \times S T$ for urea solution
C. Addition of salt on ice increases its
melting point
D. Addition of salt on ice brings in melting
of ice earlier
182. The azeotropic solution of two miscible
liquids:
A. may show deviation from Raoult's
B. can be separated by sample distillation
C. are supersaturated temperature
D. boil at constant temperature

Answer: A::D
183. Select the correct statements:
A. Boiling occurs only at boilling point of solvent
B. Boiling point of a liquid ischaracteristics
temperature when pressure of liquid become equal to external pressure.
C. Boiling may take place at any
temperature

D. Boiling occurs before b.pt. at

 mountanis and above b. pt. in pressure cooker.
Answer: C::D

D Watch Video Solution

184. Freezing point of an aqueous solution is
$-0.186^{\circ} C$. Elevation of boiling point of the

$K_{b}=0.512 \mathrm{Kmolality}^{-1}$ and
 $K_{f}=1.86 K^{\prime}$ molality $^{-1}$:

A. $0.186^{\circ} C$
B. $0.0512^{\circ} \mathrm{C}$
C. $0.092^{\circ} \mathrm{C}$
D. $0.237^{\circ} \mathrm{C}$

Answer: B
(Watch Video Solution
185. In mixture A and B,components show -ve deviations as:
A. $\Delta V_{m i x}$ is $+v e$
B. $A-B$ interaction is weaker than
$A-A$ and $B-B$ interaction
C. $\Delta H_{m i x}$ is $+v e$
D. $A-B$ interaction is stronger than
$A-A$ and $B-B$ interaction
186. If liquids A and B from an ideal solution, than :
A. $\Delta G_{m i x}=0$
B. $\Delta H_{\text {mixing }}=0$
C. $\Delta G_{m i x}=0, \Delta S_{m i x}=0$
D. $\Delta S_{m i x}=0$

Answer: B
187. In a 0.2 molal aqueous solution of weak acid $H X$ (the degree of dissociation 0.3) the
freezing
point is
(given
$K_{f}=1.85$ Kmolality $^{-1}$):
A. $-0.26^{\circ} C$
B. $+48^{\circ} C$
C. $-0.48^{\circ} C$
D. $-0.36^{\circ} C$
188. A pressure cooker reduces cooking time because
A. the higher pressure inside the cooker
crushes the food material
B. cooking involves chemical changes
helped by rise in temperature
C. heat is more evenly distributed in the

D. boiling point of water involved in

cooking increases

Answer: D

D Watch Video Solution

189. The elevation in boiling point of a solution of 13.44 g of CuCl_{2} (molecular weight $=$ $\left.134.4, k_{b}=0.52 \mathrm{Kmolality}^{-1}\right)$ in 1 kg water using the following information will be:
A. 0.16
B. 0.05
C. 0.1
D. 0.2

Answer: A

D Watch Video Solution

190. Which aqueous solution exhibits highest boiling point?
A. $0.015 M$ glucose
B. $0.01 \mathrm{MKNO}_{3}$
C. $0.015 M$ urea
D. $0.01 \mathrm{MNa}_{2} \mathrm{SO}_{4}$

Answer: D

D Watch Video Solution

191. Which liquids pair shows a positive deviation from Raoult's law?
A. Acetone-chloroform
B. Benzene-methanol
C. Water-nitric acid
D. Water-hydrochloric acid

Answer: B

D Watch Video Solution
192. Which statement is false ?
A. Two sucrose solutions of same molality prepared in different solvents have same
ΔT_{f}
B. Osmotic pressure, $\pi=M R T$
C. Osmotic pressure for 0.01 M aqueous
solution:
$\mathrm{BaCl}_{2}>\mathrm{KCl}>\mathrm{CH}_{3} \mathrm{COOH}>$ Sucrose
D. The vapour pressure of a component
over a solution is proportional to its
mole fraction

Answer: A

D Watch Video Solution

193. If α is the degree of dissociation of
$N a_{2} S O_{4}$, the van,t Hoff factor (i) used for calculating molaecular mass is:
A. $1+\alpha$
B. $1-\alpha$
C. $1+2 \alpha$
D. $1-2 \alpha$

Answer: C

D Watch Video Solution

194. Benzene and toluene form nearly ideal solutions.At $20^{\circ} C$, the vapour pressure of benzene is 75 torr. The partial vapour pressure of benzene at $20^{\circ} C$ for a solution containing
$78 g$ benzene and $46 g$ touene is torr is
A. 50
B. 25

C. 375

D. 53.5

Answer: A

- Watch Video Solution

195. Equimolar solutions of two nonelectroytes in the same solvent have:
A. Same b. pt. but different $f . p t$.
B. Same $f . p t$. but different b. pt.
C. Same b. pt. and same $f . p t$.
D. Different b. pt. and different $f . p t$.

Answer: C

D Watch Video Solution

196. 18 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added to
178.2 g of water. The vapour pressure of water
for this aqueous solution at $100^{\circ} \mathrm{C}$ is :
A. 759 torr

B. 7.60 torr

C. 76.0 torr
D. 752.40 torr

Answer: D

D Watch Video Solution

197. Equal weights of methane and oxygen are
mixed in an empty container at $25^{\circ} \mathrm{C}$. The
fraction of the total pressure exerted by oxygen is
A. $\frac{2}{3}$
B. $\frac{1}{3} \times \frac{273}{298}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

198. A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass $=60 \mathrm{gmol}^{-1}$) in the same solvent. If the
densities of both the solutions are assumed to
be equal to $1.0 \mathrm{gcm}^{-3}$, molar mass of the
substance will be:
A. $90.0 \mathrm{gmol}^{-1}$
B. $115.0 \mathrm{gmol}^{-1}$
C. $105.0 \mathrm{gmol}^{-1}$
D. $210.0 \mathrm{gmol}^{-1}$

Answer: D

D Watch Video Solution
199. A mixture of ethyl alcohol and propyl alcohol has a vapour pressure of 290 mm at $300 K$.The vapour pressure of propyl alcohol is 200 mm .if the mole fraction of ethyl alcohol is
0.6 ,its vapour pressure (in mm) at the same temperature will be
A. 350
B. 300
C. 700
D. 360

Answer: A

D Watch Video Solution

200. At $80^{\circ} C$, the vapour pressure of pure
liquid A is 520 mm Hg and that of pure liquid
B is 1000 mmHg . If a mixture of solution A and B boils at $80 \circ C$ and 1 atm pressure, the
amount of A in the mixture is
$(1 \mathrm{~atm}=760 \mathrm{mmHg})$
a. $50 \mathrm{~mol} \% \quad, \quad$ b. $52 \mathrm{~mol} \% \quad$,c. $34 \mathrm{~mol} \% \quad$,d.
$48 \mathrm{~mol} \%$
A. 52 mol per cent
B. 34 mol per cent
C. 48 mol per cent
D. 50 mol per cent

Answer: D

D Watch Video Solution

201. The vapour pressure of water at $20^{\circ} \mathrm{C}$ is
17.5 mmHg .if $18 g$ of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$ is
added to $178.2 g$ of water at $20^{\circ} C$, the vapour pressure of the resulting solution will be,
A. 17.675 mmHg
B. 15.750 mmHg
C. 16. 500 mmHg
D. $17.325 m m H g$

Answer: D

D Watch Video Solution

202. Two liquids X and Y from an ideal solution
at $300 K$, Vapour pressure of the Solution
containing 1 mol of X and 3 mol of Y is 550 mmHg . At the same temperature, if 1 mol of Y
is further added to this solution ,vapour pressur of the solutions increases by 100 mmHg Vapour pressure (in mmHg) of X and Y in their pure states will be,respectively
A. 200 and 300
B. 300 and 400
C. 400 and 600

D. 500 and 600

Answer: C

D Watch Video Solution

203. A binary liquid solution of n-heptane and ethyl alcohol is prepared which of the following statements correctly represents the behaviour of this liquid solution?
A. The solution formed is an ideal solution
B. The solution is non-ideal, showing $+v e$
deviation from Raoult's law
C. The solution is non-ideal, showing $-v e$ deviation from Raoult's law
D. n-heptane shows $+v e$ deviation while ethanol shows $-v e$ deviation from

Raoult's law

Answer: B

204. If solution sulphate is considered to be completely dissociated into cations and anions in aqueous solution, the change in freezing point water $\left(\Delta T_{f}\right)$, when 0.01 mole of solution sulphate is dissolved in 1 kg of water, is: $\left(K_{f}^{\prime}=1.86 \mathrm{kgmol}^{-1}\right)$
A. $0.0372 K$
B. 0.0558 K
C. $0.0744 K$
D. $0.0744 K$

Answer: B

- Watch Video Solution

205. Heptane and octane form an ideal solution. At $373 K$, the vapour pressure of the two liquids are 105.0 kPa and 46.0 kPa , respectively. What will be the vapour pressure, of the mixture of $25 g$ of heptane and $35 g$ of octane?
A. 72.0 kPa
B. 36.1 kPa
C. $96.2 k P a$
D. $144.5 k P a$

Answer: A

D Watch Video Solution

206. A 5.2 molal aqueous of methyl alcohol,
$\mathrm{CH}_{3} \mathrm{OH}$, is supplied. What is the molefraction of methyl alcohol in the solution?
A. 0.100
B. 0.190
C. 0.086
D. 0.050

Answer: C

D Watch Video Solution

207. Ethylene glycol is used as an antifreeze in
a cold cliamate Mass of ethylene glycol which
should be added to 4 kg for water to prevent
it from freezing at $-6^{\circ} C$ will be (K_{f} for water $=1.86 \mathrm{Kkgmol}^{-1}$ and molar mass of ethylene glycol $=62 \mathrm{gmol}^{-1}$)
A. 800.00 g
B. $204.30 g$
C. 400.00 g
D. $304.60 g$

Answer: A

D Watch Video Solution
208. The degree of dissociation (α) of a weak electrolyte, $A_{x} B_{y}$ is related to van't Hoff's factor (i) by the expression:

$$
\begin{aligned}
& \text { A. } \alpha=\frac{i-1}{(x+y-1)} \\
& \text { B. } \alpha=\frac{i-1}{(x+y+1)} \\
& \text { C. } \alpha=\frac{(x+y-1)}{i-1} \\
& \text { D. } \alpha=\frac{(x+y+1)}{i-1}
\end{aligned}
$$

Answer: A

209. K_{f} for water is $1.86 \mathrm{Kkgmol}^{-1}$. IF your automobile radiator holds 1.0 kg of water, how many grams of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ must you add to get the freezing point of the solution lowered to $-2.8^{\circ} C$?
A. $93 g$
B. $39 g$
C. $27 g$
D. $72 g$
210. During depression of freezing point in a solution, the following are in equilibrium:
A. liquid solvent, solid solvent
B. liquid solvent, solid solute
C. liquid solute, solid solute
D. liquid solute, solid solvent

Answer: A
211. A $0.004 M$ solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is isotomic with a $0.01 M$ solution of glucose at same temperature. The apparent degree of dissociation of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is:
A. 25%
B. 50%
C. 75%
D. 85%

Answer: C

D Watch Video Solution

212. When 20 g of naphthoic acid $\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ is dissolved in $50 g$ of benzene
$\left(K_{f}=1.72 \mathrm{Kkgmol}^{-1}\right)$, a freezing point depression of $2 K$ is observed of $2 K$ is observed. The van,t Hoff factor (i) is:
A. 0.5
B. 1.0
C. 2.0
D. 3.0

Answer: A

- Watch Video Solution

213. The Henry's law constant for the solubility of N_{2} gas in water at 298 K is $1.0 \times 10^{5} \mathrm{~atm}$.

The mole fraction of N_{2} in air is 0.8 . The number of moles of N_{2} from air dissolved in

10 moles of water at 298 K and 5 atm . Pressure
is:

A. 4.0×10^{-4}
B. 4.0×10^{a}
C. 5.0×10^{-4}
D. 4.0×10^{-6}

Answer: A
(Watch Video Solution
214. Dissolving $120 g$ of urea $(M w=60)$ in

1000 g of water gave a solution of density $1.15 \mathrm{gmL}^{-1}$. The molarity of solution is:
A. $1.78 M$
B. 2.00 M
C. 2.05 M
D. $2.22 M$

Answer: C

- Watch Video Solution

215. The freezing point (in.${ }^{\circ} C$) of a solution
containing 0.1 g of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (Mol. wt.
329) in 100 g of water $\left(K_{f}=1.86 \mathrm{Kkgmol}^{-1}\right)$
is :
A. -2.3×10^{-2}
B. -5.7×10^{-2}
C. (c) -5.7×10^{-3}
D. -1.2×10^{-2}

Answer: A
216. For a dilute solution containing $2.5 g$ of a non-volatile non-electrolyte solution in $100 g$ of water, the elevation in boiling point at 1 atm pressure is $2^{\circ} \mathrm{C}$. Assuming concentration of solute is much lower than the concentration of solvent, the vapour pressure (mm of Hg) of the solution is:
(take $k_{b}=0.76 \mathrm{Kkgmol}^{-1}$)
A. 724
B. 740
C. 736
D. 718

Answer: A
(D) Watch Video Solution
217. How many $g m$ of glucose must be present in 0.45 litre of a solution for its osmotic pressure to be same as that of solution of 8.89 gm glucose per litre?
218. At $17^{\circ} C$ the osmotic pressure of an aqueous of sucrose is 1.855 atm per 150 mL solution. Calculate the weight of sucrose in solution.

- Watch Video Solution

219. The osomotic pressure of a solution at $0^{\circ} C$ is $4 a t m$. What will be its osmotic
pressure at $546 K$ under similar conditions?
a. $4 \mathrm{~atm}, \mathrm{~b} .9 \mathrm{~atm}, \mathrm{c} .8 \mathrm{~atm}$, d. 6 atm

D Watch Video Solution

220. Calculating the osmotic pressure at $27^{\circ} C$
of an aqueous solution containing $4.4 g m$ of glucose per $100 m L$ solution.

D Watch Video Solution
221. What weight of glucose (mol.wt. $=180$)
would have to be added to 1700 g of water at $20^{\circ} \mathrm{C}$ to lower its vapour pressure 0.001 mm ?

The vapour pressure of pure water is
17 mmHg at $20^{\circ} \mathrm{C}$.

D Watch Video Solution

222. A solution of sucrose (mol. wt. 342) is
prepared by dissolving $69.3 g$ of it per litre of
the solution. What is the osmotic pressure at $300 K ?$

D Watch Video Solution

223. A 0.001 molal solution of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{4}\right]$
in water had freezing point depression of
$0.0054^{\circ} C$. If K_{f} for water is 1.80 , calculating
the number $\mathrm{f} \mathrm{Cl}^{-}$ions furnished.

- Watch Video Solution

224. The osmotic pressure of urea solution is

500 mm at $10^{\circ} \mathrm{C}$. The solution is diluted and
the temperature raised to $25^{\circ} \mathrm{C}$, when the osmotic pressure is found to be 105.3 mm .

Find the extend if dilution.

D Watch Video Solution

225. $0.002 m$ aqueous solution of an ionic
compound $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right) \mathrm{CI}$ freezes at
$-0.00732^{\circ} C$.Number of moles of ions which 1
mole of ionic compound produces in water will be $\left(K_{f}=1.86^{\circ} C / m\right)$

D Watch Video Solution

226. A mixture of nitrogen and hydrogen are initially in the molar ratio of $1: 3$ related equilibrium to form ammonia when 25% of the material had reacted. If the total pressure of the system is $28 a t m$, calculate the partial pressure of ammonia at the equilibrium.
227. A mixture of two immiscible liquids nitrobenzene and water at $99^{\circ} \mathrm{C}$ has a partial vapour pressure of water 733 mm and that of nitrobenzene 27 mm . Calculate the ratio of the weights of nitrobenzene to the water in the distillate.

- Watch Video Solution

228. $x g$ of urea was dissolved in $500 g$ of water and cooled upto $-0.5^{\circ} \mathrm{C}$ whereby $128 g$ of ice
separates out from the solution. If cryoscopic constant for water be $1.86^{\circ} \mathrm{C} / \mathrm{m}$. Calculate the value of x.

D Watch Video Solution

229. The vapour pressure of $C S_{2}$ at $50^{\circ} C$ is

854 torr and a solution of 2.0 g sulphur in 100 g
of $C S_{2}$ has vapour pressure 848.9 torr. If the
formula of sulphur molecule is S_{n}, then calculate the value of n. (at mass of $S=32$).
230. 0.75 g of a non-electrolyte was dissolved in $87.9 g$ of benzene. This raised the boiling point of benzene by $0.25^{\circ} \mathrm{C}$. If the molecular mass of non-electrolyte is 103 , calculate the molal elevation constant for bezene.

D Watch Video Solution

231. Calculating the mass of ascorbic acid
($C_{6} H_{8} O_{6}$) to be dissolved in $74 g$ of acetic acid
to lower its melting point by $1.5^{\circ} C . K_{f}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is $3.9 \mathrm{Kkgnol}^{-1}$.

D Watch Video Solution

232. The molal freezing point depression constant for benzene is $4.9 \mathrm{Kkgmol}^{-1}$.

Selenium exists as a polymer of the type $S e_{n}$.

When 3.26 g selenium is dissolved in $226 g$ of benzene, the observed freezing. If molecular formula of sulphur is S_{n}. Then find the value of n. (at. wt. of $S=32$).

Watch Video Solution

233. $3.24 g$ of sulphur dissolved in $40 g$ benzene, boiling point of the solution was higher than that of benzene by $0.081 K$. K_{b} for benzene is $2.53 \mathrm{Kkgmol}^{-1}$. If molecular formula of sulphur is S_{n}. Then find the value of n. (at.wt.of $S=32$).

- Watch Video Solution

234. Calculate the value of van't Hoff factor for a dilute solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in water.

D Watch Video Solution

235. A solution contains 0.8133 g of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in

500 mL . If osmotic pressure is found to be
0.69 atm at $27^{\circ} \mathrm{C}$. Calculate the value of van't

Hoff's factor.

D Watch Video Solution

236. A very small amount of a non-volatile solute (that does not dissociate) is dissolved in $56.8 \mathrm{~cm}^{3}$ of benzene (density $0.889 \mathrm{gcm}^{3}$). At room temperature, vapour pressure of this solution is 98.88 mmHg while that of benzene is 100 mmHg . Find the molality of this solution. If the freezing temperature of this solution is 0.73 degree lower than that of benzene, what is the value of molal the freezing point depression constant of benzene?
237. The heat of reaction of a redox change is $9.65 \times 10^{5} \mathrm{~J}$. If the same redox change is made in the working of cell showing cell efficiency 60% and emf of 1.2 V . What was the number of electrons involved in cell reaction?

D Watch Video Solution

238. Mole fraction of a solute (in a solvent of mol.wt.250) is 0.02 . If elevation constant of
solvent is 24.5 Kmolality $^{-1}$, find the elevation in boiling point.

D Watch Video Solution
239. The vapour pressure of a mixture of two
volatile liquids is given by $P_{M}=4.0 X_{A}+3.0$.
Find the vapour pressure of pure B.

D Watch Video Solution
240. A mixture of two immiscible liquids nitrobenzene and water boiling at $99^{\circ} C$
shows a partial pressure of the closest value of their weight ratio. (Water: nitrobenzene)

- Watch Video Solution

241. How many triple point for sulphur system?

D Watch Video Solution

242. Vapour pressure of a solvent is the pressure exterted by vapour when they are in equilibrium with its solvent at that temperature. The vapour pressure of solvent is dependent of nature of solvent, temperature, addition of non-volatile solute as well as nature of solute to dissociate or associate. The
vapour pressure of a mixture obtained by mixing two valatile liquids is given by
$P_{M}=P_{A}^{\circ} \cdot X_{A}+P_{B}^{\circ} \cdot X_{B}$ where P_{A}° and P_{B}°
are vapour pressures of pure components A
and B and X_{A}, X_{B} are their mole fractions in
mixture. For solute-solvent system, the relatio
becomes $P_{M}=P_{A}^{\circ} . X_{A}$ where B is nonvolatile solute.

The vapour pressure of benzene and its solution with a non-electrolyte are 640 and 600 mm respectively. The molality of solution is:
A. 0.80
B. 0.86
C. 0.90
D. 0.95

Answer: B

- Watch Video Solution

243. Vapour pressure of a solvent is the pressure exterted by vapour when they are in equilibrium with its solvent at that temperature. The vapour pressure of solvent is dependent of nature of solvent, temperature, addition of non-volatile solute as well as nature of solute to dissociate or associate. The vapour pressure of a mixture obtained by
mixing two valatile liquids is given by
$P_{M}=P_{A}^{\circ} \cdot X_{A}+P_{B}^{\circ} \cdot X_{B}$ where P_{A}° and P_{B}°
are vapour pressures of pure components A
and B and X_{A}, X_{B} are their mole fractions in
mixture. For solute-solvent system, the relatio
becomes $P_{M}=P_{A}^{\circ} . X_{A}$ where B is nonvolatile solute.

The amount of solute (mol. wt. 60) required to dissolve in $180 g$ water to reduce the vapour pressure to $4 / 5$ of the pure water:
A. $120 g$
B. $150 g$
C. $200 g$
D. $60 g$

Answer: B

D Watch Video Solution

244. Vapour pressure of a solvent is the pressure exterted by vapour when they are in equilibrium with its solvent at that temperature. The vapour pressure of solvent is dependent of nature of solvent, temperature,
addition of non-volatile solute as well as nature of solute to dissociate or associate. The vapour pressure of a mixture obtained by mixing two valatile liquids is given by
$P_{M}=P_{A}^{\circ} \cdot X_{A}+P_{B}^{\circ} \cdot X_{B}$ where P_{A}° and P_{B}° are vapour pressures of pure components A and B and X_{A}, X_{B} are their mole fractions in mixture. For solute-solvent system, the relatio becomes $P_{M}=P_{A}^{\circ} . X_{A}$ where B is nonvolatile solute.

The vapour pressure at $102^{\circ} \mathrm{C}$ of a nonelectrolytic solution having $b . p t .375 K$ is:
A. 750 mm
B. 770 mm
C. 760 mm
D. 780 mm

Answer: C

D Watch Video Solution

245. Vapour pressure of a solvent is the pressure exterted by vapour when they are in equilibrium with its solvent at that
temperature. The vapour pressure of solvent is
dependent of nature of solvent, temperature, addition of non-volatile solute as well as nature of solute to dissociate or associate. The
vapour pressure of a mixture obtained by mixing two valatile liquids is given by
$P_{M}=P_{A}^{\circ} \cdot X_{A}+P_{B}^{\circ} \cdot X_{B}$ where P_{A}° and P_{B}°
are vapour pressures of pure components A
and B and X_{A}, X_{B} are their mole fractions in
mixture. For solute-solvent system, the relatio
becomes $P_{M}=P_{A}^{\circ} . X_{A}$ where B is nonvolatile solute.

If M is mol.wt. of solvent, K_{b} is molal elevation
constant and t_{b} is its boiling point, P° is its vapour pressure ta temperature T and P_{S} is
vapour pressure of non-volatile solute in it at $T K$, then:

$$
\begin{aligned}
& \text { A. } \frac{P^{\circ}-P_{S}}{P^{\circ}}=\frac{\Delta T_{b}}{K_{b}} \times M \\
& \text { B. } \frac{P^{\circ}-P_{S}}{P^{\circ}}=\frac{K_{b}}{T_{b}} \times M \\
& \text { C. } \frac{P^{\circ}-P_{S}}{P^{\circ}}=\frac{K_{b}}{T_{b}} \times \frac{M}{1000} \\
& \text { D. } \frac{P^{\circ}-P_{S}}{P^{\circ}}=\frac{\Delta T_{b}}{K_{b}} \times \frac{M}{1000}
\end{aligned}
$$

Answer: D

246. Vapour pressure of a solvent is the pressure exterted by vapour when they are in equilibrium with its solvent at that temperature. The vapour pressure of solvent is dependent of nature of solvent, temperature, addition of non-volatile solute as well as nature of solute to dissociate or associate. The vapour pressure of a mixture obtained by mixing two valatile liquids is given by
$P_{M}=P_{A}^{\circ} \cdot X_{A}+P_{B}^{\circ} \cdot X_{B}$ where P_{A}° and P_{B}° are vapour pressures of pure components A
and B and X_{A}, X_{B} are their mole fractions in
mixture. For solute-solvent system, the relatio
becomes $P_{M}=P_{A}^{\circ} . X_{A}$ where B is nonvolatile solute.

A mixture of two volatile liquids A and $B 1$
and 3 moels respectively has a $V . P$ of
300 mm at $27^{\circ} \mathrm{C}$. IF one mole of A is further added to this solution, the vapour pressure
becomes 290 mm at $27^{\circ} \mathrm{C}$. The vapour pressure of A is:
A. 250 mm
B. 316 mm
C. 220 mm
D. 270 mm

Answer: A

D Watch Video Solution

247. Colligative properties i.e., the properties of solution which depends upon the number pf aprticles present in solution are osmotic pressure, depression in freezing point, elevation in boiling point and lowering in
vapour pressure. Experimental values of colligative properties for electroetically because electrolytes dissociates to furnish more ions in solution. On the other hand experimentally obtained values of colligative properties for associating nature of solute ate
lower than those obtained theoretically. The ratio of experimantal colligative properties to theoretical colligative properties is called as van't Hoff factor (i).
van,t Hoff factor (i) for dimerisation of benzoic acid in water, assuming 30% degree of association is:
A. 0.85
B. 0.95
C. 0.90
D. 1

Answer: A

D Watch Video Solution

248. Colligative properties i.e., the properties of solution which depends upon the number pf aprticles present in solution are osmotic
pressure, depression in freezing point, elevation in boiling point and lowering in vapour pressure. Experimental values of colligative properties for electroetically because electrolytes dissociates to furnish more ions in solution. On the other hand experimentally obtained values of colligative properties for associating nature of solute ate
lower than those obtained theoretically. The ratio of experimantal colligative properties to theoretical colligative properties is called as van't Hoff factor (i).

The degree of dissociation of electrolyte $A_{x} B_{y}$ is given by the relation:

$$
\begin{aligned}
& \text { A. } \alpha=\frac{i-1}{x+y-1} \\
& \text { B. } \alpha=\frac{i+1}{x+y-1} \\
& \text { C. } \alpha=\frac{i-1}{x+y+1}
\end{aligned}
$$

D. None of these

Answer: A

D Watch Video Solution

249. Colligative properties i.e., the properties of solution which depends upon the number pf aprticles present in solution are osmotic pressure, depression in freezing point, elevation in boiling point and lowering in vapour pressure. Experimental values of colligative properties for electroetically because electrolytes dissociates to furnish more ions in solution. On the other hand experimentally obtained values of colligative properties for associating nature of solute ate
lower than those obtained theoretically. The
ratio of experimantal colligative properties to
theoretical colligative properties is called as
van't Hoff factor (i).
The maximum elevation in $b . p t$. is noticed in :
A. 1 NNaCl
B. $1 \mathrm{NNa} a_{2} \mathrm{SO}_{4}$
C. $1 \mathrm{NNa}_{3} \mathrm{PO}_{4}$
D. $1 N N a_{4} F e(C N)_{6}$

Answer: A

250. Colligative properties i.e., the properties of solution which depends upon the number pf aprticles present in solution are osmotic pressure, depression in freezing point, elevation in boiling point and lowering in
vapour pressure. Experimental values of colligative properties for electroetically because electrolytes dissociates to furnish more ions in solution. On the other hand experimentally obtained values of colligative properties for associating nature of solute ate
lower than those obtained theoretically. The ratio of experimantal colligative properties to theoretical colligative properties is called as van't Hoff factor (i).

For $1 M$ solution of $H A$ having $\alpha>0.05$, the dissociation constant K_{a} in terms of van't Hoff factor ` (i) can be written as :

$$
\begin{aligned}
& \text { A. } \frac{(i-1)^{2}}{i} \\
& \text { B. } \frac{(i+1)^{2}}{i} \\
& \text { C. } \frac{i}{(i-1)^{2}} \\
& \text { D. } \frac{(i-1)^{2}}{(2-i)^{2}}
\end{aligned}
$$

Answer: D

- Watch Video Solution

251. Colligative properties i.e., the properties
of solution which depends upon the number pf aprticles present in solution are osmotic pressure, depression in freezing point, elevation in boiling point and lowering in
vapour pressure. Experimental values of
colligative properties for electroetically because electrolytes dissociates to furnish
more ions in solution. On the other hand experimentally obtained values of colligative properties for associating nature of solute ate lower than those obtained theoretically. The ratio of experimantal colligative properties to theoretical colligative properties is called as van't Hoff factor (i).

The correct order of osmotic pressure for the solutions:
(I) 1 N urea, (II) 1 NNaCl
(III) $1 N N a_{2} \mathrm{SO}_{4}$, (IV) $1 N N a_{3} \mathrm{PO}_{4}$ is:

$$
\text { A. } I>I I>I I I>I V
$$

B. $I V>I I I>I I>I$
C. $I I>I I I>I V>I$
D. $I>I V>I I I>I I$

Answer: C

D Watch Video Solution

252. Colligative properties i.e., the properties
of solution which depends upon the number pf aprticles present in solution are osmotic pressure, depression in freezing point,
elevation in boiling point and lowering in vapour pressure. Experimental values of colligative properties for electroetically because electrolytes dissociates to furnish more ions in solution. On the other hand experimentally obtained values of colligative properties for associating nature of solute ate lower than those obtained theoretically. The ratio of experimantal colligative properties to theoretical colligative properties is called as van't Hoff factor (i).
van't Hoff coefficient ' g ' for 100% dissociated $N a C l$ solution is:
A. 1
B. 2
C. $1 / 2$
D. 3

Answer: A

D Watch Video Solution

253. The molecular weight of non-volatile solute can be determined experimentally by
by ebullisocopy Berkeley-Hartley method for isotomic presure is commonly used for aqueous solutions. Elevation in b. pt. or depression in f.pt. on addition of nonvalatile solute in a solvent is read by Beckmann's thermometer.

Which of the following statement is wrong :
A. Super heating or super cooling must be
avoided during cryoscopy or
equllioscopy measurements.
B. Addition of salt on ice brings it's early melting.
C. Water boils at relatively higher temperature in pressure cooker.
D. Beckman's thermometers are used to
determine exact b. pt. ot $f . p t$. of solvent and solutions respectively.

Answer: D

254. The molecular weight of non-volatile solute can be determined experimentally by osmotic pressure method or by cryoscopy or by ebullisocopy Berkeley-Hartley method for isotomic presure is commonly used for aqueous solutions. Elevation in b. pt. or depression in $f . p t$. on addition of nonvalatile solute in a solvent is read by Beckmann's thermometer.

Select the correct statement :
$C u_{2} F e(C N)_{6}$ is soluble in water but insoluble in non-aqueous solvents.
B. Cryoscopy gives better results of mol.wt. of polymers of high mol.wt.
C. During freezing a solution, whole of the solution freezes.
D. Only solvent freezes at its $f . p t$. if solution is cooled.

- Watch Video Solution

255. Properties such as boiling point, freezing point and vapour pressure of a pure solvent change when solute molecules are added to get homogeneous solution. These are called colligative properties. Applications of colligative properties are very useful in day-today life. One of its examples is the use of ethylene glycol and water mixture as antifreezing liquid in the radiator of automobiles.

A solution M is prepared by mixing ethanol
and water. Thus moel fraction of ethanol in the mixture is 0.9 .

Given: Freezing point depression constant of water
$\left(K_{f}^{\text {water }}\right)=1.86 \mathrm{Kkgmol}^{-1}$
Freezing point depression constant of ethanol
$\left(K_{f}^{\text {ethanol }}\right)=2.0 \mathrm{Kkgmol}^{-1}$
Boiling point elevation constant of water
$\left(K_{b}^{\text {water }}\right)=0.52 \mathrm{Kkgmol}^{-1}$

Boiling point elevation constant of ethanol
$\left(K_{b}^{\text {ethanol }}\right)=1.2 \mathrm{Kkgmol}^{-1}$
Standard freezing point of water $=273 K$

Standard freezing point of ethanol $=155.7 K$

Standard boiling point of water $=373 K$
Standard boiling point of ethanol $=351.5 K$
vapour pressure of pure water $=32.8 \mathrm{mmHg}$
Vapour pressure of pure ethanol $=40 \mathrm{mmHg}$
Molecualr weight of water $=18 \mathrm{gmol}^{-1}$
Molecular weight of ethanol $=46 \mathrm{gmol}^{-1}$

In asweering the following questions, consider
the solutions to be ideal dilute solutions and
solutes to be non-volatile and nondissociative.

The freezing point of the solution M is:
A. $268.7 K$
B. $268.5 K$
C. $234.2 K$
D. 150.9 K

Answer: D

D Watch Video Solution

256. Properties such as boiling point, freezing point and vapour pressure of a pure solvent change when solute molecules are added to get homogeneous solution. These are called
colligative properties. Applications of
colligative properties are very useful in day-today life. One of its examples is the use of ethylene glycol and water mixture as antifreezing liquid in the radiator of automobiles.

A solution M is prepared by mixing ethanol and water. Thus moel fraction of ethanol in the mixture is 0.9 .

Given: Freezing point depression constant of water
$\left(K_{f}^{\text {water }}\right)=1.86 \mathrm{Kkgmol}^{-1}$
Freezing point depression constant of ethanol

$$
\left(K_{f}^{\text {ethanol }}\right)=2.0 \mathrm{Kkgmol}^{-1}
$$

Boiling point elevation constant of water
$\left(K_{b}^{\text {water }}\right)=0.52 \mathrm{Kkgmol}^{-1}$
Boiling point elevation constant of ethanol
$\left(K_{b}^{\text {ethanol }}\right)=1.2 \mathrm{Kkgmol}^{-1}$
Standard freezing point of water $=273 K$

Standard freezing point of ethanol $=155.7 K$
Standard boiling point of water $=373 \mathrm{~K}$
Standard boiling point of ethanol $=351.5 K$
vapour pressure of pure water $=32.8 \mathrm{mmHg}$

Vapour pressure of pure ethanol $=40 \mathrm{mmHg}$
Molecualr weight of water $=18 \mathrm{gmol}^{-1}$
Molecular weight of ethanol $=46 \mathrm{gmol}^{-1}$

In asweering the following questions, consider
the solutions to be ideal dilute solutions and solutes to be non-volatile and nondissociative.

The vapour pressure of the solution M is:
A. 39.3 mmHg
B. 36.0 mmHg
C. $29.5 m m H g$
D. 28.8 mmHg

Answer: B
257. A solution M is prepared by mixing ethanol and water. The mole fraction of ethanol in the mixture is 0.9

Given: Freezing point depression constant of water
$\left(K_{f}^{\text {water }}=1.86 \mathrm{Kkgmol}^{-1}\right)$
Freezing point depression constant to ethanol
$\left.\left(K_{f}^{\text {ethanol }}\right)=2.0 \mathrm{Kkgmol}^{-1}\right)$
Boiling point elevation constant of water
$\left.\left(K_{b}^{\text {water }}\right)=0.52 \mathrm{Kkgmol}^{-1}\right)$
Boiling point elevation constant of ethanol
$\left.\left(K_{b}^{\text {ethanol }}\right)=1.2 \mathrm{Kkgmol}^{-1}\right)$
Standard freezing point of water $=273 K$

Standard freezing point of ethanol $=155.7 \mathrm{~K}$
Standard boiling point of water $=373 K$

Standard boiling point of ethanol $=351.5 \mathrm{~K}$

Vapour pressure of pure water $=32.8 \mathrm{mmHg}$
Vapour pressure of pure ethanol $=40 \mathrm{~mm} \mathrm{Hg}$
Molecular weight of water $=18 \mathrm{gmol}^{-1}$
Molecular weight of ethanol $=46 \mathrm{gmol}^{-1}$

In anwering the following questions consider
the solutions to be ideal dilute solutions and
solutes to be non-volatile and non-
dissociative.

Water is added to the solution M such that
the mole fraction of water in the solution
becomes 0.9 . The boiling point of this solution is
A. $380.4 K$
B. 376.2 K
C. $375.5 K$
D. 354.7 K

Answer: B
258. Colligative properties of solution depend upon the number of particles present in solution. Experimental values colligative properties for electrolytes are always higher than these obtained theoretically because electrolyte dissociates to furnish more ions in solution. The ration of experimental values to
theoretical values is called as van't Hoff factor (i).
van't Hoff factor for dimerisation of benzoic
acid in water, assuming 70% degree of association:
A. 0.65
B. 0.7
C. 1
D. 0.75

Answer: A
(Watch Video Solution
259. Colligative properties of solution depend upon the number of particles present in solution. Experimental values colligative properties for electrolytes are always higher than these obtained theoretically because electrolyte dissociates to furnish more ions in solution. The ration of experimental values to
theoretical values is called as van't Hoff factor (i).

For $1 M$ solution of a weak acid $H A$, the dissociation constant K in terms of van't Hoff factor:
A. $\frac{(i-1)^{2}}{i}$
B. $\frac{i}{(i-1)^{2}}$
C. $\frac{(i-1)^{2}}{(2-i)}$
D. $\frac{(i-1)^{2}}{i}$

Answer: C

- Watch Video Solution

260. Colligative properties of solution depend
upon the number of particles present in
solution. Experimental values colligative properties for electrolytes are always higher than these obtained theoretically because electrolyte dissociates to furnish more ions in solution. The ration of experimental values to theoretical values is called as van't Hoff factor (i).

The correct order of freezing point for the following, each are 1 molal solutions in water and take $\alpha=1$:
(i) Urea , (ii) NaCl
(iii) $\mathrm{Na}_{3} \mathrm{PO}_{4}$, (iv) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
A. $i v<i i<i i i<i$
B. $i i i<i v<i i<i$
C. $I<i i<i v<i i i$
D. $i i i<i v<I<i i$

Answer: B

D Watch Video Solution

261. Statement Addition of a non-volatile solute causes a depression in vapour pressure.

Explanation vapour pressure of a solution is
directly proportional to mole fraction of solvent.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is
correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: C

D Watch Video Solution
262. Statement Osmosis is a bilateral process.

Explanation In osmosis net flow from dilute to concentrated solution is noticed.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is
correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: C

D Watch Video Solution

263. Statement Formation of semipermeable membrane between the walls of porous pot on hanging pot filled with $\mathrm{CuSO}(a q$. partiallt dipped in $K_{4} F e(C N)_{6}$ is due to osmosis.

Explanation The ions moves through the walls of porous pot and between the walls $C u^{2+}$
and $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$ gives insoluble gelatinous mass of $C a_{2}\left[F e(C N)_{6}\right]_{4}$.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is
correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: B

264. Statement Boiling point of water is $100^{\circ} \mathrm{C}$ although water boils below $100^{\circ} \mathrm{C}$ on mountains.

Explanation Boiling point of a liquid is the temperature at which V.P. of liquid becomes equal to 1 atm .
A. S is correct but E is wrong.
B. S is wrong but E is correct.

C. Both S and E are correct and E is

 correct explanation of S.D. Both S and E are correct but E is not correct explanation of S.

Answer: C

D Watch Video Solution

265. Statement An ideal solution is one which obey Raoult's law.

Explanation $K C l_{a q}$. is an ideal solution.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: A

D Watch Video Solution

266. Statement Ebullioscopy or cryscopy can

 not be used for the determination of mol. wt. of polymers.Explanation High molecular weight solute leads to very low value of ΔT_{b} or ΔT_{f}
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.

D. Both S and E are correct but E is not

 correct explanation of S.
Answer: C

D Watch Video Solution

267. Statement For iostomic solutions
$C_{1}=C_{2}$.
Explanation For isotomic solutions $\pi_{1}=\pi_{2}$.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: B

D Watch Video Solution

268. Statement Osmotic pressure of nonaqueous solutions can be determined by Berkeley-Hartley method.

Explanation The semipermeable membrane used in Berkeley-Hartley method is
$C u_{2}\left[F e(C N)_{6}\right]$.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.

D. Both S and E are correct but E is not

 correct explanation of S.Answer: B

D Watch Video Solution

269. Statement Near the freezing point of an aqueous solution of a non-volatile solute only ice separates out.

Explanation The remaining solution shows
equilibrium between solid solvent-liquid solvent.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is
correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: C

270. Statement van't Hoff factor for electrolytes is always greater than unity.

Explanation The number of particles increases in solution due to electrolytic dissociation.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.

D. Both S and E are correct but E is not

 correct explanation of S.
Answer: C

D Watch Video Solution

271. Statement Super heating means to heat a
liquid just above its boiling point.

Explanation On direct heating, the layer in contact with frame has relatively higher temperature than the other layers of liquid.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: D

D Watch Video Solution

272. Statement Reverse osmosis is used to purify saline water.

Explanation Solvent molecules pass from concentrate solution to dilute solution
through semipermeable membrane if high pressure is applied on solution side.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.

D. Both S and E are correct but E is not

 correct explanation of S.
Answer: C

D Watch Video Solution

273. Statement All solutes becomes more soluble in water at higher temperature.

Explanation The amount of solute that dissolve depends upon nature, temperature and pressure (gases) of the substance.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: D

D Watch Video Solution

274. Statement The vapour pressure of $0.1 M$
sugar solution is more than that of $0.1 M$
potassium chloride solution.
Explanation Lowering of vapour pressure is directly proportional to the number of species present in the solution.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.

D. Both S and E are correct but E is not

 correct explanation of S.Answer: B

D Watch Video Solution

275. Statement At equilibrium of Liquid \Leftrightarrow
vapour, kinetic energy liquid phase and vapour phase are same.

Explanation Kinetic energy of liquid or vapour is given by $3 / 3 R T$ for one mole.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: C

D Watch Video Solution

276. Statement The boiling point of $0.1 M$ urea

 solution is less than that if 0.1 MKCl solution.Elevation of boiling point is directly proportional to the number of species present in the solution.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is correct explanation of S.

D. Both S and E are correct but E is not

 correct explanation of S.Answer: B

D Watch Video Solution

277. Statement If one component obeyed Raoult's law over a certain range of composition, the other component would not obey Henry's law in that range.

Explanation Raoult's law is a special case of Henry's law.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is
correct explanation of S.
D. Both S and E are correct but E is not correct explanation of S.

Answer: A

278. Statement The water pouch of instant cold pack for treating athletic injuries breakes when squeezed and $\mathrm{NH}_{4} \mathrm{NO}_{3}$ dissolves lowering the temperature.

Explanation Addition of non-volatile solute into solvent results into depression of freezing point of solvent.
A. S is correct but E is wrong.
B. S is wrong but E is correct.

C. Both S and E are correct and E is

 correct explanation of S.D. Both S and E are correct but E is not correct explanation of S.

Answer: C

D Watch Video Solution

279. Statement The vapour pressure of 0.45
molar urea solution is more than that of 0.45
molar solution of sugar.

Explanation Lowering of vapour pressure is directly proportional to the number of species present in the solution.
A. S is correct but E is wrong.
B. S is wrong but E is correct.
C. Both S and E are correct and E is
correct explanation of S.
D. Both S and E are correct but E is not
correct explanation of S.

Answer: B

- Watch Video Solution

280. At $25^{\circ} \mathrm{C}$, a solution containing $0.2 g$ of polyisobutylene in 100 mL of benzene developed a rise of 2.4 mm at osmotic equilibrium. Calculate the molecular weight of polyisobutylene if the density of solution is
$0.88 \mathrm{~g} / \mathrm{mL}$.

- Watch Video Solution

281. Calculate osmotic pressure of a solution obtained by mixing 100 mL of 3.4% solution "
(weight/volume)" of urea "(molecular weight 60)" and 100 mL of 1.6% solution " (weight/volume)" of cane sugar "(molecular weight 342)" at $20^{\circ} \mathrm{C}$.

D Watch Video Solution

282. A tube of uniform cross-sectional area $1 \mathrm{~cm}^{2}$ is closed at one end with semi-
permeable membrane. A solution of $5 g$ glucose per $100 m L$ is placed inside the tube and is dipped in pure water at $27^{\circ} \mathrm{C}$. When equilibrium is established, calculate:
a. The osmotic pressure of solution.
b.The height developed in vertical column.

Assume the density of final glucose solution
$1 g m L^{-1}$

D Watch Video Solution

283. A beaker containing $20 g$ sugar in $100 g$
water and another containing $10 g$ sugar in
$100 g$ water are placed under a bell-jar and allowed to stand until equilibrium is reached.

How much water will be transferred from one beaker to other?

D Watch Video Solution

284. At $10^{\circ} C$, the osmotic pressure of urea solution is 500 mm . The solution is diluted and
the temperature is raised to $25^{\circ} \mathrm{C}$.when the osmotic pressure is found to be 105.3 mm . Determine the extent of dilution.

D Watch Video Solution

285. At $300 K$, the vapour pressure of an ideal solution containing one mole of A and 3 mole of B is 550 mm of $H g$. At the same temperature, if one mole of B is added to this solution, the vapour pressure of solution
increases by 10 mm of Hg . Calculate the $V . P$. of A and B in their pure state.

D Watch Video Solution

286. The vapoure pressure of benzene and toluene at $20^{\circ} \mathrm{C}$ are 75 mm of Hg and 22 mm of $H g$ respectively. $23.4 g$ of benzene and $64.4 g$ of toluene are mixed. If two forms ideal solution, calculate the mole fraction of benzene in vapour phase when vapour are in equilibrium with liquid mixture.

Watch Video Solution

287. A mixture of two immiscible liquids nitrobenzene and water at $99^{\circ} C$ has a partial
vapour pressure of water 733 mm and that of nitrobenzene 27 mm . Calculate the ratio of the weights of nitrobenzene to the water in the distillate.

- Watch Video Solution

288. The vapour pressures of two pure liquids
A and B that form an ideal solution are 300
and 800 torr, respectively, at tempertature T.A
mixture of the vapours of A and B for which
the mole fraction of A is 0.25 is slowly
compressed at temperature T. Calculate
a. The composition of the first drop of the condensate.
b.The total pressure when this drop is formed.
c. The composition of the solution whose normal boiling point is T.
d. The pressure when only the last bubble of
vapour remains.
e. Composition of the last bubble.

- Watch Video Solution

289. Calculate the vapour pressure lowering of
a $0.1 m$ aqueous solution of non-electrolyte at
$75 \circ C$.
$\Delta H=9.720 \mathrm{Kcalmol}^{-1}, P_{2}=742.96$ torr

- Watch Video Solution

290. Dry air was successively passed through a solution of $5 g$ solute in $80 g$ water and then through pure water. The loss in weight of solution was $2.5 g$ and that of pure water was 0.04 g . What is mol. wt. of solute?

D Watch Video Solution

291. What will be the boliling point of bromine
when 174.5 mg of octa-atomic sulphur is
added to $78 g$ of bromine? k_{b}^{\prime} for $B r_{2}$ is $5.2 \mathrm{Kmol}^{-1} \mathrm{~kg}$ and b. pt. of $B r_{2}$ is 332.15 K

D Watch Video Solution

292. An aqueous solution contaning 5% by weight of urea and 10% weight of glucose.

What will be its freezing point?
$\left(K^{\prime}{ }_{f} f\right.$ or $\left.H_{2} \mathrm{Ois1.86}{ }^{\circ} \mathrm{mol}^{-1} \mathrm{~kg}\right)$

D Watch Video Solution
293. Two elements A and B form compounds
having molecular formula $A B_{2}$ and $A B_{4}$.

When dissolved in $20 g$ of benzene, 1 gof $A B_{2}$
lowers the freezing point by $2.3 K$, whereas
1.0 g of $A B_{4}$ lowers it by 1.3 K . The molar depression constant for benzene is
$5.1 \mathrm{Kkgmol}^{-1}$. Calculate the atomic mass of
A and B.

D Watch Video Solution

294. If the boiling point of an aqueous solution is $100.1^{\circ} \mathrm{C}$, what is its freezing point ? Given $l_{f}=80, l_{v}=540 \mathrm{cal} g^{-1}$ respectively, of $\mathrm{H}_{2} \mathrm{O}$.

D Watch Video Solution

295. 1000 g of 1 molal aqueous solution of
sucrose is cooled and maintained at
$-3.534^{\circ} C$. Find out how much ice will
separate out at this temperature. $\left(K_{f}\right.$ for water $=1.86 \mathrm{~km}^{-1}$)

D Watch Video Solution

296. A solution containing 0.1 mol of naphthalene and 0.9 mol of benzene is cooled out until some benzene freezes out. The solution is then decanted off from the solid and warmed upto $353 K$ where its vapour pressure was found to be 670 mm . The freezing point and boiling point of benzene
are $278.5 K$ and $353 K$ respectively, and its enthalpy of fusion is $10.67 \mathrm{KJmol}^{-1}$.

Calculate the temperature to which the solution was cooled originally and the amount of benzene that must have frozen out. Assume ideal behaviour.

D Watch Video Solution

297. One mole of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}$. OH dissolved in

1000 g of 100% sulphuric acid lowers the
freezing point of sulphuric acid twice as one
mole of $\mathrm{CH}_{3} \mathrm{OH}$ shows in 1000 g of 100%
sulphuric acid. Comment on it associated in
sulphuric acid.

D Watch Video Solution

298. Calculate the osmotic pressure of 20%
(wt./ vol.) anhydrous $C a C l_{2}$ solution at $0^{\circ} C$
assuming 100% ionisation.

D Watch Video Solution
299. A certain mass of a substance when
dissolved in $100 g C_{6} H_{6}$ lowers the freezing
point by $1.28^{\circ} \mathrm{C}$. The same mass of solute dissolved in 100 g of water lowers of the
freezing point by $1.40^{\circ} \mathrm{C}$. If the substance has
normal molecular weight in benzene and is
completely dissocited in water, into how many
ions does it dissocite in water ? K_{f} for $\mathrm{H}_{2} \mathrm{O}$
and $C_{6} H_{6}$ are 1.86 and $5.12 \mathrm{Kmol}^{-1} \mathrm{~kg}$ respectively.
300. The vapour pressure of a solution containing $2 g$ of $N a C l$ in $100 g$ water, which dissociated in one $N a^{+}$and one $C l^{-}$ion in water, is 751 mm , at $100^{\circ} \mathrm{C}$. Calculate the one degree of ionisation of NaCl .

D Watch Video Solution

301. $1 g$ of monobasic acid in $100 g$ of water lowers the freezing point by 0.168°. If $0.2 g$ of same acid requires $15.1 \mathrm{mLmol}^{-1}$ of $N / 10$
alkali for complete neutralization, calculate the degree of dissociation of acid. K_{f}^{\prime} for $\mathrm{H}_{2} \mathrm{O}$ is $1.86 \mathrm{Kmol}^{-1} \mathrm{~kg}$.

D Watch Video Solution

302. What will be the osmotic pressure of $0.1 M$ monobasic acid its $p H$ is 2 at $25^{\circ} C$?

D Watch Video Solution
303. A complex is represented as
$\mathrm{CoCl}_{3} . \mathrm{XNH}_{3}$. Its 0.1 molal solution in aqueous solution shows $\Delta T_{f}=0.558^{\circ} \cdot\left(K_{f}\right.$ for $\mathrm{H}_{2} \mathrm{O}$ is $1.86 \mathrm{Kmolality}^{-1}$) Assuming 100% ionisation of complex and coordination number of $C o$ as six, calculate formula of complex.
304. The freezing point of an aqueous solution of $K C N$ containing $0.1892 \mathrm{molkg}^{-1}$ was
$-0.704^{\circ} \mathrm{C}$. On adding 0.45 mole of $\mathrm{Hg}(\mathrm{CN})_{2}$,
the freezing point of the solution was
$=0.620^{\circ} \mathrm{C}$. If whole of $\mathrm{Hg}(\mathrm{CN})_{2}$ is used in
complex formation according to the equation,
$\mathrm{Hg}(\mathrm{CN})_{2}+m \mathrm{KCN} \rightarrow \mathrm{K}_{m}\left[\mathrm{Hg}(\mathrm{CN})_{m+2}\right]$
what is the formula of the complex ? Assume
$\left[H g(C N)_{m+2}\right]^{m-}$ is not ionised and the complex molecule is 100% ionised.
$\left(\mathrm{K}_{f}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$ is $1.86 \mathrm{kgmol}^{-1} \mathrm{~K}$.)
305. A 0.001 molal solution of a complex represented as $\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{4}$ in water had freezing point depression of $0.0054^{\circ} C$. Given K_{f} for $H_{2} O=1.86 \mathrm{Km}^{-1}$. Assuming 100% ionization of the complex, write the ionization nature and formula or complex.
306. The freezing point of 0.08 molalNaHSO 4
is $-0.345^{\circ} C$. Calculate the percentage of
$H S O_{4}+O$ ions that transfers a proton to water. Assume 100% ionization of NaHSO_{4} and K_{t} for $H_{2} O=1.86$ Kmolality $^{-1}$.

D Watch Video Solution

307. The $K_{s p}\left(25^{\circ} C\right)$ of sparingly soluble salt
$X Y_{2}(s)$ is $3.56 \times 10^{-5}\left(\mathrm{~mol} L^{-1}\right)^{3}$ and at $30^{\circ} C$, the vapour pressure of its saturated
solution in water is 31.78 mmof Hg .

Given: Vapour pressure of pure water=31.82 mm of Hg

D Watch Video Solution

308. An aqueous solution of an acid is so weak
that it can be assumed to be practically unionised, boiled at $100.4^{\circ} C .25 m L$ of this solution was neutralised by 38.5 mL of $1 N$ solution of NaOH . Calculate basicity of the
acid if K_{b} for water is $0.52 \mathrm{Kmol}^{-1} \mathrm{~kg}$. Assume molality equal to molarity.

D Watch Video Solution

309. The freezing point of 0.02 mole fraction acetic acid in benzene is $277.4 K$. Acetic acid exists partly as dimer. Calculate the equilibrium constant for dimerization. The freezing point of benzene is $278.4 K$ and the heat the fusion of benzene is $10.042 \mathrm{kJmol}^{-1}$. Assume molarity and molality same.

Watch Video Solution

310. Calculate the value of molal elevation constant for water if $\Delta S_{\text {vaporisation }}$ is $26.33 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$.
(D) Watch Video Solution

Exercise 3B Objectice Problems

1. $1 g$ mixture of glucose and urea present in
$259 m L$ aqueous solution shows the osmotic
pressure of 0.74 atm at $27^{\circ} \mathrm{C}$. Assuming solution to be dilute, select the correct statements:
A. Percentage of urea in mixture is 17.6
B. Relative lowering in vapour pressure of
this solution is 5.41×10^{-4}
C. (c) The solution will boil at $100.015^{\circ} C$, if
K_{b} of water is $0.5 K_{\text {molality }}{ }^{-1}$
D. If glucose is replaced by same amount of
sucrose, the solution will show higher

osmotic pressure at $27^{\circ} \mathrm{C}$

Answer: A::B::C

D View Text Solution

Exercise 9 Advanced Numerical

1. If at a particular tempreture, the density of
$18 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is $1.8 \mathrm{gCm}{ }^{-3}$, calcualte:
(a) Molality,
(b) $\%$ concentration by weight of solution
(c) Mole fraction of water and $\mathrm{H}_{2} \mathrm{SO}_{4}$,
(d) Relative decrease in vapour pressure with repsect to $\mathrm{H}_{2} \mathrm{O}$ solvent assuming $\mathrm{H}_{2} \mathrm{SO}_{4}$ almost unionised at this high concentration.

D View Text Solution

2. At $300 K$, two solutions of glucose in water of concentration $0.01 M$ and $0.01 M$ are separated by semipermeable membrane with respect to water. On which solution, the
pressuer need be applied to prevent osmosis ?

Calculate magnitude of this applied pressure.

D View Text Solution

3. Vapour pressure of $C_{6} H_{6}$ and $C_{7} H_{8}$ mixture at $50^{\circ} C$ are given by $P=179 X_{B}+92$, where X_{B} is mole fraction of $C_{6} H_{6}$. Calculate (in $m m$):
(a) Vapour pressure of pure liquids.
(b) Vapour pressure of liquid mixture obtained by mixing $936 g C_{6} H_{6}$ and $736 g$ toluene.
(c) If the vapours are removed and condensed into liquid and again brought to the temperature of $50^{\circ} \mathrm{C}$, what would be mole fraction of $C_{6} H_{6}$ in vapour state?

D View Text Solution

4. Ideal mixture of two miscible liquids A and
B is placed in a cylinder containing piston.
Piston is pulled out isothermally so that volume of liquid decreases but that of vapours increases. When negligibly small amount of
liquid was left, the mole fraction of A in
vapour phsae is 0.4 . If $P_{A}^{\circ}=0.4 a t m$ and
$P_{B}^{\circ}=1.2 a t m \quad$ at the experimental temperature, calculate the total pressure at which the liquid is almost evaporated.

D View Text Solution

5. The vapour pressure of water at $293 K$ is

2338 Pa and the vapour pressure of an aqueous solution is $2295.8 P a$. If solution density is $1010 \mathrm{~kg} / \mathrm{m}^{3}$ at 313 K , calculate the
omotic pressure at $313 K$.
(Molecular weight of solute $=60$)

D View Text Solution

6. Calculate the vapour pressure of solution having $3.42 g$ of cane-sugar in $180 g$ water at
$40^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. Given that boiling point of water is $100^{\circ} \mathrm{C}$ and heat of vaporisation is $10 \mathrm{kcalmol}^{-1}$ in the given temperature range.

Also calculate the lowering in vapour pressure of 0.2 molal cane-sugar at $40^{\circ} \mathrm{C}$.
7. What weight of solute (M.wt.60) is required to dissolve in $180 g$ of water to reduce the vapour pressure to $4 / 5$ th of pure water?

D View Text Solution

8. Calculate the freezing point of an aqueous solution having mole fraction of water 0.8. Latent heat of fusion of ice is $1436.3 \mathrm{calmol}^{-1}$.
9. The osmotic pressure of an aqueous solution of sucrose is 2.47 atm at 303 K and the molar volume of the water present in solution is $18.10 \mathrm{~cm}^{3}$. Calculate the elevation of boiling point of this solution. Given
$\Delta H_{\mathrm{vap}}=540 \mathrm{cal} / \mathrm{g}$. Assume volume solvent equal to volume of solution.

D View Text Solution

10. Vapour pressure of a solution containing solution of a sparingly soluble salt $A_{2} B_{3}$ is 31.8 mm of Hg at $40^{\circ} \mathrm{C}$. IF vapour pressure of pure water is 31.9 mm of Hg at $40^{\circ} \mathrm{C}$, calculate $K_{S P}$ of $A_{2} B_{3}$ at $40^{\circ} C$.

D View Text Solution

11. What is the ratio by weight of $N a F$ and
$N a I$ which when dissolved in water produces
the same osmotic effects as 0.1 molar solution
of urea in water at same temperature? The weight of residue obtained on evaporation of the salt solution is 0.48 gram per 100 mL of solution evaporated. Assume complete dissociation of the salts.

D View Text Solution

12. Chloroacetic acid has $K_{a}=1.36 \times 10^{-3}$.

Calculate the concentration of each ion and freezing point of $0.1 M$ its solution, assuming
molarity and malality same.
$\left(K_{f}\right.$ for $\left.\mathrm{H}_{2} \mathrm{O}=1.86 \mathrm{Kmolality}^{-1}\right)$

- View Text Solution

